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Abstract

Toba is a system for generating efficient standalone Java
applications. Toba includes a Java-bytecode-to-C com-
piler, a garbage collector, a threads package, and Java
API support. Toba-compiled Java applications execute
1.5–4.2 times faster than interpreted and Just-In-Time
compiled applications.

1 Introduction

Java [GYT96] is an object-oriented language designed
by Sun Microsystems that supports mobile code, i.e., ex-
ecutable code that runs on a variety of platforms. Al-
though the language is interesting in its own right, Java’s
popularity stems from its promise of “write once, run
anywhere.” Mobile code proponents envision a future of
location-independent code moving about the Internet and
running on any platform.

Java’s mobility is achieved by compiling its object
classes into a distribution format called a class file. A
class file contains information about the Java class, in-
cluding bytecodes, an architecturally-neutral representa-
tion of the instructions associated with the class’s meth-
ods. A class file can execute on any computer supporting
the Java Virtual Machine (JVM). Java’s code mobility,
therefore, depends on both architecture-neutral class files
and the implicit assumption that the JVM is supported on
every client machine.

Most JVM implementations execute bytecodes via
interpretation or Just-In-Time (JIT) compilation, which
compiles the bytecodes into machine code at run time.
Thus, Java’s mobility comes at a price, exacted by the
cost of interpreting or JIT-compiling the bytecodes every
time the program is executed. These systems incur mod-
est to severe performance penalties compared to more
traditional systems that compile source code directly to
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machine code once. For example, a compiled C pro-
gram runs 1.5-2.2 times faster than the equivalent JIT-
compiled Java program, and 2.6-4.2 times faster than an
interpreted Java program.

These performance penalties are especially bother-
some in non-mobile applications that are run many times
without change. To combat these inherent performance
penalties we have developed a Java system that pre-
compiles Java class files into machine code. Our system,
Toba,1 first translates Java class files into C code, then
compiles the C into machine code. The resulting object
files are linked with the Toba run-time system to create
traditional executable files. To distinguish our technique
from JIT compilation, we have (somewhat facetiously)
coined the phrase Way-Ahead-of-Time (WAT) compiler
to describe Toba. Toba compiles Java programs into ma-
chine code during program development, eliminating the
need for interpretation or JIT compilation of bytecodes.
Although we forfeit Java’s architecture-neutral distribu-
tion, Toba-generated executables are 1.5-4.4 times faster
than alternative JVM implementations.

Toba has several advantages over interpretation or
JIT-compilation. First, because Toba runs way-ahead-
of-time, rather than just-in-time, the resulting machine
code can be more heavily optimized to yield more ef-
ficient executables. Second, because Toba creates a C-
equivalent to the Java program, the standard C debug-
ging and profiling tools can operate on Toba-generated
executables. Third, because Toba executables include all
class files used by the application, there is no possibility
of an application suddenly ceasing to execute because of
a change in available class files. For these reasons we be-
lieve that WAT-compilation is valuable for the develop-
ment and distribution of efficient Java programs.

Toba consists of many components: a bytecode-to-C
translator, a garbage collector, a threads package, a run-
time library, and native routines implementing the Java
API. Toba is a surprisingly small system: the transla-

1Lake Toba is a prominent feature on Sumatra, the island just west
of Java.
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tor is only 5000 lines of Java; the garbage collector is a
modestly-altered version of the Boehm-Demers-Weiser
conservative collector [BW88]; the threads package is
built on top of Solaris threads; the run-time library is only
6500 lines of C; and the API routines are simply transla-
tions of Sun’s API class files. Except for dynamic link-
ing, Toba provides a complete Java execution environ-
ment.

2 The Java Virtual Machine

The Java Virtual Machine (JVM) defines a stack-based
virtual machine that executes Java class files [LY97].
Each Java class compiles into a separate class file con-
taining information describing the class’s inheritance,
fields, methods, etc., as well as nearly all of the compile-
time type information. The Java bytecodes form the
JVM’s instruction set, and combine simple arithmetic
and control-flow operators with operators specific to the
Java language’s object model. Powerful object-level in-
structions include those to access static and instance vari-
ables, and those to invoke static, virtual, nonvirtual and
interface functions. The JVM also includes an exception
mechanism for handling abnormal conditions that arise
during execution.

