
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 23(4), 351–367 (APRIL 1993)

The Design and Implementation of Dynamic
Hashing for Sets and Tables in Icon

william g. griswold
Department of Computer Science & Engineering, 0114, University of California, San

Diego, La Jolla, CA 92093-0114, U.S.A.

and

gregg m. townsend
Department of Computer Science, The University of Arizona, Tucson, AZ 85721, U.S.A.

SUMMARY

Two key features in the Icon programming language are tables and sets. An Icon program may
use one large set or table, or thousands of small ones. To improve space and time performance
for these diverse uses, their hashed data structures were reimplemented to dynamically resize
during execution, reducing the minimum space requirement and achieving constant-time access
to any element for virtually any size set or table. The implementation is adapted from Per-Åke
Larson’s dynamic hashing technique by using well-known base-2 arithmetic techniques to decrease
the space required for small tables without degrading the performance of large tables. Also
presented are techniques to prevent dynamic hashing from interfering with other Icon language
features. Performance measurements are included to support the results.

key words: Hashing Programming languages Run-time systems

INTRODUCTION

Two powerful features in the Icon programming language1 are tables—otherwise
known as associative arrays—and sets. These are basic data types in the language
and are implemented using hash tables.

The original implementation of tables and sets used a traditional hashing scheme
with a fixed number of slots, so that all elements hashing to the same slot resided
on a linked list at the slot.2 Fixing the number of slots meant that a large table had
long collision chains, slowing insertions and deletions toO(n) for a table of
n elements.* In fact, a few data-intensive applications ran slowly due to poor
table performance.

Improving table performance by reconfiguring Icon with a larger slot array is not
a reasonable solution. For one thing, applications using many small tables or sets
are not uncommon in Icon, and these would waste considerable space if the array

* In the following, a table typically means a hash table representation, as opposed to the Icon table abstraction. When
the distinction is important, the kind is stated explicitly.

0038–0644/93/040361–17$13.50 Received 6 March 1992
 1993 by John Wiley & Sons, Ltd. Revised 16 October 1992

352 w. g. griswold and g. m. townsend

were enlarged. In fact, owing to memory constraints, on platforms like PCs the slot
array is already smaller than on other platforms. No static allocation method can
address a wide enough variety of usage patterns.

Providing a size hint as an additional parameter to the table and set creation
functions is not satisfactory, either. Hints to improve performance violate the spirit of
Icon, and many Icon programmers are researchers in the humanities—not experienced
programmers—who wish to handle large data sets without worrying about perform-
ance issues. Also, effective use of a size parameter requires advance know-
ledge of the ultimate table size, which may not be available in advance—for example,
if the table is filled from an input stream.

An alternative is a table representation that adapts to the input to improve
performance. Dynamic hashing is a technique that increases or decreases the number
of slots in a hash table in proportion to the number of elements in the table. By
ensuring that the number of slots and the number of elements are related by a
constant factor—and assuming an even element distribution—insertions and look-ups
can be performed in constant expected-time, as long as the cost of expansion is
kept low. Although the high cost of address calculations traditionally limited the use
of dynamic hashing to accessing external files, such as in database applications, Per-
Åke Larson’s adaptation of linear dynamic hashing3 makes it practical for general-
purpose applications.4

Larson’s approach, unmodified, is expensive for applications using many small
tables, because the expansion technique requires a large initial table size to efficiently
support large tables. Adapting Larsons’s technique by exploiting well-known arithme-
tic properties of powers of 2 and base-2 logarithms yields a relatively simple solution
to the space problem. As a consequence, however, constant expected-time expansion
of hash tables was sacrificed in favor of amortized constant-time expansion. This is
acceptable for the typical Icon application.

In addition to improving performance, a design was needed that fit well with
Icon’s other powerful language features. In particular, self-reorganizing tables have
to coexist with code that can be part-way through an iteration of a table’s elements
at the time of an insertion or deletion. The adaptation of Larson’s technique was
further modified to handle this interaction.

Common Lisp has a hash table data type (Reference5, pp. 435–441) with features
quite similar to Icon’s table type, and faces similar design problems. The techniques
presented below can apply to a Common Lisp implementation as well.

HASHED STRUCTURES IN ICON

Sets and tables are two built-in datatypes in Icon. They are implemented similarly,
both using hash tables and sharing much code.

A set is an unordered collection of values of any type. Set operations include
insertion, deletion, membership testing, union, intersection, and difference.

A table is an associative array, and in Icon any data type can be used for either
the key or the value of any entry. Insertion is accomplished by assigning a value
to T[key]; reference to an unassigned key returns a default value, but does not create
a table entry. Elements may also be deleted.

Icon provides generators that produce sequences of values. IfS is a set, !S
produces the elements of the set one at a time. IfT is a table, !T produces the

353dynamic hashing in icon

values of the table entries, and the generator functionkey(T) produces the keys.
Several generators can be simultaneously active, and, when using a generalized form
of coroutines called coexpressions, the generators need not start and finish in
nested fashion.

