The SR Run-Time System Interface

Amy Morgenstern
Vicraj Thomas
Gregg Townsend

Department of Computer Science
The University of Arizona

October 12, 1994

The SR book (The SR Programming Language: Concurrency in Practice, by Gregory Andrews and Ronald
Olsson) presents an overview of the SR run-time system (RTS) in its Appendix E. This document
describes details of the interface to the run-time system and is aimed at the reader who wishes to modify
the system or the generated code that callsit.

The RTS provides primitives that are used by the code generated by the SR compiler to access services
provided by the RTS. The C files that implement these primitives may be found in ther t s subdirectory of
the SR distribution.

Multiprocessor SR (MultiSR) uses locks to avoid interference among processes. These locks are men-
tioned briefly in some of the function descriptions and are described more completely in the appendix.

General Conventions

Identifiers beginning with an initial capital, such as Array, Ccap, and Func, are the names of types
defined insr . h.

Several functions have an initial | ocn parameter encoding the source file and line number of the SR
statement that generated the function call. Thisinformation is printed in trace messages or when an error is
detected. Thedecoding of al ocn valueisdoneby sr _fnt | ocn.

Several source files contain initialization functions having names that begin with sr _i ni t _. Eachis
called once, before any of the other related functions. Because these initialization functions are trivial, they
are not listed in this document.

Memory Management Primitives
The memory management primitives are used to allocate and free storage at run time.

char *sr_new (char *locn, int |en)

Allocates memory for a new(type) statement. This function is independent of the other alloca-
tion functions because failure is returned to the programmer and because the region can only be
freed on explicit request.

The SR Programming Language comes from the Department of Computer Science, The University of Arizona, Tucson, Arizona 85721
USA. The implementation is available by anonymous FTP from ftp.cs.arizona.edu, and the SR Project may be reached by sending
electronic mail to sr-project@cs.arizona.edu.

SR2.3-RUNTIME 1

voi d sr_di spose (char *locn, Ptr addr)
Deallocates a block of memory that was allocated by sr _new.

Ptr sr_alloc (int size)

Allocates a region of memory, by calling mal | oc(), and checks for success. The program is
aborted if memory cannot be obtained. This function is used by all other allocation functions
except sr_new.

Resour ce-owned memory

The RTS records the ownership of certain alocated regions. A region may be owned by one particular

resource or by none. Memory owned by aresource is freed when that resource is destroyed.

Ptr sr_alloc_rv (int size)
Allocates memory for a new resource instance. This is called by resource initialization code
immediately after entry.

Ptr sr_alc (int size, int need_rnutex)
Allocates a region of contiguous memory and remembers which resource, if any, is to be con-
sidered its owner. If si ze is positive, the current resource becomes the owner; if it is negative,
no resource is associated with the region. The parameter need_r es_nut ex is true unless the
resource lock is aready held.

String *sr_alc_string (int maxl ength)
Allocates a string and initializes its header. Ownership is set to the current resource.

void sr_free (Ptr addr)
Frees a region previously alocated by sr_al ¢ or sr_al ¢_stri ng. Used when not holding
the resource lock.

void sr_locked_free (Ptr addr)
Frees a region previously allocated by sr_al ¢ or sr_al ¢_string. Used when the caler
aready holds the resource lock.

void sr_res free (Rinst r)
Frees all memory owned by the resourcer .

Memory Pool Primitives

Some data structures are grouped into pools. A pool is a set of memory regions of a particular type.
Regions are allocated and freed using the functions below; freed memory remains in the pool for reuse.
Pool memory is not owned by any resource.

The pool routines themselves use no externally visible locks; however, they may call user routines that use
such locks.
Pool sr_makepool (char *nane, int size, int max, Func init, Func re_init)

Initializes a pool of descriptors. Parameter nane isused in error messages. Each descriptor is of
size si ze; a maximum of max descriptors are alowed. Functioni ni t is called when a pool
element needs to be initialized for its first use; function r e_i ni t is called upon destruction to
prepare the element for later reuse. Either function parameter may be null if no function is
needed.

Ptr sr_addpool (Pool p)
Allocates anew descriptor from pool p and returns a pointer to it.

SR2.3-RUNTIME 2

voi d sr_del pool (Pool p, Ptr el, int have_nutex)
Returns element el to pool p. Parameter have nut ex is true if the lock pl - >pnut ex is
aready held.

voi d sr_eachpool (Pool p, Func f)

Calls the function f once for each currently allocated member of pool p. The single argument
passed to function f is a pointer to adescriptor. Function f must not allocate or deallocate items
from pool p.

