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Abstract

Jcon is a new, full-featured, Java-based implementation of the Icon programming language. The
compiler, written in Icon, generates an intermediate representation that is optimized and then used to
produce classfiles of Java bytecode. A four-chunk control-flow model handles goal-directed evaluation
and produces constructs not expressible as Java code. The runtime system, written in Java, finds
object-oriented programming a great advantage in implementing a dynamically typed language, with
method calls replacing many conditional tests. An all-encompassing descriptor class supports values,
references, and suspended operations. The procedure call interface is simple and incurs overhead for
generator support only when actually needed. Performance is somewhat disappointing, and some
limitations are annoying, but in general Java provides a good implementation platform.
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Introduction

Since its conception in the mid-1970’s, the Icon programming language has received a great deal of interest
due to its rich set of built-in data types, its clean string-handling facilities, and its powerful combination of
generators and goal-directed evaluation [1, 2]. Icon is available for virtually every significant computer
architecture and operating system [3]. Until now, every available implementation was based on the same
source code written in the C programming language [4].

Using Java, we have reimplemented Icon to produce a new implementation called “Jcon”. An
object-oriented design yields a runtime system that is much shorter, simpler, and easier to understand.
Although this particular system is specifically tailored to Icon, the techniques are equally well-suited to
implementing any dynamically typed language.

The Icon Programming Language

Icon programs have an Algol-like appearance, but this similarity is misleading. The traditional “hello world”
program looks quite ordinary:

procedure main()
write(" hello world")
end



Icon Type Description

null unique value signifying uninitialized data

integer unbounded-precision integer value

real floating-point value

string sequence of zero or more text characters

cset set of 8-bit-encoded text characters

file handle for sequential and random file operations
record programmer-defined structure containing named fields
list ordered collection of zero or more values

set unordered collection of unique values

table associative array of value mappings

procedure procedure, built-in function, or operator

co-expression independent thread of computation

Table 1: Icon’s Types

Icon, however, has many non-Algol-like features that challenge implementors, including dynamic typing,
generators, and string scanning. The following Icon program makes use of a user-defined generator to write
3 andthree on separate lines.

procedure main()
every x ;= gen() do
write(x)
end

procedure gen()
suspend 3
suspend "three"
end

Procedurgen() generates two values by virtue eiispendindpetween values. Note that the variakle
contains both integer and string values at different times, as allowed by Icon’s dynamic typing. Similarly,
the built-in procedurevrite() can handle arguments of many different types. Proceahaia() can be

written more concisely as

procedure main()
every write(gen())
end

This concise version ahain() shows how generators can produce a sequence of values directly into an
enclosing expression.
Icon’s syntactic structures will be introduced as needed.

Dynamic typing

Icon is a dynamically-typed language. Icon storage elements, such as variables, arguments, and list
elements, are untyped—they may hold values of any type at execution time. Table 1 summarizes Icon’s
built-in types.

Whenever possible, Icon performs the necessary conversions to apply operators to operands of
unexpected types. For instance, the addition operator converts both operands to numeric values, if necessary,
at execution time. Thus, the Icon express#sfi4” produces the integer value 7.

Similarly, lcon disambiguates overloaded operations at execution time based on operand types. The
expressionx[y] means thgith element ok if x is a list, but it means the value associated with kéy table
x if x is a table.



Generators

Generators (iterators) and goal-directed expression evaluation are powerful control-flow mechanisms for
succinctly expressing operations that process a sequence of values. The Prolog programming language
derives much of its power from goal-directed evaluation (backtracking) in combination with unification [5].
The Icon programming language is an expression-oriented language that combines generators and
goal-directed evaluation into a powerful control-flow mechanism [1].

An Icon expressiosucceedbdy producing a value. eneratorcan produce multiple values. An
expression that cannot produce any more vafaiés The expression

1to5

generates the values 1, 2, 3, 4, 5, and then fails.
Combining expressions with operators or function calls creates a compound expression that combines all
subexpression values and generates all possible result values prior to failing. The expression

(1to3)*(1to 2)

generates the values 1, 2, 2, 4, 3, 6, and then fails. Subexpressions evaluate from left to right: The previous
sequence represeritsl, 1x 2, 2 %1, 2% 2, 3x1, 3% 2. Note that the right-hand expression is re-evaluated
for each value generated by the left-hand expression.

Generators may have generators as subexpressions. The expression

(1to2)to (2to 3)

generates 1, 2, 1, 2, 3, 2, 2, 3, and then fails. Those values are produced because the outetdmiddle)
generator is actually initiated four times:to 2, 1 to 3, 2 to 2, and2 to 3.

After a generator produces a valueslispendsxecution until another value is needed. When another
value is needed, the generatesumegxecution.

Goal-directed evaluation

Icon’s expression evaluation mechanism is goal-directed. Goal-directed evaluation forces expressions to
re-evaluate subexpressions as necessary to produce as many values as possible. The numeric less-than
operator<, provides an illustration. This operator returns the value of its right operand if it is greater than

the value of the left; otherwise, it fails, producing no value. Goal-directed evaluation fartese-evaluate

its operand expressions as necessary to produce values on which it succeeds. The expression

2<(1to4)
generates the values 3, 4, and then fails. Similarly,
3<((1to3) % (1to 2))

generates 4, 6, and then fails.
Generators and goal-directed evaluation combine to create succinct programs with implicit control flow.

Keywords

Icon has special entities, callédywordsthat represent values and/or variables that are specific to Icon
programs. Keywords are distinguished syntactically by a pref& dafeywords differ in behavior, and some
require special consideration from both the compiler and the runtime system.

Many keywords represent pre-defined constatatsill represents the unique Icon null val@ai
represents the value of and&digits represents the set of numeric characters.

Other keywords represent values determined by the state of an lcon program’s ex&irtien.
measures the running time of a program &utbck gives a string representing the current time of day.



Some keywords act as variabl&andom is the random-number generator seed value, and it can be
assigned an integer value at execution time. Assignment to some keywords can have side-effects to other
keywords. Assigning a value tsubject also setpos to 1; these keywords are used in string scanning.

Other variable keywords affect the Icon virtual machine’s subsequent execution. Assigning a non-zero
value to&error causes subsequent computations that would normally result in runtime errors to simply
“fail”, in the sense that generators fail when they cannot produce another value.

&line and&file represent the compile-time values of the line number and file name for the location of
those given keywords in a program’s text.

A few keywords are generators that produce more than one \&features generates strings that
represent the language features supported by the given Icon implementation, ‘Slacheamtegers’. On
the other hand&fail produces no value at all, but fails immediately.

String scanning

Icon is a descendent of SNOBOLA4 [6] and shares much of SNOBOL4’s emphasis on string operations. Icon
provides a large number of operations for manipulating strings, such as concatenation and substring
replacement. Unlike SNOBOL4, however, Icon’s pattern matching requires no special consideration: Icon’s
generators and goal-directed evaluation suffice for implementing its pattern-matching operations.

A New Implementation of Icon

Until now, all implementations of Icon have been closely related. The Icon source code has evolved through
several versions since 1978 [2], and though occasional branches have sprouted, there have been no
independent implementations. The current mainstream edition is Version 9.3 of Icon for Unix, or simply
“Version 97; this is thereference implementatidn which we will compare Jcon.

Jcon is a completely new implementation, rewritten from the ground up. It has two main parts: a
compiler and a runtime system. The compiler is written in Icon and generates class files containing Java
bytecodes—nbinary instructions for the Java “virtual machine” [7]. The runtime system is linked with the
generated code and is written in Java.

The motivations behind Jcon are many. The Jcon compiler represents an experiment with a new
mechanism for translating goal-directed evaluation. The Jcon runtime system represents an experimentin a
novel object-oriented architecture for a dynamically typed language implementation. And finally, Jcon
represents an experimentin targeting the Java Virtual Machine from a decidedly non-Java-like language.

The Jcon compiler is responsible for effecting goal-directed control flow. Beyond that, it is little more
than a translator to calls on runtime system routines. Almost all of the action—type conversion,
computation, generation of values, etc.—takes place in the runtime system.

Because Icon is a dynamically-typed language, most of the functionality of the runtime system is
type-dependent. For instance, evaluatifig] requires different actions dependingaa type (string, table,
list, integer, or whatever), artuls type. Icon’s type system pervades the design and implementation of its
runtime system. Therefore, the best way to understand Jcon is to study its data structures. We begin with
those, then move on to the runtime methods, and finally examine the Jcon compiler.

An Object-Oriented Runtime system

Icon variables are typeless; “type” is an attribute possessed by values at execution time. Consequently, the
compiler must produce general code that adapts as necessary to the actual runtime values.

Jcon addresses dynamic typing by making heavy use of Java instance methods, which are analogous to
the “virtual” methods of C++. Methods are called in the context of a particular data value. The Java class of
this value, usually corresponding to an Icon type, selects the particular method that is called.



Consider the Icon expressiafB], where the effect of subscripting depends on the type of the walue
Jcon generates code equivalent to the Java expressimex(3). Different versions of théndex method
are defined for strings, lists, tables, and other datatypes; the correct one is selected by thecatieadt
invocation.

In the reference implementation, the source code is grouped by operation: All the code that implements
subscripting is in one place, and conversely the code for the many operations dealing with lists is divided
among several files. Jcon inverts this relationship, grouping code by datatype. The subscripting code is
scattered among several files, each specific to one datatype, but all of the list-handling code is in one place.
This organization makes adding new datatypes considerably easier.

The vDescriptor Type Hierarchy

In the Jcon runtime system, te®escriptor class is used for almost all data. Every Icon datatype is
represented by a subclassvifescriptor. Some other subclasses are used for internal purposes. Table 2
illustrates the hierarchy of subclassesBfescriptor.

The three subclassesdbescriptor arevValue, vVariable, andvClosure, and these in turn are
subclassed further. Th&/alue class implements Icon data values, andulariable class implements
variables. ThevClosure class is used for suspending results from generators. We begin by discussing
values, variables, and their operations, leaving closures for later.

Value classes

Instances of thgValue class represent Icon values. The subclass hierarchy closely reflects the Icon type
hierarchy, but with finer subdivisions.

Icon transparently supports integers of arbitrary size, but both Jcon and Version 9 use a simpler
representation for values small enough to be supported by the hardware. In Jcon, this results in the distinct
vinteger andvBigInt classes. Icon'aumeric types areeal andinteger, which is reflected in Jcon by their
subclassing of a commaosrNumeric parent class.

Icon files are opened imanslated(text) oruntranslatedbinary) mode, affecting subsequent 1/O
operations. TheTFile andvBFile classes reflect this distinction. TkBFile class is used when a directory
is opened for reading. Graphics windows are considered a distinct Icon type, but they support most read and
write operations, and so thé@Vindow class is also implemented as a subclasgHile.

Icon procedures may be called with any number of arguments; excess arguments are evaluated and
discarded, and missing arguments get null values. Jcon distinguishes procedures by the number of
arguments expected, subclassiRyoc0 throughvProc9. ThevProcV class is used for procedures that
declare more than nine parameters or that accept an arbitrary number of arguments. Record constructors are
a special case ofProcV.

Icon classifies lists, sets, tables, and recordgrastures and this grouping is reflected in the class
hierarchy. Although Icon considers different record types to be distinct, all are implementedRettard
class.

ThevSortElem andvTableElem classes are used to hold values during a sorting operation. They
correspond to no Icon data type and are not present at other times.

Not included in Table 2 are classes specific to individual procedures, operators, and keywords. Every
built-in procedure subclasses one of tHrocn classes and definesGall method with the appropriate
number of arguments. Procedures corresponding to Icon operators are also provided. Some Icon keywords
such askclock are implemented by subclasses/8roc0, and some keywords create anonymous subclasses
of vSimpleVar.