The JVM also provides facilities for managing ob-
jects and concurrency. The JVM implements a garbage-
collected object allocation model, with facilities for ini-
tializing and finalizing objects. Concurrency is provided
through a thread abstraction. Threads are pre-emptive
and scheduled according to priority. A monitor facility
provides mutual exclusion on critical sections as well as
thread scheduling through wait/notify primitives. Moni-
tors are recursive, allowing a single thread to acquire the
same monitor lock multiple times without deadlocking.

3 Toba’s Run-Time Data Structures

Java’s rich object model requires run-time data struc-
tures to describe each object’s type and methods. We de-
veloped our data structures with both performance and
simplicity in mind. They differ in many respects from
those of Sun’s implementation of Java. For instance,
Sun’s implementation requires that all object references
go through a handle, which represents an extra level of
indirection, an added inefficiency, and an extra compli-
cation. Toba accesses objects directly. The differences
are invisible to Java programmers but important to au-
thors of native methods.

3.1 Naming

Toba attempts to preserve Java names in the C it pro-
duces, although this isn’t always possible. Java names
may draw from thousands of different Unicode charac-
ters whereas C names are limited to just 63 ASCII char-
acters. Furthermore, some legal Java names such as
enum and setjmp have special meaning in C. When
a Java name cannot be used directly as a C name, Toba
discards non-C characters, adds a hash-code suffix, and
additionally adds a prefix character if the resulting name
begins with a digit or other illegal character.

Java method names always require hash-code suf-
fixes. Toba translates each Java method intoa C function,
and these functions share a global namespace. Because
Java methods may be overloaded among and within
classes, a hash-code suffix is added to distinguish the
methods. The suffix encodes the class name, the method
name, and the method signature.

3.2 Data Layout

Java includes eight primitive types: byte, short, int, long,
boolean, char, float, and double. Each translates into a
primitive C type. (Note that Java’s “char” type repre-
sents a 16-bit Unicode value.)

All other Java types are reference types that subclass
the root class, java.lang.Object. All reference
types are translated into a C pointer type. Each reference
points to an object instance, and all instances of a par-
ticular class contain a class-pointer to a common class
structure. Java has two different kinds of objects: array
objects and ordinary objects. The Toba structure for or-
dinary objects appears in Figure 1. An ordinary object’s
class descriptor includes the instance size and a flag that
indicates it is not an array. The Toba structure for array
objects appears in Figure 2. An array’s class descriptor
includes the element size and its flag indicates that it rep-
resents an array. Array instances contain both a length
field and a vector of elements.

Each per-class run-time structure has three parts:
general information that is needed for all classes (e.g., su-
perclass information), a method table that contains point-
ers to virtual functions, and a table of class variables.
Figure 3 summarizes run-time class-level information
common to all classes.

The method table is simply a vector of function point-
ers and unique method identifiers. The method identi-
fiers are used when invoking interface functions, which
must be found at run-time. The structure of the method
table is typical of statically-bound object-oriented lan-
guages like Oberon-2 [MW91] and C++ [Str86]. Method
tables include inherited methods as well as functions de-
fined by the class itself.
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Figure 1: Ordinary Object Structure
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Figure 2: Array Object Structure

initialization flag Determines if the class has been initialized
other flags Miscellaneous flags including the Array Bit
class name Pointer to instance of class java.lang.String
class instance Instance of class java.lang.Class
superclasses Pointer to vector of superclasses for checking subclass relationship
interfaces Pointer to vector of interfaces
referenced classes Pointer to vector of referenced classes
array class Pointer to array class of current class
element class Pointer to element class, if array class
initializer Pointer to class initializer function
constructor Pointer to default instance initializer function
finalizer Pointer to instance finalizer function

Figure 3: Fields of Class Descriptors
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Figure 4: Class/Subclass Structures

Rect

Array Bit = 0

arrayclass
elemclass=?

...

Rect[]

Array Bit = 1

arrayclass
elemclass

...

Rect[][]

Array Bit = 1

arrayclass=?
elemclass

...

- -

� �

Figure 5: Array Class Descriptors
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Class variables exist on a per-class basis, not a per
instance basis. Toba-generated programs reference class
variables as externals stored in the class structure. Fig-
ure 4 shows the class/subclass relationship of class de-
scriptors.

Class descriptors for arrays require special handling.
An array of class X (“X[ ]”) may be declared by any ar-
bitrary class that importsX. Similarly, an array of arrays
of arrays of X, X[ ][ ][ ], may be declared by any class
that importsX. Descriptors for these array classes must
be unique—all instances ofX[ ][ ][ ] must share the same
class descriptor. Therefore, these array class descriptors
must be able to be built at run-time. (It is possible to build
them at link-time, but we chose to avoid this complica-
tion.) Figure 5 illustrates the simple relationshipbetween
the descriptor of a class and the descriptor of an array of
that class.