Resour ce M anagement Primitives

The resource management primitives are used to create and destroy resources and to inform the RTS when
the initial or final code has been executed. There are three mgjor data structures associated with these
primitives: the operation capability (Ocap), the resource capability (Rcap) and the creation request block
(CRB). The CRB includes a packet header used for remote creation; the only field of the packet header that
isused by the generated codeisthe si ze field. These data structures are definedinsr . h.

Ptr sr_create_resource (char *locn, int rpat, Vcap vm CRB c, int rsize)
Called by the generated code to create a new resource instance. rp is the resource pattern
number, v is the target virtual machine, ¢ is the address of the creation request block, and
rsi ze is the size of the resource capability. The parameters are placed in the CRB and
sr_create_resiscaled

void sr_create res (CRB *crbp)

Actually creates a new resource instance. Various data structures are created or updated and a
process is spawned to execute the initialization code. The caller blocks until the initialization
code completes or replies. A pointer to the new resource capability is returned.

void sr_create_global (char *locn, int rpatid)

Creates a new instance of a global in a manner similar to resource creation. If the global is
aready running, the call isignored.

void sr_destroy (char *locn, Rcap rcp, int have_rid_nutex)

Destroys the resource r cp. A process is created to execute the final code of the resource. The
current process blocks until the final code is executed. All memory owned by the resource is
freed and all processes executing in the resource are killed. The primitive does not return if
called from the resource being destroyed; in this case, the calling processiskilled. The argument
have ri d_mut ex istrueif the caller holdsthelock for r es_pool - >pnut ex.

void sr_dest_all ()

Destroys al the resource instances, but not the globals, on the current machine.

voi d sr_destroy gl obals ()
Destroys all the globals on the current virtual machine in a hierarchical order based on what other
globals they import.

void sr_finished init ()
Signals that the resource initialization code has completed. The resource creator is awakened if it
was not awakened earlier by areply. This primitive does not return; instead, the calling process
iskilled.

void sr_finished _final ()

Signals that the resource final code has completed. The destroying process is awakened. This
primitive does not return; instead, the calling processiskilled.

SR2.3-RUNTIME 3

Process M anagement and Scheduling Primitives
This section describes the primitives that create, destroy and schedule processes.

void sr_init_proc (Func start_code)

Initializes the process management system. The free list of process descriptorsis set up. Thejob
servers are created. The caling process is killed and execution continues by calling
start _code inanew SR process context.

Proc sr_spawn (Func pc, int pri, Rinst r, int have_|lock, al, a2, a3, a4)

Creates a new process that will begin by calling pc(al, a2, a3, a4) . A new process descrip-
tor isallocated and initialized. Stack spaceis allocated and set up for process initiation. The pro-
cess is added to the list for the specified resource, but not placed on the ready list. Parameter
have_| ock istrueif the caller holds the resource lock.

void sr_activate (Proc pr)
Places aprocess pr created by sr _spawn on the ready list.

void sr_kill (Proc pr, Rinst res_mutex_hel d)

Kills an SR process. The parameter r es_nut ex_hel d pointsto pr - >r es if the caler holds
thelock pr - >r es- >nmut ex and is null otherwise.

voi d sr_schedul er ()

Requests a context switch to the next eligible process. The caler must hold the lock
sr_queue_nut ex. Before calling sr _schedul er, the caller must requeue its own process
on the appropriate queue.

void sr_|oop resched (char *locn)

Reschedules the current process to let another process execute. It checks to see if any napping or
[/O-blocked jobs can be awakened. It is called by the generated code every time
sr_max_| oops loop iterations have occurred.

void sr_reschedule (Proc pr)

Reschedules process pr on the appropriate ready or idle list. The caller must hold the lock
Sr_queue_nmnut ex.

void sr_setpri (int newpri)

Sets the priority of the current process to newpri . If this is a decrease in priority, a context
switch to another process may result.

Remote Request Processing Primitives
The following primitives service requests for a remote machine.