Java Object Class

Icon Type

vValue: an Icon value
vNull
vString
vCset
vNumeric
vinteger
vBigint
vReal
vFile
vTFile
vBFile
vDFile
vWindow
vProc
vProcO
vProcl
vProc2

vProc9
vProcV
vRecordProc
vCoexp
vStructure
vList
vSet
vTable
vRecord
vTableElem
vSortElem

&null, the null value
string

character set

numeric value:

... integer under 64 bits
... multiword integer
... floating-point value
file:

... text file

... binary file

... directory

... graphics “file”
procedure:

... with no parameters
... with 1 parameter
... with 2 parameters

... with 9 parameters
... with variable parameter
...... record constructor
co-expression
structured value:

... list

... set

... table

... record

used duringsort(T)
used duringsort(other)

vVariable: an assignable “Ilvalue”

vSimpleVar
vLocalVar
vFuncVar
vListVar

vSubstring

vTableRef

assignable atom

local variable

built-in procedure

list element

substring reference
table element reference

vClosure: a suspended generator

vProcClosure
vTracedClosure

special closure fo&main
special closure for tracing

Table 2: Subclasses wDescriptor



Java Return Type Java Method Icon Operatign
vValue Deref() X
vDescriptor DerefLocal() X if local, elsex
vWariable Assign(vDescriptor x) V=X
vVariable SubjAssign(vDescriptor x) &subject := x
vVariable Swap(vDescriptor v) a:=b

vDescriptor RevSwap(final vDescriptorv) a<->1b
vDescriptor RevAssign(vDescriptor v) a<-b

Table 3: Dereferencing and Assignment Operations

Variable classes

ThevVariable class encompasses program variables and also assignable intermediate values that occur
within expressions. Each instance contains or references a modifiable value and supporntshoe()s
procedure. AsVariable instance can also be used in any context where a value is required.

A vSimpleVar instance implements a global variable directly. The minor variatlacalVar
implements a local variable, which behaves differently when returned by a procedung=dme/ar class
provides lazy initialization of global variables associated with built-in procedures. Icon lists are built of
vListVar elements.

Subcripting a string produces/&ubstring, which can be assigned a value to affect the original parent
string. Subscripting a table produceg®ableRef, which alters or adds a table element if assigned a value.

Runtime vDescriptor methods

Tables 3 through 9 itemize the many methods that are declared bipteeriptor class. Any of these
methods can be called with respect to &Descriptor object.

For most methods, multiple definitions are present. In the typical case, there is one definition in the
vVariable class and one in theClosure class, and these definitions are inherited by all the subclasses of
those two classes. Another definition in théalue class serves as a default method that is inherited by most
subclasses. Finally, for one or more specific datatypes;VWakie definition is overridden by a subclass
method that is specific to one Icon datatype.

Jcon’s use of instance calls to select different code under different conditions replaces much of the
explicit type checking used in the reference version of lcon. We will examine a representative sample of
vDescriptor methods to illustrate in a concrete fashion how this is used by Jcon.

Class-based method dispatching can be very efficient, requiring just two memory lookups to obtain the
method address given the address of the object. No testing and branching of any sort is required, and the
depth of the class hierarchy is not a factor. Although method-call speed depends on the particular Java
system, it is a critical area that one can expect to be optimized in any performance-conscious Java
implementation.

Dereferencing and Assignment Operations

Assignment associates a value with a variable; dereferencing extracts a value from a variable without

changing the association. Table 3 summarizes the dereferencing and assignment methods of Jcon.
A variable is represented byv&/ariable object and a value byavalue object. Usually, asVariable

contains a private copy of\value that represents the value of the variable. The two exceptions are



vSubstring andvTableRef objects, representing intermediate results from string and table subscripting that
accept assignments affecting the originally subscripted value.
Dereferencing of variables is performed by heref method, and every subclasswfariable defines a
Deref method. In contrast to variables, values are already dereferenced;Bertfenethod of thevValue
class, designatedvalue.Deref in Java terminology, just returns its associated object; and no subclass of
vValue defines @eref method.
The return value of an Icon procedure is not automatically dereferenced. A procedure can, for example,
return a subscripted table reference as an assignable value. On the other hand, the procedurganay not
to return an assignable value. The Icon dereferencing operatj@xplicitly dereferences an expression
and generates a call to tBeref method. Théeref method is also used heavily within the runtime system.
TheDerefLocal variant is used when a procedure returns an Icon variable. Icon specifies that such a
variable is dereferenced only if it is a local variable, which is not known at compilation time. The
vLocalVar.DerefLocal version of the method dereferences its object; other versions just return the object
unchangedDerefLocal guarantees that local variables are not referenced after they cease to exist.
Assignment, to the compiler, is just another binary operation.A3sgn methods in/Variable
subclasses accomplish assignment by storing the value passed as the argument. For substrings and table
references, these assignments alter the originally subscripted valueVvalne.Assign method, theAssign
method implemented by th&/alue class, catches assignment to a constant or an expression result and
raises an error.
Variations such as swapping (=: y) and reversible assignment £— y) are implemented directly in the
vDescriptor class in terms of assignment and dereferencing. The code that implements swapping is simple
and instructive:

public vVariable Swap(vDescriptorv) { //a:=:b
vValue a = this.Deref();
vValue b = v.Deref();
vVariable rv;
if ((rv = this.Assign(b)) == null || v.Assign(a) == null) {
return null; #FAIL*/
}

return rv;

}

A Javanull indicates failure of an Icon expression. This value is distinct frarNall object, which
represent&null, the Icon null value.

The SubjAssign method functions identically to th&ssign method. It serves only to distinguish for
traceback purposes the implicit assignmer&sunbject that initiates string scanning.

Conversion Methods

Jcon’s runtime system defines several methods for converting a value to a possibly different type. Two sets
of conversion methods are listed in Table 4.

The methods in the first set are used heavily for coercion: the implicit conversion that occurs when a
value is not the type expected by an operator or built-in procedure. Most of these methods are called
exclusively by code in the runtime system; ohumerate, distinguished by its initial capital, is called by
generated code.

ThemkString method is typical. In th@Value class, a default method raises a runtime error. A subclass
of vValue that is convertible, such afkeal, overrides this method with one that creates and returns a
vString value. ThevString.mkString method is trivial: It just returns its own object.

Methods in the second set convert a value to an Icon string in a specialized manner for a specific purpose.
Thewrite andimage methods return strings for use by the built-in procedures of those names. Contrast



Java Return Type Java Method Icon Operation
vString  mkString() convert tovString
vinteger mkinteger() convert tovinteger
vNumeric  mkFixed() convert tovinteger/vBigint
vReal mkReal() convert tovReal
vNumeric  Numerate() +n: convert tovNumeric
vCset mkCset() convert tovCset
vProc mkProc(int i) convert tovProc
vValue[] mkKArray(int errno) convertto array of/Values
vString  write() convert forwrite()
vString image() convert forimage()
vString  report() convert for error, traceback
vString  reportShallow() convert without expanding

Table 4: Conversion Methods

VNull.mkString
vNull.write returns”
vNull.image returns’ &null’

Thereport andreport_shallow methods are used in error reporting and traceback. They differ from
image in the way they format structure values.

reports an error
their handling of an Icon null value wittmkString:

Simple Non-Arithmetic Functions
The Size Operation

Table 5 lists a large number of straightforward, non-arithmetic operations that produce one value at most.
Icon’s size operatiorkx, is representative of these.

The meaning of a size operation depends on the type of its argumergturns the length of a string, the
number of members of a set, and so on. For the expressiofcon generates code equivalent to the Java
expressiorx.Size(). A sequence of actions occurs as that expression executes.

A simple method call from the generated code can lead to a cascade of additional calls at execution. This
cascade is not surprising, because Jcon substitutes method overloading for tests and branches, but it presents
a bit of an expository challenge. We use a table of actions reminiscent of parser rewriting rules. Here is the
table tracing the execution ek whenx is a variable containing the string valtabc":

Icon = Java Function Applied
*X = (x).Size() vVariable.Size() — Deref().Size()
= (x).Deref().Size() vVariable.Deref() — vValue
= ('abc").Size() vString.Size() — vinteger.New(/ength)
= vinteger.New(3) vinteger.New(x) — vinteger
= (3)

The first column gives the original Icon code. Each line of the second column gives the Java code to be
executed; the notatiofx) means “the Java value representing the Icon valu€he third column names the
specific method that is called, based on the class of the execution-time value, followed by the result
produced by that method.

In this examplex is a variable, s@Variable.Size is called first. The entire body of this method is
{ return Deref().Size(); }. The expression effectively becomgs.Deref().Size() and therDeref is



Java Return Type Java Method

Icon Operation

N

vinteger
vCset
vCoexp
vDescriptor

vNumeric
vValue
vString
vString
vinteger

vString
vString
vString
vString
vString
vString

vValue
vValue

vString
vList

vValue
vValue
vValue

vList
vValue
vValue
vValue
vList

vValue
vValue
vValue

vinteger
vList

Size()
Complement()
Refresh()
TabMatch()

Abs()
Copy()
Type()
Name()
Args()

LLess(vDescriptor v)
LLessEqg(vDescriptor v)
LEqual(vDescriptor v)
LUnequal(vDescriptor v)
LGreaterEq(vDescriptor v)
LGreater(vDescriptor v)

VEqual(vDescriptor v)
VUnequal(vDescriptor v)

Concat(vDescriptor v)
ListConcat(vDescriptor v)

Intersect(vDescriptor i)
Union(vDescriptor i)

Diff(vDescriptor i)

Push(vDescriptor v)

Pull()

Pop()
Get()

Put(vDescriptor v)

Member(vDescriptor i)
Delete(vDescriptor i)
Insert(vDescriptor i, |)

Serial()
Sort(int i)

#*X
~X

AC

=s
abs(x)
copy(x)
type(x)
name(v)
args(p)

sl << s2
sl <<=82
sl==s82
sl ~==5s2
sl >>=s2
sl >>s2

vl ===v2
vl ~===v2

sl||s2
L1 ]| L2

X %% X
X ++ X
X——X

push(L, x)
pull(L)
pop(L)
get(L)
put(L, x)

member(X, x)
delete(X, x)
insert(X, x1, x2)

serial(x)
sort(X, i)

Table 5: Simple Non-Arithmetic Functions
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called. It returns the underlying stringy&tring, which is a subclass efValue. TheSize method is again
called, this time reaching thestring version; it calculates the length and callateger.New, a static
method, to produce an Icon integer result.

When the variable& contains an integer value, suchghe sequence is different. The integer is coerced
to a string value before applying the size operator:

Icon = Java Function Applied

*X = (x).Size() vVariable.Size() — Deref().Size()
= (x).Deref().Size() vVariable.Deref() — vValue
= (5).Size() vNumeric.Size() — mkString().Size()
= (5).mkString().Size() vinteger.mkString() — vString
= ('5").Size() vString.Size() — vinteger.New(length)
= vinteger.New(1) vinteger.New(x) — vinteger
= (1)

Finally, suppose that holds an invalid value for the size operation, such as a procedure value. There is
no Size method defined byProc or any of its subclasses. Instead, the defaulilue.Size method issues
an error. This same method would have been called in the two previous sequences had it not been overridden
by Size methods in the/String andvNumeric classes.

String Concatenation

Binary operators are dispatched in the same manner as unary operators, but additional work is required to
validate or coerce the type of the right-hand operand. This is done by calling one of the coercion methods of
Table 4. String concatenation provides a good example.

