Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97) 1

Toba: Java For Applications
A Way Ahead of Time (WAT) Compiler

Todd A. Proebsting Gregg Townsend
Tim Newsham Scott A. Watterson

John H. Hartman

Patrick Bridges

The University of Arizona *

Abstract

Tobaisasystem for generating efficient standal one Java
applications. Toba includes a Java-bytecode-to-C com-
piler, a garbage collector, a threads package, and Java
API support. Toba-compiled Java applications execute
1.5-4.2 times faster than interpreted and Just-In-Time
compiled applications.

1 Introduction

Java [GYT96] is an object-oriented language designed
by Sun Microsystemsthat supportsmobilecode, i.e., ex-
ecutable code that runs on a variety of platforms. Al-
though thelanguageisinterestinginitsown right, Java's
popularity stems from its promise of “write once, run
anywhere.” Mobilecode proponentsenvision afutureof
| ocati on-independent code moving about the | nternet and
running on any platform.

Java's mohility is achieved by compiling its object
classes into a distribution format called a class file. A
class file contains information about the Java class, in-
cluding bytecodes, an architecturally-neutral representa-
tion of the instructions associated with the class's meth-
ods. A classfile can execute onany computer supporting
the Java Virtua Machine (JVM). Java's code mobility,
therefore, dependson both architecture-neutral classfiles
and theimplicit assumption that the VM is supported on
every client machine.

Most WM implementations execute bytecodes via
interpretation or Just-In-Time (JT) compilation, which
compiles the bytecodes into machine code at run time.
Thus, Java's mobility comes at a price, exacted by the
cost of interpreting or JI T-compiling the bytecodes every
time the programis executed. These systems incur mod-
est to severe performance penalties compared to more
traditional systems that compile source code directly to

Address. Department of Computer Science, University of Ari-
zona, Tucson, AZ 85721; Email: {todd, gmt, bridges, jhh, newsham,
saw } @cs.arizona.edu.

machine code once. For example, a compiled C pro-
gram runs 1.5-2.2 times faster than the equivaent JT-
compiled Java program, and 2.6-4.2 times faster than an
interpreted Java program.

These performance penalties are especialy bother-
somein non-mobileapplicationsthat are run many times
without change. To combat these inherent performance
penalties we have developed a Java system that pre-
compiles Java classfilesinto machine code. Our system,
Toba,! first trandates Java class files into C code, then
compiles the C into machine code. The resulting object
files are linked with the Toba run-time system to create
traditional executable files. To distinguish our technique
from JT compilation, we have (somewhat facetiously)
coined the phrase Way-Ahead-of-Time (WAT) compiler
to describe Toba. Tobacompiles Java programsinto ma-
chine code during program devel opment, eliminating the
need for interpretation or J'T compilation of bytecodes.
Although we forfeit Java's architecture-neutral distribu-
tion, Toba-generated executables are 1.5-4.4 timesfaster
than dternative VM implementations.

Toba has severa advantages over interpretation or
JT-compilation. First, because Toba runs way-ahead-
of-time, rather than just-in-time, the resulting machine
code can be more heavily optimized to yield more ef-
ficient executables. Second, because Toba creates a C-
equivalent to the Java program, the standard C debug-
ging and profiling tools can operate on Toba-generated
executables. Third, because Tobaexecutablesincludeall
class files used by the application, thereis no possibility
of an application suddenly ceasing to execute because of
achangein availableclassfiles. For thesereasonswe be-
lieve that WAT-compilation is valuable for the develop-
ment and distribution of efficient Java programs.

Toba consists of many components: abytecode-to-C
trand ator, a garbage collector, athreads package, a run-
time library, and native routines implementing the Java
API. Toba is a surprisingly small system: the tranda

! Lake Tobais a prominent feature on Sumatra, the island just west
of Java.

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97) 2

tor isonly 5000 lines of Java; the garbage collector is a
modestly-altered version of the Boehm-Demers-Weiser
conservative collector [BW8S]; the threads package is
builtontop of Solaristhreads; therun-timelibraryisonly
6500 linesof C; and the API routinesare simply tranda-
tions of Sun’'sAPI class files. Except for dynamic link-
ing, Toba provides a complete Java execution environ-
ment.

2 TheJava Virtual Machine

The Java Virtua Machine (JVM) defines a stack-based
virtual machine that executes Java class files [LY97].
Each Java class compiles into a separate class file con-
taining information describing the class's inheritance,
fields, methods, etc., aswell as nearly al of the compile-
time type information. The Java bytecodes form the
JVM’s ingtruction set, and combine simple arithmetic
and control-flow operators with operators specific to the
Java language's object model. Powerful object-level in-
structionsincludethoseto access static and instance vari-
ables, and those to invoke static, virtual, nonvirtua and
interface functions. The VM also includes an exception
mechanism for handling abnormal conditions that arise
during execution.

The VM dso provides facilities for managing ob-
jectsand concurrency. The VM implements a garbage-
collected object allocation model, with facilitiesfor ini-
tializing and finalizing objects. Concurrency isprovided
through a thread abstraction. Threads are pre-emptive
and scheduled according to priority. A monitor facility
provides mutual exclusion on critical sectionsaswell as
thread scheduling through wait/notify primitives. Moni-
torsare recursive, allowing asinglethread to acquire the
same monitor lock multiple times without deadl ocking.