Pach sr_renote (Vcap dest, enum nms_type type, Pach ph, int size)

Passes a message of typet ype for execution on virtual machine dest , waits for the reply, and
returns a pointer to that reply. Parameters dest, t ype, and si ze, plus the current VM and
priority, are stored in the message’ s packet header ph before sending the message.

void sr_rnt_callne (Pach ph)
void sr_rnt_create (Pach ph)
void sr_rnt_destroy (Pach ph)
void sr_rnt_destop (Pach ph)
void sr_rnt_destvm (Pach ph)
void sr_rnt_invk (Pach ph)

void sr_rnt_query (Pach ph)

void sr_rnt_receive (Pach ph)

SR2.3-RUNTIME 4

Each of these processes a particular type of request from a remote VM and then sends back an
acknowledgement.
void sr_rcv_call (Pach ph)

Processes a cal | invocation that was returned in response to a remote receive request. The
packet is in the form of an invocation block, which is then passed to the original receiver. When
areply issent to the invocation, it is caught here and passed back to the invoking machine.

void sr_net_start (char abuf[])

voi d sr_net_connect (int n, char *address)

Bool sr_net_known (int n)

void sr_net_nore (Pach ph)

enum ns_type sr_net_recv (Pach ph)

void sr_net_send (int dest, enumns_type type, Pach ph, int size)

These primitives service network requests.

RTS Support for Synchronization Primitives
This section describes the RTS primitives required by SR’s synchronization statements.

Invocations

All invocations are made using the sr_i nvoke primitive. The generated code provides an invocation
block that describes the invocation.

Ptr sr_invoke (char *locn, invb ibp)

Invokes an operation. The caller must initialize the si ze, opc, and t ype fields of the invoca-
tion block i bp. The arguments for the invocation are located immediately beyond the fixed por-
tion of i bp, and the return values will be returned in this same area. A pointer to the invocation
block is returned; the block may have been moved if it called an operation on aremote machine.
invb sr_reply (char *locn, invb ibp)
Sends an early reply to the invoker of an operation. A copy of the invocation block is retained by
the current process and the original is returned to the invoker. A reply in the initialization code
of aresource is treated very much like an sr_fi ni shed_i ni t : the creator process is awak-
ened but the current process is not killed. (The compiler ignores reply statements in a fina
block.) The address of the new copy of the invocation block is returned.
Ptr sr_forward (char *locn, Invb obp, Invb ibp)

Forwards an argument list and responsibility for a reply to another operation. The packet header
of the old invocation block, obp, is copied into the packet header of a new invocation block,
i bp. A new process is spawned to execute the operation specified ini bp.

voi d sr_nake_proc (COcap *ocap, enum op_type type, Func ept)
Adds a new resource proc operation. Called during resource initialization.

void sr_Kkill _resops (Rinst res)

Kills al operations of resource r es. Any pending input invocations are purged. Thisis called
by sr _destroy.

void sr_finished proc (invb ibp)

Called by the generated code when a pr oc operation has finished. If the operation was called,
the invoker is notified. This primitive does not return; instead, the current processiskilled.

SR2.3-RUNTIME 5

The Concurrent Invocation Statement
This section describes the commands that are used to execute the co statement.

void sr_co_start (char *Iocn)
Creates aco block for the start of the co statement. The new block is linked to the current pro-
Cess.

Ptr sr_co wait (char *locn)
Blocks until an arm of a co terminates and returns a pointer to the invocation block used in the
original invocation. The generated code can use the invocation block to find out which arm of
the co terminated. To be able to do this, the generated code setsthe co. ar m numfield in each
invocation block before making the invocations inside the co. A pointer to the original invoca-
tion block is returned so that the generated code can copy result parameters and find out which
arm terminated. NULL isreturned after al arms of the co have terminated.

void sr_co_call (lnvb ibp)

Handles acall within aco statement.

void sr_co_call _done (Invb ibp)
Signals that a call invocation from a co statement has returned. If the invoker is still interested
in the event, it is notified.

void sr_co_send (lnvb ibp)
Handles a send within a co statement. The invocation block is copied and returned to the
invoker.

void sr_co_end (char *Iocn)
Indicates the end of aco statement. The co block isfreed.

The Input Statement
An important concept while dealing with the input statement is that of a class. The compiler groups opera-
tions in an input statement into a class. A class is the transitive closure of the relation ‘‘serviced by the
same input statement.”” The generated code, however, does not have to concern itself with the structure of
aclass, and asfar asit is concerned, a pointer to aclassisjust a character pointer.
Ptr sr_make_class ()

Makes a new operation class and returns a pointer to it.