Consider the Icon expressiar| 3, which concatenates the stringvith the integeiB to produce a new
string. The Jcon compiler produces code for this expression that is equivalent to the Java expression
s.Concat((3)). Execution proceeds in this manner:

Icon = Java Function Applied

s||3 = (s).Concat((3)) vVariable.Concat(x) — Deref().Concat(x)
= (s).Deref().Concat({3)) vVariable.Deref() — vValue
= ("abc").Concat((3)) vString.Concat(x) — Concat(x.mkString())
= ("abc").Concat((3).mkString()) vinteger.mkString() — vString
= ("abc").Concat({"3")) vString.Concat(x) — vString
= ("abc3")

As is typical for this sort of binary operationString.Concat unconditionally callsnkString to coerce
its second argument to the correct type. The unconditional call saves the cost of a test. If the argument is
already a stringyString.mkString is called; this method performs no computation and just returns its own
object.

Other Simple Functions

The Size andConcat methods are typical of a large class of operations. Table 5 lists several methods that
implement fundamental Icon operations. These are all simple, non-arithmetic methods that are not
generators.

Not all of these methods correspond to Icon operators. Methods s#disa€opy, andType are never
called from the generated code, only from procedures that are part of the runtime library. It is nevertheless
useful to implement them adescriptor methods because they share the same behavioral dependency on
the underlying datatype.

11



Java Return Type Java Method

Icon Operation

vNumeric Negate() -n
vNumeric  Add(vDescriptor v) nl+n2
vNumeric  Sub(vDescriptor v) nl-n2
vNumeric  Mul(vDescriptor v) nl x n2
vNumeric  Div(vDescriptor v) nl/n2
vNumeric Mod(vDescriptor v) nl % n2
vNumeric  Power(vDescriptor v) nlAn2
vNumeric NLess(vDescriptor v) nl < n2
vNumeric NLessEq(vDescriptor v) nl <=n2
vNumeric NEqual(vDescriptor v) nl=n2
vNumeric NUnequal(vDescriptor v) nl~=n2

vNumeric NGreaterEq(vDescriptor v) nl >=n2
vNumeric NGreater(vDescriptor v) nl > n2

vNumeric  Addinto(vinteger a)

vNumeric
vNumeric
vNumeric

SubFrom(vinteger a)

Mulinto(vinteger a)
Divinto(vinteger a)

a + b = b.AddInto(a)
a—b = b.SubFrom(a)
a % b = b.Mulinto(a)
a/ b = b.Divinto(a)

vNumeric  ModiInto(vinteger a)
vNumeric  PowerOf(vinteger a)
vNumeric BkwLess(vinteger a)
vNumeric BkwLessEq(vinteger a)
vNumeric BkwEqual(vinteger a)
vNumeric BkwUnequal(vinteger a)
vNumeric BkwGreaterEq(vinteger a)
vNumeric BkwGreater(vinteger a)

a % b = b.ModInto(a)

a A b = b.PowerOf(a)

a < b = b.BkwLess(a)

a <=b = b.BkwLessEq(a)

a =b = b.BkwEqual(a)
a~=b = b.BkwUnequal(a)

a < b = b.BkwGreaterEq(a)
a >=b = b.BkwGreaterEq(a)

vNumeric  Addinto(vBigint a) a + b = b.AddInto(a)
vNumeric ~ SubFrom(vBigint a) a— b = b.SubFrom(a)
vNumeric Addinto(vReal a) a + b = b.AddInto(a)

a—b = b.SubFrom(a)

vNumeric ~ SubFrom(vReal a)

Table 6: Arithmetic Functions

Arithmetic Functions

Arithmetic operations are more complex because of their special type conversion rules. In Icon, the negation
operation-x returns an integer i is an integer, or a real numbenxfis real; but ifx is a string, the result
can be either integer or real depending on the string contents.

For binary operations, both operands are coerced to a numeric type. In most cases, the result of the
operation is a real value if either operand is real; otherwise the result is an integer. The exception is the
exponentiation operator, with its own special rules. All of this is further complicated by the presence of two
different integer types in the actual implementation.

Jcon’s approach to binary arithmetic is to make two levels of instance calls. The first is dispatched by the
left-hand operand type; then the operands are reversed and a “backwards” operation is dispatched by the
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Java Return Type Java Method Icon Operatjon

vVariable Field(String s) R.f
vDescriptor  Index(vDescriptor v) X[v]
vDescriptor  Section(vDescriptor i, j) X[i:j]
vDescriptor  SectPlus(vDescriptor a, b) X[i+:]]
vDescriptor SectMinus(vDescriptor a, b) X[i—:]
vDescriptor  Select() ?X
vDescriptor Bang() IX
vDescriptor  Key() key(T)

vValue IndexVal(vDescriptor v) X[
vWalue SectionVal(vDescriptor i, j) X[isj]

vValue SectPlusVal(vDescriptor a, b) X[i+:]

vValue SectMinusVal(vDescriptor a, b)  .x[i—j]

vValue SelectVal() S2X
vDescriptor BangVal() X

Table 7: Element Access Operations

right-hand operand type. Thus for a single operation such as addition there are nine methods foBthe 3
combinations of implementation types. The arithmetic operations are listed in Table 6.

For a concrete example, consider the expressien wherer andi are real and integer constants. The
compiler generatesSub(i), which invokesyReal.Sub(i) based on the type of vReal.Sub then calls
i.SubFrom(this), passing its own object as the argument, to do the actual computation:

Icon = Java Function Applied
3.14-2 = (3.14).Sub((2)) vValue.Sub(x) — Numerate().Sub(x)
= (3.14).Numerate().Sub((2)) vReal.Numerate() — vNumeric
= (3.14).Sub((2)) vReal.Sub(x) — x.SubFrom(this)
= (2).SubFrom((3.14)) vinteger.SubFrom(x) — vReal.New(result)
= VReal.New(3.14-2) vReal.New(x) — vReal
= (1.14)

There are thre8ubFrom methods declared by theescriptor class; they are distinguished by their
argument types. WherReal.Sub(i) callsi.SubFrom(this), it calls ani.SubFrom(vReal) method selected
by the class of. Thevinteger.SubFrom(vReal) method always deals with an integer subtracted from a
real, so the actual subtraction operation is easily accomplished and a real value is returned.

This two-level call technique works well for Jcon because of the small number of numeric types, but does
not scale well. The number of variants of each operation is proportional to the square of the number of
interacting types.

Element Access Operations

Table 7 lists the methods that return a portion of a string or a structure. There is much overlap, with many
operations applicable to either, hence the grouping in a single table; aSeliwt operation can also be
applied to a numeric value. The second half of the table consists of specialized versions of methods from the
first half.

All of these methods can operate on structures of one kind or another, often returning a variable. When a
variable is returned, it is theéVariable object from within the internal representation of the structure, and
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Java Return Type Java Method Icon Operation

vDescriptor  Call() call with no arguments
vDescriptor Call(vDescriptor a) call with one argument

vDescriptor Call(vDescriptor a, b) call with two arguments

vDescriptor  Call(vDescriptor a, b, ¢, d, e, f, g, h, i) call with nine arguments

vDescriptor  Call(vDescriptor v[]) call with argument array
vDescriptor ProcessArgs(vDescriptor x) p!L (call witharglist)
vDescriptor Resume() resume suspended generator

Table 8: Procedure Call Operations

assigning a value to it changes the value in the structure.
All but Field andKey can be applied to strings. The result is an assignable substring if the original string
is a variable. In the Jcon implementation, this requires allocating and initializing a8elastring object,
which incurs some extra cost. As an optimization, the Jcon compiler recognizes some situations in which
the result of the access operation is used only as a value. For these cases it generates cdévarihats,
which are streamlined methods that produce a value instead of an assignable substring when operating on a
string.
TheBang andKey methods are generators, which are discussed later. Its role as a generator is the reason
thatBangVal returns avDescriptor and not asValue.

Procedure Call Operations

Table 8 summarizes the procedure call operations. An Icon call that passes fewer than ten arguments
generates a Java call to the correspondiay method. An Icon call with ten or more arguments generates a
Java call that passes the argumentswiDascriptor array.
An Icon procedure is a subclasswi®roc that defines &£all method containing the procedure body. An
Icon procedure that declares three parameters subcleBs®s3 and defines &all(a, b, ¢) method. A
corresponding three-argument call goes directly to this method without executing any runtime support code.
The Icon language, however, allows the actual argument count of a call to differ from the parameter count
of the called procedure. The null value is substituted for missing values, and extra parameters are evaluated
but discarded. The mechanism for handling argument count mismatches is provided/Bydtie classes
and involves a brief excursion into the runtime system.
ThevProc3 class define€all methods with zero, one, and two parameters that supply Icon null values
and call the three-argume@tll method. ThesProc3 class also defineSall methods that accept four or
more arguments, discarding the extras, athh method that acceptswdescriptor array. These methods
are inherited by the subclasses/@roc3, which then need only to implement a singlall method—the
one that takes three arguments.
The same pattern holds for the other direct subclasseBrofc. Each of thevProc0 throughvProc9
classes, as well ad’rocV, is an abstract class that defines all of @al methodsexcepthe most
appropriate one. This is left for their concrete subclasses, which need only implement Lsithglethod.
The specializedProcn classes simplify coding for both runtime programmers and the Jcon compiler.
The specialize€all methods allow most procedure calls to be made without allocating an argument array,
and to bypass argument adjustment code when the number of arguments matches the number of declared
parameters. The upper limit 8fwas chosen for its mnemonic value as the largest decimal digit, and is more
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Java Return Type Java Method Icon Operation

boolean isnull() runtime check for null

boolean iswin() runtime check for graphics window
vDescriptor  IsNull() /x
vDescriptor  IsntNull() \ X
vDescriptor  Conjunction(vDescriptor x) el & e2
vDescriptor ToBy(vDescriptor j, k) itojbyk
vDescriptor  Activate(vDescriptor x) v@C

vNumeric  Limit() e\n

Table 9: Miscellaneous Operations

than sufficient to handle the vast majority of Icon procedures.
The Icon expressiop ! L passes an Icon list as the argument list of a procedure. This operation generates
a call to theProcessArgs method, which builds &Descriptor array and calls the array-bas€dll method.
TheResume method is used with generators, which are discussed later.

Miscellaneous Operations

Table 9 summarizes the remaining runtime methods not included in the other categories.

Theisnull andiswin methods perform type checks that occur many times in the runtime system. Their
definitions are very simple, and they are faster than checkingtanceof vNull in Java. The/Value class
definegsnull as a simple method that always retufalse. ThevNull class overrides this definition with a
simple method that always returtige. vVariable.isnull is just{ return Deref().isnull(); }, overridden by
an even simplevSubstring.isnull that always returnfalse. The definitions ofswin follow a similar
pattern.

ThelsNull andlsntNull methods correspond to the Icon operatibnand\x respectively. They differ
from the simple runtime checks above, and from the operations of Table 5, by returning a variable instead of
a value ifx is a variable. Except for that, though, they are similar toishell method.

Conjunction €1 & e2) is, surprisingly, a very simple operation that just returns its second argument. All
the real work is done by the evaluationedf ande2; if either of those fails, the entire expression fails.
Alternation €1 | e2), on the other hand, is a control structure that must be addressed by the compiler; there
is no corresponding operation in the runtime system.

TheToBy method implementsto j andi to j by k. Despite the unusual syntax, this is essentially an
operator that is a generator. TAetivate method switches control to a different co-expression, which is a
form of coroutine. Co-expressions are implemented using Java threads.

TheLimit method works in conjunction with generated code to produce no morattresults from a
generator. Actual flow control is handled by the generated codéjthie method is responsible for
coercingn to an integer and checking that it is greater than zero.

