
An Overview of the SR Language
and Implementation

GREGORY R. ANDREWS, RONALD A. OLSSON, MICHAEL COFFIN,
IRVING ELSHOFF, KELVIN NILSEN, TITUS PURDIN, and
GREGG TOWNSEND

The University of Arizona

SR is a language for programming distributed systems ranging from operating systems to application
programs. On the basis of our experience with the initial version, the language has evolved consider-
ably. In this paper we describe the current version of SR and give an overview of its implementation.
The main language constructs are still resources and operations. Resources encapsulate processes
and variables that they share; operations provide the primary mechanism for process interaction.
One way in which SR has changed is that both resources and processes are now created dynamically.
Another change is that inheritance is supported. A third change is that the mechanisms for operation
invocation-call and send-and operation implementation-proc and in-have been extended and
integrated. Consequently, all of local and remote procedure call, rendezvous, dynamic process creation,
asynchronous message passing, multicast, and semaphores are supported. We have found this
flexibility to be very useful for distributed programming. Moreover, by basing SR on a small number
of well-integrated concepts, the language has proved easy to learn and use, and it has a reasonably
efficient implementation.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems-distributed applications; network operating systems; D.1.3 [Programming Techniques]:
Concurrent Programming; D.3.3 [Programming Languages]: Language Constructs-concurrent
programming structures; modules, packages; 0.3.4 [Programming Languages]: Processors-code
generation; compilers; optimization; run-time enuironments; D.4.1 [Operating Systems]: Process
Management-concurrency; multiprocessing/multiprogramming; synchronization; D.4.4 [Operating
Systems]: Communications Management-message sending; D.4.5 [Operating Systems]: Reliabil-
ity--fault-tolerance

General Terms: Languages

Additional Key Words and Phrases: Distributed programming languages

1. INTRODUCTION

During the past two years we have redesigned and reimplemented the SR
(Synchronizing Resources) programming language. Like its predecessor, SRo
[2, 31, SR remains a language for writing distributed programs. Also, the main

This research was supported by NSF under grant DCR-8402090 and by the Air Force Office of
Scientific Research under grant AFOSR-84-0072. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright notices thereon.
Authors’ addresses: Gregory R. Andrews, Michael Coffin, Irving Elshoff, Kelvin Nilsen, and Gregg
Townsend, Department of Computer Science, The University of Arizona, Tucson, AZ 85721; Ronald
A. Olsson, Division of Computer Science, The University of California at Davis, Davis, CA 95616;
Titus Purdin, Department of Computer Science, Colorado State University, Fort Collins, CO 80523.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1988 ACM 0X4-0925/88/0100-0051$01.50

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1966, Pages 51-66.

52 l G. R. Andrews et al.

language constructs-resources and operations-are conceptually the same.
However, on the basis of our experience using SR,, to write numerous programs,
including prototypes of the Saguaro operating system [6], we have modified the
language in several ways. In essence, SR is to SR, what Modula-2 is to Modula
[38, 391: a second-generation language that incorporates refinements based on
experience with its predecessor.

The redesign of SR has been guided by three major concerns: expressiveness,
ease of use, and efficiency. By expressiveness we mean that it should be possible
to solve distributed programming problems in the most straightforward possible
way. This argues for having a flexible set of language mechanisms, for both
writing individual modules and combining modules to form a program. Distrib-
uted programs are generally much more complex than sequential programs.
Sequential programs usually have a hierarchical structure; distributed programs
often have a weblike structure in which components interact more as equals than
as master and slave. Sequential programs usually contain a fixed number of
components since they execute on a fixed hardware configuration; distributed
programs often need to grow and shrink dynamically in response to changing
levels of user activity and changing hardware configurations. Sequential programs
have a single thread of control; distributed programs have multiple threads of
control. Thus a distributed programming language necessarily contains more
mechanisms than a sequential programming language.

One way to make a language expressive is to provide a plethora of distinct
mechanisms. However, this conflicts with our second concern, ease of use. As
Hoare has so aptly observed, if programs are to be reliable, the language they are
written in must be simple to understand and use [21]. The way we have resolved
this tension between expressiveness and simplicity is that SR provides a variety
of mechanisms, but they are based on only a few underlying concepts. Moreover,
these concepts are generalizations of those that have been found useful in
sequential programming, and they are integrated with the sequential components
of SR so that similar things are expressed in similar ways. The main components
of SR programs are parameterized resources, which generalize modules such as
those in Modula-2. Resources interact by means of operations, which generalize
procedures. Operations are invoked by means of synchronous call or asynchro-
nous send. Operations are implemented by procedure-like procs or by in state-
ments. In different combinations, these mechanisms support local and remote
procedure call, dynamic process creation, rendezvous, message passing, and
semaphores-all of which we have found to be useful. The concurrent and
sequential components of SR are integrated in numerous additional ways in an
effort to make the language easy to learn and understand and hence easy to use.

A further consequence of basing SR on a small number of underlying concepts
is good performance. SR provides a greater variety of communication and
synchronization mechanisms than any other language, yet each is as efficient as
its counterpart in other languages. We have also designed the language and
implemented the compiler and run-time support in concert, revising the language
when a construct was found to have an implementation cost that outweighed
its utility. In addition, some of the expressiveness within the language has
been realized by “opening up” the implementation. For example, the various

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and Implementation l 53

mechanisms for invoking and servicing operations are all variations on ways to
enqueue and dequeue messages.

A detailed discussion of how these concerns have influenced the evolution of
SR is given in [4]. This paper presents an overview of the language and its
implementation. We summarize the main language mechanisms,’ give examples
of their use, describe the most interesting aspects of the implementation, and
give performance figures. We also discuss the relation between SR and other
approaches to programming distributed systems.

2. LANGUAGE OVERVIEW

An SR program is composed from three kinds of separately compiled components:
resource specifications, resource bodies, and globals. Resources are the main
building block; they are the unit of abstraction and encapsulation. Globals contain
declarations of constants and types shared by resources; they have the form

global identifier
declarations of constants and types

end identifier

A resource is a parameterized pattern, instances of which are created dynami-
cally. Resources define operations and are implemented by one or more processes
that execute in the same address space. Processes interact by means of operations;
processes in the same resource may also share variables. SR provides a variety
of mechanisms for implementing and invoking operations. These mechanisms
can be used in various combinations to program resources that implement objects
ranging from sequential stacks and queues, through monitors, to complex servers.
Moreover, inheritance is supported so resources can implement classes of objects.
The remainder of this section is a summary of the most interesting aspects of
resources and operations.

2.1 Resources

A resource has a specification and a body. The specification identifies other
components the resource uses and declares operations, constants, and types
exported by the resource. The basic form of a resource specification is

resource identifier
import identifier list
declarations of operations, constants, and types

end identifier

All objects declared in the specification are exported from the resource; they may
be used in other resources that import this resource.

The body of a resource contains the processes that implement the resource,
declarations of objects shared by those processes, and initialization and

1 The complete language is described in [5].

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

54 l G. R. Andrews et al.

finalization code. The general form of a body is

body identifier(forrna.l parameters)
import identifier list
declarations of shared objects
processes
initial block end
final block end

end identifier

The identifier on a body is the same as that on a previously compiled specification;
a body inherits all objects declared in or imported into that specification. As
indicated, the body of a resource is parameterized, actual parameters are assigned
during resource creation (see Section 2.1.2). The shared objects may be constants,
types, variables, and additional, local operations; none of these objects is visible
outside the body. A block is a sequence of declarations and statements.

Most of the pieces in the specification and body of a resource are optional and
may occur in any order. Also, an object can be referenced any time after it has
been declared. This permits the values of constants to depend on previously
declared objects. Statements and declarations can also be intermixed. This
permits sizes of arrays to depend on input values.

The general ordering rule in SR is “declare before use”; that is, an object must
be declared before being referenced. Thus a global component or resource speci-
fication must be declared before any resource that imports it. Note that the body
of a resource may also contain an imports phrase. This permits a body to employ
components in addition to those imported by the resource’s specification and
thus facilitates keeping interfaces precise. This also permits two resource bodies
to reference each other’s specification.

The specification and body of a resource may be combined when it is not
necessary to compile them separately. This is illustrated by the following example,
which declares a resource that implements a queue of integers:2
resource Queue

op insert(item : int)
op remove0 returns item : int

body Queue(size : int)
var sfore[O:size-I] : int
varfiont := 0, rear := 0, count := 0

proc insert(item)
if count<size + store[rear] := item; rear := (reur+l)%size; count++
[else+ # take actions appropriate for overflow
fi

end

proc remove0 returns item
if count>0 -3 item := store[front]; front := (front+l)%size; count--
0 else --f # take actions appropriate for underflow
fi

end

end Queue

‘Semicolons are optional in SR; our convention is to use them as separators for declarations or
statements that appear on the same line. Identifiers following end are also optional; our convention
is to include them only on lengthy objects. One-line comments begin with ‘#’ and terminate with the
end of the line on which the comment begins.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and Implementation 55

The specification of Queue exports two operations. The body employs the
common array-based representation; it is parameterized by the size of the array
that is to be used when an instance of Queue is created. Note that Queue is a
“sequential” data type since the operations on an instance should not be executed
concurrently; a synchronized queue that may be shared by processes is given
later. Also note that the structure of this resource is very similar to the structure
one would find in languages such as Modula-2, Euclid [26], and Ada [l]. The
actual forms of declarations and statements are somewhat different, however, for
reasons mostly having to do with our goal of integrating the sequential and
concurrent mechanisms of SR.

2.1.1 Inheritance and Resource Families. A resource can import globals and
other resources and thus can reference objects exported by those components.
An additional mechanism, the extend phrase, is provided to allow one resource
to inherit all objects declared in the specification of one or more other resources.
This facilitates construction of families of closely related resources, as illustrated
below and in a larger example in Section 3. The extension mechanism also
facilitates subdividing the specification of a resource into pieces that are imported
by different resources; this is also illustrated in Section 3.

One way to program a resource that implements a queue of integers was
shown above. However, there are numerous ways to represent a queue, for
example, using a linked list rather than an array. A family of queue resources
could be programmed as follows. First, a resource specification is given for the
representation-independent operations on a queue:

resource Queue
op insert(item : int)
op remove0 returns item : int

end

Then, other resources that extend Queue are programmed for each different
representation. For example, the array representation could be reprogrammed as

resource ArrayQueue
extend Queue

body ArrayQueue(size : int)
body as programmed above

end ArrayQueue

A resource that extends another can also declare additional operations if that is
appropriate.

Above, Queue is an abstract resource that has no body. It is used merely to
specify an interface. By contrast, ArrayQueue is a concrete resource having both
a specification and body.