Ptr sr_make_senop (char *locn)
Creates an operation implemented by a semaphore and returns a pointer to it.

void sr_init_sermop (char *locn, Ptr sems, Ptr initvals, int ndin
Initializes an unoptimized semaphore or array of semaphores by issuing a series of send opera-
tions.

Ocap sr_new op (char *locn, Cass clap)
Creates and returns a single new dynamic operation for new(op. . .).

void sr_nake_inops (Ptr addr, Class clap, int ndim int type)

Creates one or more input operations and stores their capabilities at addr . The parameter ndi m
gives the number of dimensions for an array of ops or is zero for a simple op; t ype is either

SR2.3-RUNTIME 6

voi d

voi d

voi d

voi d

i nvb

i nvb

Bool

voi d

voi d

| NPUT_OP or DYNAM C_CP.

sr_dest _op (char *locn, Ccap opc)
sr_dest _array (char *locn, Ptr addr)

Destroys a single dynamic operation or an array of them.

sr_kill _inops (Ptr addr, int ndinm

Removes local operations from the operation table and purges any pending invocations. As with
the preceding function, ndi mgives the dimensionality of an operation array.

sr_iaccess (C ass clap, Bool else_present)

Reserves access to an input operation class for a sequence of calls to sr_get anyi nv,
sr_get _nyinv, or sr_chk_nyi nv. Exclusive access is lost when the any of those calls
block the process or when the process calls sr_rm i op. The calling process blocks if another
process already has access to the class. Parameter el se_pr esent istrueif the input statement
has an el se clause and isfase otherwise.

When an input statement has a synchronization statement, the generated code reserves the class
and then iterates through the queue until it finds an acceptable invocation, which it then accepts
by calling sr _rm_ i op. Parameter values in the invocation blocks can be used in the evaluation
of the synchronization expression.

When the input statement has a scheduling expression, the generated code inspects all the pend-
ing invocations and evaluates the scheduling expression for each. Again, the parameter values
can be used.

sr_get _anyinv (char *locn, Cass clap)
Returns a pointer to the next uninspected invocation block of operation class cl ap. The process
must have previoudly reserved the class by calling sr _i access. If the class is empty and the
sr_i access cal specified no el se clause, the process blocks until an invocation appears. If
the classis empty and there isan el se clause, anull isreturned.

sr_chk_nyinv (Ccap opc)
Returns a pointer to the next uninspected invocation of operation opc, leaving the invocation in
the queue. The process must have previously reserved the operation’s class by calling
sr_i access. If noinvocation isfound, anull pointer is returned.

sr_cap_ck (char *locn, Ptr oentry, Ccap opc)
Checks whether the operation entry oent r y matches the capability opc given in an input state-
ment, and returns TRUE if so.

sr_rmiop (char *locn, char *cp, Invb ibp)
Removes an invocation block from a class queue and releases access to the class. If i bp isnull,
access is released but no operation is dequeued.

sr_finished_input (char *locn, Invb ibp)

Signals the exit from the body of an input statement. The invocation block is freed if the block if
itisno longer needed.

Ptr sr_receive (char *locn, Ccap opc, Bool el se_present)

Unconditionally degueues the next invocation from an operation class and returns a pointer to its
invocation block. If no invocation is available and an el se clause is present, a null pointer is
returned; otherwise, the process blocks. sr_recei ve combines the functions of
sr_iaccess,sr_get _anyinv,sr_cap_ck,andsr_rm.i op, andisadditionally the only
entry point providing for input from a remote machine.

SR2.3-RUNTIME 7

int sr_query_iop (char *locn, Ccap *opc)
Returns the pending invocation count for an input operation. Thisimplementsthe ? operator.

Semaphore Primitives
Semaphores are realy pointers to structures, but as far as the generated code is concerned they are just
pointers to characters.
Ptr sr_make_sem (int init_val)
Creates a semaphore with a specified initial value and returns a pointer to it.

void sr_kill_sem (Sem sp)
Destroys a semaphore.

void sr_P (char *locn, Sem sp)
Does a P on semaphore sp.

void sr_V (char *locn, Sem sp)
DoesaV on semaphore sp.

I nput/Output Primitives
This section describes primitives that do input and output.