Predefined procedures

Icon defines over 130 predefined procedures, terimectionsby the Icon book [1]. These procedures are
written in Java and packaged along with the operators and other components of the runtime system. They
are available implicitly to every Icon program. For examplayiite is a global variable that is not defined

by the programmer as a procedure or record constructor, then it is initialized to the value of the predefined
procedure.
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Each predefined procedure is an instance of a unique subcleBsaaf. Because there is some cost to
initializing a class, global variables that would hold predefined procedures are actually initialized as
instances of thgFuncVar class. These objects function just likBimpleVar objects except that if Beref
call occurs before any value has been stored then the value is initialized to a predefined procedure. This lazy
initialization saves a noticeable amount of time for programs that reference many predefined procedures
without calling them. That situation is especially common with linked library files.

Generators

A generator is a procedure that can produce a sequence of results from a single invocation, where each result
is either a value or a variable. This definition includes internal procedures that implement Icon operators. A
generatosuspend$o produce a result, and the calling expression can tagemmat to request another

result. The process repeats until either the generator fails, after which it cannot be resumed, or until the
calling expression has no more need for the generator.

In general, the caller of a procedure does not know whether the procedure is a generator. Similarly, a
called procedure does not know whether it might possibly be resumed by the caller after returning a result.
The most common situation is for a procedure to produce just a single result. Jcon’s object-oriented
approach allows a simple approach for the common case, with complication added only when truly needed.

A non-generator procedure simply returng\élue or vVariable result with no additional flags. If the
caller tries to resume this result, tResume method of thevValue or vVariable class returns a Java null
value, indicating failure. Only a true generator needs to return a more complex structure.

A procedure result can likewise be processed without regard to its generator status. A generator’s result
behaves just like &Value or vVariable, and unless the context allows the possibility of resumption, the
compiler treats it as such and makes no provision for the possibility that a called procedure might be a
generator.

Suspension

In Jcon, a procedure fails by returning a Java null value. It succeeds by retuwvieggsariptor object. For
a simple Icorreturn, this object is either &Value or avVariable.

When an Icon procedure suspends, it produces a result along with enough state to enable subsequent
resumption. This information is encapsulated in an object of@lesure class, which along with'Value
andvVariable is the third subclass afDescriptor. ThevClosure object contains:

e aretval field holding the suspended result@alue or vVariable object)
e aResume method for generating subsequent values
e any data needed by tiResume method

As a subclass ofDescriptor, thevClosure class implements the full set eDescriptor methods.
Almost all of these methods just extract the suspended result from withuCllosure object and then
re-invoke the same method. For example:

public vNumeric Add(vDescriptor v) { return retval.Add(v); }

The suspended resuditval is always a/Value or avVariable.

Because aClosure object implements all of theDescriptor methods, it behaves just like the variable
or value it contains. This means that the caller does not need to treat the result of a generator specially in
order to make use of it. If the calling code cannot make use of a sequence of values, it ignores the possibility
that it is calling a generator and makes no special provision for handin@asure result.
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Resumption

Generators are resumed by the action of certain control structures. These m@uglealternation, and
implicit control backtracking. For such control structures, Jcon generates code that saves the result of the
initial procedure call. Resumption is accomplished by callingResume method of this object. The
Resume method returns aDescriptor object to suspend a new value or a Java null value to fail. Until it
fails, the initial object can be resumed multiple times to produce successive values.

TheResume method is the one method of th€losure class that does not simply re-invoke the same
method orretval, the underlying result. Conversely, tResume methods o¥/Value andvVariable are
trivial: Each immediately returns a null value to signal failure. The calling code can resume a result object
without checking for asClosure. A simplevValue or vVariable fails immediately if resumed, which is the
correct action in this situation.

Generator Structure

Conceptually, there are three phases of operation in a generator: initialization, production of the first result,
and production of subsequent results. The third phase occurs after suspension and resumption, so the
vClosure object returned as the first result must contain a pointer to this code.

Java does not provide code pointers or even function pointers. The standard substitute for a function
pointer is an object containing a method with a prearranged name. In this case, the objecCiotuee
object returned as the first result, and the method naRessime().

Every generator needs a differétesume() method, so every generator must define a new subclass of
vClosure. Version 1.1 of Java introduced an “inner class” notation for defining anonymous classes at point
of need, so the source code is not too unwieldy. This is just a syntactic shortcut: A new class is still
produced, complete with its own bytecode file.

The first result of a generator must be@osure object, but subsequent results carvibalue or
vVariable objects. However, it is often simplest to use common code to produce all results, returning a
vClosure object every time.

A Generator Example

This procedure generates the factors of an integer. For simplicifgessime method generates all results
including the first.

public class factors extends vProcl {

public vDescriptor Call(vDescriptor a) {
final long arg = a.mkinteger().value;
return new vClosure() {
long n = 0;
public vDescriptor Resume() {
while (++n <=arg) {
if (arg % n==0) {
retval = vinteger.New(n);
return this;
}
}
return null; /%FAILx/

}.Resume();

}
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As a single-argument procedure, this example procedure extendBithel class and defines a
single-argumentall method. ThesClosure object is created, called, and returned by the |aegern
expression,

return new vClosure() { ... }.Resume();
which encompasses the entire definition of the anonymous subcleS$osiure.

Other Runtime Issues

Keywords

Each Icon keyword is implemented by a subclasgRiocO that defines £all method with no arguments;
Jcon generates a procedure call for each keyword reference. This mechanism suffices for all the different
kinds of keywords including constants li€aull, read-only values lik&clock, and assignable keywords

like &trace.

The Jcon compiler knows that only five keywords are generagdestures, &allocations,

&collections, &regions, and&storage. For the others it generates simpler code. Of these generators, only
&features is meaningful; the others are present for compatibility but generate only zero values.

Each assignable keyword defines an inner subclagSiaipleVar that overrides théssign method. An
object of this subclass is returned by the keywofekdl procedure. The custosssign method validates an
assigned value according to the rules of its keyword. Some assignable keywords are§mibgelct with
&pos, &x with &row, and&y with &col. Except for&pos, assigning one of these also affects its partner.

String scanning, being a control structure, is mainly the compiler’s responsibility. The compiler
establishes and maintains scanning environments. Two runtime effects are notable: Assigi&sebject
sets&pos to 1 as a side effect, and for predefined scanning procedures, the default vajpesadrgument
depends on whether tisibject argument was defaulted.

The rarely used keywordllevel provides the depth of the current procedure call. Its value is calculated
by creating a Java exception and reading its stack trace. This ugly method was chosen because it eliminates
the need for any separate bookkeeping.

Error Handling

The Icon language definition [1] specifies a set of numbenatime errors which are malfunctions of the
user program detected at execution time. A runtime error normally terminates the program, printing a
diagnostic message and a traceback of the procedure call chain. If the ke8®voodis set to a nonzero
value, an error instead produces a silent failure of the enclosing expression, and execution continues.

When the runtime system detects an error, it invokes the static mi&notdme.Error with the error
number and, optionally, the offending vallgrror simply creates and throws #@rror, which subclasses
java.lang.Error. Every Icon operation has an exception handler that can catiéfrram. Each handler,
depending on the value &ferror, either converts the error to failure by returning a Java null value or
cooperates in creating a diagnostic stack trace.

The stack trace is constructed one call frame at a time as exceptions are caught and then re-raised. After
the Icon program’s stack is completely unwound, the runtime system catches the exception, prints the
diagnostic, and aborts the program. The catching and possible rethrowiligarffor each Icon operation
is handled by arampolineroutine. There is one simple trampoline for each Icon operator. Each trampoline
is a static function that takes as arguments the Icon source coordinates necessary for creating a useful
diagnostic as well as the actuddescriptors necessary to invoke the appropriate runtime method. The code
below is the trampoline for assignment.

public static vVariable Assign(String file, int line, vDescriptor al, vDescriptor a2) {
try {
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return al.Assign(a2);
} catch (iError e) {
e.propagate(file, line, " {$ := $}", a1, a2);
return null;
}
}

The compiler creates a call to this static method, which in turn calls the approgDiaseriptor.Assign
instance method depending on the runtime class of the arguatiefftal.Assign returns normally, its
return value is bounced back to the callera1f Assign raises a runtime error, the exception handler invokes
the exception’propagate method with enough information to construct a meaningful diagnostic. If errors
are being converted to failure—a rarely used Icon feature—ph@pagate returns and the trampoline fails
by producing a Java null value. Otherwipegpagate constructs a diagnostic message for this routine, adds
the message to the stack trace, and then re-raises itself. Each trampoline in the Java call stack does likewise,
building the stack trace, until it is ultimately caught by the runtime system'’s driver, which reports the
message and aborts.

Co-expressions

Icon co-expressions, like co-routines, require independent runtime stacks. To get an independent stack, Jcon
runs each co-expression in a separate Java thread. Co-expressions never run concurrently, so switching
between co-expressions simply requires transferring control from one thread to the other.

Linking
Icon supports separate compilation and, thus, requires some facility for linking separately compiled modules
together. The reference implementation of Icon has a formal linking step that brings modules together,
resolves global names, and creates efficient mechanisms for accessing record fields. Jcon, on the other hand,
defers almost all of this work until program execution.

Every Icon file is translated into a collection of Java class files. Each Icon procedure yields a subclass of
vProcn, and possibly also a subclassu@losure. In addition, the Jcon translator creates a special class
from each Icon source file. The class subclasses the runtime sis&terlass, and its job is to announce all
the global declarations in the file to the runtime system at program initialization.iEdelklass announces
record declarations, global variables, procedure declarations, etc., to the runtime system for linking
purposes.

Because of this structure, the Jcon “linker” has few responsibilities. It must bundle all the appropriate
class files together to create an executable, and it must createradianvdass where execution begins. This
main class informs the runtime system of thies that it represents, and then the runtime system queries
each for its declarations. After processing all declarations, the runtime system creates a co-expression for
the Iconmain procedure and begins program execution.

The Jcon Compiler
Jcon’s compilerJtran, is written in Icon. Jtran reads Icon source and produces Java class files. Jtran is a

traditional syntax-directed compiler, structured as a pipeline of independent filters that translate the source
code into target code.
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Jtran’s preprocessor performs simple text substitutions, file inclusions, and conditional compilation. The
preprocessor consumes a source file and produces a sequence of Icon strings that represent the preprocessed
text of an Icon program.

The lexical analyzer breaks the Icon strings into a sequence of tokens, each of which is an Icon record
whose type represents the lexical class of the token suicteasfier or integer literal Each record contains
the source file coordinates (file, line, column) where the token was recognized for use in reporting syntax
errors. The lexical analyzer is responsible for inserting semicolons at the ends of some source lines [1]. The
lexical analyzer is hand-coded.

The parser consumes tokens and produces abstract syntax trees (ASTs). The recursive-descent parser is
hand-coded. The abstract syntax trees for Icon are quite simple. For clearer exposition, this paper uses
Icon’s concrete syntax.

The syntax-directed translator consumes ASTs and produces an Icon-specific intermediate representation
(IR). The next section outlines this process in detalil.

An optimizer improves the IR by eliminating trivial inefficiencies with optimizations such as constant
propagation, copy propagation, and jump-to-jump removal. The optimizer not only makes resulting
programs smaller and faster, it makes toenpilationprocess faster, too. The time saved translating IR to
Java bytecode more than makes up for the time consumed by the optimizer.

Finally, the code generator translates IR into Java class files. The process of translating IR instructions
into Java Virtual Machine (JVM) instructions is accomplished through a simple macro expansion of each IR
instruction into one or more JVM instructions. The process is uncomplicated, although producing Java class
files requires a fair bit of bookkeeping and attention to the JVM file format.