2.1.2 Resource Creation. Instances of concrete resources are created dynami-
cally by means of the create statement. Execution of

variable := create resource-identifrer(argumcnts)

causes a new instance of the named resource to be created. Arguments are passed
by value to the new instance and then the resource’s initialization code, if any,
is executed (as a process). Execution of create terminates when the initialization
code terminates. A resource capability is returned by create and assigned to

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

56 . G. FL Andrews et al.

variable. This capability can be used to invoke the operations exported by the
resource, can be copied and passed to other resources, and can be used to destroy
the instance. For example, given

var qcap : cap ArrayQueue

which declares a capability for ArrayQueue, execution of

qcap := create ArrayQueue(20)

creates a 20-element ArrayQueue and returns a capability for it. Subsequently,
an item can be inserted into the queue by executing

qcap.insert(item)

or removed by executing

item := qcap.remove()

where item is of type int. Essentially qcap is a record, the fields of which are
capabilities for the two operations exported by ArrayQueue. If it becomes appro-
priate to destroy this instance of ArrayQueue,

destroy qcap

can be executed. The destroy statement terminates after the resource’s finali-
zation code (if any) terminates and space allocated to the resource has been
freed.

By default, execution of create places a new resource in the same virtual
machine (address space) as that of the resource on which create is executed. It
is also possible to cause an instance to be placed in a different virtual machine
by appending “on vmcap” to the create statement, where vmcap is a capability
for a virtual machine. New virtual machines are generated by creating instances
of the urn pseudoresource in a manner analogous to creating a resource. A virtual
machine can be placed on a specific physical machine (network node) by append-
ing “on machine-id” to the create statement.

In addition to capabilities for concrete resources, which are generated by create
statements, SR provides capabilities for abstract resources and for individual
operations. For example, a capability for the abstract resource Queue could be
declared and then assigned to from a capability that points to an instance of a
concrete resource that extends Queue. Thus capabilities for abstract resources
can be used to mask completely the concrete resource that implements an abstract
interface.

Capabilities for individual operations provide a mechanism similar to proce-
dural parameters. They are used to support finer grained control over the
communication paths between resources. (Examples are given later.) Finally,
capability variables and individual fields within capabilities for resources can be
set to the special values null (error) or noop (no effect); null is the initial value
of each capability variable.

2.2 Operations and Communication Primitives

Resources are patterns for objects; operations are patterns for actions on objects.
Operations are declared in op declarations, as illustrated in the previous exam-
ples. (Arrays of operations are also supported.) Such declarations can appear in
resource specifications, within resources, or within processes. Operations are
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and Implementation

Table I

l 57

Invocation Service Effect
call proc procedure call (possibly remote or recursive)
call in rendezvous
send prw dynamic process creation
send in message passing

invoked by call or send statements; they are serviced by procedures (proc) or
input (in) statements. In the four possible combinations, these primitives have
the effects given in Table I. In addition, semaphores can be simulated using send
and in with parameterless operations. This section shows how these effects are
achieved.

2.2.1 Invocation Statements. The invocation statements have the forms

call opcration(arguments)
send operation(arguments)

where operation is a field of a resource capability, an operation capability, or the
name of an operation declared in the scope of the invocation statement. The
keyword call is optional; it is omitted when operations are invoked in expressions.
Arguments are passed by value (val, the default), result (res), or value/result
(var). Arguments can also be passed by reference (ref) within a virtual machine
(address space).

A call statement terminates when the operation has been serviced and results
have been returned (or when a failure has been detected, as discussed in Section
2.2.4). A send statement terminates when the arguments have been stored on
the machine on which the resource that services the operation resides. Thus, call
is synchronous, whereas send is semisynchronous [9].3

By default, an operation may be invoked by either call or send. It is possible
to restrict invocation to just one of these by appending the operdion restriction
“[callJ” or “(send]” to the operation’s declaration. In keeping with our desire
not to impose restrictions on usage, however, we do not a priori preclude invoking
an operation by send, even if it has result parameters or a return value.
Occasionally we have found it useful to send to a function, for example, to update
a graphics display.

2.2.2 Servicing Operations. An operation is serviced either by a proc or by one
or more in statements. A proc is a generalization of a procedure: It is declared
like a procedure and may be called like a procedure, but has the semantics of a
process. Its general form is

proc operation-identifier(formaljdentifiers) returns result-identifier
block

end operation-identifier

3 We have chosen semisynchronous rather than asynchronous semantics for send for two reasons.
First, this is the semantics that is invariably implemented when the sender and receiver of an
operation execute on the same machine. Second, semisynchronous semantics provides the sender
with assurance that adequate buffer space for the invocation exists and that the servicing resource
exists and was reachable at the time the operation was invoked. Of course, the programmer still has
no assurance that the invocation will be serviced.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

58 l G. R. Andrews et al.

where the operation identifier is the same as that in an op declaration in the
resource containing the proc. Whenever that operation is invoked, an instance
of the proc is created. This instance executes as a process and uses the formal
and result identifiers (if any) to access the arguments of the invocation and to
construct the result.4 If the operation was called, the caller waits for the instance
to terminate (or reply); the effect is thus like a procedure call and is in fact
implemented like a procedure call for calls within the same virtual machine.
However, if the operation was invoked by send, the sender and instance of the
proc execute concurrently; the effect in this case is like forking a process.

The other way to service operations is to employ in statements, which have
the general form

in operation-command 0 . . . 0 operation-command ni

Each operation command is structurally like a proc except that it may also
contain a synchronization and scheduling expression:

operation-identifier(formaljdentifiers) returns result-identifier
and synchronization-expression by scheduling-expression + block

An in statement delays the executing process until some invocation is selectable;
then the corresponding block is executed. An invocation is selectable if the
Boolean-valued synchronization expression in the corresponding operation com-
mand is true; the synchronization expression is optional and is implicitly true if
omitted. In general, the oldest selectable invocation is serviced. This can be
overridden by the use of by, which causes selectable invocations of the associated
operation to be serviced in ascending order of the arithmetic scheduling
expression following by.

Recall that proc supports procedure call and process forking, depending on
whether the operation serviced by a proc is invoked by call or send. Input
statements support rendezvous or message receipt, again depending on whether
an operation serviced by in is invoked by call or send. Thus input statements
combine aspects of both Ada’s select statement [l] and CSP’s guarded input
statement [25]. They are even more powerful, however, since the synchronization
expression may reference formal parameters, and thus selection can be based on
parameter values. Input statements may also contain scheduling expressions that
reference formal parameters. These mechanisms greatly simplify solving many
synchronization problems. Yet, as we shall see in Section 4, they can be imple-
mented quite efficiently.

A simple example will help clarify these mechanisms and their use. Following
is a resource that implements a bounded buffer of integers:

resource BoundedBuffer
op insert(item : int)
op remove0 returns item : int

’ The types of the formals and result are specified in the op declaration; they are not repeated in the
proc declaration.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

body BoundedBuffer(size : int)

Overview of SR and Implementation l 59

op W
initial send bb() end # see text for a simpler way to program this

proc 4
var store[O:size-1] : int
var front := 0, rear := 0, count := 0

dotrue+
in insert(item) and countkze +

store[rear] := item; rear := (rear+l)%size; count++
0 remove0 returns item and counh0 +

item := storewont]; front := (front+l)%size; count--
ni

od
end

end BoundedBuffer

The interface part of BoundedBuffer is identical to that of Queue, which is
appropriate since a bounded buffer is just a synchronized queue; in fact,
BoundedBuffer could have been programmed by extending Queue rather than by
repeating the specification. The implementation of BoundedBuffer contains one
proc, bb. Initially one instance of bb is activated (using send); that instance
executes as a process that repeatedly services invocations of insert and remove.
Invocations of insert can be selected as long as there is room in the buffer;
invocations of remove can be selected as long as the buffer is not empty. Note
that insert and remove are serviced by a single process and thus execute with
mutual exclusion. Also note that the implementation is not visible to resources
that use instances of BoundedBuffer, the resource body could equally well have
used a monitor-like implementation in which insert and remove are each serviced
by a proc and semaphores are used to synchronize them (see below for how
semaphores can be simulated).

Resources often contain “worker” processes such as bb above. SR provides a
process declaration to simplify programming such processes. For example, the
above resource could be coded more compactly by deleting the declaration of the
bb operation, deleting the initialization code, and replacing the line.

proc bb()

by

process bb

Process declarations are thus an abbreviation for the specific pattern that was
employed in BoundedBuffer.

Another useful abbreviation is provided by the receive statement. In partic-
ular,

receive operation(v1, vN)

is an abbreviation for an in statement that waits for an invocation of operation
and then assigns the values of the formal parameters to variables vl, . . . , UN.
Together with the send form of invocation, receive supports asynchronous
message passing in a familiar way. Synchronous message passing is supported by

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

60 l G. R. Andrews et al.

receive together with the call form of invocation. Semaphores can also be
simulated using send and receive. For example, given theldeclaration

the following statements simulate the semaphore P and V operations:

receive s() # P operation
send s() # V operation

This simulation can be used within a resource to synchronize access to shared
resource variables. In fact, operations declared and used in this way are imple-
mented just as if they were semaphores.

2.2.3 Additional Communication Primitives. A few additional primitives are
provided to support process interaction. All are useful, simple, and efficient.

The return and reply statements provide flexibility in servicing invocations.
Execution of return causes the smallest enclosing in statement or proc to
terminate early. If the invocation being serviced was called, the corresponding
call statement also terminates, and results are returned to the caller. Execution
of reply causes the call invocation being serviced in the smallest enclosing in
statement or proc to terminate.5 In contrast to return, however, the process
executing reply continues with the next statement. An important use of reply
is to allow a proc to transmit return values to its caller yet continue to exist and
execute after replying. This facilitates programming conversations, as will be
shown in Section 3.2.

The final communication primitive is the co statement, which supports con-
current invocations. The form of a co statement is

co concurrent-invocation -3 post-processing
II . . .
// concurrent-invocation 4 post-processing

oc

A concurrent invocation is a call or send statement, or an assignment that
contains only a single invocation of a user-defined function. The postprocessing
blocks are optional. Execution of co first starts all invocations. Then, as each
invocation terminates, the corresponding postprocessing block is executed
(if there is one); postprocessing blocks are executed one at a time. Execution of
co terminates when all invocations and postprocessing blocks have terminated
or when some postprocessing block executes exit.

If a co statement terminates before all its invocations have terminated,
uncompleted invocations are not terminated prematurely because such an invo-
cation could be being serviced, in which case terminating it could put the server
process in an unpredictable state. Also, it is sometimes useful to have uncompleted
invocations get serviced even after co terminates; for example, all reachable
copies of a replicated database should be updated even if the updater terminates
after only a majority of the copies have been updated.

