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SR is a language for programming distributed systems ranging from operating systems to application 
programs. On the basis of our experience with the initial version, the language has evolved consider- 
ably. In this paper we describe the current version of SR and give an overview of its implementation. 
The main language constructs are still resources and operations. Resources encapsulate processes 
and variables that they share; operations provide the primary mechanism for process interaction. 
One way in which SR has changed is that both resources and processes are now created dynamically. 
Another change is that inheritance is supported. A third change is that the mechanisms for operation 
invocation-call and send-and operation implementation-proc and in-have been extended and 
integrated. Consequently, all of local and remote procedure call, rendezvous, dynamic process creation, 
asynchronous message passing, multicast, and semaphores are supported. We have found this 
flexibility to be very useful for distributed programming. Moreover, by basing SR on a small number 
of well-integrated concepts, the language has proved easy to learn and use, and it has a reasonably 
efficient implementation. 

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed 
Systems-distributed applications; network operating systems; D.1.3 [Programming Techniques]: 
Concurrent Programming; D.3.3 [Programming Languages]: Language Constructs-concurrent 
programming structures; modules, packages; 0.3.4 [Programming Languages]: Processors-code 
generation; compilers; optimization; run-time enuironments; D.4.1 [Operating Systems]: Process 
Management-concurrency; multiprocessing/multiprogramming; synchronization; D.4.4 [Operating 
Systems]: Communications Management-message sending; D.4.5 [Operating Systems]: Reliabil- 
ity--fault-tolerance 

General Terms: Languages 
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1. INTRODUCTION 

During the past two years we have redesigned and reimplemented the SR 
(Synchronizing Resources) programming language. Like its predecessor, SRo 
[2, 31, SR remains a language for writing distributed programs. Also, the main 

This research was supported by NSF under grant DCR-8402090 and by the Air Force Office of 
Scientific Research under grant AFOSR-84-0072. The U.S. Government is authorized to reproduce 
and distribute reprints for Governmental purposes notwithstanding any copyright notices thereon. 
Authors’ addresses: Gregory R. Andrews, Michael Coffin, Irving Elshoff, Kelvin Nilsen, and Gregg 
Townsend, Department of Computer Science, The University of Arizona, Tucson, AZ 85721; Ronald 
A. Olsson, Division of Computer Science, The University of California at Davis, Davis, CA 95616; 
Titus Purdin, Department of Computer Science, Colorado State University, Fort Collins, CO 80523. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
0 1988 ACM 0X4-0925/88/0100-0051$01.50 

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1966, Pages 51-66. 



52 l G. R. Andrews et al. 

language constructs-resources and operations-are conceptually the same. 
However, on the basis of our experience using SR,, to write numerous programs, 
including prototypes of the Saguaro operating system [6], we have modified the 
language in several ways. In essence, SR is to SR, what Modula-2 is to Modula 
[38, 391: a second-generation language that incorporates refinements based on 
experience with its predecessor. 

The redesign of SR has been guided by three major concerns: expressiveness, 
ease of use, and efficiency. By expressiveness we mean that it should be possible 
to solve distributed programming problems in the most straightforward possible 
way. This argues for having a flexible set of language mechanisms, for both 
writing individual modules and combining modules to form a program. Distrib- 
uted programs are generally much more complex than sequential programs. 
Sequential programs usually have a hierarchical structure; distributed programs 
often have a weblike structure in which components interact more as equals than 
as master and slave. Sequential programs usually contain a fixed number of 
components since they execute on a fixed hardware configuration; distributed 
programs often need to grow and shrink dynamically in response to changing 
levels of user activity and changing hardware configurations. Sequential programs 
have a single thread of control; distributed programs have multiple threads of 
control. Thus a distributed programming language necessarily contains more 
mechanisms than a sequential programming language. 

One way to make a language expressive is to provide a plethora of distinct 
mechanisms. However, this conflicts with our second concern, ease of use. As 
Hoare has so aptly observed, if programs are to be reliable, the language they are 
written in must be simple to understand and use [21]. The way we have resolved 
this tension between expressiveness and simplicity is that SR provides a variety 
of mechanisms, but they are based on only a few underlying concepts. Moreover, 
these concepts are generalizations of those that have been found useful in 
sequential programming, and they are integrated with the sequential components 
of SR so that similar things are expressed in similar ways. The main components 
of SR programs are parameterized resources, which generalize modules such as 
those in Modula-2. Resources interact by means of operations, which generalize 
procedures. Operations are invoked by means of synchronous call or asynchro- 
nous send. Operations are implemented by procedure-like procs or by in state- 
ments. In different combinations, these mechanisms support local and remote 
procedure call, dynamic process creation, rendezvous, message passing, and 
semaphores-all of which we have found to be useful. The concurrent and 
sequential components of SR are integrated in numerous additional ways in an 
effort to make the language easy to learn and understand and hence easy to use. 

A further consequence of basing SR on a small number of underlying concepts 
is good performance. SR provides a greater variety of communication and 
synchronization mechanisms than any other language, yet each is as efficient as 
its counterpart in other languages. We have also designed the language and 
implemented the compiler and run-time support in concert, revising the language 
when a construct was found to have an implementation cost that outweighed 
its utility. In addition, some of the expressiveness within the language has 
been realized by “opening up” the implementation. For example, the various 
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mechanisms for invoking and servicing operations are all variations on ways to 
enqueue and dequeue messages. 

A detailed discussion of how these concerns have influenced the evolution of 
SR is given in [4]. This paper presents an overview of the language and its 
implementation. We summarize the main language mechanisms,’ give examples 
of their use, describe the most interesting aspects of the implementation, and 
give performance figures. We also discuss the relation between SR and other 
approaches to programming distributed systems. 

2. LANGUAGE OVERVIEW 

An SR program is composed from three kinds of separately compiled components: 
resource specifications, resource bodies, and globals. Resources are the main 
building block; they are the unit of abstraction and encapsulation. Globals contain 
declarations of constants and types shared by resources; they have the form 

global identifier 
declarations of constants and types 

end identifier 

A resource is a parameterized pattern, instances of which are created dynami- 
cally. Resources define operations and are implemented by one or more processes 
that execute in the same address space. Processes interact by means of operations; 
processes in the same resource may also share variables. SR provides a variety 
of mechanisms for implementing and invoking operations. These mechanisms 
can be used in various combinations to program resources that implement objects 
ranging from sequential stacks and queues, through monitors, to complex servers. 
Moreover, inheritance is supported so resources can implement classes of objects. 
The remainder of this section is a summary of the most interesting aspects of 
resources and operations. 

2.1 Resources 

A resource has a specification and a body. The specification identifies other 
components the resource uses and declares operations, constants, and types 
exported by the resource. The basic form of a resource specification is 

resource identifier 
import identifier list 
declarations of operations, constants, and types 

end identifier 

All objects declared in the specification are exported from the resource; they may 
be used in other resources that import this resource. 

The body of a resource contains the processes that implement the resource, 
declarations of objects shared by those processes, and initialization and 

1 The complete language is described in [5]. 
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finalization code. The general form of a body is 

body identifier(forrna.l parameters) 
import identifier list 
declarations of shared objects 
processes 
initial block end 
final block end 

end identifier 

The identifier on a body is the same as that on a previously compiled specification; 
a body inherits all objects declared in or imported into that specification. As 
indicated, the body of a resource is parameterized, actual parameters are assigned 
during resource creation (see Section 2.1.2). The shared objects may be constants, 
types, variables, and additional, local operations; none of these objects is visible 
outside the body. A block is a sequence of declarations and statements. 

Most of the pieces in the specification and body of a resource are optional and 
may occur in any order. Also, an object can be referenced any time after it has 
been declared. This permits the values of constants to depend on previously 
declared objects. Statements and declarations can also be intermixed. This 
permits sizes of arrays to depend on input values. 

The general ordering rule in SR is “declare before use”; that is, an object must 
be declared before being referenced. Thus a global component or resource speci- 
fication must be declared before any resource that imports it. Note that the body 
of a resource may also contain an imports phrase. This permits a body to employ 
components in addition to those imported by the resource’s specification and 
thus facilitates keeping interfaces precise. This also permits two resource bodies 
to reference each other’s specification. 

The specification and body of a resource may be combined when it is not 
necessary to compile them separately. This is illustrated by the following example, 
which declares a resource that implements a queue of integers:2 
resource Queue 

op insert(item : int) 
op remove0 returns item : int 

body Queue(size : int) 
var sfore[O:size-I ] : int 
varfiont := 0, rear := 0, count := 0 

proc insert(item) 
if count<size + store[rear] := item; rear := (reur+l)%size; count++ 
[else+ # take actions appropriate for overflow 
fi 

end 

proc remove0 returns item 
if count>0 -3 item := store[front]; front := (front+l)%size; count-- 
0 else --f # take actions appropriate for underflow 
fi 

end 

end Queue 

‘Semicolons are optional in SR; our convention is to use them as separators for declarations or 
statements that appear on the same line. Identifiers following end are also optional; our convention 
is to include them only on lengthy objects. One-line comments begin with ‘#’ and terminate with the 
end of the line on which the comment begins. 
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The specification of Queue exports two operations. The body employs the 
common array-based representation; it is parameterized by the size of the array 
that is to be used when an instance of Queue is created. Note that Queue is a 
“sequential” data type since the operations on an instance should not be executed 
concurrently; a synchronized queue that may be shared by processes is given 
later. Also note that the structure of this resource is very similar to the structure 
one would find in languages such as Modula-2, Euclid [26], and Ada [l]. The 
actual forms of declarations and statements are somewhat different, however, for 
reasons mostly having to do with our goal of integrating the sequential and 
concurrent mechanisms of SR. 

2.1.1 Inheritance and Resource Families. A resource can import globals and 
other resources and thus can reference objects exported by those components. 
An additional mechanism, the extend phrase, is provided to allow one resource 
to inherit all objects declared in the specification of one or more other resources. 
This facilitates construction of families of closely related resources, as illustrated 
below and in a larger example in Section 3. The extension mechanism also 
facilitates subdividing the specification of a resource into pieces that are imported 
by different resources; this is also illustrated in Section 3. 