Translating Icon Into Intermediate Representation

Jtran’s intermediate representation is a tree data structure that includes both declarative information, such as
record and link declarations, and executable instructions. Table 10 lists the five IR structures for the five
top-level Icon declarationsnvocable, link, global, record, andprocedure. Only ir_Function, which
represents a compiled Icon procedure, is anything more than a simple echoing of the original Icon source. In
addition to declarations of local and static variablegunction contains the IR representing the executable
procedure code inodeList.

The executable instructions represent a simple register-based instruction set that includes primitives for
Icon control-flow mechanisms such as co-expression creation, procedure suspension, and resumption.
Table 11 lists the IR primitives, with brief descriptions of each.
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Intermediate Representation Icon
ir_Invocable(namelList, all) invocable namel, name2...
ir_Link(nameList) link filel, file2 ...
ir_.Record(name, fieldList) record name(fieldl, field2, ...
ir_Global(nameList) global variablel, variable2, ...
ir_Function(name, paramList, localList, staticList, codeList) procedure name ..end

Table 10: Jtran Intermediate Representation for Top-level Declarations

IR Instruction Description

ir_-Var(name) variable instance

ir_Key(name) keyword instance

ir_IntLit(val) integer literal

ir_RealLit(val) real literal

ir_StrLit(val) string literal

ir_CsetLit(val) cset literal

ir_.Tmp(name) vDescriptor temporary

ir_Label(value) IR label (jump target)
ir_TmpLabel(name) IR label temporary (for indirect jumps)
ir_Chunk(label, insnList) labeled block of IR
ir_Enterlnit(startLabel) jump to startLabel if already initialized
ir_Goto(targetLabel) unconditional branch (direct or indirecf)
ir_Deref(lhs, value) Ihs < valueDeref()

ir_Field(lhs, expr, field, failLabel) Ihs «+ expr.field

ir_OpFunction(lhs, op, argList, failLabel) infix operator, e.g. Ins— argl+arg2
ir_Call(lhs, fn, argList, failLabel) Ihs «+ fn(argl, ..., argN)
ir_ResumeValue(lhs, value, failLabel) Ihs « resumévalue)

ir_MakeList(lhs, valueList) lhs + [vall, ..., valN]
ir_Succeed(expr, resumeLabel) suspend expr,return expr

ir_Fail() fail

ir_Create(lhs, startLabel) Ihs « create expr

ir_CoRet(value, resumeLabel) produce value from co-expression
ir_CoFail() fail co-expression

ir_-Move(lhs, rhs) Ihs < rhs, forvDescriptors
ir_.MovelLabel(lhs, rhs) Ihs « rhs, for IR labels
ir_ScanSwap(subject, pos) enter/exit string scanning
ir_Unreachable() unreachable return

Table 11: Jtran Executable IR

AST declarations for global variables, link directives, procedure definitions, record definitions, and
invocable declarations simply translate into their respective IR counterparts. The code within a procedure
definition requires interesting translation into IR instructions.

Translating Goal-Directed Evaluation

Much of the complexity in compiling Icon results from Icon’s goal-directed evaluation. Goal-directed
evaluation requires that generators be started, suspended and resumed in a coordinated way to generate as
many values as possible. Translating goal-directed evaluation is, therefore, a problem of decomposing
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operations into their various parts and then connecting those parts appropriately.

Icon’s goal-directed evaluation is concisely expressed usingcloumksof code for each operation [8].
The four-chunk technique of describing backtracking control flow is the basis for translating the control flow
of generators and goal-directed evaluation. This translation technique is syntax-directed. For each operator
in a program’s abstract syntax tree (AST), translation produces four labeled chunks of code. In addition,
each AST operator has a corresponding runtime temporary variable to hold the values it computes. Thus, the
translation produces four code chunks for each oper@tor,

B.start The initial code executed for the entire expression rootéd at
6.resume The code executed for resuming the expression rootéd at

6.fail The code executed when the expression root@daits.

8.succeedThe code executed when the expression root€dpadduces a value.

The specification of these code chunks is similar to the specification of attribute grammars, except that
nothing is actually computed. Instead, each code chunk is specified by a simple template. The start and
resume chunks are synthesized attributes. The fail and succeed chunks are inherited attributes. Having both
inherited and synthesized chunks allows control to be threaded arbitrarily among an operator and its
children, which is necessary for some goal-directed operations.

Translating some Icon constructs requires determining some of the branch targets between chunks at
runtime. The evaluation of some Icon operators requires additional temporary variables and code chunks.
Icon expressions generate values that are held in temporary variables; the temporary for the value of AST
nodeX is calledX.val.

Translating Icon Values to IR

Possibly the simplest expression to translate is a simple Icon value such as a variable or a numeric literal.
These values represent sequences of length one. The corresponding code immediately produces a value and
exits. Upon resumption, it fails. The code chunks for handling success and failure are “inherited” from an
enclosing expression and therefore cannot be specified here. The code for an integeM|iigral,

representative.

N

literal y.start  : ir_.Move(literal.val, ir_IntLit(N))
ir_Goto(ir_Label(literal.succeed))
literal y.resume : ir_Goto(ir_Label(literal.fail))

Binary Addition

Binary operators introduce interesting threading of control among the various code chunks. Translating
E1 + E, requires that all values &b be produced foeachvalue ofE; and that the sums of those values be
generated in order. Thus, resuming the addition initiates a resumptien ahdE; is resumed whek;

fails to produce another result. Starting the addition expression requirdés; thatstarted, and for each
valueE; generates;; must be (re-)starteshotresumed. The addition fails whé? can no longer produce
results. The following specification captures the semantics cleanly.
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Ei1+E

plus.start . ir_Goto(ir_Label(E1l.start))

plus.resume . ir_Goto(ir_Label(E2.resume))

E; .fail . ir_Goto(ir_Label(plus.fail))

E;.succeed . ir_Goto(ir_Label(E2.start))

E».fail . ir_Goto(ir_Label(E1l.resume))

E,.succeed : ir_OpFunction(plus.val, "+", [El.val, E2.val], ir_Label(E2.resume))

ir_Goto(ir_Label(plus.succeed))

Unlike addition, a relational operator such>asr~= may fail to produce a value after its subexpressions
succeed. When a comparison fails, it resumes execution of its right op&gnd 6rder to have other
subexpressions to compare; that is, it is goal-directed, and it seeks succe&slL el part of the
ir_OpFunction instruction directs control to obtain additional values.

Generators

Generators such ds, which generates the elements of a string or a compound data structure, are also easy
to translate. The generator is initiated with th€®pFunction instruction. The generator is resumed with
their_Resume instruction, which creates any subsequent values.

IE
bang.start . ir_Goto(ir_Label(E.start))
bangresume : ir_.Resume(bang.val, tmp, ir_Label(E.resume))
. ir_Goto(ir_Label(bang.succeed))
E fail . ir_Goto(ir_Label(bang.fail))
E.succeed . ir_.OpFunction(tmp, " I", [E.val], ir_Label(E.resume))

ir_.Move(bang.val, tmp)
ir_Goto(ir_Label(bang.succeed))

Conditional Control Flow

The previous translations use direct gotos to connect various chunks in a fixed fashion at compile time. For
some operations this is not possible. Thexpression,

if E1 then E; else E3

evaluate€; exactly once to determine whetHgy succeeds or fails. E; succeeds, then thieexpression
generates thE; sequence and fails whé fails; otherwise théf generates thEz sequence until failure.

Translating arif statement into the four-chunk model requires deferrindgftheesumption action until
runtime. IfE; succeeds, then thigs resume action must be to resule Otherwise, théf’'s resume action
is to resumees. This translates into aimdirectgoto based on a temporary valugate” E;’s succeed and
fail chunks segateto the resume label of eith&, or E3 as appropriate.
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if E1 then E else E3

ifstmt.start . ir_Goto(ir_Label(E1l.start))

ifstmt.resume : ir_Goto(ir_TmpLabel(if.gate))

E; .fail . ir_MoveLabel(if.gate, ir_Label(E3.resume))
. ir_Goto(ir_Label(E3.start))

E;.succeed . ir_MoveLabel(if.gate, ir_Label(E2.resume))
. ir_Goto(ir_Label(E2.start))

E,.fall . ir_Goto(ir_Label(if.fail))

E».succeed . ir.Move(if.val, E2.val)
. ir_Goto(ir_Label(if.succeed))

E;.fall . ir_Goto(ir_Label(if.fail))

Es.succeed . ir.Move(if.val, E3.val)

ir_Goto(ir_Label(if.succeed))

Co-expressions

Creating co-expressions is easy because most of the work is deferred to the code generator. Co-expressions
require the coordinated actionsiofCreate, ir_CoRet, andir_CoFail, which are responsible for

co-expression creation, return, and failure. The creation requires the starting address of the expression.
When the expression succeeds, the co-expression returns the value, and when the expression fails, the
co-expression fails.

create E
createstart . ir_Create(create.val, ir_Label(E.start))
. ir_Goto(ir_Label(create.succeed))
createresume : ir_Goto(ir_Label(create.fail))
E . fall :ir_CoFail()
E.succeed . ir_CoRet(E.val, E.resume)

String Scanning

Icon dynamically maintains a string-scanning environment that consists of a subject&stihggct, and a
position within that string&pos. String scanning requires runtime bookkeeping to maintain correct values

of &subject and&pos. Entering a scanning environment hides the previous valu&sufject and&pos

while establishing new values; leaving the environment re-establishes the old values. This is tricky because
string scanning environments are dynamically scapatthey can be exited and later re-entered as nested
generators produce values. Therefore, the compiler must carefully track the boundaries of string scanning
environments, in order to maintain the correct value bindings. To maintain state when entering and exiting
scanning environments, the compiled code for all string scanning environments includes temporary values to
hold the out-of-scopé&subject and&pos values. These temporaries hold the outer values when within a
scanning environment, but they hold the inner values when the environment has been temporarily left
because of generating a value. The IR instructiddicanSwap swaps the values @&subject and&pos

with two temporaries. Thi_OpFunction instruction calls an internaPR:" function that is responsible for
initiating string scanning.
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E1?E

scanstart . ir_Goto(ir_Label(E1l.start))

scanresume . ir_.ScanSwap(ir_-Tmp(sub), ir_-Tmp(pos))
. ir_Goto(ir_Label(E2.resume))

E; .fail . ir_Goto(ir_Label(scan.fail))

E;.succeed . ir_Deref(ir_Tmp(sub), ir_Key(" subject"))

ir_Deref(ir_Tmp(pos), ir_Key('pos"))
ir_OpFunction(scan.val," ?:", [ir_Key(" subject"), ir_Tmp(sub)], ir_Label(E1.resume))
. ir_Goto(ir_Label(E2.start))
E,.falil . ir_-Move(ir_Key(" subject"), ir_Tmp(sub))
. ir_.Move(ir_Key(' pos"), ir_Tmp(pos)
. ir_.Goto(ir_Label(E1l.resume))
E,.succeed . ir_ScanSwap(ir_-Tmp(sub), ir_-Tmp(pos))
. ir_Goto(ir_Label(scan.succeed))

It would have been convenient, and a cleaner design, if the same swapping could have been accomplished
with a more general IR instruction for swapping values. Unfortunately, because assign&sulbject
also affectspos, their values must be swapped in a coordinated way.