A concurrent invocation in co can also be preceded by a quantifier, which
implicitly declares a bound variable and specifies a range of values for that

’ Execution of reply has no effect for operations that are invoked by send.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and Implementation 61

variable.6 Within co, a quantifier provides a compact notation for specifying
multiple invocation/postprocessing pairs. For example, a replicated file might be
updated by executing

co (i := 1 to N) callfiZe[il.update(values) oc

where file is an array of capabilities containing one entry for each file resource.
Similarly, reading a replicated file, terminating when one copy has been read,
might be programmed as

co (i := 1 to N) calljZe[~.rend(arguments) + exit oc

In both cases, the quantifier’s bound variable i is accessible in both the invocation
statement and postprocessing block. Thus the last example could be modified to
record which of the fiZe[i] was the first to respond by saving the value of i in a
variable global to co before executing exit.

2.2.4 Failure Handling. To program distributed systems such as Saguaro, a
language must contain mechanisms for dealing with hardware failures such as
processor and network crashes. Also, exceptions can occur, such as memory
overflow, invoking an operation in a destroyed resource, or passing a pointer
outside a virtual machine. SR provides two mechanisms for failure handling.7
First, handlers can be appended to invocation and resource control statements,
and to proc declarations. An invocation handler, as in

call qcup.imerf(item) [block handling overflow exception]

is executed if the invoked operation fails in a way that is detected by the run-
time system, or if the invoked operation raises an exception by executing

abort(cause)

The different kinds of causes are declared in a predefined enumeration type;
user-defined exceptions are not supported, at least at present. Within a handler,
a predefined function can be called to determine the cause of failure.

If an invocation (or resource control) handler is executed, execution of the
enclosing proc continues as dictated by the code in the handler. If an invocation
fails and is not handled, or if a proc encounters a local exception, the handler
attached to the proc is executed. The proc terminates when the handler
terminates. If a failure is not handled by a proc, the proc aborts and the failure
and cause are passed back up the (dynamic) call chain if the proc was called.
Note that at any point in a proc, there is exactly one handler that could be
entered.

Handlers enable a proc to avoid waiting forever if an invocation fails. Another
form of permanent delay can also occur in a distributed program: A server could
block at an input statement waiting for an invocation that will never arrive
because a client proc, resource, or processor has failed. SR provides a second
mechanism, the when statement, to enable a server to monitor such failures.

’ Quantifiers can also be used within in statements to facilitate servicing elements of an array of
operations, and they are the basis for one of the iterative statements discussed in the next section.

‘These mechanisms have not yet been implemented, and hence we have no experience with their
use. They appear to be useful and easily implemented, but only time will tell.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

62 l G. R. Andrews et al.

Execution of

b := whenfailed(source) send operution(arguments)

requests that the run-time support monitor source, which may be a physical
machine, virtual machine, resource instance, 3r process, depending on the value
of the argument.8 If source fails, an invocation of operation is sent with the
indicated arguments (which are evaluated when the when statement is executed,
not when the failure occurs). Thus an asynchronous failure is turned into an
asynchronous invocation that can be serviced by a proc or in statement just like
any other invocation.

The when statement returns a value of type binding, which serves to identify
the binding between the source being monitored and the operation to be invoked.
Monitoring can be changed by assigning a new value to a binding variable; it can
be canceled by setting a binding variable to null. Monitoring is implicitly canceled
when the lifetime of a binding variable ends.

2.3 Types, Declarations, and Sequential Statements

SR provides a variety of data types and sequential statements similar to those
found in other languages. However, their form and many of their details are
different. Largely this is to facilitate the integration of the sequential and
concurrent components of SR. It also results from our desire to make it easy to
program commonly occurring algorithmic patterns.

In addition to the usual kinds of basic and structured types, SR provides
capabilities and what is called an optype (operation type). An optype defines a
pattern for an operation; that is, the types of the parameters and return value.
Such a type is used when the same operation pattern is used more than once, for
example, when several resources implement the same type of operation such as
file read. What makes capabilities and operation types especially useful is that
type checking is based on structural equivalence; hence, an operation capability
can be bound to any operation that has the specified pattern.

SR’s if and do statements are based on Dijkstra’s guarded commands [21] so
their structure is similar to that of the in statement. However, if no Boolean
expression is true, if has no effect (unlike Dijkstra’s if, which aborts in this
situation). We also allow the last guard of if, do, and in to be “else”, which is
interpreted as the conjunction of the negations of the other boolean expressions.

SR also provides a novel iterative statement, fa (for all), that employs quan-
tifiers introduced earlier with the co statement. The form of fa is

fa quantifier, quantifier + block af

where quantifiers have the general form

bound-variable := initial-value direction final-value st boolean-expression

For example, the single statement

fa i := lb(u) to ub(u)-I,
j := i+l to ub(a) st a[~>u[i] +

u[d, ali] :=: ali], u[fl # swap statement
af

‘A predefined function is provided so that a server can determine the identity of an otherwise
anonymous client.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and Implementation l 63

sorts array a into ascending order. This statement employs the builtin array
lower-bound (‘lb’) and upper-bound (‘ub’) functions. Note how the range of values
for the second bound variable j depends on i. Also note the use of st (such that),
which is used to limit execution of the body of fa to those values of i and j for
which a[i] > a[j].

The two final sequential statements are exit and next. The exit statement is
used to force early termination of the smallest enclosing iterative or co statement.
The next statement is used to force return to the loop control of the smallest
enclosing iterative statement; it can also be used within a postprocessing block
in a co statement to force co to wait for another invocation to terminate. Note
how these statements, like quantifiers, have consistent uses in support of both
sequential and concurrent programming.

2.4 Implementation-Specific Mechanisms

SR can be used to write programs that execute on top of an existing operating
system or stand alone on a “bare” network of processors. Our current implemen-
tation is built on top of UNIX; SR programs run as UNIX processes on one
or more interconnected machines. Work is under way on a stand-alone imple-
mentation. Any implementation must provide mechanisms for interacting with
input/output (I/O) devices. This section is a brief summary of the I/O mecha-
nisms provided in our current implementation and those that will be provided in
the stand-alone implementation.

In the UNIX implementation, I/O is supported by the file data type and
several operations on that type. The operations permit files to be created, opened,
closed, removed, read, and written. Three forms of read and write are supported:
formatted, character string, and line at a time. Predefined file literals provide
access to the standard input, output, and error files commonly employed by
UNIX programs. Since devices such as terminals are integrated into the UNIX
file system, it is easy for an SR program to interact with multiple terminals: The
various terminal “files” are simply opened and accessed like normal files. Routines
are also provided to access the arguments on the command line that triggers
execution of an SR program. It is also possible for an SR program to access any
C subroutine, including system calls such as those implementing window pack-
ages. Work is under way to implement an “execute” facility that allows a
sequential program, such as a C command, to be executed as an SR process
within an envelope resource.

In a stand-alone implementation, there is no underlying operating system to,
depending on one’s perspective, provide convenient functions or get in one’s way.
Thus an SR programmer needs to be able to program device controllers and
memory allocators. Mechanisms are provided to access bytes, bind variables
to memory addresses, bind operations to interrupt vector locations, and
service interrupts.

3. EXAMPLES

In this section we present two larger examples.g The first, a decentralized solution
to the classic dining philosophers problem, illustrates a complete program

’ Additional examples are given in [30].

ACM Transactions cm Programming Languages and Systems, Vol. 10, No. 1, January 1988.

64 - G. R. Andrews et al.

containing multiple resources. The solution employs many of the SR communi-
cation primitives and illustrates the use of the I/O primitives. The second example
outlines parts of the Saguaro file system [6]. It illustrates the use of several
additional mechanisms.

3.1 Decentralized Dining Philosophers

In the dining philosophers problem, N philosophers (typically five) sit around a
circular table set with N forks, one between each pair of philosophers. Each
philosopher alternately thinks and eats. Before eating, a philosopher must acquire
the two closest forks.

This problem can be solved in three basic ways. In all cases, philosophers are
represented by processes; the approaches differ in how forks are managed. The
first, centralized approach is to have a single servant process that manages all N
forks. The second, decentralized approach is to distribute the forks among N
servant processes, with each servant managing one fork. The third approach is
similar to the second, but employs one servant per philosopher instead of one
servant per fork. In this case, each philosopher interacts with its own personal
servant; that servant interacts with its two neighboring servants. Each fork is
either held by one of the two servants that might need it or is in transit between
them. A hungry philosopher may eat when its servant holds two forks (and
presumably “spoon feeds” the philosopher).

Each approach can readily be programmed in SR (see [30] for details). Follow-
ing is a solution that employs the third approach since that one is the most
intricate and also illustrates the largest number of SR mechanisms. The specific
algorithm that the servants employ is adapted from [14]. It has the desirable
properties of being fair and deadlock free. The basic solution strategy also has
application to other, realistic problems such as file replication and database
consistency.

Our solution employs three concrete resources-Servant, Philosopher, and
Main-and two abstract resources-PhilosopherOps and ServantOps. The
abstract resources define the servant operations invoked by philosophers and
other servants, respectively:

resource PhiIosopherOps
op getfirks() (call)
op relforh()

end

resource ServantOps
op needL.0 (send)
op needR() {send)
op pa.ssL() (send)
op passR() [send)
op link+ r : cap ServantOps) # links to neighbors
op fork(haveL, dirtyL, haveX, dirtyR : bool) # initial fork values

end

The interface to a Servant is the union of these two interfaces:
resource Servant

extend PhilosopherOps, ServantOps
end

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and Implementation l 65

Some of the Servant operations are restricted to be invoked only as indicated; it
does not matter how the others are invoked.

Instances of Philosopher are created by the Main resource, as shown later.
Each instance is passed a capability myservant for the PhilosopherOps exported
by its personal servant, an identity id used for output, and a value t indicating
the number of times the philosopher is to eat and think before it dies:

resource Philosopher
import PhilosopherOps

body Philosopher(myservant : cap PhilosopherOps; id, t : int)
process phi1

fai:= 1 tot+
myservant.getforks()
write(“Philosopher”, id, “is eating”) # eat
myservant.relforkr()
write(“Philosopher”, id, “is thinking”) # think

af
end

end Philosopher

Instances of Servant service invocations of getforks and relforks from their
associated instance of Philosopher. Servants communicate with neighboring
instances using the needl, needR, passl, and passR operations. A philosopher is
permitted to eat when its servant has acquired two forks. A servant may already
have both forks when getforks is called, or it may need to request one or both
from the appropriate neighbor servant. Two variables are used to record the
status of each fork: haveL (haveR) and dirtyL (dirtyR). Starvation is avoided by
having servants give up forks that are dirty; a fork becomes dirty when it is used
by a philosopher.

body Servant0
var 1, r : cap ServantOps
var haveL, dirtyL, haveR, dirtyR : boo1
op hungry0 # hungry and eat are local operations
op eat0
proc getforks()

send hungry0 # let server know philosopher is hungry
receive eat0 # wait for permission to eat

end

process server
receive link(Z,r)
receive forks(haveL,dirtyL,haveR,dirtyR)
do true +

in hungry0 +
ask for forks I do not have; ask right neighbor for its left fork,
and left neighbor for its right fork

if -haveR + send r.needL() fi
if ‘haveL + send l.needR() fi

wait until I have both forks
do -(haveL & haveR) +

in passR() + haveR := true; dirtyR := false
0 puwL() + haveL := true; dirt>lr, := false
0 needR() & dirtyR + haveR := false; dirtyR := false

send r.passL(); send r.needL()

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

66 ’ G. R. Andrews et al.