File sr_open (char *fnane, int node)
Opens the file named by f name. Files can be opened in one of three modes: READ (0), WRI TE
(1), or READVWRI TE (2). A file pointer is returned on a successful open; NULL is returned if the
open fails.

void sr_flush (char *locn, File fp)
Flushes the buffers of thefile f p. The file remains open.

void sr_close (char *locn, File fp)
Closesthefilef p.

int sr_read (char *locn, File fp, char *at, argl, ...)
Reads zero or more variables from file f p, returning the number of items read. Argument at
gives the type and number of the arguments that follow. If no items are read and EOF is encoun-
tered, EOF isreturned.

void sr_printf (char *locn, File fp, String sp, String fnt, char *at, ...)
Generates output for any of the predefined functions printf, sprintf, wite, or put.
Either f p, afile pointer, or sp, a string pointer, is null to select printf or sprintf behavior. The
argument at gives the type and number of the arguments that follow.

int sr_scanf (char *locn, File fp, String sp, String fnt, char *at, ...)

Reads formatted input from the file f p or the string sp, whichever is not null. Argument at
gives the type and number of the arguments that follow. The function sr_scanf returns the
number of itemsread. If noitemsare read and EOF is encountered, EOF is returned.

int sr_get_string (char *locn, File fp, String *s)
Reads a string value for get ('s) . The number of characters read is returned.

SR2.3-RUNTIME 8

int sr_get_carray (char *locn, File fp, String *s)
Reads a character array for get (a) . The number of characters read is returned.

nt sr_seek (char *locn, File fp, int seektype, int offset)

Moves the file pointer to be of f set bytes from the beginning, current position, or end of the
file f p, depending on whether seekt ype is ABSCLUTE (0), RELATI VE (1), or EXTEND (2),
respectively. The new offset relative to the beginning of the file is returned.

int sr_where (char *locn, File fp)
Returns the current positionin thefile f p relative to the beginning of thefile.

Bool sr_renpove (char *fnane)
Removesthefile given by f nane. Returnstrueif successful.

Primitives dealing with Virtual Machines
This section describes primitives that manipulate virtual machines. The first call to any of these on the
main virtual machine initiates execution of srx, the central VM coordinator, in a separate Unix process.
All of these routines function by sending their parameters to srx for processing.
void sr_locate (char *locn, int n, String *host, String *exe)
Implementsthel ocat e statement.
Vcap sr_crevm (char *locn, int physn)
Creates a new virtual machine on physical machine physm returning aVVM capability.

Vcap sr_crevmnnanme (char *locn, String *host)
Creates a new virtual machine on the computer named host , returning aVM capability.

void sr_destvm (char *locn, int vm
Destroys the virtual machinevm

Clock Functions
These functions deal with the system clock.
int sr_age ()
Returns the age in milliseconds (el apsed time during execution) of the current virtual machine.

void sr_nap (char *locn, int nsec)

Delays the calling process for nsec milliseconds. If msec is nonpositive, the caller is
rescheduled with no delay behind any other ready processes of the same priority.

Termination Processes
These functions are called to end a program in various ways.

void sr_stop (int exitcode, int report_bl ocked)

Terminates the execution of the SR program. Output streams of all VMs are flushed and the
VMs are terminated. The VMs exit with the specified exit code.

void sr_abort (char *msg)
Prints an fatal error message and aborts the program.

SR2.3-RUNTIME 9

void sr_net_abort (char *s)
Identical tosr _abort but caled by the network routines.

void sr_loc_abort (char *locn, char *nsg)
Aborts the program giving source line information.

void sr_nalf (char *msQ)
Aborts the program indicating a run-time malfunction. Only called in ‘‘cannot happen’ situa-
tions.

voi d sr_nessage (char *|abel, char *nsgQ)
Prints a run-time message preceded by alabel such as" war ni ng" .

int sr_runerr (locn, errno, args ...)

Aborts the program giving source line information and a message selected by the index er r no
fromthelistinrunerr. h. Additional arguments may be inserted in the message a la printf.

void sr_stk_corrupted ()
void sr_stk_overflow ()
void sr_stk_underfl ow ()

Issues an error message and aborts the program due to a problem detected by the context switch
routines.