3.3 Referencing Values and Methods

Toba constructs efficient value and method references in
C. Assume, for instance, that r is an instance of class
rect. Table 1 summarizes the way Toba references ob-
jects and methods in C. Toba-generated C accesses the
instance variablewidth as r->width. A virtual func-
tion call requires an indirection through the method ta-
ble and requires passing the instance as the first argu-
ment. Note that method names include hash suffixes. An
interface call utilizes a table-lookup of the appropriate
method based on its unique identifier (e.g., 298564082).
Static methods and class variables do not require an in-
stance variable. A static method invocation is a simple C
function call. Class variables are accessed via the class’s
run-time descriptor.

4 Code Translation

Toba translates one class file at a time into a C file and
a header file. To translate a class file, Toba requires the
class files for all of the class’s superclasses. To compile
a class’s resulting C file, header files are necessary from
itself, its superclasses, and all imported classes.

4.1 Code Translation

Within class files, methods are encoded in the JVM’s
byte-coded instruction set. Toba translates each method
into a C function. Toba assumes that the class file is valid
and verifiable, although it does nothing to confirm this
assumption.

The JVM instruction set is stack-based. During exe-
cution, (verifiable) bytecode maintains a stack invariant
that is critical for translation into efficient C (or native)

code: regardless of the previous execution path, at any
given point in the program, the stack is always in a con-
sistent state (i.e., the same number and types of values are
on the stack). For instance, if along one path to a given
program point,P , the stack is empty just prior to execut-
ing P , then along all paths the stack will be empty just
prior to executing P . This invariant means that the depth
of the stack and the types of its contents at any point in the
program are fixed. A simple traversal of the bytecode can
determine this information at compile time. Using this
information, the Toba translator is able to turn all stack
accesses into references to simple local variables—one
per stack location. This eliminates the need for an ex-
plicit stack or stack pointer.

Most Java constructs translate simply into bytecode
for this stack machine. For instance, the middle column
of Figure 6 gives the bytecode for a=b+c; assuming
that a, b, and c are the first, second and third local vari-
ables of the enclosing method. The iload and istore
instructions refer to loads and stores of local variables.
Toba creates a C local variable for each JVM local vari-
able.

Figure 6 gives a simple translation of the previous
Java statement into C. In the example, i1 and i2 refer
to the first and second elements of the stack, and iv1,
iv2 and iv3 refer to the first three JVM local variables.
Once the stack depths are known, Toba generates naive
code. Toba relies on an optimizingC compiler to do copy
propagation and register allocation to eliminate useless
copies and local variables.

Generating code for each method follows the follow-
ing outline:

1. Read the bytecode instructions from the class file

2. Compute the stack state at every instruction

3. Note instructions that are exception range entry
points and assign labels to them

4. Note jump target instructions and assign labels to
them

5. Generate C function header

6. Generate C code for each instruction

Computing stack states requires visiting all instruc-
tions. After computing stack state, Toba translates byte-
code instructions one at a time.

The Java bytecode supports both direct (conditional
and unconditional) branches, as well as indirect jumps.
Toba computes all potential targets of direct and indi-
rect jumps, as well as exception handling blocks, in a
control-flow analysis. (Verifiable bytecodes are guar-
anteed to be easy to analyze accurately.) Toba emits a
C label before the executable code for each target in-
struction. To handle indirect jumps and exception han-
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Java Reference Type Toba-generated Reference
r.width instance variable r->width
r.flip() virtual method r->class->M.flip_r_b79qV(r)
r.clear() interface method findinterface(r,298564082)(r)
rect.clearAll() static method clearAll_b7zk4()
rect.nrects class variable cl_rect.V.nrects

Table 1: Toba-generated References (Omitting C Casts)

Java Bytecode Generated C
a = b + c; iload 2 i1 = iv2;

iload 3 i2 = iv3;
iadd i1 = i1 + i2;
istore 1 iv1 = i1;

Figure 6: Translating a = b + c; into C

dling, a giant switch statement wraps each method’s
generated C code, with each indirect target having its
own case arm. Thus, indirect jumps translate into C
code that sets a program counter variable, jumps to the
top of the switch, and then dispatches on that variable
to the appropriate chunk of code. Unconditional direct
jumps become goto’s; conditional direct jumps become
if (...) goto Ln statements. As an optimization,
Toba omits the switch wrapper in the absence of ex-
ception handling blocks and indirect jumps.