0 needl() & dirtyL + haveL := false; dirfyL := false
send I.pussR(); send I.needR()

ni
od

let my Philosopher eat; wait for forks to be released
send eat(); dirtyL := true; dirtyR := true; receive rerforkr()

0 needR() +
right neighbor needs left fork, which is my right fork

haveR := false; dirtyR := false; send rpussL()
0 needL() -3

left neighbor needs right fork, which is my left fork
haveL := false; dirtyl, := false; send l.passR()

ni
od

end server

end Servant

Notice the various combinations of invocation and service statements that are
employed. For example, getforks is implemented by a proc and hides the fact
that getting forks requires sending a hungry message and receiving an eat
message. Other operations, including relforks, are implemented by in statements.
Also, invocations of needL and needR are serviced by two different in statements,
reflecting the two states in which a servant might give up a fork to a neighbor.
Finally, note that send is used to invoke the need and pass operations of a
neighbor; call cannot be used for this because deadlock could result if two
neighboring servers invoked each other’s operations at the same time.”

The final resource, Main, initializes execution of the program. By appropriate
directive to the SR linker, one instance of Main is implicitly created when
execution of the program begins. It prompts for input about the number of
philosophers n and the number of times t each philosopher is to execute. Main
then creates n instances of Philosopher and n instances of Servant and passes
them capabilities so they can communicate with each other. Main also sends
each Servant the initial values for its local variables.

resource Main
import Philosopher, PhilosopherOps, ServantOps, Servant

body Main0
initial

var n, t : int
put(“how many Philosophers? (at least 2) “); read(n);
put(“how many sessions Per Philosopher? (at least 1) “); read(t);
var s[lx] : cap Servant
var si[l:fl] : cap ServantOps
varpi[l:n] : cap PhiZosopherOps
create the Servants and Philosophers

fai:= 1 ton+
s[i] := create Servant(i)
si[lJ := ServatiOps from s[i]
pi[i] := PhiZosopherOps from s[i]
create Philosopher@i[i],i,t) # returned capabilities are not needed

af

lo The body of Servant could be programmed differently to use procedures to implement the need and
pass operations. However, these procedures would then have to use semaphores to synchronize access
to the shared variables.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and Implementation 67

give each Servant its links to neighboring Servants
send s[l].Snks(si[n].si[2])
fa i := 2 to n-l + send s[ij.fihk.s(si[i-l],si[i+l]) af
send s[n].Unks(si[n-l].si[l])

initialize each Servant’s forks; must be asymmetric to avoid deadlock
send s[l].forkT(true.false,true,false)
fa i := 2 to n-l + send s[~.forkr(false.false,true,false) af
send s[n].forkr(false,false,false,false)

end
end Main

Note that the sizes of the arrays depend on input value n. Also note that
capabilities can be passed to Philosophers as resource parameters. However,
separate operations are required to pass each servant capabilities for its neighbors
since a resource has to be created before Main has a capability for it.

3.2 Components of the Saguaro File System

Our final example outlines a few components of the Saguaro file system [6].”
This example illustrates several additional features of SR including a global
component, operation types, operation capabilities, and operations declared local
to procs. The components are given in the order in which they would be compiled.

Files in Saguaro, like those in UNIX, include ordinary data files, devices, and
a generalization of pipes called channels. Different kinds of files have different
representations and are serviced by different resources. However, all tiles are
streams of bytes and are accessed using the same operations: read, write, seek,
and close. The patterns for these operations as well as several file system
constants are declared in a global component:

global FileDefs
optype read(res buflO:*] : char; count : int) returns actual-count : int
optype write(bul[O:*] : char; count : int) returns actual-count : int
optype seek(khd : int; o&set : int)
optype close0
const EOF := -1
. . .

end
declarations of other global constants

Files are managed by DirectovMgr resources. The client-visible subset of
operations on directories is declared in an abstract resource:

resource DirectoryOps
import FileDefs
typefile-desc = rec(index : int; read : cap FileDefs.read;

write : cap FileDefs.write; seek : cap FileDefs.seek;
close : cap FiZeDefs.cZose) (private)

op open@ath-name[O:*] : char; . ..) returns fd : jiZe desc
. . . # other operations to remove files, list directo;es, etc.

end

A client calls the open operation to acquire access to a file. If successful, open
returns a file descriptor, which contains a table index used within the file system
and capabilities for the various types of file operations. The type restriction
“(private]” appended to the declaration of file-desc ensures that resources that

I1 The complete system, which consists of over 4000 lines of SR source, is described in [32].

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

68 l G. FL Andrews et al.

implement the directory operations are the only ones that can assign to fields of
the record.

DirectoryMgr extends DirectoryOps with additional operations used within the
implementation of the file system:

resource DirectoryMgr
extend DirectoryOps
import FileDefs, DishServer
op fcZose(...)
. . .

end
additional operations on directories

There is one instance of this resource for each physical file system in Saguaro.
Each client has two DirectoryOps capabilities; one is bound to the instance of
DirectoryMgr on which the root file resides, the other to the instance on which
the client’s current working directory resides.

File operations are implemented by Terminal, Channel, and Fileserver re-
sources, depending on the kind of file. Here we consider only the case of Fileserver
resources. When an ordinary file is opened, the appropriate DirectoryMgr deter-
mines if there is an existing FileServer for the file. If so, the DirectoryMgr
allocates that F&Server; if not, the DirectoryMgr creates a new F&Server. Thus
each instance of Fileserver services all clients who have opened the same file;
this allows file-specific information, such as buffers, to be shared. A client
accesses a file using the file descriptor returned by open. When a client is finished
with a file, it invokes the close operation in the associated Fileserver. That
Fileserver then informs its DirectoryMgr that the user has finished by invoking
the DirectoryMgr’s fclose operation. If no other clients have the file open, the
DirectoryMgr then destroys the Fileserver.

When created, a FileServer is passed capabilities for the directory manager
that created it and the disk server that services the disk on which the file resides.
F&Server exports one operation, fopen, which is called by a DirectoryMgr each
time the file is opened.

resource Fileserver
import FileDefs, DirectoryOps, DirectoryMgr, DiskServer
op fopen(...) returns fd : jile desc

body FileServer(fclose : cap D%ectoryMgr.fclose; disk : cap DiskServer; . ..)
op lock0 # used as a semaphore for mutual exclusion
. . . # declarations of other shared objects, such as buffers
. . . # initialization, including one send lock0 to initialize lock semaphore

proc fopen(...) returns fd
op read FileDefs.read # local operations to access file
op write FileDefs.write
op seek FileDefs.seek
op close FileDefs.close
var rwptr := 0 # read/write offset in file
. . . # other declarations and initialization.

fd :=file-desc(O,read,write,seek,close) # record construction
reply # return capabilities in fd and then continue
do true + # service file operations until client invokes close.

in read(...) -+ . . .
0 write(...) + . . .
0 seek(...) + . . .

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and Implementation l 69

0 cZose(...) + exit
ni

od
. . . # clean up tables

fclose(...) # call fcZo.se in parent DirectoryMgr
end fopen

end F&Server

Since fopen is implemented by a proc, a new process is created to service each
invocation. This process declares private instances of the file-access operations
and returns capabilities for them to the DirectoryMgr that called fopen. That
manager in turn passes the capabilities to the client who called open (some of
the capabilities are set to null if the client did not request or does not have
permission to perform all operations). After executing reply, the fopen process

- engages in a conversation with that client, servicing the file-access operations
until the client closes the file. Each client who opens a file thus has its own
server process, which manages client-specific data. The server processes use the
lock operation as a semaphore to protect critical sections that access shared
buffers and tables.

The final component of our example is the body of the DirectoryMgr resource,
which must be compiled after the body of Fileserver since it creates instances of
Fileserver.

body DirectoryMgr(...)
import Fileserver, Terminal, Channel

OP lock0
. . . # local tables and other shared declarations
. . . # initialize lock and shared variables

proc open(pn, . ..) returnsfd
var fsc : cap Fileserver
. . . # search pathpn to find tile location, size, etc.

receive lo&() # protect critical section
if Fileserver does not exist +

fsc := create FiZeServer(fclose, ..,)
. . . # allocate table entry and store& in it

fi
. . . # increment reference count in file server table

send lo&()
fd := fsc.fopen() # create service process

. . . # check access rights and nullify fields in fd as needed
end open

proc fclose(...)
receive lo&()
. . . # decrement reference count in file server table
. . . # if count is 0, destroy the Fileserver

send lo&()
end fclose
do&rations of other operations

end DirectoryMgr

Above, open is implemented by a proc to permit time-consuming, noncritical
portions of different opens, such as path-name searching, to proceed concurrently.
Consequently, critical sections need to be protected using the lock operation as a

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

70 ’ G. R. Andrews et al.

semaphore. An alternative design would be to service all critical DirectoryMgr
operations by an in statement in one process.

4. IMPLEMENTATION OVERVIEW

The current SR implementation is built on top of UNIX and consists of three
major components: the compiler, linker, and run-time support. Below we describe
how SR programs are built and executed using these components and then how
the major language features are implemented. We conclude by giving the status
of the current implementation and some measurements of its size and perform-
ance. The same basic philosophy that guided the design of the language has
guided its implementation: common uses of language features should have a
simple, efficient implementation.

The compiler has a traditional internal structure: a lexical analyzer, recursive-
descent parser, and code generator. The lexical analyzer and parser employ
common techniques. The code generator emits C source code, which is passed
through the C compiler to produce machine code (MC).l’ The SR compiler
supports separate compilation of entire resources, resource specs, resource bodies,
and globals.

The linker provides the means by which the user constructs a program from
previously compiled resources. The input to the linker is a list of resources and
a list of physical machines on which the program is to execute. The linker parses
and verifies the legality of its input (e.g., it checks to make sure that the resources
have been compiled in an acceptable order) and then uses the standard UNIX
linker to create a load module. The input to the linker also designates one of the
physical machines as the program’s “main” physical machine and one of the
resources as the program’s “main” resource. A virtual machine is created on the
main physical machine when the program begins. One instance of the main
resource is then created, and begins execution, within that virtual machine. Each
virtual machine (VM) executes as a single UNIX process in which concurrency
is simulated by the run-time support. VMs exchange messages using UNIX
sockets.