One way to program a resource that implements a queue of integers was 
shown above. However, there are numerous ways to represent a queue, for 
example, using a linked list rather than an array. A family of queue resources 
could be programmed as follows. First, a resource specification is given for the 
representation-independent operations on a queue: 

resource Queue 
op insert(item : int) 
op remove0 returns item : int 

end 

Then, other resources that extend Queue are programmed for each different 
representation. For example, the array representation could be reprogrammed as 

resource ArrayQueue 
extend Queue 

body ArrayQueue(size : int) 
body as programmed above 

end ArrayQueue 

A resource that extends another can also declare additional operations if that is 
appropriate. 

Above, Queue is an abstract resource that has no body. It is used merely to 
specify an interface. By contrast, ArrayQueue is a concrete resource having both 
a specification and body. 

2.1.2 Resource Creation. Instances of concrete resources are created dynami- 
cally by means of the create statement. Execution of 

variable := create resource-identifrer(argumcnts) 

causes a new instance of the named resource to be created. Arguments are passed 
by value to the new instance and then the resource’s initialization code, if any, 
is executed (as a process). Execution of create terminates when the initialization 
code terminates. A resource capability is returned by create and assigned to 
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variable. This capability can be used to invoke the operations exported by the 
resource, can be copied and passed to other resources, and can be used to destroy 
the instance. For example, given 

var qcap : cap ArrayQueue 

which declares a capability for ArrayQueue, execution of 

qcap := create ArrayQueue(20) 

creates a 20-element ArrayQueue and returns a capability for it. Subsequently, 
an item can be inserted into the queue by executing 

qcap.insert(item) 

or removed by executing 

item := qcap.remove() 

where item is of type int. Essentially qcap is a record, the fields of which are 
capabilities for the two operations exported by ArrayQueue. If it becomes appro- 
priate to destroy this instance of ArrayQueue, 

destroy qcap 

can be executed. The destroy statement terminates after the resource’s finali- 
zation code (if any) terminates and space allocated to the resource has been 
freed. 

By default, execution of create places a new resource in the same virtual 
machine (address space) as that of the resource on which create is executed. It 
is also possible to cause an instance to be placed in a different virtual machine 
by appending “on vmcap” to the create statement, where vmcap is a capability 
for a virtual machine. New virtual machines are generated by creating instances 
of the urn pseudoresource in a manner analogous to creating a resource. A virtual 
machine can be placed on a specific physical machine (network node) by append- 
ing “on machine-id” to the create statement. 

In addition to capabilities for concrete resources, which are generated by create 
statements, SR provides capabilities for abstract resources and for individual 
operations. For example, a capability for the abstract resource Queue could be 
declared and then assigned to from a capability that points to an instance of a 
concrete resource that extends Queue. Thus capabilities for abstract resources 
can be used to mask completely the concrete resource that implements an abstract 
interface. 

Capabilities for individual operations provide a mechanism similar to proce- 
dural parameters. They are used to support finer grained control over the 
communication paths between resources. (Examples are given later.) Finally, 
capability variables and individual fields within capabilities for resources can be 
set to the special values null (error) or noop (no effect); null is the initial value 
of each capability variable. 

2.2 Operations and Communication Primitives 

Resources are patterns for objects; operations are patterns for actions on objects. 
Operations are declared in op declarations, as illustrated in the previous exam- 
ples. (Arrays of operations are also supported.) Such declarations can appear in 
resource specifications, within resources, or within processes. Operations are 
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Invocation Service Effect 
call proc procedure call (possibly remote or recursive) 
call in rendezvous 
send prw dynamic process creation 
send in message passing 

invoked by call or send statements; they are serviced by procedures (proc) or 
input (in) statements. In the four possible combinations, these primitives have 
the effects given in Table I. In addition, semaphores can be simulated using send 
and in with parameterless operations. This section shows how these effects are 
achieved. 

2.2.1 Invocation Statements. The invocation statements have the forms 

call opcration(arguments) 
send operation(arguments) 

where operation is a field of a resource capability, an operation capability, or the 
name of an operation declared in the scope of the invocation statement. The 
keyword call is optional; it is omitted when operations are invoked in expressions. 
Arguments are passed by value (val, the default), result (res), or value/result 
(var). Arguments can also be passed by reference (ref) within a virtual machine 
(address space). 

A call statement terminates when the operation has been serviced and results 
have been returned (or when a failure has been detected, as discussed in Section 
2.2.4). A send statement terminates when the arguments have been stored on 
the machine on which the resource that services the operation resides. Thus, call 
is synchronous, whereas send is semisynchronous [9].3 

By default, an operation may be invoked by either call or send. It is possible 
to restrict invocation to just one of these by appending the operdion restriction 
“[callJ” or “(send]” to the operation’s declaration. In keeping with our desire 
not to impose restrictions on usage, however, we do not a priori preclude invoking 
an operation by send, even if it has result parameters or a return value. 
Occasionally we have found it useful to send to a function, for example, to update 
a graphics display. 

2.2.2 Servicing Operations. An operation is serviced either by a proc or by one 
or more in statements. A proc is a generalization of a procedure: It is declared 
like a procedure and may be called like a procedure, but has the semantics of a 
process. Its general form is 

proc operation-identifier(formaljdentifiers) returns result-identifier 
block 

end operation-identifier 

3 We have chosen semisynchronous rather than asynchronous semantics for send for two reasons. 
First, this is the semantics that is invariably implemented when the sender and receiver of an 
operation execute on the same machine. Second, semisynchronous semantics provides the sender 
with assurance that adequate buffer space for the invocation exists and that the servicing resource 
exists and was reachable at the time the operation was invoked. Of course, the programmer still has 
no assurance that the invocation will be serviced. 
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where the operation identifier is the same as that in an op declaration in the 
resource containing the proc. Whenever that operation is invoked, an instance 
of the proc is created. This instance executes as a process and uses the formal 
and result identifiers (if any) to access the arguments of the invocation and to 
construct the result.4 If the operation was called, the caller waits for the instance 
to terminate (or reply); the effect is thus like a procedure call and is in fact 
implemented like a procedure call for calls within the same virtual machine. 
However, if the operation was invoked by send, the sender and instance of the 
proc execute concurrently; the effect in this case is like forking a process. 

The other way to service operations is to employ in statements, which have 
the general form 

in operation-command 0 . . . 0 operation-command ni 

Each operation command is structurally like a proc except that it may also 
contain a synchronization and scheduling expression: 

operation-identifier(formaljdentifiers) returns result-identifier 
and synchronization-expression by scheduling-expression + block 

An in statement delays the executing process until some invocation is selectable; 
then the corresponding block is executed. An invocation is selectable if the 
Boolean-valued synchronization expression in the corresponding operation com- 
mand is true; the synchronization expression is optional and is implicitly true if 
omitted. In general, the oldest selectable invocation is serviced. This can be 
overridden by the use of by, which causes selectable invocations of the associated 
operation to be serviced in ascending order of the arithmetic scheduling 
expression following by. 

Recall that proc supports procedure call and process forking, depending on 
whether the operation serviced by a proc is invoked by call or send. Input 
statements support rendezvous or message receipt, again depending on whether 
an operation serviced by in is invoked by call or send. Thus input statements 
combine aspects of both Ada’s select statement [l] and CSP’s guarded input 
statement [25]. They are even more powerful, however, since the synchronization 
expression may reference formal parameters, and thus selection can be based on 
parameter values. Input statements may also contain scheduling expressions that 
reference formal parameters. These mechanisms greatly simplify solving many 
synchronization problems. Yet, as we shall see in Section 4, they can be imple- 
mented quite efficiently. 

A simple example will help clarify these mechanisms and their use. Following 
is a resource that implements a bounded buffer of integers: 

resource BoundedBuffer 
op insert(item : int) 
op remove0 returns item : int 

’ The types of the formals and result are specified in the op declaration; they are not repeated in the 
proc declaration. 
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op W 
initial send bb() end # see text for a simpler way to program this 

proc 4 
var store[O:size-1] : int 
var front := 0, rear := 0, count := 0 

dotrue+ 
in insert(item) and countkze + 

store[rear] := item; rear := (rear+l)%size; count++ 
0 remove0 returns item and counh0 + 

item := storewont]; front := (front+l)%size; count-- 
ni 

od 
end 

end BoundedBuffer 

The interface part of BoundedBuffer is identical to that of Queue, which is 
appropriate since a bounded buffer is just a synchronized queue; in fact, 
BoundedBuffer could have been programmed by extending Queue rather than by 
repeating the specification. The implementation of BoundedBuffer contains one 
proc, bb. Initially one instance of bb is activated (using send); that instance 
executes as a process that repeatedly services invocations of insert and remove. 
Invocations of insert can be selected as long as there is room in the buffer; 
invocations of remove can be selected as long as the buffer is not empty. Note 
that insert and remove are serviced by a single process and thus execute with 
mutual exclusion. Also note that the implementation is not visible to resources 
that use instances of BoundedBuffer, the resource body could equally well have 
used a monitor-like implementation in which insert and remove are each serviced 
by a proc and semaphores are used to synchronize them (see below for how 
semaphores can be simulated). 

Resources often contain “worker” processes such as bb above. SR provides a 
process declaration to simplify programming such processes. For example, the 
above resource could be coded more compactly by deleting the declaration of the 
bb operation, deleting the initialization code, and replacing the line. 

proc bb() 

by 

process bb 

Process declarations are thus an abbreviation for the specific pattern that was 
employed in BoundedBuffer. 

Another useful abbreviation is provided by the receive statement. In partic- 
ular, 

receive operation(v1, . . . . vN) 

is an abbreviation for an in statement that waits for an invocation of operation 
and then assigns the values of the formal parameters to variables vl, . . . , UN. 
Together with the send form of invocation, receive supports asynchronous 
message passing in a familiar way. Synchronous message passing is supported by 
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receive together with the call form of invocation. Semaphores can also be 
simulated using send and receive. For example, given theldeclaration 

the following statements simulate the semaphore P and V operations: 

receive s() # P operation 
send s() # V operation 

This simulation can be used within a resource to synchronize access to shared 
resource variables. In fact, operations declared and used in this way are imple- 
mented just as if they were semaphores. 