3 Toba'sRun-Time Data Structures

Java's rich object model requires run-time data struc-
turesto describe each object’stype and methods. We de-
veloped our data structures with both performance and
simplicity in mind. They differ in many respects from
those of Sun’s implementation of Java. For instance,
Sun’s implementation requires that al object references
go through a handle, which represents an extra level of
indirection, an added inefficiency, and an extra compli-
cation. Toba accesses objects directly. The differences
are invisible to Java programmers but important to au-
thors of native methods.

3.1 Naming

Toba attempts to preserve Java names in the C it pro-
duces, athough thisisn’t dways possible. Java names
may draw from thousands of different Unicode charac-
terswhereas C names are limited to just 63 ASCI| char-
acters. Furthermore, some lega Java names such as
enumand set j np have speciad meaning in C. When
a Java name cannot be used directly as a C name, Toba
discards non-C characters, adds a hash-code suffix, and
additionally adds a prefix character if the resulting name
beginswith adigit or other illegal character.

Java method names always require hash-code suf-
fixes. Tobatransateseach Javamethod intoaCfunction,
and these functions share a global namespace. Because
Java methods may be overloaded among and within
classes, a hash-code suffix is added to distinguish the
methods. The suffix encodes the class name, the method
name, and the method signature.

3.2 DatalLayout

Javaincludeseight primitivetypes: byte, short, int, long,
boolean, char, float, and double. Each trandatesinto a
primitive C type. (Note that Java's “char” type repre-
sents a 16-bit Unicode value.)

All other Java types are reference typesthat subclass
the root class, j ava. | ang. Qbj ect . All reference
typesare trandated into a C pointer type. Each reference
points to an object instance, and al instances of a par-
ticular class contain a class-pointer to a common class
structure. Java has two different kinds of objects: array
objects and ordinary objects. The Toba structure for or-
dinary objects appearsin Figure 1. An ordinary object’s
class descriptor includesthe instance size and aflag that
indicatesit is not an array. The Toba structure for array
objects appears in Figure 2. An array’s class descriptor
includesthe element sizeand itsflag indicatesthat it rep-
resents an array. Array instances contain both a length
field and avector of e ements.

Each per-class run-time structure has three parts:
genera informationthat isneeded for dl classes (e.g., su-
perclassinformation), amethod tabl ethat contai ns point-
ers to virtual functions, and a table of class variables.
Figure 3 summarizes run-time class-level information
common to al classes.

The method tableissimply avector of function point-
ers and unique method identifiers. The method identi-
fiers are used when invoking interface functions, which
must be found at run-time. The structure of the method
table is typical of statically-bound object-oriented lan-
guageslikeOberon-2[MW91] and C++ [Str86]. Method
tablesinclude inherited methods aswell as functions de-
fined by the classitsalf.

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97)

Object Pointer

| .

Object Pointer

| .

Object Instance Class Struct
A Bit=0
Instance Variables rray Bit c
Instance Size
Figure 1: Ordinary Object Structure
Array Instance Class Struct
Length Array Bit=1

Element Size=1,2,4,8

Figure2: Array Object Structure

initidizationflag ~ Determinesif the class has been initiaized

other flags Miscellaneous flags including the Array Bit

class name Pointer to instance of classj ava. | ang. Stri ng
classinstance Instance of classj ava. | ang. Cl ass
superclasses Pointer to vector of superclasses for checking subclass relationship
interfaces Pointer to vector of interfaces

referenced classes Pointer to vector of referenced classes

array class Pointer to array class of current class

element class Pointer to element class, if array class

initializer Pointer to classinitializer function

constructor Pointer to default instance initiaizer function
finalizer Pointer to instance finalizer function

Figure 3: Fields of Class Descriptors

ClassT

Common Part

U extendsT'

Method Table

Common Part

T’s Class Variables

Inherited/Overridden Methods

U’s New Methods

U’sClass Variables

Figure 4: Class/Subclass Structures

Rect Rect(] Rect[][]
Array Bit=0 Array Bit=1 Array Bit=1
arrayclass arrayclass arrayclass=1
demclass=L elemclass elemclass

Figure5: Array Class Descriptors

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97) 4

Class variables exist on a per-class basis, not a per
instance basis. Toba-generated programs reference class
variables as externas stored in the class structure. Fig-
ure 4 shows the class/subclass relationship of class de-
scriptors.

Class descriptorsfor arrays require specid handling.
Anarray of class X (“X[]") may be declared by any ar-
bitrary classthat imports X . Similarly, an array of arrays
of arrays of X, X[][][], may be declared by any class
that imports X. Descriptorsfor these array classes must
beunique—all instancesof X[][][] must sharethesame
class descriptor. Therefore, these array class descriptors
must beabletobebuilt at run-time. (Itispossibleto build
them at link-time, but we chose to avoid this complica-
tion.) Figure5illustratesthe simplerel ationship between
the descriptor of a class and the descriptor of an array of
that class.