As an example of the utility of tables in Icon, consider the following function
countwords, which counts the number occurrences of each word in a file:

Count the number of occurrences of the words retrieved by nextword
procedure countwords()
local word, count # local variables

count := table(0) # allocate a table, default 0
every word := nextword() do # for each word%

count[word] +:= 1 # add 1 to the word’s entry

write(“Word Counts:”)
every word := key(count) do # for each word in the table%

write(word, “: ”, count[word]) # write it out with its count
end

The first statement allocates a tablecount in which each new entry has a default
initial value of 0. The first iteratorevery, which in its simplest form operates like
a Pascal for or while loop, retrieves successive words withnextword(), defined
elsewhere in the program. The body of theevery looks up the entry for the value
of word in count, which contains the number of occurrences of the value ofword,
and adds 1 to it. Afternextword() produces all of its values, the second loop is
entered, which iterates through the keys of the tablecount using key(). The loop
body retrieves the word’s number of occurrences fromcount and prints it out with
the word.

STATIC HASHING

As shown in the above example, a table stores a value that can be retrieved by a
key that is not necessarily an integer. This key, logically, is the ‘location’ of the
value. Associative look-up like this can be implemented with a static hashing algo-
rithm (Reference6, pp. 506–549). For an open hash table, the data structure for
holding values is a linear arrayT of size n, indexed by integers from 0 ton−1.
Each element of the array, referred to as aslot, is a linked list of pairs (key, value).
To look up a value associated with a key inT, the key is converted into ahash
numberwith a functionh, which in turn is mapped into a slot number, that isslot =
s(key) = h(key) mod n. Then the linked list at the slot,T [slot], is retrieved, the
linked list is traversed until an element matching the key is found, and the value
stored with the key is returned.

Figure 1shows a hash table of seven slots containing three elements. The top half
of each element contains the key; the bottom contains the associated value. The slot
computation function iss(k) = k mod 7. For example, the second element on the
first chain as key21 with string value“b” . Its slot is computed ass(21) = 21 mod
7 = 0.

354 w. g. griswold and g. m. townsend

Figure 1. A small static hash table

If two conditions hold, a hash table supports constant expected-time element
access: the elements must be relatively evenly distributed among the slots, and the
number of slots must vary in direct proportion to the number of elements. Together
these ensure that the average length of a slot’s linked list remains constant, even as
the number of elements grows. Guaranteeing short hash chains without wasting space
is the focus of this paper.

An even element distribution over then slots is achieved by applying an inexpen-
sive hashing functionh to key values. Constructing a goodh is not trivial, but
guidelines together with experimentation can lead to good results. A simple but
adequate function ish(k) = k mod M, whereM is prime (Reference6, pp. 508–509),
so that the resulting slot computation iss(k) = (k mod M) mod n. To avoid performing
a modulo for both even distribution and slot computation, the number of slots in
the table,n, can be chosen as a prime, so that the slot computation can subsume
the scrambling property ofh(k). The parametern need not be especially large; in
Icon’s original implementation of hash tables2 n was 37 for platforms with large
amounts of memory and 19 for those without. For hashing integers,h(k) = k had
proven sufficient. For hashing strings,h(s) = Σsi where si denotes the integer value
of characteri, is easy to implement, portable and provides a passable distribution.
However, because it is too slow for long strings, the hashing function in Icon
sampled only the first ten characters of a string, and then added in the length of
the string to distinguish strings with identical prefixes.

Icon’s implementation of hash tables included two further optimizations. The hash
value h(k) was stored with the key, and elements were inserted in hash-value order.
The first allowed the search of a hash chain to compare the hash values before
comparing the keys, because comparing keys can be expensive in certain cases, such
as long strings. Of course, when two hashed keys matched, the actual keys still had
to be compared to test for an exact match. Keeping the chains ordered by hash
value allowed the search to quit after finding a hashed key larger than the look-up
hash key, with the knowledge that the rest of the chain contained keys greater than
the look-up key. This ordering cut the number of keys examined in half, on average.

LARSON’S ALGORITHM

Given a good hashing function, preserving constant-time access to elements requires
keeping hash chains short. Keeping chains short without wasting space requires
adjusting the number of slots as the number of elements changes.

355dynamic hashing in icon

Hash table expansion can be supported with dynamic arrays. A dynamic array2

can be implemented as a list of pointers, called thesegment list, to pieces of the
array, calledsegments.4 A dynamic array is created with one segment that is the
length of the initial array,m, pointed to by the first pointer in the segment list. If
the segment list isL, then elementk in the list is accessed asL [k div m] [k mod
m], where the constantm is the size of each segment. When the array needs to be
grown, a new segment of sizem is allocated and the next segment pointer in the
segment list is updated to point to it, as shown inFigure 2.

The price of this technique’s flexibility is a more complex address calculation. The
fixed-length segment table makes list addressing less expensive than a linked-list
approach, but has the disadvantage that the number of elements in the list is bounded
by the size of the segment table. Bounded array size, however, is not a serious
problem for an open hash table, because it expands only to improve performance.