Figures 7 and 8 show a simple Java method along
with its translation into bytecode and then into C. The
naive code generation algorithm has produced several
more assignments than would a human coder, but mod-
ern C compilers are good at removing these.

4.2 Exception Handling

The Java Virtual Machine supports exception handling in
a manner similar to Ada [Bar84] or C++ [Str86]. Excep-
tions are thrown, either implicitly or explicitly, and are
caught by the closest matching exception handler. Ex-
ceptions that cannot be caught in a procedure require the
JVM to unwind the call stack and re-throw the exception
in the caller’s environment. Re-throwing continues until
the exception is caught.

Exception dispatching is based on the execution-time
program counter of the JVM. Toba simulates the program
counter by assigning values to a local pc variable. It is
not necessary to set pc for every JVM instruction, but
only when entering or leaving an exception range (taking
into account that jumps can enter the middle of a range).

Toba uses C’s setjmp and longjmp routines to

control the call-stack unwinding. For each C func-
tion that may catch an exception, Toba creates a small
prologue that calls setjmp to initialize a per-thread
jmpbuf. The prologue saves the previous jmpbuf
value in a local structure; epilogue code restores the old
value before the function returns. Toba translates excep-
tion throwing intolongjmp calls that use the jmpbuf.
Such calls transfer control to the prologue of the nearest
function that might handle the exception. This prologue
code simply checks a table to determine if, given the
type of the exception and the currently active program
counter, this procedure can handle the exception. If so,
the target label is set to the appropriate handler and exe-
cution transfers to theswitch statement that dispatches
indirect jumps. Otherwise, the prologue restores the pre-
vious jmpbuf, and immediately executes a longjmp
with this jmpbuf.

4.3 Class Initialization

Each Java class may define an initialization routine to be
run exactly once. Any of the followingevents can trigger
initialization:

� The first creation of an instance of a class.

� The first invocation of any of a class’s static meth-
ods.

� The first read or write of any class (not instance)
variable.

In the worst case, each of these operations includes
checks to determine if the class initializer must be run.
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class d {
static int div(int i, int j) {

i = i / j;
return i;

}
}

Method int div(int,int)
0 iload_0
1 iload_1
2 idiv
3 istore_0
4 iload_0
5 ireturn

Figure 7: Sample Java Program and Bytecode

Int div ii 3WIeN(Int p1, Int p2)
f int div(int, int)
Int i0, i1, i2; integer stack
Int iv0, iv1; integer variables

iv0 = p1; init variables from params
iv1 = p2;

L0: i1 = iv0; iload 0
i2 = iv1; iload 1
if (!i2) idiv

throwDivisionByZeroException();
i1 = i1 / i2;
iv0 = i1; istore 0
i1 = iv0; iload 0
return i1; ireturn

g

Figure 8: Sample Toba Output

Calls to allocation routines check a per-class initializa-
tion flag. Static methods include checks in their prologue
code—no checking is done by the caller. Static-variable
accesses include checks of the initialization flag.

Often, these checks are not needed. Toba omits the
checks for classes that have no initialization routine.

5 Garbage Collection

Toba’s garbage collector is based on the freely-available
Boehm-Demers-Weiser (BDW) conservative garbage
collector [BW88]. A conservative collector treats ev-
ery register and word of allocated memory as a potential
pointer and traces all memory reached from these point-
ers. Therefore, the BDW collector does not need type in-

formation for the memory it manages. This frees Toba
and native routine developers from concerns about mem-
ory management.

Our modifications to the BDW collector are rela-
tively minor, affecting about 30 lines of code. First, the
BDW collector is a mark-and-sweep collector that re-
quires all threads to be stopped during collection. This
proved to be expensive in Toba’s thread package (Solaris
threads), so we optimized the “stop the world” function-
ality for the single-threaded case.

Second, the behavior of finalizers and cyclic data
structures in the JVM are slightly different from those
supported by the BDW collector. The Java language
specification (page 231-234 , [GJS96]), allows object fi-
nalizers to make previously unreachable objects reach-
able again, thereby “resurrecting” the objects. Although
the BDW collector supported finalization and resurrec-
tion of objects, it did not collect cyclic data structures
containing finalizable objects. We therefore made an-
other minor modification to the BDW collector to add
this functionality.