3.3 Referencing Values and Methods

Toba constructs efficient value and method referencesiin
C. Assume, for instance, that r is an instance of class
rect . Table 1 summarizes the way Tobareferences ob-
jects and methods in C. Toba-generated C accesses the
instancevariablewi dt h asr - >wi dt h. A virtual func-
tion call requires an indirection through the method ta-
ble and requires passing the instance as the first argu-
ment. Notethat method namesincludehash suffixes. An
interface cal utilizes a table-lookup of the appropriate
method based on its uniqueidentifier (e.g., 298564082).
Static methods and class variables do not require an in-
stancevariable. A static method invocationisasimpleC
functioncall. Classvariablesare accessed viatheclass's
run-time descriptor.

4 CodeTrandation

Toba tranglates one class file a atime into a C file and
a header file. To trandate a class file, Toba requiresthe
classfilesfor all of theclass's superclasses. To compile
aclass's resulting C file, header files are necessary from
itself, its superclasses, and al imported classes.

41 CodeTrandation

Within class files, methods are encoded in the WM'’s
byte-coded instruction set. Tobatrandates each method
intoaC function. Tobaassumesthat theclassfileisvalid
and verifiable, athough it does nothing to confirm this
assumption.

The VM ingtruction set is stack-based. During exe-
cution, (verifiable) bytecode maintains a stack invariant
that is critical for trandation into efficient C (or native)

code: regardless of the previous execution path, at any
given point in the program, the stack is alwaysin a con-
sistent state(i.e., the same number and types of valuesare
on the stack). For instance, if along one path to a given
program point, P, the stack isempty just prior to execut-
ing P, then along all paths the stack will be empty just
prior to executing P. Thisinvariant meansthat the depth
of thestack andthetypesof itscontentsat any pointinthe
programarefixed. A smpletraversal of thebytecodecan
determine this information a compiletime. Using this
information, the Toba trandlator is able to turn al stack
accesses into references to simple loca variables—one
per stack location. This eliminates the need for an ex-
plicit stack or stack pointer.

Most Java constructs trandate simply into bytecode
for this stack machine. For instance, the middle column
of Figure 6 gives the bytecode for a=b+c; assuming
that a, b, and c arethefirst, second and third local vari-
ablesof theenclosing method. Thei | oad andi st or e
instructions refer to loads and stores of local variables.
Toba creates a C local variable for each VM local vari-
able.

Figure 6 gives a simple trandation of the previous
Java statement into C. In the example, i 1 and i 2 refer
to the first and second elements of the stack, and i v1,
i v2andi v3 refer tothefirst three VM local variables.
Once the stack depths are known, Toba generates naive
code. Tobarelieson an optimizing C compiler todo copy
propagation and register allocation to eliminate useless
copiesand local variables.

Generating code for each method followsthefollow-
ing outline;

1. Read the bytecode instructionsfrom the class file

2. Computethe stack state at every instruction

3. Note ingtructions that are exception range entry
points and assign labelsto them

4. Note jump target instructionsand assign labels to
them

5. Generate C function header
6. Generate C code for each instruction

Computing stack states requires visiting al instruc-
tions. After computing stack state, Toba trand ates byte-
code instructionsone a atime.

The Java bytecode supports both direct (conditional
and unconditional) branches, as well as indirect jumps.
Toba computes all potential targets of direct and indi-
rect jumps, as well as exception handling blocks, in a
control-flow anaysis. (Verifiable bytecodes are guar-
anteed to be easy to analyze accurately.) Toba emits a
C label before the executable code for each target in-
struction. To handle indirect jumps and exception han-

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97) 5

Java Reference Type Toba-generated Reference

r.wdth instancevariable r->wi dth

r.flip() virtual method r->class->Mflip_r_b79qV(r)
r.clear() interfacemethod fi ndi nterface(r, 298564082) (r)
rect.clearAl () satic method clearA | _b7zk4()

rect.nrects classvariable cl _rect.V.nrects

Table 1: Toba-generated References (Omitting C Casts)

Java | Bytecode | Generated C
a=>b+c; |iload2 il =iv2;
il oad_3 i2 =iv3;
i add i1 =il1l+i2;
istorel |ivl = i1;

Figure6: Trandatinga = b + c; intoC

dling, a giant swi t ch statement wraps each method’s
generated C code, with each indirect target having its
own case arm. Thus, indirect jumps trandate into C
code that sets a program counter variable, jumps to the
top of theswi t ch, and then dispatches on that variable
to the appropriate chunk of code. Unconditional direct
jumpsbecome got o’s; conditional direct jumpsbecome
if (...) goto Ln statements. Asan optimization,
Toba omits the swi t ch wrapper in the absence of ex-
ception handling blocks and indirect jumps.

Figures 7 and 8 show a simple Java method aong
with its trandation into bytecode and then into C. The
naive code generation algorithm has produced several
more assignments than would a human coder, but mod-
ern C compilers are good at removing these.

4.2 Exception Handling

The Java Virtual Machine supportsexception handlingin
amanner similar to Ada[Bar84] or C++ [Str86]. Excep-
tions are thrown, either implicitly or explicitly, and are
caught by the closest matching exception handler. Ex-
ceptionsthat cannot be caught in a procedure require the
JVM to unwindthe call stack and re-throw the exception
inthe caler’s environment. Re-throwing continues until
the exception is caught.