2.2.3 Additional Communication Primitives. A few additional primitives are 
provided to support process interaction. All are useful, simple, and efficient. 

The return and reply statements provide flexibility in servicing invocations. 
Execution of return causes the smallest enclosing in statement or proc to 
terminate early. If the invocation being serviced was called, the corresponding 
call statement also terminates, and results are returned to the caller. Execution 
of reply causes the call invocation being serviced in the smallest enclosing in 
statement or proc to terminate.5 In contrast to return, however, the process 
executing reply continues with the next statement. An important use of reply 
is to allow a proc to transmit return values to its caller yet continue to exist and 
execute after replying. This facilitates programming conversations, as will be 
shown in Section 3.2. 

The final communication primitive is the co statement, which supports con- 
current invocations. The form of a co statement is 

co concurrent-invocation -3 post-processing 
II . . . 
// concurrent-invocation 4 post-processing 

oc 

A concurrent invocation is a call or send statement, or an assignment that 
contains only a single invocation of a user-defined function. The postprocessing 
blocks are optional. Execution of co first starts all invocations. Then, as each 
invocation terminates, the corresponding postprocessing block is executed 
(if there is one); postprocessing blocks are executed one at a time. Execution of 
co terminates when all invocations and postprocessing blocks have terminated 
or when some postprocessing block executes exit. 

If a co statement terminates before all its invocations have terminated, 
uncompleted invocations are not terminated prematurely because such an invo- 
cation could be being serviced, in which case terminating it could put the server 
process in an unpredictable state. Also, it is sometimes useful to have uncompleted 
invocations get serviced even after co terminates; for example, all reachable 
copies of a replicated database should be updated even if the updater terminates 
after only a majority of the copies have been updated. 

A concurrent invocation in co can also be preceded by a quantifier, which 
implicitly declares a bound variable and specifies a range of values for that 

’ Execution of reply has no effect for operations that are invoked by send. 
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variable.6 Within co, a quantifier provides a compact notation for specifying 
multiple invocation/postprocessing pairs. For example, a replicated file might be 
updated by executing 

co (i := 1 to N) callfiZe[il.update(values) oc 

where file is an array of capabilities containing one entry for each file resource. 
Similarly, reading a replicated file, terminating when one copy has been read, 
might be programmed as 

co (i := 1 to N) calljZe[~.rend(arguments) + exit oc 

In both cases, the quantifier’s bound variable i is accessible in both the invocation 
statement and postprocessing block. Thus the last example could be modified to 
record which of the fiZe[i] was the first to respond by saving the value of i in a 
variable global to co before executing exit. 

2.2.4 Failure Handling. To program distributed systems such as Saguaro, a 
language must contain mechanisms for dealing with hardware failures such as 
processor and network crashes. Also, exceptions can occur, such as memory 
overflow, invoking an operation in a destroyed resource, or passing a pointer 
outside a virtual machine. SR provides two mechanisms for failure handling.7 
First, handlers can be appended to invocation and resource control statements, 
and to proc declarations. An invocation handler, as in 

call qcup.imerf(item) [block handling overflow exception] 

is executed if the invoked operation fails in a way that is detected by the run- 
time system, or if the invoked operation raises an exception by executing 

abort(cause) 

The different kinds of causes are declared in a predefined enumeration type; 
user-defined exceptions are not supported, at least at present. Within a handler, 
a predefined function can be called to determine the cause of failure. 

If an invocation (or resource control) handler is executed, execution of the 
enclosing proc continues as dictated by the code in the handler. If an invocation 
fails and is not handled, or if a proc encounters a local exception, the handler 
attached to the proc is executed. The proc terminates when the handler 
terminates. If a failure is not handled by a proc, the proc aborts and the failure 
and cause are passed back up the (dynamic) call chain if the proc was called. 
Note that at any point in a proc, there is exactly one handler that could be 
entered. 

Handlers enable a proc to avoid waiting forever if an invocation fails. Another 
form of permanent delay can also occur in a distributed program: A server could 
block at an input statement waiting for an invocation that will never arrive 
because a client proc, resource, or processor has failed. SR provides a second 
mechanism, the when statement, to enable a server to monitor such failures. 

’ Quantifiers can also be used within in statements to facilitate servicing elements of an array of 
operations, and they are the basis for one of the iterative statements discussed in the next section. 

‘These mechanisms have not yet been implemented, and hence we have no experience with their 
use. They appear to be useful and easily implemented, but only time will tell. 
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Execution of 

b := whenfailed(source) send operution(arguments) 

requests that the run-time support monitor source, which may be a physical 
machine, virtual machine, resource instance, 3r process, depending on the value 
of the argument.8 If source fails, an invocation of operation is sent with the 
indicated arguments (which are evaluated when the when statement is executed, 
not when the failure occurs). Thus an asynchronous failure is turned into an 
asynchronous invocation that can be serviced by a proc or in statement just like 
any other invocation. 

The when statement returns a value of type binding, which serves to identify 
the binding between the source being monitored and the operation to be invoked. 
Monitoring can be changed by assigning a new value to a binding variable; it can 
be canceled by setting a binding variable to null. Monitoring is implicitly canceled 
when the lifetime of a binding variable ends. 

2.3 Types, Declarations, and Sequential Statements 

SR provides a variety of data types and sequential statements similar to those 
found in other languages. However, their form and many of their details are 
different. Largely this is to facilitate the integration of the sequential and 
concurrent components of SR. It also results from our desire to make it easy to 
program commonly occurring algorithmic patterns. 

In addition to the usual kinds of basic and structured types, SR provides 
capabilities and what is called an optype (operation type). An optype defines a 
pattern for an operation; that is, the types of the parameters and return value. 
Such a type is used when the same operation pattern is used more than once, for 
example, when several resources implement the same type of operation such as 
file read. What makes capabilities and operation types especially useful is that 
type checking is based on structural equivalence; hence, an operation capability 
can be bound to any operation that has the specified pattern. 

SR’s if and do statements are based on Dijkstra’s guarded commands [21] so 
their structure is similar to that of the in statement. However, if no Boolean 
expression is true, if has no effect (unlike Dijkstra’s if, which aborts in this 
situation). We also allow the last guard of if, do, and in to be “else”, which is 
interpreted as the conjunction of the negations of the other boolean expressions. 

SR also provides a novel iterative statement, fa (for all), that employs quan- 
tifiers introduced earlier with the co statement. The form of fa is 

fa quantifier, . . . . quantifier + block af 

where quantifiers have the general form 

bound-variable := initial-value direction final-value st boolean-expression 

For example, the single statement 

fa i := lb(u) to ub(u)-I, 
j := i+l to ub(a) st a[~>u[i] + 

u[d, ali] :=: ali], u[fl # swap statement 
af 

‘A predefined function is provided so that a server can determine the identity of an otherwise 
anonymous client. 
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sorts array a into ascending order. This statement employs the builtin array 
lower-bound (‘lb’) and upper-bound (‘ub’) functions. Note how the range of values 
for the second bound variable j depends on i. Also note the use of st (such that), 
which is used to limit execution of the body of fa to those values of i and j for 
which a[i] > a[ j]. 

The two final sequential statements are exit and next. The exit statement is 
used to force early termination of the smallest enclosing iterative or co statement. 
The next statement is used to force return to the loop control of the smallest 
enclosing iterative statement; it can also be used within a postprocessing block 
in a co statement to force co to wait for another invocation to terminate. Note 
how these statements, like quantifiers, have consistent uses in support of both 
sequential and concurrent programming. 

2.4 Implementation-Specific Mechanisms 

SR can be used to write programs that execute on top of an existing operating 
system or stand alone on a “bare” network of processors. Our current implemen- 
tation is built on top of UNIX; SR programs run as UNIX processes on one 
or more interconnected machines. Work is under way on a stand-alone imple- 
mentation. Any implementation must provide mechanisms for interacting with 
input/output (I/O) devices. This section is a brief summary of the I/O mecha- 
nisms provided in our current implementation and those that will be provided in 
the stand-alone implementation. 

In the UNIX implementation, I/O is supported by the file data type and 
several operations on that type. The operations permit files to be created, opened, 
closed, removed, read, and written. Three forms of read and write are supported: 
formatted, character string, and line at a time. Predefined file literals provide 
access to the standard input, output, and error files commonly employed by 
UNIX programs. Since devices such as terminals are integrated into the UNIX 
file system, it is easy for an SR program to interact with multiple terminals: The 
various terminal “files” are simply opened and accessed like normal files. Routines 
are also provided to access the arguments on the command line that triggers 
execution of an SR program. It is also possible for an SR program to access any 
C subroutine, including system calls such as those implementing window pack- 
ages. Work is under way to implement an “execute” facility that allows a 
sequential program, such as a C command, to be executed as an SR process 
within an envelope resource. 

In a stand-alone implementation, there is no underlying operating system to, 
depending on one’s perspective, provide convenient functions or get in one’s way. 
Thus an SR programmer needs to be able to program device controllers and 
memory allocators. Mechanisms are provided to access bytes, bind variables 
to memory addresses, bind operations to interrupt vector locations, and 
service interrupts. 

3. EXAMPLES 

In this section we present two larger examples.g The first, a decentralized solution 
to the classic dining philosophers problem, illustrates a complete program 

’ Additional examples are given in [30]. 
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containing multiple resources. The solution employs many of the SR communi- 
cation primitives and illustrates the use of the I/O primitives. The second example 
outlines parts of the Saguaro file system [6]. It illustrates the use of several 
additional mechanisms. 

3.1 Decentralized Dining Philosophers 

In the dining philosophers problem, N philosophers (typically five) sit around a 
circular table set with N forks, one between each pair of philosophers. Each 
philosopher alternately thinks and eats. Before eating, a philosopher must acquire 
the two closest forks. 

This problem can be solved in three basic ways. In all cases, philosophers are 
represented by processes; the approaches differ in how forks are managed. The 
first, centralized approach is to have a single servant process that manages all N 
forks. The second, decentralized approach is to distribute the forks among N 
servant processes, with each servant managing one fork. The third approach is 
similar to the second, but employs one servant per philosopher instead of one 
servant per fork. In this case, each philosopher interacts with its own personal 
servant; that servant interacts with its two neighboring servants. Each fork is 
either held by one of the two servants that might need it or is in transit between 
them. A hungry philosopher may eat when its servant holds two forks (and 
presumably “spoon feeds” the philosopher). 