The run-time support (RTS) provides the environment in which the MC
executes. The RTS provides primitives for resource creation and destruction,
operation invocation and servicing, and memory allocation; it also supports the
implementation-specific language mechanisms described in Section 2.4. Inter-
nally, the RTS contains a nugget: a small collection of indivisible process
management and semaphore primitives. The RTS hides the details of the network
from the MC; that is, the number of machines and their topology is transparent
to the MC. When the RTS receives a request for a service provided on another
machine-for example, create a resource or invoke an operation-it simply
forwards the request to the destination machine. Upon arrival at that machine,
the local RTS processes the request just as though it had been generated locally.
Results from such requests are transmitted back in a similar fashion.

I* Originally the Amsterdam Compiler Kit (ACK) [37] was used for code generation. We switched to
generating C so that people who want to use our compiler would not have to purchase ACK.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and implementation 71

4.1 Resource Creation and Destruction

On each VM, the RTS maintains a table of active resource instances. A resource
capability consists of (1) a VM identity, a pointer into the resource instance
table, and a sequence number and (2) an operation capability for each of the
operations declared in the resource’s specification (operation capabilities are
described below in Section 4.2). The sequence number for a resource is assigned
when the instance is created; it is stored in the resource instance table. The RTS
uses sequence numbers to determine whether a resource capability refers to a
resource instance that still exists, that is, whether the referenced resource
instance has been destroyed.

The MC for the create statement builds a creation block that contains the
identity of the resource to be created, the VM on which it is to be created, and
the values of any parameters. This block is passed to the RTS, which transmits
it to the designated VM. When the creation block arrives at the designated VM,
the (local) RTS allocates a table entry for the instance and fills in the first part
of the resource capability accordingly. The RTS then creates a process to execute
the resource’s initialization code.

The MC for every resource includes initialization code even if there is no user-
specified initialization code. The key functions of such code are to allocate
memory for resource variables (the size of which may depend on the parameters
in the resource heading), to initialize resource variables that have initialization
expressions as part of their declaration, and to create operations declared in the
resource spec or outer level of the body. To accomplish operation creation, the
MC interacts with the RTS. For each operation that is being created, the RTS
allocates and initializes an entry in its operation table (see Section 4.2); if the
operation is in the resource’s specification, the RTS also fills in the appropriate
field in the resource capability that will be returned from create. The initiali-
zation process executes this implicit initialization code, then any user-specified
initialization code, and finally additional implicit initialization code to create any
background processes in the resource.

To destroy a resource instance, the MC passes the RTS a capability for the
instance. If the resource contains finalization code, the RTS creates a process to
execute that code. When that process terminates, or if there was no finalization
code, the RTS uses the resource instance table to locate processes, operations,
and memory that belong to the resource instance. The RTS then kills the
processes, frees the entries in the resource and operation tables, and frees the
resource’s memory. The sequence number in each freed entry is incremented so
that future references to a resource that has been destroyed or to one of its
operations can be detected as being invalid.

When an SR program begins execution, first the nugget and then the RTS
initialize themselves. Then an instance of the main resource is created much in
the same way that any other resource instance is created.

4.2 Operations

The RTS also maintains an operation table on each VM. This table contains
an entry for each operation that is serviced on that VM and is currently active.
The entry indicates whether the operation is serviced by a proc or by input

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

72 l G. R. Andrews et al.

statements. For an operation serviced by a proc, the entry contains the address
of the code for the proc. For an operation serviced by input statements, the
entry points to its list of pending invocations. An operation capability consists
of a VM identity, an index into the operation table, and a sequence number. The
sequence number serves a purpose analogous to the sequence number in a resource
capability: it enables the RTS to determine whether an invocation refers to an
operation that still exists. (An operation exists until its defining resource is
destroyed or its defining block terminates.)

4.2.1. Invocation Statements. To invoke an operation, the MC first builds an
invocation block, which consists of header information and actual parameter
values. The MC fills in the header with the kind of invocation (call, send,
concurrent call, or concurrent send) and the capability for the operation being
invoked. Then, the MC passes the invocation block to the RTS. If necessary, the
RTS transmits the invocation block to the VM on which the operation is located
(recall that capabilities contain VM identities). The RTS then uses the index in
the operation capability to locate the entry in the operation table, and thus
determine how the operation is serviced. For an operation serviced by a proc,
the RTS creates a process and passes it the invocation block.13 For an operation
serviced by input statements, the RTS places the invocation block onto the list
of invocations for the operation; then it determines if any process is waiting for
the invocation, and, if so, awakens such a process. In either case, for a call
invocation the RTS blocks the calling process; when the operation has been
serviced, that process is awakened and retrieves any results from the invocation
block.

The implementation of co statements builds on the implementation of call
and send statements. First, the MC informs the RTS when it begins executing
a co statement. The RTS then allocates a structure in which it maintains the
number of outstanding call invocations (i.e., those that have been started but
have not yet completed) and a list of call invocations that have completed but
have not been returned to the MC. Second, the MC performs all the invocations
without blocking. For each call invocation the MC places an arm number-the
index of the concurrent command within the co statement-in the invocation
block. Third, since send invocations complete immediately, the MC executes the
postprocessing block (if any) corresponding to each send invocation. The MC
then repeatedly calls an RTS primitive to wait until call invocations complete.
For each completed call invocation, the MC executes the postprocessing block (if
any) corresponding to the invocation; specifically, it uses the arm number in the
invocation block as an index into a jump table of postprocessing blocks. When
all invocations have completed, or when one of the postprocessing blocks executes
exit, the MC informs the RTS that the co statement has terminated. The RTS
then discards any remaining completed call invocations and arranges to discard
any call invocations for this co statement that might complete in the future. The
infrequent situation in which a postprocessing block itself contains a co statement
is handled by a slight generalization of the above implementation.

4.2.2. The Input Statement. The input statement is the most complicated
statement in the language and has the most complicated implementation. In its

I3 In some cases, the RTS can avoid creating a process; see Section 4.2.3 for details.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and Implementation 73

most general form, a single input statement can service one of several operations
and can use synchronization and scheduling expressions to select the invocation
it wants. Moreover, an operation can be serviced by input statements in more
than one process, which thus compete to service invocations. However, as we
shall see, the implementation of simple, commonly occurring cases is quite
efficient.

Classes are fundamental to the implementation of input statements. They are
used to identify and control conflicts between processes that are trying to service
the same invocations. Classes have a static aspect and a dynamic aspect. A static
class of operations is an equivalence class of the transitive closure of the relation
“serviced by the same input statement.” At compile time, the compiler groups
operations into static classes on the basis of their appearance in input statements.
At run time, actual membership in the (dynamic) classes depends on which
operations in the static class are extant. For example, an operation declared local
to a process joins its dynamic class when the process is created and leaves its
dynamic class when the process completes execution. The RTS represents each
dynamic class by a class structure, which contains a list of pending invocations
of operations in the class, a flag indicating whether or not some process has
access to the class, and a list of processes that are waiting to access the class.
Each operation table entry points to its operation’s class structure.

At most one process at a time is allowed to access the list of pending invocations
of operations in a given class structure. That is, for a given class, at most one
process at a time can be selecting an invocation to service or appending a new
invocation. Processes are given access to both pending and new invocations
in a class structure in first-come, first-served order. Thus, a process waiting to
access the invocations will eventually obtain access as long as all functions in
synchronization and scheduling expressions in input statements eventually
terminate.

The RTS and nugget together provide seven primitives that the MC uses for
input statements. These primitives are tailored to support common cases of input
statements and have straightforward and efficient implementations. They are

access(class). Acquire exclusive access to CZCLSS, which is established as the
current class structure for the executing process. That process is blocked if
another process already has access to class. The RTS will release when this
process blocks access trying to get an invocation or when this process executes
remoue (see below).

get-inuocation(). Return a pointer to the invocation block the executing
process should examine next. This invocation is on the invocation list in the
current class structure of the executing process; successive calls of this primitive
return successive invocations. If there is no such invocation, the RTS releases
access to the executing process’s current class structure and blocks that process.

get-named-inu(op-cup). Get the next invocation of operation op-cup (an
operation capability) in the executing process’s current class; a pointer to the
invocation block is returned.

get-named-inv-nb(op-cup). Get an invocation of op-cup. This primitive is
identical to get-named-inu except that it does not block the executing process
if no invocation is found; instead, it returns a null pointer in that case. It is used
when the input statement contains a scheduling expression.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

74 l G. R. Andrews et al.

remoue(inuocation). Remove the invocation block pointed at by invocation from
the invocation list of the executing process’s current class. The RTS also releases
access to the executing process’s current class structure.

input-done(inuocation). Inform the RTS that the MC has finished executing
the command body in an input statement and is therefore finished with the
invocation block pointed at by inuocation. If that invocation was called, the RTS
passes the invocation block back to the invoking process and awakens that
process.

receiue(chs). Get and then remove the next invocation in class. This primitive
is a combination of access(clnss), invocation := get-inuocation(), and re-
moue(inuocation); hence, it returns a pointer to an invocation block. It is used
for simple input statements and for receive statements.

The ways in which these primitives are used by the MC is illustrated below by
four examples. More complicated input statements are implemented using ap-
propriate combinations of the primitives.

Consider the simple input statement

in q(x) + . . . ni

This statement delays the executing process until there is some invocation of q,
then services the oldest such invocation. (Note that receive statements expand
into this form of input statement.) For this statement, if q is in a class by itself,
the MC executes invocation := receiue(q’s class). If q is not in a class by itself,
the MC executes access(q’s class), invocation := get-named-inu(q), and re-
moue(inuocation). In either case, the MC then executes the command body
associated with q, with parameter x bound to the value for x in the invocation
block, and finally executes input-done(invocation).

Second, consider

in q(x) + . . . 0 r&z) + . . . ni

This statement services the first pending invocation of either q or r. Note that q
and r are in the same class because they appear in the same input statement.
Here, the MC first uses access(q’s class) and then invocation := get-inuocation()
to look at each pending invocation in the class to determine whether it is an
invocation of q or r (there might be other operations in the class). If the MC
finds an invocation of q or r, it calls remoue(inuocation), then executes the
corresponding command body with the parameter values from the selected
invocation block, and finally executes input-done(inuocattin). If the MC finds
no pending invocation of q or r, the executing process blocks in get-invocation
until an invocation in the class arrives. When such an invocation arrives, the
RTS awakens the process, which then repeats the above steps.

As the third example, consider an input statement with a synchronization
expression:

in q(x) and x > 3 + . . . ni

This statement services the first pending invocation of q for which parameter x
is greater than three. The MC first uses access(q’s class) to obtain exclu-
sive access to q’s class. The MC then uses invocation := get-inuocotion() or
invocation *- .-get-named-inu(q) to obtain invocations of q one at a time. The
first primitive is used if q is in a class by itself; otherwise, the second is used. For

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and Implementation l 75

each such invocation, the MC evaluates the synchronization expression using
the value of the parameter in the invocation block. If the synchronization
expression is true, the MC notifies the RTS of its success by calling re-
moue(inuocation), executes the command body associated with q, and calls input-
done(inuocation). If the synchronization expression is false, the MC repeats the
above steps to obtain the next invocation.