Exception dispatchingisbased on the execution-time
program counter of theJV M. Tobasimul atestheprogram
counter by assigning valuesto alocal pc variable. Itis
not necessary to set pc for every VM instruction, but
only when entering or |eaving an exception range (taking
into account that jumps can enter the middle of arange).

Toba uses C's set j mp and | ongj np routines to

control the call-stack unwinding. For each C func-
tion that may catch an exception, Toba crestes a small
prologue that calls setj np to initidize a per-thread
j mpbuf . The prologue saves the previous j npbuf

valuein alocal structure; epilogue code restores the old
value before the function returns. Tobatrandates excep-
tionthrowingintol ongj np callsthat usethej mpbuf .
Such calls transfer control to the prologue of the nearest
function that might handle the exception. This prologue
code simply checks a table to determine if, given the
type of the exception and the currently active program
counter, this procedure can handle the exception. If so,
the target label is set to the appropriate handler and exe-
cutiontransferstotheswi t ch statement that dispatches
indirect jumps. Otherwise, the prologuerestoresthe pre-
vious j npbuf , and immediately executesal ongj np
with thisj npbuf .

4.3 ClassInitialization

Each Java class may define an initializationroutineto be
run exactly once. Any of thefollowingeventscan trigger
initialization:

o Thefirst creation of an instance of aclass.

o Thefirstinvocation of any of aclass's static meth-
ods.

o Thefirst read or write of any class (not instance)
variable.

In the worst case, each of these operations includes
checks to determine if the class initializer must be run.

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97) 6

class d {
static int div(int i, int j) {
i =i/ j;
return i;
}
}

Met hod int div(int,int)

O iload_ O
1iload_1
2 idiv

3 istore 0
4 iload_0O
5 ireturn

Figure 7: Sample Java Program and Bytecode

Int divii 3WeN(Int pl, Int p2)

{ int div(int, int)
Int i0, i1, i2; integer stack
Int iv0, ivl; integer variables
ivo = pl; init variablesfrom params
ivl = p2;
LO: il =ivo0; iload_0
i2 =ivl; iload_1
if (1i2) idiv
t hr owDi vi si onByZer oException();
i1 =i1/i2
ivo =i1; istore.0
il =ivo0; iload_0
return il; ireturn

Figure 8: Sample Toba Output

Calls to alocation routines check a per-class initializa
tionflag. Static methodsincludechecksintheir prologue
code—no checking is done by the caller. Static-variable
accesses include checks of theinitialization flag.

Often, these checks are not needed. Toba omitsthe
checks for classes that have no initiaization routine.

5 Garbage Collection

Toba's garbage collector isbased on the fredy-available
Boehm-Demers-Weiser (BDW) conservative garbage
collector [BW88]. A conservetive collector treats ev-
ery register and word of allocated memory as a potential
pointer and traces all memory reached from these point-
ers. Therefore, theBDW collector does not need typein-

formation for the memory it manages. This frees Toba
and nativeroutinedevel opers from concerns about mem-
ory management.

Our modifications to the BDW collector are rela
tively minor, affecting about 30 lines of code. Firgt, the
BDW collector is a mark-and-sweep collector that re-
quires all threads to be stopped during collection. This
proved to be expensivein Toba s thread package (Solaris
threads), so we optimized the “ stop the world” function-
ality for the single-threaded case.

Second, the behavior of findizers and cyclic data
structures in the VM are dightly different from those
supported by the BDW collector. The Java language
specification (page 231-234 , [GJS96]), alows object fi-
nalizers to make previously unreachable objects reach-
able again, thereby “resurrecting” the objects. Although
the BDW collector supported finalization and resurrec-
tion of objects, it did not collect cyclic data structures
containing finalizable objects. We therefore made an-
other minor modification to the BDW collector to add
thisfunctionality.

6 Threadsand Synchronization

The VM defines a priority-based, preemptive thread
model that includes synchronization facilities. Tobaim-
plements Java threads using Solaris threads, and uses
Solaris locks to protect internal critical sections. The
biggest problem we encountered when implementing
Java threads is that Java alows threads to both suspend
each other and to cause other threadsto receive an asyn-
chronous exception, such as thread termination. Toba
uses UNIX’s signa mechanism to handle these asyn-
chronous events, causing the receiving thread to either
suspend itself or throw an exception, as appropriate. The
problemisthat thismay cause athread to block (or even
die) inthemiddleof acritical section, leaving thecritical
section locked. To diminate this possibility Toba uses a
limited form of roll-forward [MDP96] to alow athread
interrupted by a signal to exit the critical section before
handling the signal. Note that this problem also exists
with critical sectionsin the Java code itsdlf; the Java lit-
erature does not offer much of a solution other than rec-
ommending limited use of these asynchronousthread op-
erations.

Java threads synchronize via monitors. Each object
and class has amonitor associated with it, and only one
thread at a time may hold the lock associated with a
monitor. Condition variables are also provided to alow
thread scheduling; the standard wait, notify, and broad-
cast operations are supported.