Each approach can readily be programmed in SR (see [30] for details). Follow- 
ing is a solution that employs the third approach since that one is the most 
intricate and also illustrates the largest number of SR mechanisms. The specific 
algorithm that the servants employ is adapted from [14]. It has the desirable 
properties of being fair and deadlock free. The basic solution strategy also has 
application to other, realistic problems such as file replication and database 
consistency. 

Our solution employs three concrete resources-Servant, Philosopher, and 
Main-and two abstract resources-PhilosopherOps and ServantOps. The 
abstract resources define the servant operations invoked by philosophers and 
other servants, respectively: 

resource PhiIosopherOps 
op getfirks() (call) 
op relforh() 

end 

resource ServantOps 
op needL.0 (send) 
op needR() {send) 
op pa.ssL() (send) 
op passR() [send) 
op link+ r : cap ServantOps) # links to neighbors 
op fork(haveL, dirtyL, haveX, dirtyR : bool) # initial fork values 

end 

The interface to a Servant is the union of these two interfaces: 
resource Servant 

extend PhilosopherOps, ServantOps 
end 
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Some of the Servant operations are restricted to be invoked only as indicated; it 
does not matter how the others are invoked. 

Instances of Philosopher are created by the Main resource, as shown later. 
Each instance is passed a capability myservant for the PhilosopherOps exported 
by its personal servant, an identity id used for output, and a value t indicating 
the number of times the philosopher is to eat and think before it dies: 

resource Philosopher 
import PhilosopherOps 

body Philosopher(myservant : cap PhilosopherOps; id, t : int) 
process phi1 

fai:= 1 tot+ 
myservant.getforks() 
write(“Philosopher”, id, “is eating”) # eat 
myservant.relforkr() 
write(“Philosopher”, id, “is thinking”) # think 

af 
end 

end Philosopher 

Instances of Servant service invocations of getforks and relforks from their 
associated instance of Philosopher. Servants communicate with neighboring 
instances using the needl, needR, passl, and passR operations. A philosopher is 
permitted to eat when its servant has acquired two forks. A servant may already 
have both forks when getforks is called, or it may need to request one or both 
from the appropriate neighbor servant. Two variables are used to record the 
status of each fork: haveL (haveR) and dirtyL (dirtyR). Starvation is avoided by 
having servants give up forks that are dirty; a fork becomes dirty when it is used 
by a philosopher. 

body Servant0 
var 1, r : cap ServantOps 
var haveL, dirtyL, haveR, dirtyR : boo1 
op hungry0 # hungry and eat are local operations 
op eat0 
proc getforks() 

send hungry0 # let server know philosopher is hungry 
receive eat0 # wait for permission to eat 

end 

process server 
receive link(Z,r) 
receive forks(haveL,dirtyL,haveR,dirtyR) 
do true + 

in hungry0 + 
# ask for forks I do not have; ask right neighbor for its left fork, 
# and left neighbor for its right fork 

if -haveR + send r.needL() fi 
if ‘haveL + send l.needR() fi 

# wait until I have both forks 
do -(haveL & haveR) + 

in passR() + haveR := true; dirtyR := false 
0 puwL() + haveL := true; dirt>lr, := false 
0 needR() & dirtyR + haveR := false; dirtyR := false 

send r.passL(); send r.needL() 

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988. 



66 ’ G. R. Andrews et al. 

0 needl() & dirtyL + haveL := false; dirfyL := false 
send I.pussR(); send I.needR() 

ni 
od 

# let my Philosopher eat; wait for forks to be released 
send eat(); dirtyL := true; dirtyR := true; receive rerforkr() 

0 needR() + 
# right neighbor needs left fork, which is my right fork 

haveR := false; dirtyR := false; send rpussL() 
0 needL() -3 

# left neighbor needs right fork, which is my left fork 
haveL := false; dirtyl, := false; send l.passR() 

ni 
od 

end server 

end Servant 

Notice the various combinations of invocation and service statements that are 
employed. For example, getforks is implemented by a proc and hides the fact 
that getting forks requires sending a hungry message and receiving an eat 
message. Other operations, including relforks, are implemented by in statements. 
Also, invocations of needL and needR are serviced by two different in statements, 
reflecting the two states in which a servant might give up a fork to a neighbor. 
Finally, note that send is used to invoke the need and pass operations of a 
neighbor; call cannot be used for this because deadlock could result if two 
neighboring servers invoked each other’s operations at the same time.” 

The final resource, Main, initializes execution of the program. By appropriate 
directive to the SR linker, one instance of Main is implicitly created when 
execution of the program begins. It prompts for input about the number of 
philosophers n and the number of times t each philosopher is to execute. Main 
then creates n instances of Philosopher and n instances of Servant and passes 
them capabilities so they can communicate with each other. Main also sends 
each Servant the initial values for its local variables. 

resource Main 
import Philosopher, PhilosopherOps, ServantOps, Servant 

body Main0 
initial 

var n, t : int 
put(“how many Philosophers? (at least 2) “); read(n); 
put(“how many sessions Per Philosopher? (at least 1) “); read(t); 
var s[ lx] : cap Servant 
var si[l:fl] : cap ServantOps 
varpi[l:n] : cap PhiZosopherOps 
# create the Servants and Philosophers 

fai:= 1 ton+ 
s[i] := create Servant(i) 
si[lJ := ServatiOps from s[i] 
pi[i] := PhiZosopherOps from s[i] 
create Philosopher@i[i],i,t) # returned capabilities are not needed 

af 

lo The body of Servant could be programmed differently to use procedures to implement the need and 
pass operations. However, these procedures would then have to use semaphores to synchronize access 
to the shared variables. 
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# give each Servant its links to neighboring Servants 
send s[l].Snks(si[n].si[2]) 
fa i := 2 to n-l + send s[ij.fihk.s(si[i-l],si[i+l]) af 
send s[n].Unks(si[n-l].si[l]) 

# initialize each Servant’s forks; must be asymmetric to avoid deadlock 
send s[l].forkT(true.false,true,false) 
fa i := 2 to n-l + send s[~.forkr(false.false,true,false) af 
send s[n].forkr(false,false,false,false) 

end 
end Main 

Note that the sizes of the arrays depend on input value n. Also note that 
capabilities can be passed to Philosophers as resource parameters. However, 
separate operations are required to pass each servant capabilities for its neighbors 
since a resource has to be created before Main has a capability for it. 

3.2 Components of the Saguaro File System 

Our final example outlines a few components of the Saguaro file system [6].” 
This example illustrates several additional features of SR including a global 
component, operation types, operation capabilities, and operations declared local 
to procs. The components are given in the order in which they would be compiled. 

Files in Saguaro, like those in UNIX, include ordinary data files, devices, and 
a generalization of pipes called channels. Different kinds of files have different 
representations and are serviced by different resources. However, all tiles are 
streams of bytes and are accessed using the same operations: read, write, seek, 
and close. The patterns for these operations as well as several file system 
constants are declared in a global component: 

global FileDefs 
optype read(res buflO:*] : char; count : int) returns actual-count : int 
optype write(bul[O:*] : char; count : int) returns actual-count : int 
optype seek(khd : int; o&set : int) 
optype close0 
const EOF := -1 
. . . 

end 
# declarations of other global constants 

Files are managed by DirectovMgr resources. The client-visible subset of 
operations on directories is declared in an abstract resource: 

resource DirectoryOps 
import FileDefs 
typefile-desc = rec( index : int; read : cap FileDefs.read; 

write : cap FileDefs.write; seek : cap FileDefs.seek; 
close : cap FiZeDefs.cZose) (private) 

op open@ath-name[O:*] : char; . ..) returns fd : jiZe desc 
. . . # other operations to remove files, list directo;es, etc. 

end 

A client calls the open operation to acquire access to a file. If successful, open 
returns a file descriptor, which contains a table index used within the file system 
and capabilities for the various types of file operations. The type restriction 
“(private]” appended to the declaration of file-desc ensures that resources that 

I1 The complete system, which consists of over 4000 lines of SR source, is described in [32]. 
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implement the directory operations are the only ones that can assign to fields of 
the record. 

DirectoryMgr extends DirectoryOps with additional operations used within the 
implementation of the file system: 

resource DirectoryMgr 
extend DirectoryOps 
import FileDefs, DishServer 
op fcZose(...) 
. . . 

end 
# additional operations on directories 

There is one instance of this resource for each physical file system in Saguaro. 
Each client has two DirectoryOps capabilities; one is bound to the instance of 
DirectoryMgr on which the root file resides, the other to the instance on which 
the client’s current working directory resides. 

File operations are implemented by Terminal, Channel, and Fileserver re- 
sources, depending on the kind of file. Here we consider only the case of Fileserver 
resources. When an ordinary file is opened, the appropriate DirectoryMgr deter- 
mines if there is an existing FileServer for the file. If so, the DirectoryMgr 
allocates that F&Server; if not, the DirectoryMgr creates a new F&Server. Thus 
each instance of Fileserver services all clients who have opened the same file; 
this allows file-specific information, such as buffers, to be shared. A client 
accesses a file using the file descriptor returned by open. When a client is finished 
with a file, it invokes the close operation in the associated Fileserver. That 
Fileserver then informs its DirectoryMgr that the user has finished by invoking 
the DirectoryMgr’s fclose operation. If no other clients have the file open, the 
DirectoryMgr then destroys the Fileserver. 