Finally, consider an input statement with a scheduling expression:

in q(x) byx + . . . ni

This statement services the (oldest) pending invocation of q that has the smallest
value of parameter x. In this case, the MC uses the same steps as in the previous
example to obtain the first invocation of q. It then evaluates the scheduling
expression using the value of the parameter in the invocation block; this value
and a pointer, psaue, to the invocation block are saved. The MC then obtains the
remaining invocations by repeatedly calling invocation := get-named-inu-nb(q).
For each of these invocations, the MC evaluates the scheduling expression and
compares it with the saved value, updating the saved value and pointer if the
new value is smaller. When there are no more invocations (i.e., when get-named-
inu-nb returns a null pointer), psaue points to the invocation with the smallest
scheduling expression. The MC acquires that invocation by calling re-
moue(psaue), then executes the command body associated with q, and finally
calls input-done(psaue).

Note that synchronization and scheduling expressions are evaluated by the
MC, not the RTS. We do this for two reasons. First, these expressions can
reference objects such as local variables for which the RTS would need to establish
addressing if it were to execute the code that evaluates the expression. Second,
these expressions can contain invocations; it would greatly complicate the RTS
to handle such invocations in a way that does not cause the RTS to block itself.
A consequence of this approach to evaluating synchronization and scheduling
expressions is that the overhead of evaluating such expressions is paid for only
by processes that use them.

42.3 Optimizations. Two kinds of optimizations are applied to certain uses of
operations. First, for a call invocation of a proc that is in the same resource as
the caller and that does not contain a reply statement, the compiler generates
conventional procedure-call code instead of going through the RTS, which would
create a process.14 The compiler generates code that builds an invocation block
on the calling process’s stack and passes the block’s address to the called proc.
Thus the code in the proc is independent of whether it is executed by the calling
process or as a separate process. A similar optimization is performed for a call
invocation of a proc that is located on the same VM as the caller and that does
not contain a reply statement. In this case, however, the RTS must be entered
since the compiler cannot determine whether an operation in another resource
is located on the same VM as its caller (recall that program linking follows and
is independent of compilation).15 Also, the invoking process must create an

I’ A proc that executes reply executes concurrently with its caller after replying; hence, the proc
must execute as a process in this case.
I6 In fact, the compiler might not even know whether an operation is implemented as a proc because
it might not yet have compiled the body of the resource containing the invoked operation.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

76 9 G. R. Andrews et al.

invocation block since it is possible that the invoking process might be in a
resource that is destroyed before the invoked proc completes.

The second optimization is that certain operations are implemented directly
by the nugget’s semaphores rather than by the general mechanisms described
above. The main criteria that an operation must satisfy to be classified as a
semaphore operation are that the operation: (1) is invoked only using send, (2)
has no parameters or return value, (3) is serviced by input (or receive) statements
in which it is the only operation and in which there are no synchronization or
scheduling expressions, and (4) is declared at the resource level. Note that these
criteria are relatively simple to check. Furthermore, they capture typical uses of
operations that provide intraresource synchronization such as controlling access
to shared variables.

4.2.4 Failure Handling Mechuni.sms. The address of a process’s proc handler
is recorded by the RTS when the process is created. If the proc does not contain
an explicit handler, the RTS instead records the address of a special abort
handler. The address of a process’s current invocation handler is maintained by
the MC in a location known to the RTS. If an invocation statement does not
contain an explicit handler, the MC instead sets the invocation handler to what
is recorded as the process’s proc handler. Thus, from the RTS’s view, there is
always one handler associated with each process’s proc and invocation failures.
When the RTS detects an exception or is informed by the MC that an exception
has been raised (i.e., an abort statement was executed), it transfers control to
the appropriate handler’s code. The special abort handler will cause the RTS to
abort the current process and to pass the failure up the call chain if the proc
was called; the above actions are then applied recursively. Aborting a process
also causes a failure to be passed to the callers of any invocations currently being
serviced by in statements or of any invocations pending for operations declared
within the proc.

When a when statement is executed, the MC creates an invocation block for
the specified operation and arguments. It then passes to the RTS the block’s
address and the identity of the object to monitor, that is, the argument to failed.
The RTS records this information and initiates the monitoring of the object.
Monitoring of physical and virtual machines is accomplished by means of
“heartbeat” messages that each machine periodically broadcasts to the others.
When a process or resource instance is to be monitored, the local RTS sends a
message to the remote VM informing that VM’s RTS to monitor the object; the
remote RTS will send a “failed” message to the local RTS should the object fail
or terminate. (The local and remote RTS could of course be the same.) The local
RTS also periodically checks the states of the virtual and physical machines on
which the process or resource instance resides to ensure they have not failed or
terminated. Should the RTS detect that any object it is monitoring has failed, it
performs its usual actions to invoke the user-specified operation.

4.3 Status, Plans, and Statistics

An initial implementation of a large subset of SR became operational under
4.3BSD Vax UNIX in November 1985. Since then, the language has been further
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 198%

Overview of SR and Implementation 77

refined and the implementation has been modified, extended, and ported to Sun
workstations and an Encore Multimax. Currently the full language has been
implemented except for failure handlers and a few minor features. The current
implementation also includes facilities to invoke C functions as operations,
thereby gaining access to underlying UNIX system calls. The UNIX versions of
the implementation will be completed in early 1988, at which time they will be
made available to interested groups. Work is under way on a version of the
implementation that will allow SR programs to run stand-alone.

Our implementation was first used in graduate classes in concurrent program-
ming in which students wrote moderate-sized (500-5000 lines) distributed pro-
grams including card games, automatic teller machines, simple airline reservation
systems, and prototypes of a command interpreter and a file system for a
distributed operating system. Subsequently, SR has been used to program exper-
iments relating program structure and process interaction patterns [7], a highly
parallel interpreter for Prolog, and Saguaro’s file system [32].

Almost all of the SR compiler, linker, and RTS is written in machine-
independent C. The only exception is that the RTS nugget contains some
assembly language code for process management (e.g., stack setup and context
switches). A few awk and sed tools are used to simplify maintenance of the
compiler, and Zex is used to generate the lexical analyzers for the compiler and
linker. The compiler consists of approximately 17,000 lines of C source code. The
linker is about 1100 lines of C. The RTS and nugget together contain about 4200
lines of C, including code for the I/O and network interfaces to UNIX; in
addition, the nugget contains about 100 lines of assembly code.

The SR compiler processes 3200 lines per CPU minute on a Vax 8650. To give
some comparison, the C compiler processes about 22,000 lines per CPU minute.
Thus the SR compiler is about seven times as slow. This is not surprising since
SR is a higher level language than C and the SR compiler generates C code that
has to be processed by the C preprocessor, C compiler, and Vax assembler. When
machine-code generation is turned off, the SR compiler processes 17,600 lines
per CPU minute. Stated differently, 18 percent of compilation time is spent in
the SR compiler itself; 82 percent is spent processing the generated C code.

At run time, the Vax RTS (including the nugget) requires about 24K for text
and 5K for static data. Entries for resource instances, operations, and processes
are dynamically allocated. Included in each load module are an additional 15K
of text and 6K of data for the UNIX I/O and network library routines.

The time to process an invocation depends on whether it is generated by a call
or a send and whether it is serviced by a proc or an in. We obtained timing data
for six simple SR programs: one for each of the four combinations of invocation
and service, one that optimizes calling a proc, and one that uses semaphores.
(All operations in the test programs are parameterless.) For comparison purposes,
we also obtained timing data for a simple C program. Each test program generates
and services 100,000 invocations. The times, in microseconds, to process single
invocations are listed in Table II. These times were obtained using the time
command on a Vax 8600. They are averages of ten executions of each test
program and include loop overhead, and so actual invocation processing time is
somewhat less than shown.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

78 l G. R. Andrews et al.

Table II

Program

c
A
AI
A2
B
Bl
B2

Description

C equivalent of A
call to proc; procedure call
call to proc; new process
send to proc; new process
call to receive; 2 processes
send to receive; 1 process
send to receive; semaphore

~seclinv Relative to C

5 1
8 2

511 102
470 94
390 78
160 32

13 3

The “Relative to C” column shows the ratio of the time per invocation for the
given program to that for the C program C; for example, A is about two times
slower than C.

Each SR test program consists of a single resource. However, except for A, the
above times would be the same if the invoker and server were in different
resources provided they were in the same VM. A synopsis of the different test
programs follows.

C: C test program that simply invokes an empty procedure 100,000 times.
A: A is the SR equivalent of C: it calls an empty proc in the same resource,

which the compiler optimizes as described in Section 4.2.3. The overhead
relative to C results from the need to support the general case in which the
proc might also be invoked from outside the resource.

Al: Al generates call invocations of an operation serviced by a proc that
executes a reply. Thus a new process is created to service each invocation
and a context switch is required.

A2: A2 generates send invocations to an operation serviced by a proc. It is like
Al, but there is no context switch overhead.

B: B contains two processes. One generates call invocations; the other con-
sumes them using receive. The processes must alternate execution for each
invocation. Context switching is the dominant cost in this program.

231: Bl contains a single process that send messages to itself. This shows the
cost of using send and simple in statements with no context switches.

B2: B2 is like Bl except the operation is implemented as a semaphore.

The overhead in the four most costly SR tests results from the allocation of
invocation blocks, procedure calls to enter the RTS and within the RTS,
maintenance of RTS structures, and in some cases process creation and context
switches. The major cost for the semaphore test program is the procedure calls
required to get to the nugget’s P and V primitives.

The above measurements give some idea of the absolute and relative costs of
different combinations of invocation and service. (A more thorough discussion
of SR’s performance appears in [8].) The comparisons of the SR programs with
the C program are somewhat unfair, however, because SR is quite a different
language. For example, SR has mechanisms, such as send and in, that have no
counterparts in C; SR also has dynamic resources and processes, which require
a more complicated RTS. On the other hand, it is desirable that SR programs
such as A that use only C-like mechanisms should not be too much slower than

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988..

Overview of SR and Implementation 79

their C counterparts, and this is the case. Work is currently under way to improve
both the MC and the RTS to further speed up the implementation.

5. DISCUSSION

SR lies in between recent languages in which a distributed program appears to
execute on one virtual machine (e.g., Ada, Linda [23], and NIL [31, 361) and
more conventional languages in which a distributed system is built from distinct
programs, one per machine. In SR, the invoker of an operation need not be
concerned with where that operation is serviced, but mechanisms are provided
to enable the programmer to exert some control over a program’s execution
environment. For example, the programmer can control where a resource is
created and can determine whether a resource or machine has failed. In this
respect, SR is similar to the V kernel [15]. However, SR and the V kernel take
quite different approaches to constructing distributed programs. SR is a strongly
typed language with an integrated set of mechanisms for sequential and distrib-
uted programming; the V kernel is a typeless collection of message-passing
primitives that are invoked from a sequential language such as C. The V kernel
has been designed with efficiency being the most important criteria; SR has been
designed to balance expressiveness, ease of use, and efficiency.