Figure 2. A dynamic hash table before (a) and after (b) expansion

356 w. g. griswold and g. m. townsend

When the average hash chain length, called theload factor, exceeds a threshold—
a typical choice is 5—a slot must be added to the end of the hash table and some
elements moved into it. Using dynamic arrays, a new slot is found in the first
unused slot in the last allocated segment. If all the slots are in use, a new segment
must be added. When the slot is added, some elements in other slots must be moved
into this new slot. Naı¨vely, every element could be rehashed byh(k) mod (n+1),
but this could change the slot of every element in the table, hurting performance.

Larson’s approach requires moving elements from only one slot—thebuddy slot—
to the new slot, but then some look-ups require computingtwo slot values instead
of one. This minimization of slot reassignment is accomplished by treating the table
as though it is beingdoubled in size to 2n, not just increased by one slot.

First, for simplicity, suppose that a table’s size is always kept as a power of 2,
n = 2i. Doubling a hash table, then, changes the slot computation function fromh(k)
mod 2i to h(k) mod 2i+1. How do the elements move in such a doubling? For a power
of 2, the modulo operation can be implemented as a bit-mask operation:h(k) & (2i −1).
The number 2i −1 is called thehash-mask. When doubling to 2i+1, then, an additional
bit of h(k), bit i, is included in the slot number. However, before beginning a doubling
expansion phase, allh(k) with the first i−1 bits identical are already in a single slot,
s(k) = h(k) mod 2i. When slot s(k)+2i is added, all those elements ins(k) that have
bit i set in h(k) are moved to the newly added slot.

Now consider how look-ups are performed when a table is expanded only one
slot at a time. To support incremental expansion, a hash table must storetwo size
numbers, the number of currently active slots,n, and the maximum number of slots
available in the currently active segments,maxn= 2i. In recognition of the fact that
the expansion of a single slot is part of a doubling phase, the slot number function
s(k) = h(k) mod maxn is used. However, it is necessary to examines(k)’s result on
each look-up, and determine if slots(k) exists yet, that is, ifs(k) # n. If so, it is
accessed. If not, its buddy slots(k)−maxn/2 must not have been split yet, so the
look-up proceeds there. For example, inFigure 2(b), a look-up with the key 6 first
producess(6) = 6. However, this is greater thann = 5, so the alternative formula is
applied, producings(6) = 2, where the key is located.

Larson’s technique supports contraction as well as expansion, so it does not waste
space if elements are deleted from a table. When the average chain length drops
under a threshold, say 3, then the last used slot of the last segment can be removed,
placing its linked list of elements in its buddy slot. When all the slots in the
uppermost segment have been removed, the segment can be removed from the
segment list.

Choosing a hash table’s size to be 2i violates the assumption thatmaxn is prime-
like, and so slot computation is not likely to produce an even hash number
distribution. To compensate,h(k) must be more sophisticated. Larson uses the
division-based functionh = ck mod M, where c is a constant andM a large prime.

Larson used
314,159 forc and 1,048,583 forM.

The advantages of Larson’s dynamic hashing approach are its relative simplicity
and good performance.4 The method is a simple extension of the static hashing
technique, depending on a straightforward implementation of dynamic arrays.
Exploiting the special properties of addressing a table growing in powers of 2 allows
inexpensive movement of elements and readdressing. Because only a single slot is

357dynamic hashing in icon

created when the load factor goes over the threshold, and only one slot has to be
split, an expansion’s cost is constant expected-time, and so the asymptotic cost of
the insertion that triggered the expansion is still constant.* Constant expected-time
insertion can be useful, for example, in highly interactive and animated applications.
The extra cost of address calculation is minimal, especially in comparison to the
savings from keeping collision chains short. Any performance loss, then, is noticeable
only on tables with few elements, and is not significant. A drawback of this technique
is that the segment table must be linear in size with respect to themaximumefficient
table size, because segments are a fixed size. To be robust, then, a table abstraction
implemented with fixed-size segments must have a comparatively large segment table.

Further discussion, theoretical analysis, and code for implementing the algorithm
are presented in the original paper.4

MODIFICATIONS TO LARSON’S ALGORITHM

The basic ideas of dynamic hashing are simple and efficient, but making them fit
the diverse needs of Icon programmers required several changes to the algorithm.

Segment expansion

In Larson’s algorithm, each segment of slots is the same size. With such an
approach a table of 256 segments of 256 slots can manage about 300,000 elements
without performance degradation, assuming 5 as the load factor threshold. A newly
created table requires a little over 512 words—2048 bytes—of space to accommodate
the segment table and initial segment.

In the new algorithm, to overcome these large space requirements, each new
segment doubles the number of slots in the table, as shown inFigure 3. This
doubling behavior avoids a large segment list without sacrificing expandability.
Suppose Icon’s segment list contains 13 elements, and segments start at a length of
24. Then the last segment holds 215 slots, adding up to 216 slots in total. Consequently,
the minimal Icon table for these parameters requires only a little over 116 bytes of
storage to accommodate the segment table and initial segment, but can efficiently
manage the same number of elements as Larson’s configuration. The disparity grows
for larger configuration parameters.