When created, a FileServer is passed capabilities for the directory manager 
that created it and the disk server that services the disk on which the file resides. 
F&Server exports one operation, fopen, which is called by a DirectoryMgr each 
time the file is opened. 

resource Fileserver 
import FileDefs, DirectoryOps, DirectoryMgr, DiskServer 
op fopen(...) returns fd : jile desc 

body FileServer(fclose : cap D%ectoryMgr.fclose; disk : cap DiskServer; . ..) 
op lock0 # used as a semaphore for mutual exclusion 
. . . # declarations of other shared objects, such as buffers 
. . . # initialization, including one send lock0 to initialize lock semaphore 

proc fopen(...) returns fd 
op read FileDefs.read # local operations to access file 
op write FileDefs.write 
op seek FileDefs.seek 
op close FileDefs.close 
var rwptr := 0 # read/write offset in file 
. . . # other declarations and initialization. 

fd :=file-desc(O,read,write,seek,close) # record construction 
reply # return capabilities in fd and then continue 
do true + # service file operations until client invokes close. 

in read(...) -+ . . . 
0 write(...) + . . . 
0 seek(...) + . . . 
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0 cZose(...) + exit 
ni 

od 
. . . # clean up tables 

fclose(...) # call fcZo.se in parent DirectoryMgr 
end fopen 

end F&Server 

Since fopen is implemented by a proc, a new process is created to service each 
invocation. This process declares private instances of the file-access operations 
and returns capabilities for them to the DirectoryMgr that called fopen. That 
manager in turn passes the capabilities to the client who called open (some of 
the capabilities are set to null if the client did not request or does not have 
permission to perform all operations). After executing reply, the fopen process 

- engages in a conversation with that client, servicing the file-access operations 
until the client closes the file. Each client who opens a file thus has its own 
server process, which manages client-specific data. The server processes use the 
lock operation as a semaphore to protect critical sections that access shared 
buffers and tables. 

The final component of our example is the body of the DirectoryMgr resource, 
which must be compiled after the body of Fileserver since it creates instances of 
Fileserver. 

body DirectoryMgr(...) 
import Fileserver, Terminal, Channel 

OP lock0 
. . . # local tables and other shared declarations 
. . . # initialize lock and shared variables 

proc open(pn, . ..) returnsfd 
var fsc : cap Fileserver 
. . . # search pathpn to find tile location, size, etc. 

receive lo&() # protect critical section 
if Fileserver does not exist + 

fsc := create FiZeServer(fclose, ..,) 
. . . # allocate table entry and store& in it 

fi 
. . . # increment reference count in file server table 

send lo&() 
fd := fsc.fopen() # create service process 

. . . # check access rights and nullify fields in fd as needed 
end open 

proc fclose(...) 
receive lo&() 
. . . # decrement reference count in file server table 
. . . # if count is 0, destroy the Fileserver 

send lo&() 
end fclose 
# do&rations of other operations 

end DirectoryMgr 

Above, open is implemented by a proc to permit time-consuming, noncritical 
portions of different opens, such as path-name searching, to proceed concurrently. 
Consequently, critical sections need to be protected using the lock operation as a 
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semaphore. An alternative design would be to service all critical DirectoryMgr 
operations by an in statement in one process. 

4. IMPLEMENTATION OVERVIEW 

The current SR implementation is built on top of UNIX and consists of three 
major components: the compiler, linker, and run-time support. Below we describe 
how SR programs are built and executed using these components and then how 
the major language features are implemented. We conclude by giving the status 
of the current implementation and some measurements of its size and perform- 
ance. The same basic philosophy that guided the design of the language has 
guided its implementation: common uses of language features should have a 
simple, efficient implementation. 

The compiler has a traditional internal structure: a lexical analyzer, recursive- 
descent parser, and code generator. The lexical analyzer and parser employ 
common techniques. The code generator emits C source code, which is passed 
through the C compiler to produce machine code (MC).l’ The SR compiler 
supports separate compilation of entire resources, resource specs, resource bodies, 
and globals. 

The linker provides the means by which the user constructs a program from 
previously compiled resources. The input to the linker is a list of resources and 
a list of physical machines on which the program is to execute. The linker parses 
and verifies the legality of its input (e.g., it checks to make sure that the resources 
have been compiled in an acceptable order) and then uses the standard UNIX 
linker to create a load module. The input to the linker also designates one of the 
physical machines as the program’s “main” physical machine and one of the 
resources as the program’s “main” resource. A virtual machine is created on the 
main physical machine when the program begins. One instance of the main 
resource is then created, and begins execution, within that virtual machine. Each 
virtual machine (VM) executes as a single UNIX process in which concurrency 
is simulated by the run-time support. VMs exchange messages using UNIX 
sockets. 

The run-time support (RTS) provides the environment in which the MC 
executes. The RTS provides primitives for resource creation and destruction, 
operation invocation and servicing, and memory allocation; it also supports the 
implementation-specific language mechanisms described in Section 2.4. Inter- 
nally, the RTS contains a nugget: a small collection of indivisible process 
management and semaphore primitives. The RTS hides the details of the network 
from the MC; that is, the number of machines and their topology is transparent 
to the MC. When the RTS receives a request for a service provided on another 
machine-for example, create a resource or invoke an operation-it simply 
forwards the request to the destination machine. Upon arrival at that machine, 
the local RTS processes the request just as though it had been generated locally. 
Results from such requests are transmitted back in a similar fashion. 

I* Originally the Amsterdam Compiler Kit (ACK) [37] was used for code generation. We switched to 
generating C so that people who want to use our compiler would not have to purchase ACK. 
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4.1 Resource Creation and Destruction 

On each VM, the RTS maintains a table of active resource instances. A resource 
capability consists of (1) a VM identity, a pointer into the resource instance 
table, and a sequence number and (2) an operation capability for each of the 
operations declared in the resource’s specification (operation capabilities are 
described below in Section 4.2). The sequence number for a resource is assigned 
when the instance is created; it is stored in the resource instance table. The RTS 
uses sequence numbers to determine whether a resource capability refers to a 
resource instance that still exists, that is, whether the referenced resource 
instance has been destroyed. 

The MC for the create statement builds a creation block that contains the 
identity of the resource to be created, the VM on which it is to be created, and 
the values of any parameters. This block is passed to the RTS, which transmits 
it to the designated VM. When the creation block arrives at the designated VM, 
the (local) RTS allocates a table entry for the instance and fills in the first part 
of the resource capability accordingly. The RTS then creates a process to execute 
the resource’s initialization code. 

The MC for every resource includes initialization code even if there is no user- 
specified initialization code. The key functions of such code are to allocate 
memory for resource variables (the size of which may depend on the parameters 
in the resource heading), to initialize resource variables that have initialization 
expressions as part of their declaration, and to create operations declared in the 
resource spec or outer level of the body. To accomplish operation creation, the 
MC interacts with the RTS. For each operation that is being created, the RTS 
allocates and initializes an entry in its operation table (see Section 4.2); if the 
operation is in the resource’s specification, the RTS also fills in the appropriate 
field in the resource capability that will be returned from create. The initiali- 
zation process executes this implicit initialization code, then any user-specified 
initialization code, and finally additional implicit initialization code to create any 
background processes in the resource. 

To destroy a resource instance, the MC passes the RTS a capability for the 
instance. If the resource contains finalization code, the RTS creates a process to 
execute that code. When that process terminates, or if there was no finalization 
code, the RTS uses the resource instance table to locate processes, operations, 
and memory that belong to the resource instance. The RTS then kills the 
processes, frees the entries in the resource and operation tables, and frees the 
resource’s memory. The sequence number in each freed entry is incremented so 
that future references to a resource that has been destroyed or to one of its 
operations can be detected as being invalid. 

When an SR program begins execution, first the nugget and then the RTS 
initialize themselves. Then an instance of the main resource is created much in 
the same way that any other resource instance is created. 

4.2 Operations 

The RTS also maintains an operation table on each VM. This table contains 
an entry for each operation that is serviced on that VM and is currently active. 
The entry indicates whether the operation is serviced by a proc or by input 
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statements. For an operation serviced by a proc, the entry contains the address 
of the code for the proc. For an operation serviced by input statements, the 
entry points to its list of pending invocations. An operation capability consists 
of a VM identity, an index into the operation table, and a sequence number. The 
sequence number serves a purpose analogous to the sequence number in a resource 
capability: it enables the RTS to determine whether an invocation refers to an 
operation that still exists. (An operation exists until its defining resource is 
destroyed or its defining block terminates.) 

4.2.1. Invocation Statements. To invoke an operation, the MC first builds an 
invocation block, which consists of header information and actual parameter 
values. The MC fills in the header with the kind of invocation (call, send, 
concurrent call, or concurrent send) and the capability for the operation being 
invoked. Then, the MC passes the invocation block to the RTS. If necessary, the 
RTS transmits the invocation block to the VM on which the operation is located 
(recall that capabilities contain VM identities). The RTS then uses the index in 
the operation capability to locate the entry in the operation table, and thus 
determine how the operation is serviced. For an operation serviced by a proc, 
the RTS creates a process and passes it the invocation block.13 For an operation 
serviced by input statements, the RTS places the invocation block onto the list 
of invocations for the operation; then it determines if any process is waiting for 
the invocation, and, if so, awakens such a process. In either case, for a call 
invocation the RTS blocks the calling process; when the operation has been 
serviced, that process is awakened and retrieves any results from the invocation 
block. 

The implementation of co statements builds on the implementation of call 
and send statements. First, the MC informs the RTS when it begins executing 
a co statement. The RTS then allocates a structure in which it maintains the 
number of outstanding call invocations (i.e., those that have been started but 
have not yet completed) and a list of call invocations that have completed but 
have not been returned to the MC. Second, the MC performs all the invocations 
without blocking. For each call invocation the MC places an arm number-the 
index of the concurrent command within the co statement-in the invocation 
block. Third, since send invocations complete immediately, the MC executes the 
postprocessing block (if any) corresponding to each send invocation. The MC 
then repeatedly calls an RTS primitive to wait until call invocations complete. 
For each completed call invocation, the MC executes the postprocessing block (if 
any) corresponding to the invocation; specifically, it uses the arm number in the 
invocation block as an index into a jump table of postprocessing blocks. When 
all invocations have completed, or when one of the postprocessing blocks executes 
exit, the MC informs the RTS that the co statement has terminated. The RTS 
then discards any remaining completed call invocations and arranges to discard 
any call invocations for this co statement that might complete in the future. The 
infrequent situation in which a postprocessing block itself contains a co statement 
is handled by a slight generalization of the above implementation. 

4.2.2. The Input Statement. The input statement is the most complicated 
statement in the language and has the most complicated implementation. In its 

I3 In some cases, the RTS can avoid creating a process; see Section 4.2.3 for details. 

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988. 