An unusua feature of Java monitorsisthat they are
recursive, i.e. the samethread may enter amonitor recur-

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97) 7

sively without deadlock. This impliesthat Toba cannot
implement Java monitors using lock and unlock primi-
tives directly; instead monitors are amore complex data
structure containing a lock, a reference count, and the
identity of thethread holdingthelock. If athread entersa
monitor whose lock it already holds, the reference count
is incremented. Similarly, when the monitor is exited
the reference count is decremented and the lock only re-
leased when zero isreached. If athread leaves the moni-
tor towait on acondition, thelock isreleased and the ref-
erence count cleared; when the thread subsequently re-
enters the monitor the lock isre-acquired, and the refer-
ence count is restored.

To reduce synchronization overhead, Tobahasan op-
timized monitor implementation for single-threaded ap-
plications. Entering and exiting monitors only affects
their reference count; the monitor locks are not used.
Should another thread be created, the original thread first
locks al monitorsthat have a positive reference count,
thus ensuring mutual exclusion now that there is more
than one thread.

7 Performance Results

7.1 Methodology

We tested Toba's performance using using both appli-
cation benchmarks and micro-benchmarks. The appli-
cation benchmarks test the overall system performance,
while the micro-benchmarks isolate the performance of
individual language features (e.g., exception handling,
thread switching, etc.).

We compared Toba's performance to three other sys-
tems. Sun’'s interpreter (JDK version 1.0.2), Sun's JT
compiler system for Solaris, and the Guava JI'T compiler
(version 1.0 beta 6), by Softway Pty, Ltd. We compared
against the Sun interpreter because it isthereferenceim-
plementation of Java, and against the Guava J' T com-
piler and the Sun JIT compiler because they are the only
other compilation systems for SPARCs of which we are
aware. We ran benchmarks on a Sun SPARCStation-
20 with 128 MB of memory and two Model 61 Super-
SPARC processors. C code was compiled using Sun’s
commercial C compiler with full optimization (-xO4 -
Xcg92).

The Guava J'T compiler, the Sun JT compiler, and
Sun interpreter must all do more work at run time than
Tobato execute benchmarks. Both systems must dynam-
ically load each class file, and the JT compilers must
compile each method before it can be run. The micro-
benchmark times do not include the time to load class
files, while application benchmarks do include thistime.

7.2 Application Benchmarks

Table 2 describes the application benchmarks. Figure 9
shows the execution times of the benchmarks on the
three systems, normalized to the Toba time. Each data
point represents the average of ten runs of the bench-
mark. The JT system results include the time to com-
pilethebenchmark. The Toba-generated benchmarksare
1.54.2timesfaster than those same benchmarks running
under other systems. Toba-generated code runs 2.6-4.2
times faster than programs running under the JDK in-
terpreter, and 1.5-2.5 times faster than the JT compil-
ers. This speedup results in a tangible improvement in
the timeto complete the benchmark; the Javal ex bench-
mark, for example, improved from 159 seconds on JDK
and 80 seconds on Guava to only 45 seconds on Toba.
The average execution times of the benchmarks, plus
standard deviations, are given in Figure 10.

Toba-generated code is faster than Sun’s interpreter
because compiling class files removes the overhead of
interpretation and of dynamic loading. Toba-generated
codeisfaster thanthe JIT systems because Toba does not
incur code generation costs at runtime, and, possibly, be-
cause the C compiler optimizes code more aggressively
than do the JIT compilers. For stand-aone applications
that do not rely on dynamic loading, Toba provideslarge
performance benefits over other systems.

7.3 Micro-benchmarks

Table 3 describes the micro-benchmarks used to iso-
late the performance differences in the systems. These
benchmarks are an expanded version of the UCSD Java
Microbenchmarks [GP96].

Table 4 shows results of running the benchmarks
on each system. For accurate timing, each micro-
benchmark wasiterated in aloop until thetotal execution
timewasat least 5 seconds. Thisvaried between 100 and
100,000,000 iterations, depending on the benchmark.

Theresultsshow that Toba outperformstheother sys-
tems on amost al benchmarks. For example, Toba is
1229 timesfaster than JDK on the arithmetic and class-
access benchmarks; thisisdirectly attributableto JDK’s
use of an interpreter, as Guavaand the Sun JIT are nearly
as fast as Toba on these benchmarks.

Tobaisaso usualy 0.9-14 times as fast as the other
systems at handling exceptions. This is because Toba
does not explicitly unwind the stack when an excep-
tionisthrown. Instead, Tobaimplements exception han-
dling viagot o or set j np/ | ongj np, depending on
whether the handler is within the same method or not.
This makes exception handling in Toba extremely fast.