As described earlier, an elementk in a dynamic arrayL is accessed byL [k div
m] [k mod m], where each segment is of sizem. This formula must be modified

Figure 3. Each segment allocation doubles the number of slots

* Absolute constant-time expansion requires a hash function that guarantees evenly distributing elements among the
slots. In theory, even distribution is not feasible unless the distribution of the keys is known beforehand (Reference6,
pp. 506–507).

358 w. g. griswold and g. m. townsend

for use with slot-doubling segments, sincem is not fixed. Intuitively, with segments
growing in powers of 2, the base-2 logarithm ofk yields the segment number, and
the index into the segment is found by subtracting the number of slots below the
chosen segment fromk. However, the initial segment size is not 20, but a larger
power of 2, complicating the addressing slightly. Suppose segments are of size
m0 = 23, m1 = 23, m2 = 24,%, mr = 2r+2. This progression is called three-rooted, since
it starts with 23. To make the progression appear zero-rooted, each term is divided
by m0, yielding m0 = 1, m1 = 1, m2 = 2,%,mr = 2r−1. In the implementation, then, the
progression is normalized by dividingk by m0 before taking its logarithm. Note also
in these progressions that the number of slots below segmentseg is the number of
slots in that segment,mseg, except for segment 0, which has 0 preceding slots.

The slot access function, then, isL [seg] [k−m9
seg], where

seg = L1+log2(k div m0)¥, treating log20 as −1 (1)

m9
seg = mseg for seg . 0, and 0 forseg = 0 (2)

Since there are relatively few segments, the valuem9
seg can be represented as a

small fixed array indexed byseg. The segment calculation also uses an array look-
up, indexed byk. Together the two arrays avoid the potentially expensive power
and logarithm calculations, and avoid treatingk = 0 as a special case. Also, since
m0 is a fixed power of 2, the operationk div m0 is cheaply implemented as a right
shift of k by log2m0.*

When the slots are doubled, all the corresponding elements are moved to the new
hash chains at that time, in contrast to Larson’s incremental approach. Eliminating
incremental expansion simplifies the slot number calculation as well as other aspects
of the implementation, described in the next section. Although the performance
benefit is small, the benefit of maintaining simpler code is expected to be considerable
in the long term.

Performing the entire doubling and moving all elements necessary at once means
that the time required for a slot expansion is linear in the size of the table, rather
than constant expected-time. Of course, theamortizedcost remains the same. Practi-
cally speaking, foregoing incremental expansion can cause perceivable pauses in
execution of an interactive program. However, Icon has a stop-and-copy garbage
collector2 that pauses execution longer than any table expansion because it copies a
large portion of the heap, not just the chain pointers of one table.

Segment contraction

To simplify the implementation, particularly in the area of element generation,
sparse hash tables never contract. The typical usage of sets and tables in Icon would
make contraction a rare occurrence.† In particular, thedelete operation is not
frequently used, and set operations such as intersection create a new set rather than
modifying an argument.

* With a little mathematics, it can be shown that log2 (k div m0) ; log2k−log2m0. Because the divide is implemented
as a shift, there is no performance benefit from this latter form. Also, the look-up table for[log2k¥ is a factor of 2m0

larger than the table for[log2(k div m0)¥.
† The sieve program discussed in the performance measurements provides a counterexample.

359dynamic hashing in icon

Hashing

To avoid an expensive modulo operation, integer hashing uses the multiplicative
method of hashing, taking a multiple of the golden mean as the multiplier (Reference
6, pp. 509–511): h(k) = [13,255k div 1024¥, where the integer division is
implemented by a right shift. String hashing, to improve distribution, uses a simple
extension of Larson’s division-based approach, multiplying each partial sum in Icon’s
original string sum by a constant. Hash functions for the other Icon types are similar
to the functions used for integers and strings.

CHANGES TO ICON’S IMPLEMENTATION

Changes to set and table operations

Because dynamic hashing adds a level of indirection for accessing slots, the
methods used to chain through sets and tables changed. In operations requiring
access to all the elements in a hash table, such ascopy, a level of looping was
added to index through the dynamically added segments to access all the slots. In
the set operations union, difference and intersection, basic assumptions changed. For
example, to perform set intersection with static hashing, individual corresponding
collision chains were intersected. Slot-wise intersection worked because the number
of slots never changed, so an element appearing in two sets necessarily resided on
the same collision chain in each. With the new algorithm, the slots of two sets do
not necessarily have a one-to-one correspondence, requiring that the set operations
compute an element’s slot address for each set to find overlapping values. This
generalization was expected to incur a performance penalty, but in fact the operations
are not perceptibly slower. It is possible that the extra cost of recomputing the slot
address is mitigated by the shorter hash-chains realized by the new algorithm, but
this hypothesis is untested.

Reorganization and element generation

The biggest changes to support dynamic hashing are in the generator operations!
S, !T, and key(T). These generators are implemented by traversing, in order, each
slot of each segment and passing back each element in turn. Between elements,
when the caller’s code is in control, insertions can cause the table to be expanded
one or more times.