Overview of SR and Implementation 73 

most general form, a single input statement can service one of several operations 
and can use synchronization and scheduling expressions to select the invocation 
it wants. Moreover, an operation can be serviced by input statements in more 
than one process, which thus compete to service invocations. However, as we 
shall see, the implementation of simple, commonly occurring cases is quite 
efficient. 

Classes are fundamental to the implementation of input statements. They are 
used to identify and control conflicts between processes that are trying to service 
the same invocations. Classes have a static aspect and a dynamic aspect. A static 
class of operations is an equivalence class of the transitive closure of the relation 
“serviced by the same input statement.” At compile time, the compiler groups 
operations into static classes on the basis of their appearance in input statements. 
At run time, actual membership in the (dynamic) classes depends on which 
operations in the static class are extant. For example, an operation declared local 
to a process joins its dynamic class when the process is created and leaves its 
dynamic class when the process completes execution. The RTS represents each 
dynamic class by a class structure, which contains a list of pending invocations 
of operations in the class, a flag indicating whether or not some process has 
access to the class, and a list of processes that are waiting to access the class. 
Each operation table entry points to its operation’s class structure. 

At most one process at a time is allowed to access the list of pending invocations 
of operations in a given class structure. That is, for a given class, at most one 
process at a time can be selecting an invocation to service or appending a new 
invocation. Processes are given access to both pending and new invocations 
in a class structure in first-come, first-served order. Thus, a process waiting to 
access the invocations will eventually obtain access as long as all functions in 
synchronization and scheduling expressions in input statements eventually 
terminate. 

The RTS and nugget together provide seven primitives that the MC uses for 
input statements. These primitives are tailored to support common cases of input 
statements and have straightforward and efficient implementations. They are 

access(class). Acquire exclusive access to CZCLSS, which is established as the 
current class structure for the executing process. That process is blocked if 
another process already has access to class. The RTS will release when this 
process blocks access trying to get an invocation or when this process executes 
remoue (see below). 

get-inuocation( ). Return a pointer to the invocation block the executing 
process should examine next. This invocation is on the invocation list in the 
current class structure of the executing process; successive calls of this primitive 
return successive invocations. If there is no such invocation, the RTS releases 
access to the executing process’s current class structure and blocks that process. 

get-named-inu(op-cup). Get the next invocation of operation op-cup (an 
operation capability) in the executing process’s current class; a pointer to the 
invocation block is returned. 

get-named-inv-nb(op-cup). Get an invocation of op-cup. This primitive is 
identical to get-named-inu except that it does not block the executing process 
if no invocation is found; instead, it returns a null pointer in that case. It is used 
when the input statement contains a scheduling expression. 
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remoue(inuocation). Remove the invocation block pointed at by invocation from 
the invocation list of the executing process’s current class. The RTS also releases 
access to the executing process’s current class structure. 

input-done(inuocation). Inform the RTS that the MC has finished executing 
the command body in an input statement and is therefore finished with the 
invocation block pointed at by inuocation. If that invocation was called, the RTS 
passes the invocation block back to the invoking process and awakens that 
process. 

receiue(chs). Get and then remove the next invocation in class. This primitive 
is a combination of access(clnss), invocation := get-inuocation( ), and re- 
moue(inuocation); hence, it returns a pointer to an invocation block. It is used 
for simple input statements and for receive statements. 

The ways in which these primitives are used by the MC is illustrated below by 
four examples. More complicated input statements are implemented using ap- 
propriate combinations of the primitives. 

Consider the simple input statement 

in q(x) + . . . ni 

This statement delays the executing process until there is some invocation of q, 
then services the oldest such invocation. (Note that receive statements expand 
into this form of input statement.) For this statement, if q is in a class by itself, 
the MC executes invocation := receiue(q’s class). If q is not in a class by itself, 
the MC executes access(q’s class), invocation := get-named-inu(q), and re- 
moue(inuocation). In either case, the MC then executes the command body 
associated with q, with parameter x bound to the value for x in the invocation 
block, and finally executes input-done( invocation). 

Second, consider 

in q(x) + . . . 0 r&z) + . . . ni 

This statement services the first pending invocation of either q or r. Note that q 
and r are in the same class because they appear in the same input statement. 
Here, the MC first uses access(q’s class) and then invocation := get-inuocation( ) 
to look at each pending invocation in the class to determine whether it is an 
invocation of q or r (there might be other operations in the class). If the MC 
finds an invocation of q or r, it calls remoue(inuocation), then executes the 
corresponding command body with the parameter values from the selected 
invocation block, and finally executes input-done(inuocattin). If the MC finds 
no pending invocation of q or r, the executing process blocks in get-invocation 
until an invocation in the class arrives. When such an invocation arrives, the 
RTS awakens the process, which then repeats the above steps. 

As the third example, consider an input statement with a synchronization 
expression: 

in q(x) and x > 3 + . . . ni 

This statement services the first pending invocation of q for which parameter x 
is greater than three. The MC first uses access(q’s class) to obtain exclu- 
sive access to q’s class. The MC then uses invocation := get-inuocotion( ) or 
invocation *- .-get-named-inu(q) to obtain invocations of q one at a time. The 
first primitive is used if q is in a class by itself; otherwise, the second is used. For 
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each such invocation, the MC evaluates the synchronization expression using 
the value of the parameter in the invocation block. If the synchronization 
expression is true, the MC notifies the RTS of its success by calling re- 
moue(inuocation), executes the command body associated with q, and calls input- 
done(inuocation). If the synchronization expression is false, the MC repeats the 
above steps to obtain the next invocation. 

Finally, consider an input statement with a scheduling expression: 

in q(x) byx + . . . ni 

This statement services the (oldest) pending invocation of q that has the smallest 
value of parameter x. In this case, the MC uses the same steps as in the previous 
example to obtain the first invocation of q. It then evaluates the scheduling 
expression using the value of the parameter in the invocation block; this value 
and a pointer, psaue, to the invocation block are saved. The MC then obtains the 
remaining invocations by repeatedly calling invocation := get-named-inu-nb(q). 
For each of these invocations, the MC evaluates the scheduling expression and 
compares it with the saved value, updating the saved value and pointer if the 
new value is smaller. When there are no more invocations (i.e., when get-named- 
inu-nb returns a null pointer), psaue points to the invocation with the smallest 
scheduling expression. The MC acquires that invocation by calling re- 
moue(psaue), then executes the command body associated with q, and finally 
calls input-done( psaue). 

Note that synchronization and scheduling expressions are evaluated by the 
MC, not the RTS. We do this for two reasons. First, these expressions can 
reference objects such as local variables for which the RTS would need to establish 
addressing if it were to execute the code that evaluates the expression. Second, 
these expressions can contain invocations; it would greatly complicate the RTS 
to handle such invocations in a way that does not cause the RTS to block itself. 
A consequence of this approach to evaluating synchronization and scheduling 
expressions is that the overhead of evaluating such expressions is paid for only 
by processes that use them. 

42.3 Optimizations. Two kinds of optimizations are applied to certain uses of 
operations. First, for a call invocation of a proc that is in the same resource as 
the caller and that does not contain a reply statement, the compiler generates 
conventional procedure-call code instead of going through the RTS, which would 
create a process.14 The compiler generates code that builds an invocation block 
on the calling process’s stack and passes the block’s address to the called proc. 
Thus the code in the proc is independent of whether it is executed by the calling 
process or as a separate process. A similar optimization is performed for a call 
invocation of a proc that is located on the same VM as the caller and that does 
not contain a reply statement. In this case, however, the RTS must be entered 
since the compiler cannot determine whether an operation in another resource 
is located on the same VM as its caller (recall that program linking follows and 
is independent of compilation).15 Also, the invoking process must create an 

I’ A proc that executes reply executes concurrently with its caller after replying; hence, the proc 
must execute as a process in this case. 
I6 In fact, the compiler might not even know whether an operation is implemented as a proc because 
it might not yet have compiled the body of the resource containing the invoked operation. 
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invocation block since it is possible that the invoking process might be in a 
resource that is destroyed before the invoked proc completes. 

The second optimization is that certain operations are implemented directly 
by the nugget’s semaphores rather than by the general mechanisms described 
above. The main criteria that an operation must satisfy to be classified as a 
semaphore operation are that the operation: (1) is invoked only using send, (2) 
has no parameters or return value, (3) is serviced by input (or receive) statements 
in which it is the only operation and in which there are no synchronization or 
scheduling expressions, and (4) is declared at the resource level. Note that these 
criteria are relatively simple to check. Furthermore, they capture typical uses of 
operations that provide intraresource synchronization such as controlling access 
to shared variables. 

4.2.4 Failure Handling Mechuni.sms. The address of a process’s proc handler 
is recorded by the RTS when the process is created. If the proc does not contain 
an explicit handler, the RTS instead records the address of a special abort 
handler. The address of a process’s current invocation handler is maintained by 
the MC in a location known to the RTS. If an invocation statement does not 
contain an explicit handler, the MC instead sets the invocation handler to what 
is recorded as the process’s proc handler. Thus, from the RTS’s view, there is 
always one handler associated with each process’s proc and invocation failures. 
When the RTS detects an exception or is informed by the MC that an exception 
has been raised (i.e., an abort statement was executed), it transfers control to 
the appropriate handler’s code. The special abort handler will cause the RTS to 
abort the current process and to pass the failure up the call chain if the proc 
was called; the above actions are then applied recursively. Aborting a process 
also causes a failure to be passed to the callers of any invocations currently being 
serviced by in statements or of any invocations pending for operations declared 
within the proc. 

When a when statement is executed, the MC creates an invocation block for 
the specified operation and arguments. It then passes to the RTS the block’s 
address and the identity of the object to monitor, that is, the argument to failed. 
The RTS records this information and initiates the monitoring of the object. 
Monitoring of physical and virtual machines is accomplished by means of 
“heartbeat” messages that each machine periodically broadcasts to the others. 
When a process or resource instance is to be monitored, the local RTS sends a 
message to the remote VM informing that VM’s RTS to monitor the object; the 
remote RTS will send a “failed” message to the local RTS should the object fail 
or terminate. (The local and remote RTS could of course be the same.) The local 
RTS also periodically checks the states of the virtual and physical machines on 
which the process or resource instance resides to ensure they have not failed or 
terminated. Should the RTS detect that any object it is monitoring has failed, it 
performs its usual actions to invoke the user-specified operation. 