6 Threads and Synchronization

The JVM defines a priority-based, preemptive thread
model that includes synchronization facilities. Toba im-
plements Java threads using Solaris threads, and uses
Solaris locks to protect internal critical sections. The
biggest problem we encountered when implementing
Java threads is that Java allows threads to both suspend
each other and to cause other threads to receive an asyn-
chronous exception, such as thread termination. Toba
uses UNIX’s signal mechanism to handle these asyn-
chronous events, causing the receiving thread to either
suspend itself or throw an exception, as appropriate. The
problem is that this may cause a thread to block (or even
die) in the middle of a critical section, leaving the critical
section locked. To eliminate this possibility Toba uses a
limited form of roll-forward [MDP96] to allow a thread
interrupted by a signal to exit the critical section before
handling the signal. Note that this problem also exists
with critical sections in the Java code itself; the Java lit-
erature does not offer much of a solution other than rec-
ommending limited use of these asynchronous thread op-
erations.

Java threads synchronize via monitors. Each object
and class has a monitor associated with it, and only one
thread at a time may hold the lock associated with a
monitor. Condition variables are also provided to allow
thread scheduling; the standard wait, notify, and broad-
cast operations are supported.

An unusual feature of Java monitors is that they are
recursive, i.e. the same thread may enter a monitor recur-
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sively without deadlock. This implies that Toba cannot
implement Java monitors using lock and unlock primi-
tives directly; instead monitors are a more complex data
structure containing a lock, a reference count, and the
identityof the thread holding the lock. If a thread enters a
monitor whose lock it already holds, the reference count
is incremented. Similarly, when the monitor is exited
the reference count is decremented and the lock only re-
leased when zero is reached. If a thread leaves the moni-
tor to wait on a condition, the lock is released and the ref-
erence count cleared; when the thread subsequently re-
enters the monitor the lock is re-acquired, and the refer-
ence count is restored.

To reduce synchronization overhead, Toba has an op-
timized monitor implementation for single-threaded ap-
plications. Entering and exiting monitors only affects
their reference count; the monitor locks are not used.
Should another thread be created, the original thread first
locks all monitors that have a positive reference count,
thus ensuring mutual exclusion now that there is more
than one thread.

7 Performance Results

7.1 Methodology

We tested Toba’s performance using using both appli-
cation benchmarks and micro-benchmarks. The appli-
cation benchmarks test the overall system performance,
while the micro-benchmarks isolate the performance of
individual language features (e.g., exception handling,
thread switching, etc.).

We compared Toba’s performance to three other sys-
tems: Sun’s interpreter (JDK version 1.0.2), Sun’s JIT
compiler system for Solaris, and the Guava JIT compiler
(version 1.0 beta 6), by Softway Pty, Ltd. We compared
against the Sun interpreter because it is the reference im-
plementation of Java, and against the Guava JIT com-
piler and the Sun JIT compiler because they are the only
other compilation systems for SPARCs of which we are
aware. We ran benchmarks on a Sun SPARCStation-
20 with 128 MB of memory and two Model 61 Super-
SPARC processors. C code was compiled using Sun’s
commercial C compiler with full optimization (-xO4 -
xcg92).

The Guava JIT compiler, the Sun JIT compiler, and
Sun interpreter must all do more work at run time than
Toba to execute benchmarks. Both systems must dynam-
ically load each class file, and the JIT compilers must
compile each method before it can be run. The micro-
benchmark times do not include the time to load class
files, while application benchmarks do include this time.

7.2 Application Benchmarks

Table 2 describes the application benchmarks. Figure 9
shows the execution times of the benchmarks on the
three systems, normalized to the Toba time. Each data
point represents the average of ten runs of the bench-
mark. The JIT system results include the time to com-
pile the benchmark. The Toba-generated benchmarks are
1.5–4.2 times faster than those same benchmarks running
under other systems. Toba-generated code runs 2.6–4.2
times faster than programs running under the JDK in-
terpreter, and 1.5–2.5 times faster than the JIT compil-
ers. This speedup results in a tangible improvement in
the time to complete the benchmark; the JavaLex bench-
mark, for example, improved from 159 seconds on JDK
and 80 seconds on Guava to only 45 seconds on Toba.
The average execution times of the benchmarks, plus
standard deviations, are given in Figure 10.