The most important aspects of SR are discussed and related to other ap-
proaches to distributed programming in the remainder of this section.

5.1 Integration of Language Constructs

There is a large similarity between the sequential and concurrent mechanisms in
SR. For example, the if, do, and in statements have similar appearances and the
same underlying nondeterministic semantics. The fa, co, and in statements all
use quantifiers to specify repetition. Finally, the exit and next statements are
interpreted uniformly within iterative statements (do and fa) and the co state-
ment.

CSP [25] has a similar integration of mechanisms. By way of contrast, Ada [l]
provides distinct mechanisms for sequential and concurrent programming. In
Ada, tasks are used for concurrent modules, but packages are used for sequential
modules; also, select is used for selecting alternative entries, but if-then-else
is used for selecting alternative conditions. As a specific example, consider how
one would program a Queue package and BoundedBuffer task in Ada, and compare
them to our Queue and BoundedBuffer resources. In Ada, the differences are
marked. In SR, the differences are minimal and in fact the interfaces to the two
resources are identical. A similar difference between the sequential and concur-
rent components of a language results whenever an existing sequential language
is extended with concurrency constructs (e.g., Concurrent C [22]).

The SR mechanisms for communication and synchronization are also well
integrated. Operations support all of local and remote procedure call, rendezvous,
dynamic process creation, asynchronous message passing, multicast, and sema-
phores. In addition, there is just one way-capabilities-in which an operation
is named in an invocation. Moreover, capabilities are used for virtual machines,
entire resources, and individual operations-another example of similar mecha-
nisms for similar concepts-and are first-class objects in the language. Such

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

80 l G. R. Andrews et al.

integration and flexibility is not achieved in languages like Ada and EPL [ll],
where many mechanisms, each having special rules and restrictions, are used to
achieve the same effects that are realizable with just a few SR mechanisms.

The integration of the various language mechanisms plus the almost total lack
of restrictions make SR easy to learn and use. Students who have used SR for
term projects were able to learn the language and design and code their projects
in about two weeks. Although these projects were of modest size, they supported
multiuser interactions and used most of the language features that would be used
in “real” concurrent programs. These features-resource creation/destruction,
operations, capabilities, and invocations-caused the students few conceptual
difficulties.

5.2 Resources

The structure of the resource construct is similar to that of modular constructs
in procedure-based languages, such as Euclid [26] and Modula-2, and other
distributed programming languages, such as Distributed Processes [131, StarMod
[19], Argus [27], and EPL. Like Modula-2 and Ada, SR allows the specification
of a resource to be compiled separately from its body. This permits the interface
to a resource to be separated from its implementation. It also permits construction
of programs, such as the file system in Section 3.2, in which resources invoke
each other’s operations.

SR goes beyond the above languages in two ways. First, a resource body can
be parameterized. This permits instances to have different internal characteris-
tics and external communication connections. In this respect, SR is more like
LYNX [35]. Second, SR includes an inheritance mechanism, the extend phrase,
that permits an interface to be split into multiple parts and supports multiple
implementations of the same abstract interface. In this respect, SR is more like
Mesa [29] and Emerald [12]. As with other aspects of the language, we have tried
to provide integrated mechanisms that support functionality that has been found
to be useful.

Resources provide the only data-abstraction mechanism in SR. They are used
to program sequential “abstract data types” such as Queue as well as concurrent
data types such as BoundedBuffer. Having just one abstraction mechanism makes
the language smaller and hence easier to learn than if two separate mechanisms
were provided, one for sequential types and one for concurrent types. There is a
disadvantage, though: The implementation of sequential types is not as efficient
as it might be since a resource that implements a type might be located on a
different machine than its clients. We are able to perform some optimizations
when a resource and its clients are located on the same (virtual) machine, but
not as many as would be possible if “sequential” resources were distinguished as
such in the language and were forced to be located on the same machine as their
clients. A second potential shortcoming of resources is that they are not poly-
morphic: They may not have types as parameters. We have not, however, found
many situations in which a generic resource facility would justify its large
implementation cost.

We do not allow resources to be nested, primarily because nesting is not
needed. If one resource needs the services provided by another, it can either
create an instance of the needed resource or be passed a capability for it.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and implementation l 81

Precluding nesting also simplifies the implementation. One disadvantage, though,
is that different resources cannot share variables, although pointers can be passed
between resources on the same virtual machine. We also do not allow processes
to be nested for essentially the same reasons. In contrast, Ada allows arbitrary
nesting of tasks, packages, and subprograms. This makes the implementation of
Ada much more complicated and costly and makes many programs more difficult
to understand [18].

A resource can contain initialization and finalization code. Initialization code
gives the programmer a way to control the order in which initialization is done;
for example, the programmer can ensure that resource variables are initialized
before processes are created. Initialization code is executed as a process so that
it can use any of the language mechanisms (another instance of our aversion to
imposing restrictions). For example, initialization code can service operations,
create other resources, or do whatever else might be required.

Finalization code provides a means by which a resource can “clean up” before
it disappears. For example, if a resource has obtained a lock for a file, it can
record that it owns the lock; its finalization code can then release that lock if the
resource is ever destroyed. Finalization code is executed as a process, again so it
can use any of the language mechanisms. Our approach is similar to that in NIL.
A different approach is used in Ada. When an Ada task is aborted, it does not
get control-it is just destroyed. l6 Thus, in the above example, there is no way
the task itself can release the lock; such a release can only be done by another
task that is monitoring the task that was aborted.

SR supports multiple active processes within each resource instance; a separate,
potentially concurrent thread of control is associated with each proc invocation.
This is similar to the approaches taken in Ada, EPL, Linda, and NIL. A different
approach is taken in DP and LYNX, where threads execute as coroutines. We
prefer our approach since an SR process corresponds to the usual conceptual
notion of a process. Also, this approach admits a multiprocessor-based imple-
mentation in which processes in the same resource might truly execute concur-
rently. Finally, this approach accommodates immediate processing of operations
that service interrupts. A drawback of having concurrent threads is that processes
must synchronize access to shared variables to avoid race conditions. However,
how to do so is now well understood, and SR’s operations can be used to simulate
semaphores in an efficient way.

5.3 Operations

Operations in SR can be invoked either synchronously (call) or asynchronously
(send). Many other languages (e.g., Ada and CSP) provide only synchronous
message passing. While this is very useful, especially for programming client/
server interactions, asynchronous message passing is also useful. First, it can be
used to avoid remote delay in which a server, in processing a request, invokes an
operation in another server that might delay [28]. In particular, send can be
used to invoke the remote operation whenever it is necessary for the first server
to honor other requests in order to remove the conditions that led to remote

“Task destruction may not be immediate; for example, a task is allowed to complete servicing a
rendezvous before the task is destroyed.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

82 l G. R. Andrews et al.

delay. This was shown in the server process in the Servant resource in
Section 3.1. In a language that provides only synchronous message passing, extra
processes must be employed to avoid remote delay; this often complicates problem
solutions. Asynchronous message passing is also useful whenever it is not nec-
essary to delay the invoker of an operation. For example, it can be used to
program pipelines of filter processes, where it is most natural for the producer to
continue after sending a message to the consumer.

The co statement provides additional flexibility in invoking operations. It
allows the invoker to call several operations at the same time and to continue
when an appropriate combination of replies has been received. In addition, the
postprocessing block associated with each concurrent invocation allows the
programmer to handle the reply from each invocation in a manner appropriate
to that invocation. co can be simulated using send and in. However, such a
simulation results in a much more complex program. It also requires changing
the interface between the invoking and servicing processes since parameters and
results have to be sent as separate messages. In addition to being useful, co is
relatively simple to implement since its implementation can use the basic invoke
and reply primitives in the RTS. Thus co illustrates how opening up the
implementation provides additional, useful flexibility. Note that the co statement
is similar to Argus’s coenter statement and to the V kernel’s multicast mecha-
nisms [16].

All operations are invoked using capabi1ities.l’ In addition to capabilities for
entire resources, capabilities for individual operations are provided. This makes
some programming jobs easier since it overcomes the limitations of Eden’s
capabilities, which can only be bound to entire modules [lo]. For example, a
command server in Saguaro is passed a record of operation capabilities. One field
of the record is for standard input and another is for standard output. These
fields can be bound to operations in different resources; for example, the capa-
bility for standard input might be bound to a read operation in a file server, while
the capability for standard output might be bound to a write operation in the
terminal driver.

Operations can be declared within a process (a local operation) or at the
resource level (a resource operation). Local operations support the programming
of conversations, as shown in Section 3.2. Resource operations provide the most
commonly used form. Of importance is that resource operations, like resource
variables, may be shared, that is, they can be serviced by in statements in more
than one process. Shared resource operations are almost a necessity, given that
multiple instances of a proc can service the same resource operation. They are
also useful since they can be used to implement conventional semaphores, “data-
containing” semaphores, and server work queues. A data-containing semaphore
is a semaphore that contains data as well as a synchronization signal. As an
example, we use such semaphores to implement buffer pools in Saguaro. A buffer
is produced by sending its address to a shared operation; a buffer is consumed by
receiving its address from the shared operation. A shared operation can also be
used to permit multiple servers to service the same work queue. Clients request

I’ An operation can also be invoked using just its name if that name is declared in the current scope.
Such a name is treated as a capability constant for the named operation.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and Implementation 83

service by invoking a shared operation. Server processes (in the same resource)
wait for invocations of the shared operation; which server actually receives and
services a particular invocation is transparent to the clients. In addition to being
useful, shared resource operations can be implemented almost as efficiently as
nonshared operations; the only additional requirement is grouping operations
into classes, each of which has a lock (as discussed in Section 4.2.2).

5.4 Issues Related to Program Distribution

Many distributed programs have a hierarchical structure in which resources
provide operations that are invoked only by higher level resources. This is not
always the case, however. In some programs, such as the file system example in
Section 3.2, two resources interact as equals, with each resource both providing
operations used by the other and using operations provided by the other. An
additional interaction pattern that has been found to be useful is the upcall [17]
in which data flows from a server back to a client. All these interaction patterns
are supported in SR since a resource may contain more than one process that is
servicing invocations and capabilities can be used to pass operations between
resources. (A set of experiments using SR to program different upcall program
structures is reported in [7].) Ada supports such interaction patterns, although
each of its servers is limited to be a single task.