A naı̈ve traversal algorithm could generate a set or table elements more than once
due to its movement during an expansion, which is not desirable. With the solution
described below, any element that exists throughout the generator’s lifetime is
produced exactly once regardless of any expansions; elements inserted during gener-
ation may or may not be produced depending on when they are inserted and in
what slot they happen to land. In the following, only elements that exist throughout
the generator’s lifetime are considered.

The boundary between the generated and not-yet-generated elements after an
expansion is called asplit-point, and the slot containing the last generated element
a split-slot. Figure 4(a)shows a table in the process of being generated. It has one
segment, which is depicted as a rectangular box; its length represents the segment

360 w. g. griswold and g. m. townsend

Figure 4. Repeated splitting creates many regions of visited and unvisited elements

length, and its height represents the current load factor. The visited elements in the
left-to-right scan of the slots are indicated by the gray region, and unvisited elements
by the white region. If the table were to be split in this state, the split-point would
be indicated by the horizontal line delimiting the gray and white regions, and the
split-slot, s, would be the slot containing the split-point.

After an expansion, a table has some new slots, and they are contained in one or
more new segments. First, consider the situation in which exactly one expansion
occurs between the generation of two elements, and no other expansion has occurred
while this generator was active. Given that a new slotr in a table of size 2i+1

contains elements only from its buddy slot,r−2i, there are the following cases:

1. A new slot whose buddy is before the split-slot contains only elements that
were generated before the expansion.

2. A new slot whose buddy slot is the split-slot can contain some elements that
have already been generated and some that have not. This new slot is called
the expansion split-slotfor the new segment. The visited elements must all
reside at the front of the element-chain, because the elements are kept in the
same relative order as before the split. The boundary between the visited and
unvisited elements is theexpansion split-point. When the distinction between
the type of the split-slot or split-point is clear, the modifier is omitted.

3. A new slot whose buddy slot is beyond the split-slot contains only elements
that have not been visited.

After the split, then, the visited and unvisited slots are broken into four contiguous
groups, the visited and unvisited portions of the old and new segments, as shown
in Figure 4(b). Thus, for the case of a single expansion, all new slots before the
split-slot need not be visited, and generation of the new segment can begin at its
split-slot.

More generally, several expansions may occur during the lifetime of a generator,
and there may be several split-slots. In the same way that a single expansion
distributes visited and unvisited elements in two pairs, a second expansion produces
elements in four pairs, doubling the two in the lower half of the table. Where before
there was a single expansion split-point for the first split-point, there are now three:
at s+2i, s+2×2i, and s+3×2i. Each of these marks the previouss slots as fully
generated, wheres is the slot-number of the original split-slot. These regions are
called theshadowsof the split-slot. The second expansion creates its own new split-

361dynamic hashing in icon

point and expansion split-point as well.Figure 4(c) shows the elements visited
between the two expansions in light gray. The new split-point is guaranteed to be
at or beyond the previous split-point since the generation proceeds from left-to-right.
The newest segment, though, now contains discontiguous sections of unvisited
elements. Each slot, then, needs to be checked for the presence of a split-point or
shadowing by one.

Skipping visited elements is aided by saving some state information at the time
of an expansion. A generator’s state variables include pointers to the current element
and the underlying table; the segment number and slot number of the element; and
the table’s hash-mask, which implicitly gives the total number of slots. Also included,
to handle expansions, is a small array of records corresponding to the array of
segments. These records save the hash-value of the element before the split-point
and the hash-mask of the time of an expansion. The generator also caches the
current hash-mask when generating each element.

Before producing a new element, the generator compares the table’s current hash-
mask against its previous value; a difference indicates that an expansion has occurred.
If so, the previous hash-mask and hash-value are saved in the expansion records
corresponding to the newly added segment or segments; generation then continues
from the split-point. The previous hash-value,phv, denotes the last elements that
were generated when the expansion occurred:phv= h(k). Used with the previous
hash-mask,phm, it also denotes the split-slot for that expansion, bysplit-shot=
phv & phm, as well as all the expansion split-slots.

When the generator advances to a new slot, it checks the values saved in the
expansion array to determine if it is shadowed by any split-slot. If it is not, there
are probably elements in the slot that must be generated. If it is a split-slot, it
starts generating from the greatest split-point for that slot. Because split-points are
monotonically increasing, this is the newest split-point that occupies that slot.
Otherwise, all of its elements must be generated. This bookkeeping is practical
because segments are added only occasionally, and are never removed.

There is one potential problem in using a hash-value to record the state of a
generator: because two keys can produce the same hash-value, a hash-value does
not specify a unique location in a slot. But because elements with identical hash-
values remain adjacent across all expansions, the hash value can represent the
sequenceof all such values. Specifically, the generator ignores an expansion—by
not checking for a changed hash-mask—while it is in the midst of a sequence of
identically-hashed elements. Following the sequence, the expansion is recognized and
handled as described above. Thus the generator may actually generate a couple of
elements in a newly-split slot before finishing its buddy, but when it returns later
to the expansion split-slot, it starts after the elements it had generated earlier. It
skips these because it starts with the elements that have a hash-value greater than
the hash-value saved in the expansion array, which in this case is the hash-value of
these last-generated elements.