Toba-generated code is faster than Sun’s interpreter
because compiling class files removes the overhead of
interpretation and of dynamic loading. Toba-generated
code is faster than the JIT systems because Toba does not
incur code generation costs at run time, and, possibly, be-
cause the C compiler optimizes code more aggressively
than do the JIT compilers. For stand-alone applications
that do not rely on dynamic loading, Toba provides large
performance benefits over other systems.

7.3 Micro-benchmarks

Table 3 describes the micro-benchmarks used to iso-
late the performance differences in the systems. These
benchmarks are an expanded version of the UCSD Java
Microbenchmarks [GP96].

Table 4 shows results of running the benchmarks
on each system. For accurate timing, each micro-
benchmark was iterated in a loop until the total execution
time was at least 5 seconds. This varied between 100 and
100,000,000 iterations, depending on the benchmark.

The results show that Toba outperforms the other sys-
tems on almost all benchmarks. For example, Toba is
12–29 times faster than JDK on the arithmetic and class-
access benchmarks; this is directly attributable to JDK’s
use of an interpreter, as Guava and the Sun JIT are nearly
as fast as Toba on these benchmarks.

Toba is also usually 0.9–14 times as fast as the other
systems at handling exceptions. This is because Toba
does not explicitly unwind the stack when an excep-
tion is thrown. Instead, Toba implements exception han-
dling via goto or setjmp/longjmp, depending on
whether the handler is within the same method or not.
This makes exception handling in Toba extremely fast.

Synchronization is also fast in Toba, particularly in
single-threaded programs because Toba optimizes mon-
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Application Description Input

JavaLex Lexical analyzer generator that translates regular expressions
into finite-state machines that are subsequently translated into
Java

Specification that includes
77 patterns

JavaCUP LALR(1) parser generator that translates context-free gram-
mars into push-down automata that are subsequently trans-
lated into Java

Grammar that includes 24
terminals, 32 nonterminals,
and 65 productions

javac Sun’s Java compiler that translates Java source programs into
class files (bytecode)

Toba source files consisting
of 3891 lines of Java

espresso Translates Java source programs into class files (bytecode) Toba source files consisting
of 3891 lines of Java

Toba Bytecode-to-C translator described in this paper Toba’s 18 class files
(77,718 bytes)

Table 2: Application Benchmarks
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Toba
JDK 1.0.2
Sun JIT
Guava 1.0 Beta 6

Figure 9: Normalized Application Timings

Benchmark Toba JDK JDK/Toba Sun JIT Sun JIT/Toba Guava Guava/Toba
(sec.) (sec.) (sec.) (sec.)

JavaLex 44:7� 0:3 158:9� 2:4 3:6 87:5� 1:0 2:0 80:0� 1:1 1:8

java cup 2:1� 0:05 5:4� 0:06 2:6 3:4� 0:02 1:6 5:3� 0:04 2:5

javac 10:7� 0:3 34:8� 0:3 3:3 20:4� 0:1 1:9 19:4� 0:2 1:8

espresso 5:3� 0:2 22:3� 0:3 4:2 11:9� 0:07 2:2 11:7� 0:2 2:2

toba 19:3� 0:1 56:6� 0:5 2:9 28:7� 0:1 1:5 39:6� 0:4 2:1

Figure 10: Application Benchmark Timings
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Arithmetic Benchmarks
add-int Add two integers
multiply-int Multiply two integers
add-double Add two double-precision floating point numbers
multiply-double Multiply two double-precision floating point numbers

Class Access Benchmarks
instance-var Read an integer instance variable
method-local Invoke a method defined in the current (this) object
method-remote Invoke a method defined in a different object
method-interface Invoke an interface method

Exception Handling Benchmarks
exception-local Throw and catch an exception within the same method
exception-caller Throw an exception caught by method’s caller
exception-remote Throw an exception caught by a method ten levels up the call chain
exception-bypass Throw and catch an exception past an exception handler that does not catch the

thrown exception
Synchronization Benchmarks

sync-block-single Enter a synchronized block in a single-threaded program
sync-method-
single

Call a synchronized method in a single-threaded program

sync-block-multi Enter a synchronized block in a multi-threaded program
sync-method-
multi

Call a synchronized method in a multi-threaded program

Miscellaneous Benchmarks
null-loop Once around an empty loop
array-assign Assign to an element of an integer array
thread-yield Perform yields in 3 separate threads

Table 3: Micro-Benchmarks

itor accesses in this situation. Although single-threaded
programs need no synchronization, they may still make
use of library classes that use synchronization.