Synchronization is also fast in Toba, particularly in
single-threaded programs because Toba optimizes mon-

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97)

| Application | Description Input |
Javal ex Lexical analyzer generator that trandates regular expressions | Specification that includes
into finite-state machines that are subsequently trandated into | 77 patterns
Java
JavaCUP LALR(1) parser generator that trandlates context-free gram- | Grammar that includes 24
mars into push-down automata that are subsequently trans- | terminals, 32 nonterminals,
lated into Java and 65 productions
javac Sun’s Java compiler that trandates Java source programsinto | Tobasourcefilesconsisting
class files (bytecode) of 3891 lines of Java
espresso Trang ates Java source programs into class files (bytecode) Tobasourcefilesconsisting
of 3891 lines of Java
Toba Bytecode-to-C trandator described in this paper Tobas 18 class files
(77,718 bytes)
Table 2: Application Benchmarks
10
mmm Toba
o 8- C=JDK102
E == SunJiT
|5 . == Guaval.0 Beta6
2 64
B
N
T 4
£
o
Z 24
0-
Javal ex JavaCup Javac Espresso Toba
Benchmark
Figure 9: Normalized Application Timings
Benchmark Toba JDK | JDK/Toba SunJIT | SunJIT/Toba Guava | Guava/Taba
(sec) (sec) (sec) (sec)
JavalLex || 44.74+0.3 || 15894+ 2.4 3.6 87.5+£1.0 2.0 || 80.0k 1.1 1.8
javacup || 2.14+0.05 5.440.06 2.6 3.440.02 1.6 || 5.3£0.04 2.5
javac || 10.74+0.3 34.84+0.3 3.3 20.4+0.1 1.9 || 19.4+£0.2 1.8
€spresso 534+0.2 22.3+0.3 4.2 || 11.9+£0.07 2.2 || 11.74+£0.2 2.2
toba || 19.3+£0.1 56.6 4+ 0.5 2.9 28.7+£0.1 1.5 1| 39.6 £0.4 2.1

Figure 10: Application Benchmark Timings

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97)

Arithmetic Benchmarks

add-int Add two integers
multiply-int Multiply two integers
add-double Add two doubl e-precision floating point numbers

multiply-double

Multiply two double-precision floating point numbers

Class Access Benchmarks

instance-var

Read an integer instance variable

method-local

Invoke amethod defined in the current (t hi s) object

method-remote

Invoke amethod defined in a different object

method-interface

Invoke an interface method

Exception Handling Benchmarks

exception-local Throw and catch an exception within the same method

exception-caller Throw an exception caught by method's caller

exception-remote | Throw an exception caught by a method ten levels up the call chain
exception-bypass | Throw and catch an exception past an exception handler that does not catch the

thrown exception

Synchronization Benchmarks

sync-block-single

Enter asynchr oni zed block in asingle-threaded program

sync-method- Cdl asynchr oni zed method in a single-threaded program
single
sync-block-multi | Enter asynchr oni zed block in amulti-threaded program
sync-method- Cdl asynchr oni zed method in a multi-threaded program
multi

Miscellaneous Benchmarks
null-loop Once around an empty loop
array-assign Assign to an lement of an integer array
thread-yield Perform yieldsin 3 separate threads

Table 3: Micro-Benchmarks

itor accesses in thissituation. Although single-threaded
programs need no synchronization, they may till make
use of library classes that use synchronization.

Toba performs dightly worse than
Guava on the interface-method invocation benchmark,
the integer multiplication benchmark, the instance vari-
able benchmark, and the array assignment benchmark.
Tobaal so performs dightly worse than the Sun JIT com-
piler on thread yields, since the Sun JIT system does not
implement kernel threads or true concurrency. Toba per-
formed better than any of the other systems on al other
programs, large and small.

7.4 CodeSize

Toba emits naive C code and relies on an optimizing C
compiler to do register allocation, copy propagation, and
branch elimination to produce efficient code. Table 5
indicates the sizes of the benchmark programs in bytes

of class file, lines of C, and bytes of object code. Ob-
ject code sizes do not include the Toba run-time system,
which isadynamic shared library. Thislibrary contains
915,000 bytes of code.

8 Project Status

The Toba system currently runsunder Solarison SPARC
workstations. The system includes al of the Java API
except for dynamic linking and the graphics and applet
libraries. Table 6 summarizes the sizes and implementa-
tion languages of its various components.

We intend to port Toba to additional architectures
and operating systems. Porting Tobawill requirethread-
specific changes to the run-time system and garbage col -
lector. Itwill also require OS-specific changesto therun-
time system. The bytecode trandator and header files
will change only minimally.

Tobaisthefirst piece of thelarger “ Sumatra’ project.

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97) 10

Benchmark Toba JDK | DK/ || Guava | Guava || SunJIT | SunJiT/
(nsec) || (usec) | Toba || (usec.) Toba || (usec.) Toba

add-int 0.10 292 29 0.10 1.0 0.18 18
multiply-int 0.18 3.14 17 0.17 0.94 0.26 14
add-double 0.20 3.72 19 0.46 2.3 0.25 13
multiply-double 0.20 3.87 19 0.45 2.3 0.25 13
instance-var 0.13 243 19 0.12 0.92 0.20 15
method-local 0.25 311 12 0.36 14 0.31 12
method-remote 0.30 3.89 13 0.38 13 0.36 12
method-interface 1.66 349 | 210 140 | 0.843 2.26 1.36
exception-local 161 451 | 280 22.50 14.0 9.30 5.78
exception-caller 6.79 6.52 | 0.96 30.58 4.50 11.33 1.67
exception-remote 8.52 4224 | 496 || 121.37 14.2 26.68 2.66
exception-bypass 8.29 1173 | 141 32.11 3.87 16.07 1.03
sync-block-single 221 1492 | 6.75 6.15 2.78 10.73 4.86
sync-method-single 3.17 1415 | 4.46 6.49 2.05 10.57 3.33
sync-block-multi 4.37 1391 | 318 6.14 141 10.61 243
sync-method-multi 6.23 1425 | 229 6.44 1.03 10.64 171
null-loop 0.03 1.04 30 0.07 2 0.07 2
array-assign 0.21 253 12 0.19 0.90 0.24 11
thread-yield 75.38 82.31 | 1.092 79.25 1.05 69.71 0.92