PERFORMANCE MEASUREMENTS

The goal was to improve the speed of large hash tables in Icon, while also reducing
the space used by small tables. Larson’s technique provides the speed improvement,
but uses excessive space for small tables and is not compatible with Icon’s element-

362 w. g. griswold and g. m. townsend

generation mechanism. The new technique addresses both of these problems, but
experimental analysis across a range of table and set usage patterns is required to
ensure that significant overhead has not been added in the process.

The speed of Larson’s implementation cannot be compared directly with the new
technique because Larson’s algorithm is too dynamic to handle element generation.
The results, however, suggest that the new technique supports essentially constant-
time table operations, so Larson’s technique could vary by only a small constant.
Space comparisons with Larson’s technique were performed by taking each appli-
cation’s hash table size characteristics and computing a byte count with a formula
combining Larson’s resizing formula and Icon’s implementation parameters.

All measurements were made on a Sun Sparcstation 2 running SunOS 4.0.1. To
make comparisons between the static and new dynamic algorithms more equitable,
the static hashing implementation uses the modified hashing functions described in
the previous section. These improve the static hashing algorithm’s performance
slightly. The static hash tables were configured with 37 slots. For dynamic tables,
the number of possible segments was set to 10, the initial segment to 8 slots, and
the load factor threshold to 5. These parameters were chosen to maximize performance
for a wide range of Icon applications. Although the parameters put a limit of about
216 elements before performance degrades, the Icon run-time system can be recon-
figured for a small cost in the space required for small tables and some additional
space for the auxiliary slot and segment index tables. The space numbers for Larson’s
method was computed with the number of segments set to 64, the number of slots
in a segment to 128, the expansion load factor to 5, and the contraction load factor
to 3. These parameters allow Larson’s technique the same expandability as the
new technique.

Comparing the new method against Larson’s, an empty table is 7·5 times smaller
and accesses are still constant-time. However, recall that constant-time table expansion
was replaced with amortized constant-time expansion and contraction was eliminated.
Comparing the new method against the old Icon implementation, an empty table is
1·6 times smaller, and accesses are constant-time as opposed to linear-time. Medium-
sized tables occupy about 4 per cent more space, decreasing to about 2 per cent for
larger tables. The lack of contraction in the new technique means that space wastage
can occur relative to the other techniques when a table has many elements deleted.

Figure 5 shows how look-up time is affected by the new algorithm. The graph
compares the look-up performance of two runs of the programwords, which inserts
unique words in a table while periodically reporting the time required to look up
every word in the input file. The input is the roots file/usr/dict/words of the Unix
spelling checkerspell. One run is with Icon’s original static hashing algorithm, the
other with the new dynamic hashing algorithm. The graph records user CPU time
as measured from within the application. Sufficient heap memory was provided to
the run-time systems so that garbage collection did not occur. Thex-axis is graphed
on a logarithmic scale. The graph shows that static hashing has linear-time look-up
of strings, whereas the new dynamic hashing implementation achieves the expected
constant-time look-up.

Figure 6 is a graph of the space usage, in bytes, of the two runs ofwords and
of Larson’s original algorithm. For consistency withFigure 5, the x-axis is graphed
on a logarithmic scale. The graph shows that dynamic hashing uses much less space
than Larson’s algorithm for smaller table sizes, and performs a little better than the

363dynamic hashing in icon

Figure 5. Look-up performance of static versus dynamic hashing

Figure 6. Space performance of static, dynamic, and Larson dynamic hashing

static algorithm. These differences are not significant forwords, but an application
using many tables, such askoncord, described below, can use an inordinate amount
of space. The differences in space usage quickly diminish above 100 elements,
because the space required for linking up the elements begins to dominate.

To show the performance impact of the new dynamic hashing technique across a
spectrum of table and set usage patterns, seven additional Icon programs were
measured.Table I presents the space and time characteristics of these applications.
The time improvement yielded by dynamic hashing is reported as the ratio of the
static implementation’s run-time to the dynamic implementation’s run-time, shown
in the column marked ‘Time,s/d’. Space results are reported similarly, but also
include space data for Larson’s method. As with the measurement ofwords, the

364 w. g. griswold and g. m. townsend

Table I. Performance tests on Icon programs (koncord has many small tablesand one larger table)

Program Table usage Time Space
Number Size Static Dynamic s/d Static Dynamic Larson s/d L/d

words 1 25,144 328·6 144·4 2·28 704,200 720,848 723,952 0·98 1·00
newtwo 1 24,698 40·8 12·6 3·24 494,120 510,768 514,200 0·97 1·01
common 1 16,436 119·0 89·3 1·33 460,376 477,024 473,996 0·97 0·99
letter 1 15,516 16·4 10·9 1·50 434,616 451,264 447,528 0·96 0·99
scrabble 2 10,577 355·1 361·2 0·98 423,400 456,696 441,032 0·93 0·97
sieve* 1 10,000 4·0 1·6 2·50 24,760 33,176 26,920 0·75 0·81
koncord 1680 avg 4 463,484 358,228 1,518,720 1·29 4·245·8 5·8 1·001 1680 47,208 49,400 48,856 0·96 0·99
rsg 1 22 14·5 14·8 0·98 784 720 1404 1·09 1·96

*The space numbers are measured at the end of the run, not at the high-water mark.

programs were run with enough initial heap to prevent garbage collection from
biasing the results, with one exception explained below. In these measurements the
Unix C-shell time command was used, and the value reported is the median of total
run-time—user time plus system time—over seven runs.