4.3 Status, Plans, and Statistics 

An initial implementation of a large subset of SR became operational under 
4.3BSD Vax UNIX in November 1985. Since then, the language has been further 
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refined and the implementation has been modified, extended, and ported to Sun 
workstations and an Encore Multimax. Currently the full language has been 
implemented except for failure handlers and a few minor features. The current 
implementation also includes facilities to invoke C functions as operations, 
thereby gaining access to underlying UNIX system calls. The UNIX versions of 
the implementation will be completed in early 1988, at which time they will be 
made available to interested groups. Work is under way on a version of the 
implementation that will allow SR programs to run stand-alone. 

Our implementation was first used in graduate classes in concurrent program- 
ming in which students wrote moderate-sized (500-5000 lines) distributed pro- 
grams including card games, automatic teller machines, simple airline reservation 
systems, and prototypes of a command interpreter and a file system for a 
distributed operating system. Subsequently, SR has been used to program exper- 
iments relating program structure and process interaction patterns [7], a highly 
parallel interpreter for Prolog, and Saguaro’s file system [32]. 

Almost all of the SR compiler, linker, and RTS is written in machine- 
independent C. The only exception is that the RTS nugget contains some 
assembly language code for process management (e.g., stack setup and context 
switches). A few awk and sed tools are used to simplify maintenance of the 
compiler, and Zex is used to generate the lexical analyzers for the compiler and 
linker. The compiler consists of approximately 17,000 lines of C source code. The 
linker is about 1100 lines of C. The RTS and nugget together contain about 4200 
lines of C, including code for the I/O and network interfaces to UNIX; in 
addition, the nugget contains about 100 lines of assembly code. 

The SR compiler processes 3200 lines per CPU minute on a Vax 8650. To give 
some comparison, the C compiler processes about 22,000 lines per CPU minute. 
Thus the SR compiler is about seven times as slow. This is not surprising since 
SR is a higher level language than C and the SR compiler generates C code that 
has to be processed by the C preprocessor, C compiler, and Vax assembler. When 
machine-code generation is turned off, the SR compiler processes 17,600 lines 
per CPU minute. Stated differently, 18 percent of compilation time is spent in 
the SR compiler itself; 82 percent is spent processing the generated C code. 

At run time, the Vax RTS (including the nugget) requires about 24K for text 
and 5K for static data. Entries for resource instances, operations, and processes 
are dynamically allocated. Included in each load module are an additional 15K 
of text and 6K of data for the UNIX I/O and network library routines. 

The time to process an invocation depends on whether it is generated by a call 
or a send and whether it is serviced by a proc or an in. We obtained timing data 
for six simple SR programs: one for each of the four combinations of invocation 
and service, one that optimizes calling a proc, and one that uses semaphores. 
(All operations in the test programs are parameterless.) For comparison purposes, 
we also obtained timing data for a simple C program. Each test program generates 
and services 100,000 invocations. The times, in microseconds, to process single 
invocations are listed in Table II. These times were obtained using the time 
command on a Vax 8600. They are averages of ten executions of each test 
program and include loop overhead, and so actual invocation processing time is 
somewhat less than shown. 
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Table II 

Program 

c 
A 
AI 
A2 
B 
Bl 
B2 

Description 

C equivalent of A 
call to proc; procedure call 
call to proc; new process 
send to proc; new process 
call to receive; 2 processes 
send to receive; 1 process 
send to receive; semaphore 

~seclinv Relative to C 

5 1 
8 2 

511 102 
470 94 
390 78 
160 32 

13 3 

The “Relative to C” column shows the ratio of the time per invocation for the 
given program to that for the C program C; for example, A is about two times 
slower than C. 

Each SR test program consists of a single resource. However, except for A, the 
above times would be the same if the invoker and server were in different 
resources provided they were in the same VM. A synopsis of the different test 
programs follows. 

C: C test program that simply invokes an empty procedure 100,000 times. 
A: A is the SR equivalent of C: it calls an empty proc in the same resource, 

which the compiler optimizes as described in Section 4.2.3. The overhead 
relative to C results from the need to support the general case in which the 
proc might also be invoked from outside the resource. 

Al: Al generates call invocations of an operation serviced by a proc that 
executes a reply. Thus a new process is created to service each invocation 
and a context switch is required. 

A2: A2 generates send invocations to an operation serviced by a proc. It is like 
Al, but there is no context switch overhead. 

B: B contains two processes. One generates call invocations; the other con- 
sumes them using receive. The processes must alternate execution for each 
invocation. Context switching is the dominant cost in this program. 

231: Bl contains a single process that send messages to itself. This shows the 
cost of using send and simple in statements with no context switches. 

B2: B2 is like Bl except the operation is implemented as a semaphore. 

The overhead in the four most costly SR tests results from the allocation of 
invocation blocks, procedure calls to enter the RTS and within the RTS, 
maintenance of RTS structures, and in some cases process creation and context 
switches. The major cost for the semaphore test program is the procedure calls 
required to get to the nugget’s P and V primitives. 

The above measurements give some idea of the absolute and relative costs of 
different combinations of invocation and service. (A more thorough discussion 
of SR’s performance appears in [8].) The comparisons of the SR programs with 
the C program are somewhat unfair, however, because SR is quite a different 
language. For example, SR has mechanisms, such as send and in, that have no 
counterparts in C; SR also has dynamic resources and processes, which require 
a more complicated RTS. On the other hand, it is desirable that SR programs 
such as A that use only C-like mechanisms should not be too much slower than 
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their C counterparts, and this is the case. Work is currently under way to improve 
both the MC and the RTS to further speed up the implementation. 

5. DISCUSSION 

SR lies in between recent languages in which a distributed program appears to 
execute on one virtual machine (e.g., Ada, Linda [23], and NIL [31, 361) and 
more conventional languages in which a distributed system is built from distinct 
programs, one per machine. In SR, the invoker of an operation need not be 
concerned with where that operation is serviced, but mechanisms are provided 
to enable the programmer to exert some control over a program’s execution 
environment. For example, the programmer can control where a resource is 
created and can determine whether a resource or machine has failed. In this 
respect, SR is similar to the V kernel [15]. However, SR and the V kernel take 
quite different approaches to constructing distributed programs. SR is a strongly 
typed language with an integrated set of mechanisms for sequential and distrib- 
uted programming; the V kernel is a typeless collection of message-passing 
primitives that are invoked from a sequential language such as C. The V kernel 
has been designed with efficiency being the most important criteria; SR has been 
designed to balance expressiveness, ease of use, and efficiency. 

The most important aspects of SR are discussed and related to other ap- 
proaches to distributed programming in the remainder of this section. 

5.1 Integration of Language Constructs 

There is a large similarity between the sequential and concurrent mechanisms in 
SR. For example, the if, do, and in statements have similar appearances and the 
same underlying nondeterministic semantics. The fa, co, and in statements all 
use quantifiers to specify repetition. Finally, the exit and next statements are 
interpreted uniformly within iterative statements (do and fa) and the co state- 
ment. 

CSP [25] has a similar integration of mechanisms. By way of contrast, Ada [l] 
provides distinct mechanisms for sequential and concurrent programming. In 
Ada, tasks are used for concurrent modules, but packages are used for sequential 
modules; also, select is used for selecting alternative entries, but if-then-else 
is used for selecting alternative conditions. As a specific example, consider how 
one would program a Queue package and BoundedBuffer task in Ada, and compare 
them to our Queue and BoundedBuffer resources. In Ada, the differences are 
marked. In SR, the differences are minimal and in fact the interfaces to the two 
resources are identical. A similar difference between the sequential and concur- 
rent components of a language results whenever an existing sequential language 
is extended with concurrency constructs (e.g., Concurrent C [22]). 

The SR mechanisms for communication and synchronization are also well 
integrated. Operations support all of local and remote procedure call, rendezvous, 
dynamic process creation, asynchronous message passing, multicast, and sema- 
phores. In addition, there is just one way-capabilities-in which an operation 
is named in an invocation. Moreover, capabilities are used for virtual machines, 
entire resources, and individual operations-another example of similar mecha- 
nisms for similar concepts-and are first-class objects in the language. Such 

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988. 



80 l G. R. Andrews et al. 

integration and flexibility is not achieved in languages like Ada and EPL [ll], 
where many mechanisms, each having special rules and restrictions, are used to 
achieve the same effects that are realizable with just a few SR mechanisms. 

The integration of the various language mechanisms plus the almost total lack 
of restrictions make SR easy to learn and use. Students who have used SR for 
term projects were able to learn the language and design and code their projects 
in about two weeks. Although these projects were of modest size, they supported 
multiuser interactions and used most of the language features that would be used 
in “real” concurrent programs. These features-resource creation/destruction, 
operations, capabilities, and invocations-caused the students few conceptual 
difficulties. 

5.2 Resources 

The structure of the resource construct is similar to that of modular constructs 
in procedure-based languages, such as Euclid [26] and Modula-2, and other 
distributed programming languages, such as Distributed Processes [ 131, StarMod 
[19], Argus [27], and EPL. Like Modula-2 and Ada, SR allows the specification 
of a resource to be compiled separately from its body. This permits the interface 
to a resource to be separated from its implementation. It also permits construction 
of programs, such as the file system in Section 3.2, in which resources invoke 
each other’s operations. 

SR goes beyond the above languages in two ways. First, a resource body can 
be parameterized. This permits instances to have different internal characteris- 
tics and external communication connections. In this respect, SR is more like 
LYNX [35]. Second, SR includes an inheritance mechanism, the extend phrase, 
that permits an interface to be split into multiple parts and supports multiple 
implementations of the same abstract interface. In this respect, SR is more like 
Mesa [29] and Emerald [12]. As with other aspects of the language, we have tried 
to provide integrated mechanisms that support functionality that has been found 
to be useful. 