Conversion Functions
The following functions convert an SR string to the requested type, returning the converted value:

i nt sr_boolval (int locn, String *s)
i nt sr_charval (String *s)

i nt sr_intval (int locn, String *S)
Ptr sr_ptrval (int locn, String *S)
Real sr_realval (int locn, String *s)

Array* sr_chars (String *s)

The following functions convert a C string to boolean or integer, returning success or failure:
i nt sr_cvbool (char *sp, Bool *bp)
i nt sr_cvint (char *sp, int *ip)

The following functions each convert a particular type to an SR string, returning a pointer to a newly alo-
cated string:

Ptr sr_fmt_arr (Array *a)
Ptr sr_fmt _bool (Bool b)
Ptr sr_fmt _char (Char c¢)
Ptr sr_fnt_int (int n)
Ptr sr_fnt_ptr (Ptr p)
Ptr sr_fm _real (Real r)

The following functions implement the get ar g predefined function. Each returns 1 if successful, O if the
conversion fails, or ECOF if n is out of range.

i nt sr_arg_bool (int n, Bool *p)

i nt sr_arg_carray (int n, Array *a)
i nt sr_arg_char (int n, Char *p)

i nt sr_arg_int (int n, Int *p)

i nt sr_arg_ptr (int n, Ptr *p)

i nt sr_arg_real (int n, Real *p)

SR2.3-RUNTIME 10

i nt sr_arg_string (int n, String *s)

Miscellaneous Utilities
Many functions are so small and straightforward that no detailed description is needed.

Math Functions

These functions implement some arithmetic operations and predefined functions. (Most arithmetic opera-
tions require no run-time functions;, most predefined math functions are implemented by direct calls to the
Clibrary.)

i nt sr_imn (int nargs, int v, ...) integer minimum
i nt sr_imax (int nargs, int v, ...) integer maximum
i nt sr_rmn (int nargs, Real v, ...) real minimum

i nt sr_rmax (int nargs, Real v, ...) real maximum
Real sr_rtor (char *locn, Real x, Real Yy) real ** real
Real sr_rtoi (char *locn, Real x, int y) real ** int

i nt sr_itoi (char *locn, int x, int y) int** int

Real sr_round (char *locn, Real x) round(real)
Real sr_rnod (char *locn, Real x, Real y) real nod real
Real sr_inmod (char *locn, int x, int vy) int mod int
void sr_seed (Real x) seed(x)

Real sr_random (Real x, Real vy) randonm(x,y)

Sring Functions
These functions implement string comparison, concatenation, slicing, slice assignment, and swapping.

i nt sr_strcnp (String *lI, String *r)

Ptr sr_cat (char *addrl, int lenl, ... , NULL, 0)

Ptr sr_sslice (char *locn, String s, int i, int j)

String* sr_chgstr (char *locn, String *s, int i, int j, String *v)

String* sr_sswap (char *locn, String *Iside, String *rside)

Array Functions
These functions implement several operations involving arrays.
Array* sr_acopy (char *locn, Array *dest, Array *src)

i nt sr_acount (Array *a)

Ptr sr_astring (Array *a)

Array* sr_aswap (char *locn, Array *Iside, Array *rside)

Ptr sr_clone (char *locn, Ptr addr, int len, int n)

Array* sr_init_array (locn, addr, esize, initv, ndim [bl, ubl, ...)
Ptr sr_slice (locn, al, a2, esize, nbounds, [bl, ubl, ...)

Array* sr_strarr (char *locn, Array *dest, int Ib, int ub, Array *src)

Tracing and Debugging Functions
These functions trace significant events and assist in debugging the run-time system.

i nt sr_trace (char *action, char *locn, Ptr addr)

i nt sr_bugout (char *f, int vl, int v2, int v3, int v4, int vb)
void sr_debug (char *fnt, inv vl, int v2, int v3)

i nt sr_get debug ()

SR2.3-RUNTIME 11

void sr_set_debug (int n)

Context Switch Functions

The following system-dependent functions implement SR’s underlying lightweight threads package. They
are described in detail in Porting the SR Programming Language. The actual code is located in the csw
directory.

void sr_build context ()
void sr_chg context ()
void sr_chk _stack ()

Multi SR Functions

The following system-dependent functions support MultiSR. They are also described in Porting the SR
Programming Language. The actual codeislocated inthenul ti directory.

void sr_init_multiSR ()

void sr_jobserver first ()

void sr_create jobservers (Func code, int n)

References

Gregory R. Andrews and Ronald A. Olsson, The SR Programming Language: Concurrency in Practice
Benjamin/Cummings, Redwood City, CA, 1993.