Table 4: Micro-Benchmark Timings

Benchmark || Class-file | Emitted C Code | Object File
(bytes) (lines) (bytes)

Javal ex 84,457 25,238 231,816
JavaCUP 119,094 50,297 446,816
javac 508,916 127,678 869,756
espresso 295,281 83,098 674,008
Toba 77,718 23,570 195,836

Table 5: Program Sizes

Component | Implementation Size

Language | (Lines)

Bytecode Trand ator Java 4723

Run-time Support C 4130

API Native Routines C 2809
Toba-specific Garbage Collection C 30

Table 6: Implementation Details

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97) 1

The Sumatraproject isexploring many aspects surround-
ing the efficient execution of mobile code, with empha-
sis on efficient implementations of the Java Virtual Ma-
chine. We devel oped Tobato bootstrap our development
of the VM API, threads, and garbage collector, as well
asto have fast Java applications.

9 Reéated Work

Javais ardatively new programming language and vir-
tua machine. We know of no published results de-
scribing implementation and performance characteris-
tics. Popular-press reports and commercia advertise-
ments indicate that many development efforts for Just-
In-Time (JIT) compilers are underway or have recently
completed, but the available information is sketchy.

Compiling higher-level languages to C is not new.
Many language systems leverage existing compilersand
use C as an intermediate language in the compilation
process. Systems for Smalltalk [Git94], SR [And82],
Scheme [Bar89], Icon [Wa91], Forth [EM96], SML
[TAL9Q], Pascal [Gil90], Cedar [ADHT89], and Fortran
[FGMS9Q] are well known. For traditionally compiled
languages like Pascal and Fortran, trandation to C im-
proved portability. For Scheme, Forth, and Icon, trans-
lation removed interpretation overhead. Similarly, Toba
removes interpretation overhead from Java programs.

Several other projects for compiling Java bytecodes
to C are currently underway. j 2c [And96] isarestricted
bytecode to C compiler, currently ported to severd plat-
forms. j 2¢ (version 1 beta 5) does not support threads,
monitors, or network resources. In addition, native rou-
tines cannot throw exceptionsin j 2c. Toba does not
have these restrictions.

Vortex DDG196] is another project that compiles
Java bytecodes to C. Vortex provides front ends for
C++, Cecil, Modula-3, and Java. These languages are
compiled to a common internal representation, and C
code is generated from this representation. The Vor-
tex project studies the effectiveness of optimizationsfor
object-oriented languages. The Vortex project reports
that Java programs speed up by as much as afactor of 8
as aresult of these aggressive optimizations. Toba does
not currently perform any of these optimizations. Vor-
tex does not support threads, which has a global impact
on performance. No published information is available
about other details of Javarun-time system support from
Vortex.

Jolt [Sir96] aso compiles Java bytecodes to C.
Jol t generates a C function for some methods in a
classfile, and then generates a new class file with these
methods marked as native. Method overloading is not
supported, and Jol t cannot compile class initialization

methods. Jol t produces class files that are used by the
standard Javainterpreter. Toba produces stand-al one ex-
ecutables.

10 Availability

The Toba system is freely available via anonymous ftp.
All distribution information is described on the World
Wide Web at

http://ww. cs. ari zona. edu/ sumatra/t oba/ .

References

[ADH'89] Russ Atkinson, Alan J. Demers, Carl Hauser,
Christian Jacobi, Peter Kessler, and Mark Weiser.
Experiencescreating aportable Cedar. pages322—
329, 1989.

G. R. Andrews. The distributed programming
language SR—mechanisms, design and imple-
mentation. Software—Practice and Experience,
12:719-753, 1982.

Yukio Andoh. j2c. http://www.webcity.co.jp/
info/andoh/javalj2c.html, 1996.

J.G.P. Barnes. Programming in Ada. Addison-
Wesley Publishing Company, 1984. 1SBN 0-201-
13799-2.

Joel F. Bartlett. Scheme—C a portable Scheme-
to-C compiler. Technical Report DEC-WRL-89-
1, Digital Equipment Corporation, Western Re-
search Lab, 1989.

Hans Boehm and Mark Weiser. Garbage col-
lection in an uncooperative environment. Soft-
ware—Practice and Experience, pages 807-820,
September 1988.

[DDG' 96] Jeffrey Dean, Greg DeFouw, David Grove, Vass-
ily Litvinov, and Craig Chambers. Vortex: An op-
timizing compiler for object-oriented languages.
In Proceedingsof OOPSLA' 96, October 1996.
M. Anton Ertl and Martin Maierhofer. Translating
Forth to efficient C. 1996.