Procedure Bodies

Jtran compiles Icon procedure bodies into two code chunks: one fonitiaé block, if it exists, and one for
the procedure body. The initial block must be executed only once, upon the first execution of the procedure.
The IR instructiorir_Enterlnit guards the execution of the initial block.

procedure init bodyend

proc.start . ir_Enterlnit(ir_Label(body.start))
. ir_Goto(ir_Label(init.start))

proc.resume . ir_.Unreachable()

init.fail . ir_Goto(ir_Label(body.start))

init.succeed . ir_Goto(ir_Label(body.start))

body.fail :ir_Fail()

body.succeed :ir_Fail()

Procedure Calls

Procedure calls are handled withCall andir_ResumeValue. The procedure expression and the argument
expressions are evaluated from left to right, with any failure causing the previous expression to be resumed.
After successful evaluatioir, Call invokes the procedure. The return value may be a closure, and is
therefore saved for subsequent call&grtBesumeValue when the procedure needs to be resumed.

The code below outlines what to do for each expresdtgrafter success or failure. Failurelgf and
success OEy are special boundary-condition cases: whgtails, the procedure call fails, and wheég
succeeds the function representeddgynust be called.
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Eo(Es,-..,EN)

call.start . ir_Goto(ir_Label(E[0].start))

call.resume . ir_.ResumeValue(call.val, call.closure, ir_Label(E[N].resume))
Eop.fail . ir_Goto(ir_Label(call.fail))

E; .fail . ir_Goto(ir_Label(E[i-1].resume))

Ej.succeed . ir_Goto(ir_Label(E[i+1].start))

En.succeed . ir_Call(call.closure, E[0].val, [E[1].val, ..., E[N].val], E[N].resume)

ir_Move(call.val, call.closure)
ir_Goto(ir_Label(call.success))

Procedure Return/Suspend/Fail

Procedure return, suspension, and failure are handledmnafthcceed andir_Fail. Because auspend
expression may generate many value§ucceed is given the address at which to resume the expression.
An Iconreturn, which generates only a single value and terminates the called procedure, lacks a resumption
address.

If a suspend is lexically nested within one or more string scanning environments, it is necessary to
restore the appropriate values&gubject and&pos when exiting the environments and when re-entering
them upon resumption. TheScanSwap instructions cooperate to maintain the environments.

suspend E

suspendstart  : ir_Goto(ir_Label(E.start))

suspendresume : ir_Goto(ir_Label(suspend.fail))

suspendrestore : ir_ScanSwap(ir_Tmp(subject), ir_Tmp(pos)) // if necessary
. ir_Goto(ir_Label(E.resume))

E . fall . ir_Goto(ir_Label(suspend.fail))

E.succeed . ir_ScanSwap(ir_-Tmp(subject), ir_Tmp(pos)) // if necessary
. ir_Succeed(E.val, ir_Label(E.resume))

fail
fail .start . ir_.ScanSwap(ir_Tmp(subject), ir_Tmp(pos)) // if necessary
. ir_Fail()
fail.resume : ir_.Unreachable()

Loops

Translating the various Icon looping constructs is straightforward. For instanceyeheE do B loop,

which execute8 for every value generated &y, simply requires that the success and failure por® of
direct execution t&'s resumption port. What complicates loop translation is the possibility of abnormal
loop control viabreak andnext. Both break andnext leave the loop body and either exit the lodygak)

or resume the loop at the beginningekt). Both operations may exit string scanning environments, which
requires re-establishing the hidden values&fsubject and&pos.

Thebreak E statement poses another complication because the value of its expression represents the
value of the enclosing loop. This expression may be a generator. This means that resuming the loop to
generate more values requires resumingotieak expressionkE. Because a loop may contain multiple
breaks, this resumption address cannot be known statically and therefore must be kept in a runtime
temporaryloop.continue.
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every Edo B

every.start . ir_Goto(ir_Label(E.start))
every.resume : ir_Goto(ir_Label(every.continue))
every.next . ir_.Goto(ir_Label(E.resume))
E fail . ir_Goto(ir_Label(every.fail))
E.succeed . ir_Goto(ir_Label(B.start))
B.fail . ir_Goto(ir_Label(E.resume))
B.succeed . ir_.Goto(ir_Label(E.resume))
next

next.start . Escape scanning environment(s) if necessary

. ir_Goto(ir_Label(loop.next))
next.resume . ir.Unreachable()

break E

break.start . Escape scanning environment(s) if necessary

ir_MoveLabel(loop.continue, break.resume)
. ir_Goto(ir_Label(E.start))
break.resume : ir_Goto(ir_Label(E.resume))

E fail . ir_Goto(ir_Label(loop.fail))
E.succeed . irlMove(ir_.Tmp(loop.val), ir_.Tmp(E.val)

ir_Goto(ir_Label(loop.start))

Default Values

Many Icon control constructs have optional clauses; for examplié heas an optionadlse clause. There is
an equivalent default value for every optional clause. The following are equivalent in Icon:

if E1 then E»
if E1 then E; else &fail

A simple transformation pass adds default values to ASTs so that subsequent translation to IR operates on
fully populated ASTs.

Translation of IR to Java Bytecode
Translating Declarations to Bytecode

Translating IR into Java bytecode is straightforward. Each Icon file is translated into many classes, one for
the file as a whole and one or two for each procedureiFfla subclass announcésk, invocable, global,
procedure andrecord declarations to the runtime system. Each Icon procedure is translated into a Java
class that subclasseBrocn (wheren is the number of arguments expected) and defir@allamethod.
Procedures that suspend require an additieGédsure class.

TheiFile subclass is simply a collection of methods that pass declarations to the runtime system.
Consider the following Icon prograrfgo.icn.
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record R(f)
global G
procedure P(a)
write(a, 1, 3.14, "string", 'cset’)
end

This program is translated into #file subclass for the filéoo and avProcl subclass for procedufe The
iFile subclass follows.

class I$foo extends iFile {
public static vVariable v$write$;
public static vReal Ir$3_14 = vReal.New(" 3.14");
public static vinteger li$1 = vinteger.New(" 1");
public static vString Is$1 = vString.New(" string");
public static vString Ic$1 = vCset.New(' cset');

void unresolved() {
iEnv.undeclared(" write");

}

void declare() {
iEnv.declareGlobal(' G");
iEnv.declareProcedure(" P", new p_I$foo$P());
String v ={"f" };
iEnv.declareRecord('R", v);

}

void resolve() {
vwrite$ = iEnv.resolve(' write");
}
}

Theunresolved method informs the runtime system of all the identifiers used in procedure code that are
not locally bound. Methodeclare announces to the runtime system all of the global values in the
corresponding file. Theesolve method queries the runtime system for bindings of the non-local identifiers;
in Icon, identifiers that are not locally defined default to local scope if they are not declared globally. When
the runtime system is handed a list of iRée objects that represent an application, it invokes all of their
unresolved methods, followed by aleclare methods, and finally allesolve methods. These routines
cooperate to declare and resolve global bindings.

Translating Procedures to Bytecode

Procedures are represented by the IR declar&tiBanction. Translation into bytecode requires generating
some simple prologue code as well as translating the executable IR. Each procedure is translated into either
avProc subclass, or a coordinated paindfroc andvClosure subclasses depending on whether or not the
procedure can ever suspend execution, eitheswspend or as a co-expression. In either case, the prologue
is similar. The prologue is responsible for allocating Wh®calVar instances for each parameter and local
variable. Furthermore, the prologue determines which undeclared variables are declared globally. Those
bound globally use the global instance, and undeclared variables default to local instances. Static variables
are allocated during class initialization. The prologue loads references to all variables referenced in a
procedure into JVM local variables for quick access.

If a procedure requires indirect jumps, the prologue also includes a procedurtablmvitch
instruction that maps integers to Java bytecode locations that correspond to IR labels. This is necessary
because Java bytecode does not permit indirect jumps to program locations.
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To make this more concrete, an example translation of two procedures follows. Although Jtran translates
Icon directly into Java bytecode, these translations show equivalent Java source, which is more readable. To
be faithful to the actual bytecode, we have adgetb—a construct absent from Java, but necessary to
represent the actual bytecode control flow. We also use local variables where the generated code uses the
JVM'’s evaluation stack. Note that the use of trampoline routines eliminates direct calls on class methods.

The first example routiné, simply adds 7 to a parameter and returns the result:

procedure Y(x)
return x + 7
end

Because it takes one parameter and includes no indirect jumps or suspensions it is translated directly into
avProcl, with a single-argumer@@all method. ThiLall method dereferences its argument and then
invokes theAdd method with the argumeli$7, which is a static variable that holds thmteger that
represents the literal value 7. Because Jtran’s code generator translates each IR instruction in isolation, it
cannot know that the value being returned is not a variable and, therefore, must assume that it may be a
variable. This conservative assumption meansifeaefLocal must be applied to the return value.

public final class p_I$foo$Y extends vProcl {
vDescriptor Call(vDescriptor arg0) {
vDescriptor tmpl = arg0.Deref();
vDescriptor tmp0 = iTrampoline.Add(' foo.icn”, 2, tmp1, 1$foo.li$7);
if (tmp0 == null) return null;
return tmp0.DerefLocal();
}
}

ProcedureX below suspends every value producedv§$):

procedure X()
suspend Y(3)
end

Suspension requiresv&losure as well as a means to restartiResume method at appropriate points.
Therefore, the code generator emits two classeX farsimplevProcO for the original call and aClosure
that does all the actual work.

The Call method first resolves the referencevtalf it is globally defined, a static variable from tlifile
class holds the variable, but otherwise it is necessary to credtecalVar instance. Next, th€all creates a
vClosure instance that does the appropriate computation iRésume method.

public final class p_I$foo$X extends vProcO {
vDescriptor Call() {

vDescriptor[] vars = new vDescriptor[1];
vDescriptor Y = I$foo.vSY$;
vars[0] = (Y != null) ? Y : vLocalVar.NewLocal(' Y");
c_I$foo$x closure = new c_I$foo$x(vars);
vDescriptor val = closure.Resume();
if (val == null) return null;
closure.retval = val;
return closure;
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Of course, the computation done in tResume method ofX’s vClosure is complicated by the fact that
it must be able to suspend and resume execution at different program points. Suspending execution requires
storing away the values of temporaries, th&@mp andir_TmpLabel values, as well as local variables and
parameters. These values are stored in two artaysArray andtmpVarArray, that are fields of the
vClosure instance. The program location at which tResume method should begin is kept in tiReC
field. After restoring state from the temporary arratesume uses awitch statement to direct execution
to the appropriate program location.

public final class c_I$foo$X extends vClosure {
int PC;
vDescriptor[] tmpArray[];
vDescriptor[] tmpVarArray[];
vDescriptor Resume() {
vDescriptor tmp2 = tmpArray[2];
vDescriptor tmpl1 = tmpArray[1];
vDescriptor tmp0 = tmpArray[0];
vDescriptor Y = tmpVarArray|[0];
switch (PC) {
case 1:
tmp2 =,
tmp2 = tmp2.Deref();
vDescriptor stkO = iTrampoline.Call(" foo.icn”, 5, tmp2, 1$fo0.li$3);
if (stkO == null) return null;
tmpl = stkO;
tmpO = tmp1,;
L87:
PC =2;
tmpArray[2] = tmp2;
tmpArray[1] = tmp1,;
tmpArray[0] = tmpO;
return tmp0.DerefLocal();
case 2:
vDescriptor stk1 = iTrampoline.Resume(" foo.icn", 5, tmp1);
if (stk1 == null) return null;
tmpO = stk1,;
goto L87,
default:
return null;

}

public c_I$foo$X(vDescriptor[] vars) {
tmpVarArray = vars;
PC=1;
tmpArray = new vDescriptor[3];
}
}

Careful examination of the code for proceduxeandY reveals inefficiencies in the generated code.
These inefficiencies all stem from weak analysis and optimization of either the IR or the generated code. For
instance, there are unnecessary copies of temporary values. Furthermore, more temporaries than necessary
exist inX. To make matters worse, no analysis is done to determine which temporaries actually need to be
saved and restored between callkesume—the compiler conservatively stores all of them.
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IR Java Bytecode

ir_Var(name) aload name
ir_Key(name) getstatic name
invokevirtual vDescriptor Call()
ir_IntLit(val) getstatic li$val
ir_RealLit(val) getstatic Ir$val
ir_StrLit(val) getstatic Is$val
ir_CsetLit(val) getstatic Ic$val
ir_Tmp(name) aload name
ir_Label(value) ipush value
ir_ TmpLabel(name) iload name

Table 12: Translating IR Values into Java Bytecode

The following sections give a detailed account of translating each of the IR operators.