G.R. Andrews, R.A. Olsson, M.A. Coffin, M. Elshoff, I. Nilsen, T. Purdin, and G. Townsend, An Overview
of the SR Language and Implementation. ACM Transactions on Programming Languages and Systems,
val. 10, no. 1, Jan. 1988, pp. 51-86.

Gregg M. Townsend and Dave Bakken, Porting the SR Programming Language. Department of Computer
Science, The University of Arizona, 1993. Distributed with the SR system.

SR2.3-RUNTIME 12

Appendix: Lock Usage
Dave Bakken

Multiprocessor SR (MultiSR) requires several locks for proper synchronization. This appendix describes
the purpose of each lock and the relationships of the locks to each other.

The defined type Mut ex isused to declare alock; Mut ex variables are accessed only through the mac-
ros| NI T_LOCK, LOCK, and UNLOCK. In uniprocessor versions of SR these macros have no effect.

Code that concurrently reserves multiple locks must follow nesting rules to avoid deadlock. Inter-
dependencies with other locks are identified for each lock. A linear ordering reflecting these interdepen-
dencies appears at the end of the appendix. Terms such as‘‘first’”” and *‘last’’ refer to the order of acquisi-
tion.

SR assumes machine-word atomicity. Locks are not used to protect variables that are a single word,
such asthe global mscl ock or theindividual elements of thearray f p_t abl e.

Individual Locks

Locks indicated with - > as part of the name are components of structures. Locks whose names begin with
sr_ are global. Other locks are local to a single source file. The defining file name is indicated for each
lock.
cob_st->cobrmut ex [oper. h]
This lock protects al the elements of a concurrent statement block structure cob_st . The lock
isnested once, insr_co_end, and isacquired after cob_pool - >pnut ex. Insr_co_wai t,
if the co block has not terminated, the lock is released until the co statement has terminated.
cobnut ex isthen re-acquired.
mem mutex [alloc. c]
Thislock protects al | _mem the linked list of owned memory regions. This lock is taken after
the appropriate r es- >r mut ex has been acquired.
sr_exec_up_nutex [globals. h]
Thislock protectssr _exec_up, the variable that tells if srx has been started. It is not nested.

alloc_mutex [m sc.c]
Thislock protects the variables| ow_al | oc and hi gh_al | oc, which are used by RTS Primi-
tivessr _newandsr _di spose. Itisnot nested.

cl ass_pool - >prmut ex [oper. c]
Thislock protects the memory allocation pools. It isnot nested.

cl ass_st->cl mutex [oper.h]
This lock protects a class structure. Except for rnutex, res_pool - >pnut ex, and
Sr_mai n_res_nut ex, it is obtained before al other locks.

cob_pool ->prmutex [co. c]
This lock protects the memory allocation pool for the co statement. The only nesting for this
lock isinsr_co_end(), whereitisacquired before cobp- >cobmut ex.

cre_nutex [vm c]

This protects num _cr evm nane, which assigns a unique serial number for each VM created
using atext string (instead of a machine number). It is never held while another lock is acquired.

SR2.3-RUNTIME 13

currfd_nutex [socket.c]
This protects cur r f d, the current file that sr_net _recv is checking. It is never held while
acquiring another lock.

send_mut ex [socket. c]
Large messages sent to other virtual machines may be broken into parts. This lock ensures that
the parts are sent consecutively with no other messages interspersed. send_nut ex also pro-
tects the outgoing message counters. It isnot nested.

debug_mut ex [debug. c]
This synchronizes debug outputs and is acquired and freed (indirectly) inside the DEBUG macro.
Thislock is always acquired last.

final _nmutex [main.c]
This protects fi nal s_started and shut down_st art ed to ensure that finalization and
shutdown are done no more than once. It isaways acquired last.

maxf d_mut ex [socket. c]
This protects the variable naxf d, the highest file descriptor checked by sr_net _recv. lItis
acquired after wai t _r eady_set nut ex andisnever held while another lock is acquired.

nfd_fdm nutex [socket.c]
This lock protects the variables that maintain mappings between machines and file descriptors,
nfd[n] andfdnin]. Itisnested insidewai t _ready_set _nut ex and is never held when
another lock is acquired.

oper _st->omut ex [oper. h]
This protects an operation table entry. The lock is acquired before sr_queue_rut ex but after
cl mut ex and r mut ex. The most complex nesting occursinsr _ki |l | _resops. It acquires
rmutex, clmutex, and ormutex. Then it calls sr_kill_sem which acquires
Sr_queue_nut ex and sem pool - >pnut ex.