Toba performs slightly worse than
Guava on the interface-method invocation benchmark,
the integer multiplication benchmark, the instance vari-
able benchmark, and the array assignment benchmark.
Toba also performs slightly worse than the Sun JIT com-
piler on thread yields, since the Sun JIT system does not
implement kernel threads or true concurrency. Toba per-
formed better than any of the other systems on all other
programs, large and small.

7.4 Code Size

Toba emits naive C code and relies on an optimizing C
compiler to do register allocation, copy propagation, and
branch elimination to produce efficient code. Table 5
indicates the sizes of the benchmark programs in bytes

of class file, lines of C, and bytes of object code. Ob-
ject code sizes do not include the Toba run-time system,
which is a dynamic shared library. This library contains
915,000 bytes of code.

8 Project Status

The Toba system currently runs under Solaris on SPARC
workstations. The system includes all of the Java API
except for dynamic linking and the graphics and applet
libraries. Table 6 summarizes the sizes and implementa-
tion languages of its various components.

We intend to port Toba to additional architectures
and operating systems. Porting Toba will require thread-
specific changes to the run-time system and garbage col-
lector. It will also require OS-specific changes to the run-
time system. The bytecode translator and header files
will change only minimally.

Toba is the first piece of the larger “Sumatra” project.
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Benchmark Toba JDK JDK/ Guava Guava/ Sun JIT Sun JIT /
(�sec.) (�sec.) Toba (�sec.) Toba (�sec.) Toba

add-int 0.10 2.92 29 0.10 1.0 0.18 1.8
multiply-int 0.18 3.14 17 0.17 0.94 0.26 1.4
add-double 0.20 3.72 19 0.46 2.3 0.25 1.3

multiply-double 0.20 3.87 19 0.45 2.3 0.25 1.3
instance-var 0.13 2.43 19 0.12 0.92 0.20 1.5

method-local 0.25 3.11 12 0.36 1.4 0.31 1.2
method-remote 0.30 3.89 13 0.38 1.3 0.36 1.2

method-interface 1.66 3.49 2.10 1.40 0.843 2.26 1.36
exception-local 1.61 4.51 2.80 22.50 14.0 9.30 5.78

exception-caller 6.79 6.52 0.96 30.58 4.50 11.33 1.67
exception-remote 8.52 42.24 4.96 121.37 14.2 26.68 2.66
exception-bypass 8.29 11.73 1.41 32.11 3.87 16.07 1.03
sync-block-single 2.21 14.92 6.75 6.15 2.78 10.73 4.86

sync-method-single 3.17 14.15 4.46 6.49 2.05 10.57 3.33
sync-block-multi 4.37 13.91 3.18 6.14 1.41 10.61 2.43

sync-method-multi 6.23 14.25 2.29 6.44 1.03 10.64 1.71
null-loop 0.03 1.04 30 0.07 2 0.07 2

array-assign 0.21 2.53 12 0.19 0.90 0.24 1.1
thread-yield 75.38 82.31 1.092 79.25 1.05 69.71 0.92

Table 4: Micro-Benchmark Timings

Benchmark Class-file Emitted C Code Object File
(bytes) (lines) (bytes)

JavaLex 84,457 25,238 231,816
JavaCUP 119,094 50,297 446,816

javac 508,916 127,678 869,756
espresso 295,281 83,098 674,008

Toba 77,718 23,570 195,836

Table 5: Program Sizes

Component Implementation Size
Language (Lines)

Bytecode Translator Java 4723
Run-time Support C 4130

API Native Routines C 2809
Toba-specific Garbage Collection C 30

Table 6: Implementation Details
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The Sumatra project is exploring many aspects surround-
ing the efficient execution of mobile code, with empha-
sis on efficient implementations of the Java Virtual Ma-
chine. We developed Toba to bootstrap our development
of the JVM API, threads, and garbage collector, as well
as to have fast Java applications.

9 Related Work

Java is a relatively new programming language and vir-
tual machine. We know of no published results de-
scribing implementation and performance characteris-
tics. Popular-press reports and commercial advertise-
ments indicate that many development efforts for Just-
In-Time (JIT) compilers are underway or have recently
completed, but the available information is sketchy.

Compiling higher-level languages to C is not new.
Many language systems leverage existing compilers and
use C as an intermediate language in the compilation
process. Systems for Smalltalk [Git94], SR [And82],
Scheme [Bar89], Icon [Wal91], Forth [EM96], SML
[TAL90], Pascal [Gil90], Cedar [ADH+89], and Fortran
[FGMS90] are well known. For traditionally compiled
languages like Pascal and Fortran, translation to C im-
proved portability. For Scheme, Forth, and Icon, trans-
lation removed interpretation overhead. Similarly, Toba
removes interpretation overhead from Java programs.