Values

Translating the executable IR that represents an Icon procedure’s code is done via simple
macro-expansion—each IR instruction is translated into one or more bytecode instructions. If a procedure
never suspends\éroc suffices for the realization of the procedure’s executable code, but an additional
vClosure is necessary if the procedure must be able to suspend execution to generate a value. If no closure
is needed, then the procedure’s executable code is translated if@altieethod of thevProc. Otherwise,
thevProc’s Call method simply invokes thResume method of asClosure object for this procedure that

does all the work. In either case, the translation is straightforward.

Table 12 gives the simple macro-expansion of each IR operation that represents a value. These operations
get the appropriate value and push it onto the JVM'’s evaluation stack. The compiler translates all literal
values, such ais_ReallLit, into JVM static fields of théFile class for each source file. These static fields are
set during class initialization and then accessed directly during program execution. Runtime values such as
temporaries and non-static variables are accessed as JVM local variables. Static variables are allocated as
vProc static fields. For every Icon keyword there is an associated static field in the runtime system that is
accessed directly in generated code. Labels are translated to simple integers that can be used to index a JVM
switch statement for control flow.

Simple Operations

Table 13 gives the translation for the IR instructions that represent simple operations such as gotos and
moves.

The JVM does not support indirect jumps. To implement the indirect jumps in the Jtran IR, it is necessary
to represent labels as integers, and to use one aititeh dispatching instructions in the Java bytecode to
do the actual control transfer. Thus, if the translation of IR requires an indirect jump, Jtran creates a single
switch construct through which all indirect jumps are directed. Direct jumps are implemented directly as
Java bytecodgotos.

Their_Enterlnit instruction accesses the pdproc static field that guards execution of a procedure’s
initial expression.

Their_Deref andir_MakeList instructions, which dereference values and construct lists, just push their
arguments and call the appropriate runtime system routines.
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IR Java Bytecode

ir_Enterlnit(startLabel) getstatic initialized
ifne startlabel
iconst_1
putstatic initialized
ir_Goto(ir_Tmp(name)) goto name
ir_Goto(ir_TmpLabel(name)) push icTmpLabel(name)
goto switchstatement
ir_.MoveLabel(ir_TmpLabel(name), rhs) push rhs
istore name
ir_.Move(ir_.Tmp(name), rhs) push rhs
astore name
ir_Move(ir_-Var(name), rhs) push rhs
or push Ihs
ir_.Move(ir_Key(name), rhs) swap
invokevirtual vDescriptor Assign()
pop
ir_Deref(lhs, value) push value
invokevirtual vValue Deref()
Move to lhs
ir_,MakeList(lhs, valueList) push value

push valug
invokestatic vDescriptor MakeList(vDescriptor, ...)
Move to |lhs

Table 13: Translating IR Utility Instructions to Java Bytecode

Source-level Operations

Table 14 outlines the translation iofField, ir_.OpFunction, ir_Call, andir_-Resume into Java bytecode.

Each of these operations represents a call on a trampoline routine in the runtime system. Every possible
ir_OpFunction operation is translated into the appropriate trampoline routine; for example, birfangés
theiTrampoline.Add method. Also, each of these operations can fail and therefore represents a conditional
control flow operation. Although not shown in the table, each trampoline also takes file name and line
number arguments for error reporting purposes.

Icon expressions often return values that are never used. When the compiler determines that a result is
unused, it omits thihs field of an IR operation, which signals the code generator to suppress the assignment
code. Similarly, many Icon expressions continue execution at the same location regardless of whether they
succeed or fail. In these situations, the compiler omitddhieabel field of the IR instruction and the code
generator omits the conditional jump.

Procedural Operations

Table 15 gives the translationsiofSucceed andir_Fail into Java bytecode. These operations represent the
mechanisms by which a call to an Icon procedure may return execution to the caller. Failure simply requires
returning anull value. Success, however, requires suspending the current computation by saving the
resumption PC and temporary values from JVM local variables in@lesure for a subsequent call to

Resume.
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IR Java Bytecode

ir_Field(lhs, expr, field, failLabel) push expr
Idc “field”
invokestatic vValue Field(String)
dup
ifnonnull L
pop
goto failLabel
L:
Move to lhs

ir_OpFunction(lhs, op, argList, failLabel) push arg

push argy

invokestatic vDescriptor Operation(vDescriptor, ...)
dup

ifnonnull L

pop

goto failLabel

L:

Move to lhs

ir_Call(lhs, fn, argList, failLabel) push fn
push arg

push argy

invokestatic vDescriptor Call(vDescriptor, ...)
dup

ifnonnull L

pop

goto failLabel

L:

Move to lhs

ir_.ResumeValue(lhs, value, failLabel) push value
invokestatic vDescriptor Resume()
dup
ifnonnull L
pop
goto failLabel
L:
Move to |lhs

Table 14: Translating IR Computation Instructions to Java Bytecode

33



IR

Java Bytecode

ir_Succeed(expr, resumelLabel)

aconst_0

push resumeLabel

putfield PC

save temporaries in this closure

push expr

invokevirtual vDescriptor DerefLocal()
areturn

ir_Fail()

aconst_null
areturn

Table 15: Translating IR Procedure Instructions to Java Bytecode

IR

Java Bytecode

ir_Create(lhs, startLabel)

new vClosure for this procedure
dup

aload_0

getfield vDescriptor[] tmpVarArray
push startLabel

invokespecial <init>

invokestatic void vCoexp.New()
dup

invokevirtual create()

Move to lhs

ir_CoRet(value, resumeLabel)

getstatic iEnv.cur_coexp
push value
invokevirtual coret()
goto resumeLabel

ir_CoFail()

getstatic iEnv.cur_coexp
invokevirtual cofail()
aconst_null // for verifier
areturn

Table 16: Translating IR Co-expression Instructions to Java Bytecode

Co-expression Operations

Table 16 outlines the translation of IR instructions related to co-expressions. Co-expression returns and
failures are little more than calls on runtime system routines. Co-expression creation, however, requires the
creation of a newly cloned instance of the currently executiDigsure.

Miscellaneous

Table 17 includes the translations of the remaining IR instruction into Java bytéc@ieink requires no
translation other than the translation of its instruction lisGcanSwap swaps the values @subject and
&pos with temporary values via a sequence of references and updates.

ir_Unreachable marks unreachable code for which a method return sequence must be generated to
satisfy the JVM code verifier. Execution of anUnreachable instruction signifies a malfunction of the

Jcon implementation.
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IR Java Bytecode

ir_ScanSwap(subject, pos) push &pos
invokevirtual vValue Deref()
push &subject
invokevirtual vValue Deref()
push &subject
aload subjectTemporary
invokevirtual vDescriptor Assign()
pop
push &pos
aload posTemporary
invokevirtual vDescriptor Assign()
pop
astore subjectTemporary
astore posTemporary
ir_Unreachable() ipush 902
invokestatic Error
aconst_null // for verifier
areturn
ir_Chunk(label, insnList) Labeled block of IR

Table 17: Translating Miscellaneous IR Instructions to Java Bytecode

Implementation Status

Jcon is a mostly complete implementation of Icon, omitting only a few features that cannot be written in
Java. Co-expressions, large integers, and pipes are provided, and a preprocessor is included. String
invocation is supported. Tracing, error recovery, and debugging functions are all included, although for
performance reasons they are disabled by default.

The core Icon language is defined Blge Icon Programming Languag]. Jcon follows this
specification closely, implementing all the operators and all the predefined procedurescbxigt
getch(), getche(), andkbhit(). There are a few I/O difference&input does not support random access,
&errout is always unbuffered, and input from a pipe is not available until the process finishes. Keywords
related to memory allocation always produce zeroesgdimae reports wall-clock time instead of CPU
time. All of these differences are related to limitations of Java and affect only a small fraction of Icon
programs.

Dynamic loading differs from the reference implementation. In Version 9 for Unix, C functions are
loaded from a shared library. In Jcon, Java classes are loaded from a Zip archive or Jar file. Both systems
require that the loaded procedures conform to a specified interface. Jcon offers the additional feature of
compiling Icon code into loadable procedures; a running program can generate Icon source code, spawn a
jcont process to compile it, then load and execute the result.

Jcon includes almost all of Icon’s standard graphics facilities as defin€@dphics Programming in
Icon[9]. Line width control, textured drawing, and mutable colors are the most notable exceptions. There
are other minor omissions as well as several differences in system-dependent areas that already vary
between the Unix and Windows implementations of Version 9. Jcon’s minor additions include the ability to
read and write JPEG images and to display more than 256 simultaneous colors under Unix.

Because Java supports the Unicode character set [10], it would seem natural for Jcon to be a
Unicode-based version of Icon. We have not done this because we did not wish to address the many
language issues that would arise as a consequence. Icon is specified in terms of an eight-bit character set and
the many character-set keywords are defined accordingly. Changing these things could invalidate many

35



existing programs, probably in unforseen ways.

However, Jcon would provide a good foundation for a Unicode version of Icon. Changing Jcon to use
16-bit characters would be relatively straightforward. The most interesting implementation challenge would
be deciding how to implement csets: Simply extending the current 256-bit vectors to 65536-bit vectors
might not be the best approach.

Performance

Programs built by Jcon are slower than those built by Version 9 of Icon. Startup delays are significant, and
execution is slower. These differences are attributed to the Java language and the quality of currently
available Java implementations.

When measuring Jcon’s performance, we select the Jtran compiler option that makes direct runtime calls
instead of using trampolines. This gives faster execution by disabling a few diagnostic features such as
tracing and detailed error messages, but it does not otherwise affect program semantics.

Startup Costs

Java systems typically impose a noticeable delay when starting up any Java program. This is due partly to
the design of the Java language, which specifies on-demand loading and initialization as classes are
referenced. Just-in-time compilers can add additional front-end costs that are not always regained through
faster execution.

Some figures from a Sun system illustrate this startup cost. A minimal “hello world” program executes in
a barely measurable 0.01 seconds when written in C. Version 9 executes the equivalent Icon program in 0.03
seconds. But a “hello world” program written in Java takes 1.15 seconds to execute, and the Icon version
takes 1.22 seconds when built by Jcon.

Execution Speed

Current Java implementations run a typical Icon program at one half to one fourth the speed of Version 9 of
Icon. The slowdown factor varies with both the Icon program and the Java platform; the same program may
run quickly on one Java platform and slowly on another.

Table 18 shows execution times for the standard Icon benchmarks and for three additional long-running
applications. Each time has been normalized relative to a Version 9 execution time of 1.0. The benchmark
programs are as follows:

concord  produces a text concordance (a word index)

deal deals bridge hands

ipxref cross-references Icon programs

queens places non-attacking queens on a chessboard
rsg generates random sentences

tgrlink optimizes vectors for drawing street maps
geddump formats and prints a genealogical data base
jtran translates Icon into Java class files

The final cluster on the chart displays the geometric means of the other benchmarks.