[FGMS90] S. I. Feldman, D. M. Gay, M. W. Maimone, and
N. L. Schryer. A Fortran-to-C converter. Com-
puting Science Technical Report No. 149, AT& T
Bell Laboratories, Murray Hill, NJ, 1990.

[Ands2]

[And96]

[Barg4]

[Bar8g]

[BWSS]

[EM96]

[Gil90] DaveGillespie. p2c. p2cisoneof several publicly
available Pascal to C compilers, 1990.

[Git94] Claus Gittinger. Smalltalk/x. Smalltalk/X is a
widely available Smalltalk to C compiler, 1994.

[GJS96] JamesGosling, Bill Joy, and Guy Steele. The Java
Language Specification. Addison-Wesley Pub-
lishing Company, 1996. ISBN 0-201-63451-1.

[GP96] William G. Griswold and Paul S. Phillips. Mi-

crobenchmarks for java. http://www-
cse.uscd.edu/wgg/JavaProf/ javaprof.html, 1996.

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97) 12

[GYT96]

[LY97]

[MDP96]

[MW91]

[Sir96]

[Str86]

[TALOO]

[Wal91]

James Gosling, Frank Yellin, and The Java Team.
The Java Application Programming Interface,
volume 1. Addison-Wesley Publishing Company,
1996. ISBN 0-201-63453-8.

Tim Lindholm and Frank Yellin. The Java Mirtual
Machine Specification. Addison-Wesley, 1997.
ISBN 0-201-63452-X.

David Mosberger, Peter Druschel, and Larry L.
Peterson. Implementing atomic sequences on
uniprocessors using rollforward. Software—
Practice and Experience, 26:1-23, 1996.

H. Mossenbock and N. Wirth. The programming
language Oberon-2. Technical report, Institute for
Computer systems, ETH, 1991.

KB Siram. Jolt. http://substance.blackdown.org/
~ kbg/jolt.html, 1996.

Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley Publishing Company,
1986. ISBN 0-201-12078-X.

David Tarditi, Anurag Acharya, and Peter Lee.
No assembly required: Compiling standard ML to
C. Technical Report CMU-CS-90-187, School of
Computer Science, Carnegie Mellon University,
Nov 90.

Kenneth Walker. The implementation of an opti-
mizing compiler for Icon. Technical Report TR
91-16, University of Arizona, August 1991.

A A Larger Example

Figure 11 expands on the example shown earlier by
adding exception handling. Animplicit branch (fromthe
t ry block tother et ur n) has aso been added.

Figure 12 gives Toba's trandation into C code. Ex-
ception handling has enlarged the code significantly, and
theeffect isespecially noticeablebecause the original ex-
ample was so small. Besides the boilerplate code that
isthe same for all exception-catching methods, there are
also assignments to pc that maintain the VM program
counter and case labels used for dispatching a caught
exception.

class d {
static int div(int i, int j) {
try {
=i/ j;
} catch (ArithneticException e) {
i =j;

} .
return i;
}
k/éthod int div(int,int)
O iload_ O
1 iload_1
2 idiv
3 istore 0
4 goto 10
7 pop
8 iload_1
9 istore 0
10 iload_O
11 ireturn

Exception table:
from to target type
0 4 7 <d ass
java. lang. Arit hmeti cException>

Figure 11: Sample Java Program and Bytecode

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS '97)

Int divii 3WeN(Int pl, Int p2) int div(int, int)
{
static struct handler htable[] = { exception handler list
&cl java_l ang_Arithneti cException.C, 0, 4, 1, gotoLlifo <pc< 4
¥
struct nythread *tdata; thread data pointer
j mp_buf newbuf; jump buffer
voi d *ol dbuf; pointer to previous buffer
volatile int pc; JVM program counter
int tgt; jump target
Int rv; return value
Obj ect a0, al, a2; reference stack
Int i0, i1, i2; integer stack
volatile Int iv0, ivl; integer variables
ivo = pl,; initialize variables from parameters
ivl = p2;
tdata = nythread(); set thread data pointer
ol dbuf = tdata->j npbuf; save old jmpbuf pointer
tgt = 0; dispatch first to entry point
if (setjnmp(newbuf)) { set up jump buffer
st hread_got _exception(); exception was caught:
CATCH: al = tdata->exception; load exception value
if ((tgt = findhandler(htable, 1, al, pc)) < 0) find handler
I ongj np(ol dbuf, 1); no handler; pass upward
}
t dat a- >j npbuf = newbuf; register jump buffer for thread
TOP: switch(tgt) { dispatch entry, ret, or exception
LO: case O:
pc = 0; set pc for exception handling
il =ivo0; iload_0
i2 =ivl; iload_1
if (1i2) idiv
t hr owDi vi si onByZer oException();
i1 =i1/i2
ivo =i1; istore 0
pc = 4; reset pc on leaving exceptionrange
goto L2; goto 10
L1: case 1:
pc = 7, reset pc after catching exception
il =1ivl; iload_1
ivo =i1; istore 0
L2: case 2:
il =ivo0; iload_0
rv =il ireturn
got o RETURN,
}
RETURN:
t dat a- > npbuf = ol dbuf; restore previousjump buffer
return rv; return result
}

Figure 12: Sample Toba Output

13