Several other projects for compiling Java bytecodes
to C are currently underway. j2c [And96] is a restricted
bytecode to C compiler, currently ported to several plat-
forms. j2c (version 1 beta 5) does not support threads,
monitors, or network resources. In addition, native rou-
tines cannot throw exceptions in j2c. Toba does not
have these restrictions.

Vortex[DDG+96] is another project that compiles
Java bytecodes to C. Vortex provides front ends for
C++, Cecil, Modula-3, and Java. These languages are
compiled to a common internal representation, and C
code is generated from this representation. The Vor-
tex project studies the effectiveness of optimizations for
object-oriented languages. The Vortex project reports
that Java programs speed up by as much as a factor of 8
as a result of these aggressive optimizations. Toba does
not currently perform any of these optimizations. Vor-
tex does not support threads, which has a global impact
on performance. No published information is available
about other details of Java run-time system support from
Vortex.

Jolt [Sir96] also compiles Java bytecodes to C.
Jolt generates a C function for some methods in a
class file, and then generates a new class file with these
methods marked as native. Method overloading is not
supported, and Jolt cannot compile class initialization

methods. Jolt produces class files that are used by the
standard Java interpreter. Toba produces stand-alone ex-
ecutables.

10 Availability

The Toba system is freely available via anonymous ftp.
All distribution information is described on the World
Wide Web at
http://www.cs.arizona.edu/sumatra/toba/.
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A A Larger Example

Figure 11 expands on the example shown earlier by
adding exception handling. An implicit branch (from the
try block to the return) has also been added.

Figure 12 gives Toba’s translation into C code. Ex-
ception handling has enlarged the code significantly, and
the effect is especially noticeable because the original ex-
ample was so small. Besides the boilerplate code that
is the same for all exception-catching methods, there are
also assignments to pc that maintain the JVM program
counter and case labels used for dispatching a caught
exception.

class d {
static int div(int i, int j) {

try {
i = i / j;

} catch (ArithmeticException e) {
i = j;

}
return i;

}
}
Method int div(int,int)

0 iload_0
1 iload_1
2 idiv
3 istore_0
4 goto 10
7 pop
8 iload_1
9 istore_0
10 iload_0
11 ireturn

Exception table:
from to target type
0 4 7 <Class

java.lang.ArithmeticException>

Figure 11: Sample Java Program and Bytecode
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Int div ii 3WIeN(Int p1, Int p2) int div(int, int)
f

static struct handler htable[] = f exception handler list
&cl java lang ArithmeticException.C, 0, 4, 1, go to L1 if 0 � pc < 4

g;
struct mythread *tdata; thread data pointer
jmp buf newbuf; jump buffer
void *oldbuf; pointer to previous buffer
volatile int pc; JVM program counter
int tgt; jump target
Int rv; return value
Object a0, a1, a2; reference stack
Int i0, i1, i2; integer stack
volatile Int iv0, iv1; integer variables

iv0 = p1; initialize variables from parameters
iv1 = p2;

tdata = mythread(); set thread data pointer
oldbuf = tdata->jmpbuf; save old jmpbuf pointer
tgt = 0; dispatch first to entry point
if (setjmp(newbuf)) f set up jump buffer

sthread got exception(); exception was caught:
CATCH: a1 = tdata->exception; load exception value

if ((tgt = findhandler(htable, 1, a1, pc)) < 0) find handler
longjmp(oldbuf, 1); no handler; pass upward

g

tdata->jmpbuf = newbuf; register jump buffer for thread

TOP: switch(tgt) f dispatch entry, ret, or exception

L0: case 0:
pc = 0; set pc for exception handling
i1 = iv0; iload 0
i2 = iv1; iload 1
if (!i2) idiv

throwDivisionByZeroException();
i1 = i1 / i2;
iv0 = i1; istore 0
pc = 4; reset pc on leaving exception range
goto L2; goto 10

L1: case 1:
pc = 7; reset pc after catching exception
i1 = iv1; iload 1
iv0 = i1; istore 0

L2: case 2:
i1 = iv0; iload 0
rv = i1; ireturn
goto RETURN;

g

RETURN:
tdata->jmpbuf = oldbuf; restore previous jump buffer
return rv; return result

g

Figure 12: Sample Toba Output