The standard benchmark programs were taken from Icon version 9.3.1 and run unmodified, but to prevent
startup costs from dominating, some data files and command options were changed to make them run longer.
Each program was run both by Jcon and by the reference implementation, and user time was recorded.

All the Java systems tested incorporate just-in-time (JIT) compilers; three data values are missing
because of bugs in one JIT compiler. All programs were run with default memory allocation settings except
for geddump, which required an increased Java memory pool to complete.
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8 - Il Sun Solaris 5.6, JDK 1.2.1
[ Digital Unix 4.0D, Fast VM b3
[ SGlI Irix 6.5, Java3.1.1
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Jcon’s Slowdown Relative to Icon 9.3.1

concord  ded ipxref  queens rsg tgrlink geddump  jtran gmean

Table 18: Execution Time relative to lcon 9.3.1

Analysis

Version 9 of Icon presents a challenging baseline for evaluating Jcon’s speed. It is written in C and has been
carefully honed by several programmers over a span of many years. The better it performs, the harder it is
for Jcon to look good.

We spent a significant amount of time working to improve the performance of the Jcon system, and we
are not aware of any more opportunities for large improvement within the current framework. Although we
are comfortable with the results, it should be noted that not all possible optimizations have been applied.

There are still many places where small additions to the runtime system could yield measurable gains for
at least some programs. For example, most generators in the runtime library pradtiosae on every
resumption even whenwa/alue result would be slightly more efficient. A few predefined procedures such
asput() are specialized with extr@all methods to handle common cases more efficiently; others such as
right() could benefit from similar code.

Performance tuning was sometimes frustrating. We used profiling to identify costly operations and
altered the code or the data structures when this could be done without adding undue complication. This
usually worked well, but sometimes we would make a local improvement only to find an overall slowdown
due to increased execution time in unrelated areas. One can postulate plausible reasons such as cache effects
or asynchronous garbage collection, but we did not find a truly satisfying explanation.

Hot spots revealed by program profiling are not always due to weak areas of the language
implementation; more often they are characteristic of the program being examined. The hot spots of the
benchmark programs show a wide variety:
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Program Peak Expression
concord 27% tab(many(&digits))
deal 51% every!s:=: ?s
ipxref 32% sl==s2

queens 39% L[i] used as value
rsg 35% LJ||L

tgrlink 19% right(i, )
geddump 8% R.f

The “Peak” column gives the percentage of execution time attributable to the most active lcon expression
when run by Jcon on an SGI system. Some of these expressions are more expensive than others, but analysis
of the programs shows that they dominate the profiles mainly because of the number of times they are
performed. The presence of program hot spots is another reason to mistrust benchmarks as representative of
overall system performance; but at least these seven cases are reasonably dissimilar.

The performance of a Jcon-built program, or any Java program, depends heavily on the quality of the
underlying Java system. We have seen significant speedups over a span of just one year as vendors released
new and better Java implementations. These improvements have not come risk-free: As the systems grow
faster and more complex, the incidence of bugs seems to be increasing. Jcon is perhaps especially prone to
exposing bugs because it generates some legal code patterns that are never seen as the output of a Java
compiler. Still, the performance trend is encouraging, and we look forward to further improvements.

Java as a Language Platform

For some programming tasks, object-oriented programming is mildly useful or perhaps just irrelevant.
Without the right challenge, new Java programmers may wonder what all the fuss is about. That is not the
case here. We found that object-oriented programming made a truly spectacular difference to the Jcon
runtime system. The leverage provided by method inheritance and overloading made the programming
much easier and faster. It also allowed a truly elegant solution to the handling of suspended generators that
adds no cost to the normal case.

Java’s automatic memory management was also a great benefit. It allowed Jcon to dispense with all the
memory management and garbage collection code that complicates the runtime system of the reference
implementation. As we are long-time lcon programmers, this was no surprise, for Icon also provides
automatic garbage collection.

A quantitative measure of the difference is available. The Jcon runtime system comprises 18,000 lines of
Java code. The corresponding portion of the reference implementation, counting only the code used under
Unix, is over 50,000 lines of C code. Although there are other, minor factors, the increased power of Java
accounts for the overwhelming majority of this difference.

Application packaging is an issue that has not been well addressed by Java implementations. There is no
standard way to compile a Java program into a self-contained executable that can be treated just like a Unix
a.out file. Java applications are often distributed as packages of several files directed by a shell script; the
javac compiler is a typical example. However, Icon programmers expect an lcon compiler to produce a
single, self-contained executable file.

Our solution was to make Jcon bundle a script with the generated class files in a single output file. This
file looks superficially like a Korn shell script and is just as easily executed. When run, though, the script
extracts an archive of Java class files from the back of its own file and then calls Java to execute that. This is
not an ideal solution, but it does provide a self-contained executable that can be copied or renamed without
special consideration. Jcon also provides an option to generate a standard Java archive instead.

In working on several Java-based projects we have been pleasantly surprised at the overall reliability and
robustness of the early Java implementations. We encountered no show-stopping bugs despite the relative
immaturity of these Java systems. Recently, though, we have seen a disturbing trend: two of the new
just-in-time compilers exhibit segmentation faults and other catastrophic failures when running
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Jcon-generated code. It may be that simple and straightforward interpreters are giving way to complex and
aggressive compilers that make assumptions that only hold for code generated by the vendor’s own Java
compiler. This is clearly wrong, according to the Java virtual machine specification[7], and we hope that it
will not persist.

Overall, we found Java to be a good platform for re-implementing Icon. Java has already established
itself as a mainstream language that is widely available. Its object-oriented features and automatic memory
management led to a much simpler implementation. As the technology matures we expect to see further
performance improvements.

Java Bytecode as a Target Language

Java bytecode is designed as a target for the Java source language. As such, it omits features that cannot be
expressed in Java source. Two omitted features would have been useful for generating more efficient code
from Icon sources: static method references and reference arithmetic.

A static method reference captures a reference to a method as a value; the use of such references is a
standard high-level programming technique. Java, and Java bytecode, do not allow a method reference to be
captured; therefore, to parameterize a value by the functioning of a particular method, it is necessary to
create a new class that overrides the method behavior. Although this works, it comes at the cost of creating
an entirely new class for what may be a single instance. In the Jcon implementation, this happens with
subclasses ofProcn that differ only in the code of theitall methods, and similarly for subclasses of
vClosure. For each new subclass, standard Java compilation techniques build a complete virtual method
dispatch table that consists of pointers to every virtual method-vBescriptor subclasses, this is over 100
pointers. Often the new method is much smaller than the additional virtual table. With static method
references, it would be possible to parameterize instances of a single subclass so that virtual tables could be
shared.

Java enforces the integrity of references—it is illegal to do arithmetic on an object reference.
Unfortunately, this means that it is impossible to craatgedintegers that share storage space with object
references. Tagged integers, which contain bit patterns that are invalid as references, can record small values
without allocating any memory. Although there are obvious dangers associated with tagged integers, their
use can greatly speed up arithmetic-intensive applications.

Related Work

Compilation Techniques

Independently, Byrd, and Finkel and Solomon developed a four-port model for describing control flow

[5, 11, 12]. Byrd used the four-port box to describe Prolog control flow, but it is not clear whether it was for
translation purposes or for debugging purposes [5]. It appears that Byrd used the boxes to model control
flow between calls within a single clause, but not to model the flow of control between clauses within a
procedure, nor to model the control flow in and out of a procedure. Finkel and Solomon used their four-port
scheme to describe power loops. Power loops backtrack and thus the start/succeed/resume/fail model
describes their behavior well. Unlike Prolog, however, power loops cannot be described by a simple
sequential connection of four-port boxes. In neither case was the idea of four-ports generalized into a
mechanism for describing how four pieces of code might be generated and stitched together for various
operators in a goal-directed language.

The reference Icon translation system, which translates Icon into a bytecode for interpretation, controls
goal-directed evaluation by maintaining a stackjeheratorframes that indicate, among other things, what
action should be taken upon failure [4, 13]. Special bytecodes act to manipulate this stack—by pushing,
popping or modifying generator frames—to achieve the desired goal-directed behavior. Icon’s reference
implementation is an interpreter that consumes bytecode for the Icon Virtual Machine. The Icon VM is stack
based and relies on generator frames to control goal-directed evaluation. Jcon’s IR is based on explicit
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temporaries, which allows for the generation of more efficient code for accessing temporary values. Also,
Jcon’s avoidance of generator frames provides a more direct realization of goal-directed evaluation. The
four-port scheme requires nothing more powerful than conditional, direct, and indirect jumps.

O’Bagy and Griswold developed a technique for translating Icon that utilezessive interpreter§l4].

The basic idea behind recursive interpreters for goal-directed evaluation is that each generator that produces
a value does so by recursively invoking the interpreter. Doing so presewasandsthe generator’s state

for possible resumption when the just-invoked interpreter returns. A recursively invoked interpreter’s return
value indicates whether the suspended generator should resume or fail. O’'Bagy’s interpreter executes the
same bytecode as the original Icon interpreter. Jcon useSlitsure mechanism for suspending generators.

Gudeman developed a goal-directed evaluation mechanism thatarg@siation-passintp direct
control flow [15]. Different continuations for failure and success are maintained for each generator.

Although continuations can be compiled into efficient code, they are notoriously difficult to understand, and
few target languages directly support them.

Walker created an Icon-to-C compiler that used the reference compiler’s runtime system [16]. By doing
extensive type inference on Icon source programs, the compiler generates programs that avoid unnecessary
type checks and type conversions. These optimizations can significantly increase the speed of an Icon
program.

Runtime System

The runtime system of Icon’s reference implementation is structured differently than Jcon’s [4]. Where
Jcon’s runtime is object-oriented, relying heavily on dynamic method dispatch to bind operations to objects
of a particular type, the reference implementation takes an operation-centric approach in C. Each operation
such as indexing is conceptually implemented via a single function. This function explicitly checks the
dynamic types of its arguments and does necessary coercions and then proceeds with the action appropriate
for the given types. This checking and coercion code contributes a redundancy absent in Jcon’s
object-oriented implementation.

The SNOBOL4 implementation employs “trapped variables” for variables which, when read or written,
execute code for side effects. Hanson elevated trapped variables to source-level constructs for programmer
manipulation [17]. The reference Icon implementation uses a similar construct for implementing many
keywords [4]. Jcon’s use afVariable subclasses for similar purposes generalizes this technique.

Other Java Virtual Machine Targets

Creating JVM-based implementations of non-Java languages is becoming quite popular. Many
implementations of well-known languages have targeted the JVM, including Scheme, ML, Ada 95,
COBOL, and Pascal. [18].

Meehan and Joy targeted the JVM from the lazy functional language, Ginger [19]. Through a clever use
of Java'sreflectionmechanisms, they were able to simulate static method references, which allowed them to
avoid creating a new class for every new function they wished to add to their system. Unlike Jcon, this
system did not create its own class hierarchy for all of its data types, but rather used Java’s types such as
java.lang.Integer wherever possible. This has the advantage of re-use, but suffers from the need to do type
discrimination via explicit type tests rather than via the efficient method invocation mechanism that Jcon
uses.

Conclusion
Jcon represents a novel new implementation of the Icon programming language. The compiler utilizes a

simple and efficient four-chunk mechanism for controlling goal-directed evaluation. The runtime system
employs an object-oriented architecture for handling Icon’s dynamic typing. This new runtime system
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architecture has resulted in a cleaner and significantly smaller implementation than previous technigues.
Furthermore, the object-oriented architecture is applicable to any dynamically typed language
implementation such as LISP or Perl.

Availability

Jcon is freely available fromttp://www.cs.arizona.edu/icon/jcon/. Its documentation is viewable on-line,
including the complete list of differences with respect to Version 9 of Icon.
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