The programwords is the application measured for the results reported in the
graph above. The programletter partitions the words of the dictionary into sets of
words that have the same letters in them; for example, {archaic, chair} is one such
set. It finds the partition for a word by converting it into a value of type character
set, which is then used as a key in a table storing the partitions. Character sets are
implemented as bit sets. The programnewtwo finds all words in the dictionary that
are composed of two other words in the dictionary: for example,endear is end
followed by ear. The program takes every word in the dictionary at least four letters
long and looks up all its pairwise partitions in the dictionary. The programcommon,
as configured for this test, finds the 100 most common words in a 2 megabyte mail
file. It uses a single large table of word counts, similar to the one for function
countwords described at the beginning of this paper. The programscrabble is a
Scrabble-playing program, and uses a dictionary to generate legal words for placement
on the Scrabble board. The program played against itself for the measurements.
Scrabble uses two sets for dictionary accesses, and, incidentally, a small table to
represent the values of the different tiles. The programsieve computes primes based
on the classic sieve of Eratosthenes (Reference7, p. 394). It begins with a set of
the integers 1 to 10,000, the maximum number to be considered for primality. Then
each number in the set from 2 to 10,000 is selected in order, and each multiple of
it is removed from the set as a non-prime. The programkoncord derives the
concordance of a file: for each unique word, it lists the line numbers on which the
word appears, and how many times the word appears on each such line. The program
uses a table indexed by the unique words for accessing the line information. The
line information for each word is also stored in a table, keyed by the line numbers,
for retrieving the number of instances of the word on that line. For each word, then,
there is a look-up in the word table, followed by a look-up in that word’s line-
number table. The input for this program was a file of 60 thousand characters. The
program rsg is a random sentence generator based on input of a grammar. It uses

365dynamic hashing in icon

just one table, for holding the grammar productions. The input grammar for this test
has 22 productions, and produces 1000 poem triplets.

Most of the programs that use a large set or table show improved speed, supporting
the results shown inFigure 5. The performance gain innewtwo is particularly large
because the dominant computations are the dictionary look-ups of the powersets of
substrings for each word. The programscrabble, in spite of the large initial heap it
was allocated, still performed many garbage collections. The negligible performance
difference is probably due to the large cost of these garbage collections and because
dictionary look-ups are just a part of the program’s computational tasks.

The programs with small sets,koncord and rsg, show insignificant changes in
speed. The small differences agree withFigure 5, which shows a threshold for
dynamic hashing in comparison to static hashing at about 500 words. Only programs
that regularly access large tables can be expected to run significantly faster with
dynamic hashing.

The results on space reveal that neither dynamic hashing technique has significant
space overhead for moderate and large tables. For applications such askoncord,
however, which use many small tables, Larson’s technique performs considerably
worse than the new technique. Static hashing uses moderately more space than the
new technique onkoncord. The downside of the new technique is revealed bysieve,
which deletes the non-primes from a set of integers. Because the new technique
cannot contract a hash table as elements are deleted, low utilization of slots can
result, wasting space. Consequently, whensieve completes with only 1230 elements
remaining in the set, the new version of dynamic hashing is wasting about 20 per
cent of its table space relative to Larson’s technique, and 25 per cent relative to
static hashing.

POTENTIAL IMPROVEMENTS

The performance measurements suggest that the running time of the hashing algo-
rithm is quite good, so speed improvement is unlikely. The space requirements of
tables have also decreased relative to the previous hash table implementation in
Icon. In contrast to Larson’s constant-sized segments, which require a segment table
linear in size with respect to the maximum efficient table size, the slot-doubling
approach reduces the segment table’s space requirements to logarithmic, without
hurting amortized access time. An inherent limitation of both segment table
approaches is that only a fixed number of segments can be added.

It is possible, however, to do away with the segment table altogether, not only
saving space in programs using many small tables, but also allowing fully extendible
dynamic arrays. That is, instead of addressing segments through a segment table,
the segments can be linked sequentially—like a linked list—with each segment header
indicating the range of indices addressed by the segment. With this representation, a
look-up for slot i walks the segments until reaching the segment containing sloti.
Because each segment doubles the number of slots of its predecessors, the maximum
number of steps required to reach the correct segment is logarithmic in the number
of elements in the table.* Better yet, linking the segments inreverseorder—largest
to smallest—requires traversing only one segment link on average, because half of

* Icon’s lists are currently implemented in this fashion.8

366 w. g. griswold and g. m. townsend

the slots are in the first segment. Assuming an even look-up distribution, then,
reversing the chains preserves amortized constant-time look-up.