In distributed programs it is important to be able to specify the machine on
which the different parts of a program are to execute; for programming a
distributed operating system, it is essential. For example, this allows device
drivers to be placed on the appropriate machine and provides a basic tool for
load sharing. This is one of the lessons learned from Eden [lo]. The Eden
implementors found it valuable to be able to specify the machine on which an
object executes, even though their overall philosophy is to provide an environment
in which objects are location independent. SR supports programmer control over
placement since the location for a resource can be specified when the resource is
created, Argus provides similar support. By contrast, Ada provides no support
for placement of tasks.

Related to controlling where a resource is placed is recognizing that there is
an inherent difference in efficiency between invoking an operation that is local
and one that is remote. Our implementation optimizes calls within a virtual
machine as much as possible. Also, the language allows resources that are placed
in the same virtual machine to use pointers and reference parameters. This
necessitates run-time enforcement and can lead to exceptions, but makes many
programs much more efficient than they would be if we insisted that all param-
eters be copied and prohibited the use of pointers outside a resource.

A distributed programming language must also provide support for detecting
and handling machine or network crashes and for dealing with local exceptions,
which are inevitable even in the most carefully designed program. SR provides
two failure handling mechanisms: handlers and when statements.” Handlers
are used by clients on the invoking side of operations; when statements are used
by servers of operations. The differences between these two mechanisms reflects

I8 The design of the when statement is based on ideas in [34].

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

a4 - G. R. Andrews et al.

that, in general, a client communicates with one server at a time but a server has
many potential clients. In contrast, LYNX provides a single exception handling
mechanism that uniformly handles failures of either the receiving or sending side
of a link; this is possible because only one thread of control can be bound to each
end of a link. SR’s failure handling mechanisms are higher level than a simple
timeout mechanism, such as that used to detect invoker failure in Ada select/
accept statements, and lower level than mechanisms like atomic actions [27],
fault-tolerant actions [33], and replicated procedure call [20]. We feel that our
approach is appropriate for the intended application domain of SR. Timeout
intervals are used to implement failure detection, but the programmer need not
be concerned with such low-level details. We expect that the SR mechanisms
will be more efficient than higher level failure-handling mechanisms, and hence
they are more appropriate for a systems programming language. In fact, the SR
mechanisms can be used to implement high-level mechanisms such as atomic
actions.

The final requirements for a language that is used to write distributed operating
systems are the abilities to execute user programs and to accommodate a changing
hardware configuration. The only language we know of that comes close to
meeting these requirements at present is LYNX, in which it is possible for a
process to be compiled after and then connect to an already executing program.
Although resources and communication links can be created and destroyed
dynamically in SR, the machine configuration and collection of resources that
comprise a program are static input to the SR linker. To overcome this limitation,
we are currently working on the design of two mechanisms. The first is an
“execute” facility to load and start execution of an external program, which
would interact with the host SR program by being linked to a set of SR library
routines. The second mechanism is a generalization of operations that would
support group communication somewhat analogous to that provided by V [16].

ACKNOWLEDGMENTS

Nick Buchholz, Roger Hayes, Steve Manweiler, and Rick Schlichting provided
valuable feedback on Sl& and served as a sounding board for new proposals.
Hayes, Manweiler, and Stella Atkins wrote large applications that pushed the
implementation to its limits. Atkins also helped obtain performance measure-
ments and provided detailed comments on earlier versions of this paper. The
students in CSc 552 and CSc 652 forced us to get the compiler finished and made
extensive use of the language. Finally, the referees provided useful advice on the
content and presentation of this paper; Michael Scott’s comments were especially
perceptive and helpful.

REFERENCES

1. ADA. Reference manual for the Ada programming language. ANSI/MIL-STD-1815A, American
National Standards Institute, New York, Jan. 1983.

2. ANDREWS, G. R. Synchronizing resources. ACM Trans. Program. Lang. Syst., 3,4 (Oct. 1981),
405-430.

3. ANDREWS, G. R. The distributed programming language SR-Mechanisms, design and imple
mentation. Softw. Pratt. Exper. 12, 8 (Aug. 1982), 719-754.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Overview of SR and Implementation l 85

4. ANDREWS, G. R., AND OLSSON, R. A. The evolution of the SR language. D&rib. Comput. 1, 3
(July 1986), 133-149.

5. ANDREWS, G. R., AND OLSSON, R. A. Revised report on the SR programming language. TR 87-
27, Dept. of Computer Science, Univ. of Arizona, Tucson, Ariz., Nov. 1987.

6. ANDREWS, G. R., SCHLICHTING, R. D., HAYES, R., AND PURDIN, T. The design of the Saguaro
distributed operating system. IEEE Trans Softw. Eng. SE-13, 1 (Jan. 1987), 104-118.

7. ATKINS, S. Experiments in SR with different upcall program structures. Tech. Rep. Dept. of
Computer Science, Simon Fraser Univ., Burnaby, B.C., Canada, Apr. 1987.

8. ATKINS, S., AND OLSSON, R. A. Performance of multitasking and synchronisation mechanisms.
CSE-87-10, Div. of Computer Science, Univ. of California at Davis, July 1987.

9. BERNSTEIN, A. J. Predicate transfer and timeout in message passing systems. Znf Process. Z&t.
24, 1 (Jan. 1987), 43-52.

10. BLACK, A. P. Supporting distributed applications: Experience with Eden. In Proceedings of the
10th Symposium on Operating Systems Principles (Orcas Island, Wash., Dec. l-4, 1985). ACM,
New York, pp. 181-193.

11. BLACK, A. P., HUTCHINSON, N., MCCORD, B. C., AND RAJ, R. K. EPL programmer’s guide.
Eden Project, Dept. of Computer Science, Univ. of Washington, Seattle, Wash., June 1984.

12. BLACK, A., HUTCHINSON, N., JUL, E., LEVY, H., AND CARTER, L. Distribution and abstract
types in Emerald. IEEE Trans. Softw. Eng. SE-13, 1 (Jan. 1987), 65-76.

13. BRINCH HANSEN, P. Distributed processes: A concurrent programming construct. Commun.
ACM 21,ll (Nov. 1978), 934-941.

14. CHANDY, K. M., AND MISRA, J. The drinking philosophers problem. ACM Trans. Program.
Lang. Syst. 6,4 (Oct. 1984), 632-646.

15. CHERITON, D. R. The V kernel: A software base for distributed systems. IEEE Software 1, 2
(Apr. 1984), 19-42.

16. CHERITON, D. R., AND ZWAENEPOEL, W. Distributed process groups in the V kernel. ACM
Trcms. Comput. Syst. 3,2 (May 1985), 77-107.

17. CLARK, D. D. The structuring of systems using upcalls. In Proceedings of the 10th Symposium
on Operating Systems Principles (Orcas Island, Wash., Dec. l-4, 1985). ACM, New York,
pp. 171-180.

18. CLARKE, L. A., WILEDEN, J. C., AND WOLF, A. L. Nesting in Ada programs is for the birds. In
Proceedings of the ACM SZGPLAN Symposium on Ada Progamming Languages (Boston, Mass.,
Dec. 9-11,198O). ACM, New York, pp. 139-145.

19. COOK R. *Mod-A language for distributed programming. IEEE Trans. Softw. Eng. SE-6, 6
(Nov. 1980), 563-571.

20. COOPER, E. C. Replication procedure call. In Proceedings of the 3rd Annual ACM Symposium
on Principles of Distributed Computing (Vancouver, B.C., Canada, Aug. 27-29,1984). ACM, New
York, pp. 220-232.

21. DIJKSTRA, E. W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.
22. GEHANI, N. H., AND ROOME, W. D. Concurrent C. Softw. Pratt. Exp. 16, 9 (Sept. 1986),

821-844.
23. GELERNTER, D. Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7, 1

(Jan 1985), 80-112.
24. HOARE, C. A. R. The emperor’s old clothes. Commun. ACM 24,2 (Feb. 1981), 75-83.
25. HOARE, C. A. R. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, N.J.,

1985.
26. LAMPSON, B. W., HORNING, J. J., LONDON, R. L., MITCHELL, J. G., AND POPEK, G. J. Report

on the programming language Euclid. SZGPLAN Not. 12,2 (Feb. 1977), l-79.
27. LISKOV, B., AND SCHEIFLER, R. Guardians and actions: Linguistic support for robust, distrib-

uted programs. ACM Trans. Program. Lang. Syst. 5,3 (July 1983), 381-404.
28. LISKOV, B., HERLIHY, M., AND GILBERT, L. Limitations of remote procedure call and static

process structure for distributed computing. In Proceedings of the 13th ACM Symposium on
Principles of Programming Languages (St. Petersburg Beach, Fla. Jan. 13-15,1986), pp. 150-159.

29. MITCHELL, J. G., MAYBURY, W., AND SWEET, R. Mesa language manual, version 5.0. Rep. CSL-
79-3, Xerox Palo Alto Research Center, Palo Alto, Calif, Apr. 1979.

30. OLSSON, R. A. Issues in distributed programming languages: The evolution of SR. TR 86-21
(Ph.D. dissertation), Dept. of Computer Science, Univ. of Arizona, Tucson, Ariz., Aug. 1986.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

86 - G. FL Andrews et al.

31. PARR, F. N., AND STROM, R. E. NIL: A high-level language for distributed systems programming.
IBM Syst. J. 22, l/2 (1983), 111-:127.

32. PURDIN, T. Enhancing file availability in distributed systems (the Saguaro tile system). TR 87-
26 (Ph.D. dissertation), Dept. of Computer Science, Univ. of Arizona, Tucson, Ariz., Oct. 1987.

33. SCHLICHTING, R. D., AND SCHNISIDER, F. B. Fail-stop processors: An approach to designing
fault-tolerant computing systems. ACM Trans. Comput. Syst. I,3 (Aug. 1983), 222-238.

34. SCHLICHTING, R. D., CRISTIAN, F., AND PURDIN, T. Mechanisms for failure handling in
distributed programming languages. TR 87-13, Dept. of Computer Science, Univ. of Arizona,
Tucson, Ariz., June 1987.

35. SCOW, M. L. Language support for loosely coupled distributed programs. IEEE Trans. Softw.
Eng. SE-13,l (Jan. 1987), 88-103.

36. STROM, R. E., AND YEMINI, S. NIL: An integrated language and system for distributed
programming. Res. Rep. RC 9949, IBM Research Division, Yorktown Heights, N.Y., Apr. 1983.

37. TANENBAUM, A. S., VAN STAVEREN, H., KEIZER, E. G., AND STEVENSON, J. W. A practical tool
kit for making portable compilers. Commun. ACM 26,9 (Sept. 1983), 654-660.

38. WIRTH, N. Modula: A language for modular multiprogramming. Softw. Pratt. Enper. 7, (1977),
3-35.

39. WIRTH, N. Programming in Mod&u-2. Springer Publ., New York, 1982.

Received June 1986; revised July 1987; final revision accepted September 1987

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