oper _pool ->pnut ex [oper. c]
Thislock protects the run-time operation pool. It isnot nested.

proc_pool - >prmut ex [pool . c]
This lock is used to protect the process memory allocation pool. It must be acquired after
sr_queue_nut ex. A given proc will either be on a protected queue or be served by only one
job server, so simultaneous access is not possible.

random nut ex [math. c]
This protects the variables used by sr_r andom It is not nested.

renote_nutex [renote.c]
This lock protects the arrays st art ed] MAX_VM and wai ti ng[MAX_VM used in function
cont act . Itisacquired before the queue mutex.

res_pool - >prmut ex [res. c]

Thislock protects the resource memory allocation pool. The only nesting iswith r mut ex in the
function sr_dest _all, and here res_pool - >pnut ex is acquired first. Function
sr_dest _al |l iscalled during VM destruction, and it must hold r es_pool - >prut ex the
entire time so no other resources can be created.

SR2.3-RUNTIME 14

rin_st->rmutex [res.h]

This protects a resource instance descriptor. Only the locks res_pool - >pnut ex and
sr_mai n_res_nut ex are acquired earlier.

sem pool - >pnut ex [semaphore. c]

This lock protects the semaphore memory allocation pool. It is never held when another lock is
acquired.

sr_main_res_nutex [globals. h]

This protects sr_mai n_r es, which is the capability for the main resource. It is interlocked
only withr nut ex, and is acquired first.

sr_queue_nut ex [gl obal s. h]

This protects the /O list, the nap list, and all queues. It interacts with a number of locks but is
acquired before al others except cl mut ex, r mut ex, and onut ex. Some functions that need
the lock do not know whether it is already held. To handle this situation, the macros
LOCK_QUEUE and UNLOCK QUEUE are used in nested pairs to access it. The first call to
LOCK _QUEUE acquires the lock and subsequent calls do nothing but increment a private counter.
Callsto UNLOCK QUEUE just decrement the counter; when it reaches zero, the lock is released.
Except for st _schedul er, which requires that its caller lock the queue, the pairs are contained
in the same function.

sr_fd_lock[n] [globals.h]

This array of locks protects files. It is indexed by file descriptor. Only one file lock is held at
any time. Except for debug_mnut ex, filelocks acquired last.

proc_st->stack _nutex [sr.h]

This protects pr - >st ack. Routine sr_schedul er finds the next pr on some queue, then
setsol d_cur _proc to itself and the sr _cur _proc to pr. It then does a context switch to
the job server's private context, which is just an infinite loop in swi t ch_proc. Routine
swi t ch_pr oc doesfour things:

1) releasesol d_cur _proc->st ack_nut ex

2) acquiressr _cur _pr oc- >st ack_rmnut ex

3) callssr _chg_cont ext (sr_cur _proc- >st ack)

4) if (ol d_cur _proc->status == FREE)
free_proc(ol d_cur_proc)

Since the job server holds no other locks while acquiring st ack _mut ex, it is acquired before
all other locks.
wait _ready_set _rmutex [socket.c]

This protects wai t set , the set of file descriptors checked for input, and incoming message
counters. It is acquired before nf d_f dm nut ex, but other than that it is never held when
another lock is acquired.

SR2.3-RUNTIME 15

Linear Ordering

A linear ordering of lock classes is presented below. When two locks are needed concurrently, the onein
the lower numbered classis acquired first. There are no nestings between locks in the same class. In other

words, while alock from class nis held, no other lock from a class m may be obtained if mgn.

Class0
Class1
Class 2
Class 3
Class4
Class5

Class 6

Class7

Class 8
Class9

Class 10
Class 11

stack_mutex (always held by the current proc)

res_pool->pmutex
Sr_main_res mutex
rmutex

clmutex

omutex
remote_mutex
Sr_queue_mutex

wait_ready set mutex

alloc_mutex
class_pool->pmutex
cob_pool->pmutex
cre_mutex
currfd_mutex
send_mutex
final_mutex
mem_mutex
oper_pool->pmutex
proc_pool->pmutex
random_mutex
Sr_exec_up_mutex
cobmutex
maxfd_mutex
mfd_fdm_mutex
sem_pool->pmutex
started_mutex
sr_fd lock[]
debug_mutex

SR2.3-RUNTIME

16