Space also can be saved without abandoning the segment table approach. In
particular, the first segment of a newly created table is smaller than the portion of
the segment table reserved for pointers to later segments. The first segment can be
overlaid on the end of the segment table until the table expands enough to need the
overlaid segment pointers, at which time the segment can be copied out so that the
segment table can be used fully.* The cost of the copy is probably small, because
the first segment is small—currently eight words. Interactions with Icon’s garbage
collector add some minor complications, but we see no serious obstacles.

A simple alternative to the dynamic hashing expansion scheme is to reallocate
the entire slot-array sequentially and move all the elements into the new array. This
method eliminates the segment table and a level of addressing. However, the
performance measurement inFigure 5 suggests that dynamic hashing’s addressing
costs are not significant with respect to the simpler static single-indirection addressing
scheme. One drawback of reallocation is the additional cost of copying all the old
slot values into the new segment. A more serious problem is that the old slot array
cannot be deallocated until after the new one is created and initialized, causing a
temporary and potentially large surge in the demand for memory. With a memory
management scheme like Icon’s,2 reallocation increases the frequency of garbage
collections by discarding large unused segments. With a non-compacting memory
scheme, greater fragmentation is created because no segment discarded by a table
expansion is large enough to accommodate any new segment for that table. Overall,
then, this initially attractive modification turns out to be less desirable than the others.

CONCLUSION

Larson’s design of dynamic hashing overcomes many of the shortcomings of static
hash tables and provides constant expected-time table operations, but Icon’s unique
features required re-examining Larson’s solution. By changing segment expansion
from allocating constant-sized segments to allocating table-doubling segments, the
size required for sets and tables containing few elements was reduced without hurting
performance for large structures. Moreover, we were able to change Icon’s run-time
to allow element generation to coexist with table reorganization. These benefits were
achieved at the expense of table contraction and constant expected-time slot-expan-
sion, although the amortized cost of segment expansion remains the same. The
improvement in both speed and space accommodates a wide array of symbolic
applications without any special attention from the programmer.

As Johnson discovered when transferring theory to practice in compiler design,9

transferring Larson’s general dynamic hashing result to use in a symbolic program-
ming language such as Icon required considerable effort, but it was worth it. Icon,
like any complex system, must meet unique demands that entail unique design
criteria—criteria that cannot, and need not, be anticipated by an algorithm designer.
As a result, existing ‘best’ algorithms and data structures had to be reexamined and
adapted for the specific application domain. Taking Larson’s ideas and adapting
them using well-known properties of powers of 2 and base-2 logarithms improved

* This idea is due to David S. Cargo of Cray Research.

367dynamic hashing in icon

both the space and time characteristics of tables and sets as they are commonly
used in Icon. Although many of Larson’s basic assumptions changed in deriving the
technique presented here, his technique provided the essential structure of the solution.

acknowledgements

We thank Ralph E. Griswold for his advice on this paper and on an early implemen-
tation of the technique. We thank the referees for their help in improving the
performance section. This work was supported in part by an IBM Graduate Fellow-
ship, NSF Grant DCR-8901573, and NSF Grant CCR-9211002.

REFERENCES

1. R. E. Griswold and M. T. Griswold,The Icon Programming Language, Prentice-Hall, second edition, 1990.
2. R. E. Griswold and M. T. Griswold,The Implementation of the Icon Programming Language, Princeton

University Press, 1986.
3. W. Litwin, ‘Linear hashing: a new tool for file and table addressing’,Proceedings of the 6th Conference

on Very Large Databases, 1980, pp. 212–223.
4. P.-Å. Larson, ‘Dynamic hash tables’,Communications of the ACM,31, (4), (1988).
5. G. L. Steele,COMMON LISP, The Language, Digital Press, Burlington, MA, 1991.
6. D. E. Knuth, The Art of Computer Programming, Volume 3, Searching and Sorting, Addison-Wesley,

Reading, Mass., 1973.
7. D. E. Knuth,The Art of Computer Programming, Volume 2, Seminumerical Algorithms. Addison-Wesley,

Reading, Mass., 1981.
8. R. E. Griswold, ‘Supplementary information for the implementation of version 8 of Icon’,Icon Project

Document 112, Department of Computer Science, The University of Arizona, March 1991.
9. S. C. Johnson, ‘A portable compiler: theory and practice’,Proc. 5th Symposium on Principles of

Programming Languages, January 1978, pp. 97–104.

	SUMMARY
	INTRODUCTION
	HASHED STRUCTURES IN ICON
	STATIC HASHING
	LARSON'S ALGORITHM
	MODIFICATIONS TO LARSON'S ALGORITHM
	Segment expansion
	Segment contraction
	Hashing

	CHANGES TO ICON'S IMPLEMENTATION
	Changes to set and table operations
	Reorganization and element generation

	PERFORMANCE MEASUREMENTS
	POTENTIAL IMPROVEMENTS
	CONCLUSION