Resources provide the only data-abstraction mechanism in SR. They are used 
to program sequential “abstract data types” such as Queue as well as concurrent 
data types such as BoundedBuffer. Having just one abstraction mechanism makes 
the language smaller and hence easier to learn than if two separate mechanisms 
were provided, one for sequential types and one for concurrent types. There is a 
disadvantage, though: The implementation of sequential types is not as efficient 
as it might be since a resource that implements a type might be located on a 
different machine than its clients. We are able to perform some optimizations 
when a resource and its clients are located on the same (virtual) machine, but 
not as many as would be possible if “sequential” resources were distinguished as 
such in the language and were forced to be located on the same machine as their 
clients. A second potential shortcoming of resources is that they are not poly- 
morphic: They may not have types as parameters. We have not, however, found 
many situations in which a generic resource facility would justify its large 
implementation cost. 

We do not allow resources to be nested, primarily because nesting is not 
needed. If one resource needs the services provided by another, it can either 
create an instance of the needed resource or be passed a capability for it. 
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Precluding nesting also simplifies the implementation. One disadvantage, though, 
is that different resources cannot share variables, although pointers can be passed 
between resources on the same virtual machine. We also do not allow processes 
to be nested for essentially the same reasons. In contrast, Ada allows arbitrary 
nesting of tasks, packages, and subprograms. This makes the implementation of 
Ada much more complicated and costly and makes many programs more difficult 
to understand [18]. 

A resource can contain initialization and finalization code. Initialization code 
gives the programmer a way to control the order in which initialization is done; 
for example, the programmer can ensure that resource variables are initialized 
before processes are created. Initialization code is executed as a process so that 
it can use any of the language mechanisms (another instance of our aversion to 
imposing restrictions). For example, initialization code can service operations, 
create other resources, or do whatever else might be required. 

Finalization code provides a means by which a resource can “clean up” before 
it disappears. For example, if a resource has obtained a lock for a file, it can 
record that it owns the lock; its finalization code can then release that lock if the 
resource is ever destroyed. Finalization code is executed as a process, again so it 
can use any of the language mechanisms. Our approach is similar to that in NIL. 
A different approach is used in Ada. When an Ada task is aborted, it does not 
get control-it is just destroyed. l6 Thus, in the above example, there is no way 
the task itself can release the lock; such a release can only be done by another 
task that is monitoring the task that was aborted. 

SR supports multiple active processes within each resource instance; a separate, 
potentially concurrent thread of control is associated with each proc invocation. 
This is similar to the approaches taken in Ada, EPL, Linda, and NIL. A different 
approach is taken in DP and LYNX, where threads execute as coroutines. We 
prefer our approach since an SR process corresponds to the usual conceptual 
notion of a process. Also, this approach admits a multiprocessor-based imple- 
mentation in which processes in the same resource might truly execute concur- 
rently. Finally, this approach accommodates immediate processing of operations 
that service interrupts. A drawback of having concurrent threads is that processes 
must synchronize access to shared variables to avoid race conditions. However, 
how to do so is now well understood, and SR’s operations can be used to simulate 
semaphores in an efficient way. 

5.3 Operations 

Operations in SR can be invoked either synchronously (call) or asynchronously 
(send). Many other languages (e.g., Ada and CSP) provide only synchronous 
message passing. While this is very useful, especially for programming client/ 
server interactions, asynchronous message passing is also useful. First, it can be 
used to avoid remote delay in which a server, in processing a request, invokes an 
operation in another server that might delay [28]. In particular, send can be 
used to invoke the remote operation whenever it is necessary for the first server 
to honor other requests in order to remove the conditions that led to remote 

“Task destruction may not be immediate; for example, a task is allowed to complete servicing a 
rendezvous before the task is destroyed. 
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delay. This was shown in the server process in the Servant resource in 
Section 3.1. In a language that provides only synchronous message passing, extra 
processes must be employed to avoid remote delay; this often complicates problem 
solutions. Asynchronous message passing is also useful whenever it is not nec- 
essary to delay the invoker of an operation. For example, it can be used to 
program pipelines of filter processes, where it is most natural for the producer to 
continue after sending a message to the consumer. 

The co statement provides additional flexibility in invoking operations. It 
allows the invoker to call several operations at the same time and to continue 
when an appropriate combination of replies has been received. In addition, the 
postprocessing block associated with each concurrent invocation allows the 
programmer to handle the reply from each invocation in a manner appropriate 
to that invocation. co can be simulated using send and in. However, such a 
simulation results in a much more complex program. It also requires changing 
the interface between the invoking and servicing processes since parameters and 
results have to be sent as separate messages. In addition to being useful, co is 
relatively simple to implement since its implementation can use the basic invoke 
and reply primitives in the RTS. Thus co illustrates how opening up the 
implementation provides additional, useful flexibility. Note that the co statement 
is similar to Argus’s coenter statement and to the V kernel’s multicast mecha- 
nisms [16]. 

All operations are invoked using capabi1ities.l’ In addition to capabilities for 
entire resources, capabilities for individual operations are provided. This makes 
some programming jobs easier since it overcomes the limitations of Eden’s 
capabilities, which can only be bound to entire modules [lo]. For example, a 
command server in Saguaro is passed a record of operation capabilities. One field 
of the record is for standard input and another is for standard output. These 
fields can be bound to operations in different resources; for example, the capa- 
bility for standard input might be bound to a read operation in a file server, while 
the capability for standard output might be bound to a write operation in the 
terminal driver. 

Operations can be declared within a process (a local operation) or at the 
resource level (a resource operation). Local operations support the programming 
of conversations, as shown in Section 3.2. Resource operations provide the most 
commonly used form. Of importance is that resource operations, like resource 
variables, may be shared, that is, they can be serviced by in statements in more 
than one process. Shared resource operations are almost a necessity, given that 
multiple instances of a proc can service the same resource operation. They are 
also useful since they can be used to implement conventional semaphores, “data- 
containing” semaphores, and server work queues. A data-containing semaphore 
is a semaphore that contains data as well as a synchronization signal. As an 
example, we use such semaphores to implement buffer pools in Saguaro. A buffer 
is produced by sending its address to a shared operation; a buffer is consumed by 
receiving its address from the shared operation. A shared operation can also be 
used to permit multiple servers to service the same work queue. Clients request 

I’ An operation can also be invoked using just its name if that name is declared in the current scope. 
Such a name is treated as a capability constant for the named operation. 
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service by invoking a shared operation. Server processes (in the same resource) 
wait for invocations of the shared operation; which server actually receives and 
services a particular invocation is transparent to the clients. In addition to being 
useful, shared resource operations can be implemented almost as efficiently as 
nonshared operations; the only additional requirement is grouping operations 
into classes, each of which has a lock (as discussed in Section 4.2.2). 

5.4 Issues Related to Program Distribution 

Many distributed programs have a hierarchical structure in which resources 
provide operations that are invoked only by higher level resources. This is not 
always the case, however. In some programs, such as the file system example in 
Section 3.2, two resources interact as equals, with each resource both providing 
operations used by the other and using operations provided by the other. An 
additional interaction pattern that has been found to be useful is the upcall [17] 
in which data flows from a server back to a client. All these interaction patterns 
are supported in SR since a resource may contain more than one process that is 
servicing invocations and capabilities can be used to pass operations between 
resources. (A set of experiments using SR to program different upcall program 
structures is reported in [7].) Ada supports such interaction patterns, although 
each of its servers is limited to be a single task. 

In distributed programs it is important to be able to specify the machine on 
which the different parts of a program are to execute; for programming a 
distributed operating system, it is essential. For example, this allows device 
drivers to be placed on the appropriate machine and provides a basic tool for 
load sharing. This is one of the lessons learned from Eden [lo]. The Eden 
implementors found it valuable to be able to specify the machine on which an 
object executes, even though their overall philosophy is to provide an environment 
in which objects are location independent. SR supports programmer control over 
placement since the location for a resource can be specified when the resource is 
created, Argus provides similar support. By contrast, Ada provides no support 
for placement of tasks. 

Related to controlling where a resource is placed is recognizing that there is 
an inherent difference in efficiency between invoking an operation that is local 
and one that is remote. Our implementation optimizes calls within a virtual 
machine as much as possible. Also, the language allows resources that are placed 
in the same virtual machine to use pointers and reference parameters. This 
necessitates run-time enforcement and can lead to exceptions, but makes many 
programs much more efficient than they would be if we insisted that all param- 
eters be copied and prohibited the use of pointers outside a resource. 

A distributed programming language must also provide support for detecting 
and handling machine or network crashes and for dealing with local exceptions, 
which are inevitable even in the most carefully designed program. SR provides 
two failure handling mechanisms: handlers and when statements.” Handlers 
are used by clients on the invoking side of operations; when statements are used 
by servers of operations. The differences between these two mechanisms reflects 

I8 The design of the when statement is based on ideas in [34]. 
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that, in general, a client communicates with one server at a time but a server has 
many potential clients. In contrast, LYNX provides a single exception handling 
mechanism that uniformly handles failures of either the receiving or sending side 
of a link; this is possible because only one thread of control can be bound to each 
end of a link. SR’s failure handling mechanisms are higher level than a simple 
timeout mechanism, such as that used to detect invoker failure in Ada select/ 
accept statements, and lower level than mechanisms like atomic actions [27], 
fault-tolerant actions [33], and replicated procedure call [20]. We feel that our 
approach is appropriate for the intended application domain of SR. Timeout 
intervals are used to implement failure detection, but the programmer need not 
be concerned with such low-level details. We expect that the SR mechanisms 
will be more efficient than higher level failure-handling mechanisms, and hence 
they are more appropriate for a systems programming language. In fact, the SR 
mechanisms can be used to implement high-level mechanisms such as atomic 
actions. 

The final requirements for a language that is used to write distributed operating 
systems are the abilities to execute user programs and to accommodate a changing 
hardware configuration. The only language we know of that comes close to 
meeting these requirements at present is LYNX, in which it is possible for a 
process to be compiled after and then connect to an already executing program. 
Although resources and communication links can be created and destroyed 
dynamically in SR, the machine configuration and collection of resources that 
comprise a program are static input to the SR linker. To overcome this limitation, 
we are currently working on the design of two mechanisms. The first is an 
“execute” facility to load and start execution of an external program, which 
would interact with the host SR program by being linked to a set of SR library 
routines. The second mechanism is a generalization of operations that would 
support group communication somewhat analogous to that provided by V [16]. 
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