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Abstract

This paper introduces the newest version of the SR concurrent programming language and illustrates how it provides
support for different execution environments, ranging from shared-memory multiprocessors to distributed systems.
SR uses a few well-integrated mechanisms for concurrency to provide flexible, yet efficient, support for parallel and
distributed programming. This paper gives several realistic examples to illustrate these language mechanisms.

1. Introduction

The SR concurrent programming language has been around, in one form or another, for over ten years. The earliest
version, now called SR0, contained mechanisms for asynchronous message passing and rendezvous [Andr81,Andr82].
Its form of rendezvous, unique at the time, provided a means by which the process servicing a rendezvous could
choose which invocation to service based on the values of invocation parameters. Experience using SR0 substantiated
the general appropriateness of the language, but also pointed out several deficiencies. That experience led us to
redesign the language [Andr86]. The result (SR version 1) [Olss86,Andr88] provided additional mechanisms for
remote procedure call, dynamic process creation, and semaphores, as well as a means for specifying distribution of
program modules.

Experience using version 1 of SR has led to further evolution of the language. Version 2 retains much of ver-
sion 1’s structure. However, it also enhances the mechanisms that support sharing of objects. This sharing is espe-
cially important in shared-memory environments, for which earlier versions of SR were not not really intended. (It is
also important for supporting libraries, e.g., mathematical and windowing libraries.)

SR supports many ‘features’ useful for concurrent programming. However, our goals have always been to keep
the language simple and easy to use, while at the same time to provide an efficient implementation. We achieve these
goals by integrating common notions, both sequential and concurrent, into a few powerful mechanisms. We imple-
ment these mechanisms as part of a complete language to determine their feasibility and cost, to gain hands-on experi-
ence, and to provide a tool that can be used for research and teaching.

This paper introduces version 2 of SR, henceforth referred to as simply SR. It illustrates how a single language
can provide support for different execution environments, ranging from shared-memory multiprocessors to distributed
systems. This paper focuses on the highlights of the language; details can be found in [AnOl92].

The rest of this paper is organized as follows. Section 2 gives an overview of the SR model of computation.
Section 3 describes how synchronization, sharing, and distribution are supported in SR. Section 4 illustrates, by
means of examples, SR’s language mechanisms that support parallel and distributed programming. Finally, Section 5
contains some concluding remarks, including a brief discussion of some current research related to SR.



2. SR Model of Computation

An SR program can execute within multiple address spaces, which can be located on multiple physical machines.
Processes within a single address space can also share objects. Thus, SR supports programming in distributed
environments as well as in shared-memory environments.

The SR model of computation allows a program to be split into one or more address spaces called virtual
machines. Each virtual machine defines an address space on one physical machine. Virtual machines are created
dynamically; they are referenced indirectly through capability variables. Virtual machines contain instances of two
related kinds of modular components: globals and resources.

Each of these components contains two parts: a specification (aka a spec) and an implementation (aka a body).
An import mechanism is used to make available in one component objects declared in the spec of another. In these
two ways, globals and resources are similar to modules in Modula-2 [Wirt82] but they are created differently.
Instances of resources are created dynamically, by an explicit create statement. These instances, and the services they
provide, are referenced indirectly through resource capability variables. Instances of globals are also created dynam-
ically. However, they are created implicitly as needed—specifically, when an instance of an importing resource or
global is itself created and an instance of that global does not already exist on the same virtual machine. Furthermore,
each virtual machine can contain only a single instance of a global. Globals, and the services they provide, can be
referenced directly through their names.

The spec of a global or resource can contain declarations of types, constants, and operations; a global’s spec
can additionally contain declarations of variables. An operation defines a service that must be provided somewhere in
the program. It can be considered a generalization of a procedure: it has a name, and can take parameters and return
a result. An operation declared in a resource’s spec must be serviced in that resource’s body. Similarly, an operation
declared in a global’s spec can be serviced in the global’s body; it can also be serviced within an importing resource
or global.

The body of a global or a resource can contain declarations of additional objects; these objects are visible only
within the body, not to any importer. Bodies also contain code that, among other things, services operations. The
code is split into units called processes and procs. Processes are created implicitly when the enclosing global or
resource is created. Instances of procs are created when they are invoked; they too execute as independent processes.
All processes created within a global or a resource execute on the same virtual machine on which the enclosing global
or resource was created. Processes and procs can declare additional variables and operations; they must contain the
code that services invocations of any locally declared operations.

Figure 1 summarizes SR’s model of computation. In its simplest form, a program consists of a single virtual
machine executing on one physical machine, possibly a shared-memory multiprocessor. A program can also consist
of multiple virtual machines executing on multiple physical machines. Hybrid forms are possible and in fact useful.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Virtual machines

resources

(shared address
space)

Physical machine Physical machine

processes

(shared address
space)

(shared address
space)

Virtual machines

resources resources

processes processes

Figure 1. SR model of computation
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Data and processor(s) are shared within a virtual machine; different virtual machines can be placed on (distributed
across) different physical machines.

Processes on the same or different virtual machines can communicate through operation invocation. Operations
may be invoked directly through the operation’s declared name or through a resource capability variable; or they may
be invoked indirectly through an operation capability variable. These capability variables are strongly typed and may
point to operations with structurally equivalent signatures. They may also be passed as parameters to operations dur-
ing invocation or to resources during resource creation, allowing processes in different resource instances, on possibly
different virtual machines, to communicate.

Communication between processes is independent of their virtual machine locations. For example, message
passing between processes in the same resource instance has the same syntax and semantics as message passing
between processes on different virtual machines.

3. Language Support

This section describes how synchronization, sharing, and distribution are supported in SR. The examples in Section 4
will illustrate these points in the context of specific programming situations.

3.1. Support for Synchronization

SR is rich in the functionality it provides for concurrent programming: dynamic process creation, semaphores, mes-
sage passing, remote procedure call, and rendezvous. However, these are all provided through a single mechanism:
the operation.

The key idea is that operations can be invoked in two ways, synchronously (call) or asynchronously (send),
and can be serviced in one of two ways, by procs or by input statements (in). This yields the following four combi-
nations:

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Invoke Service Effectiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
call proc (possibly remote) procedure call
call in rendezvous
send proc dynamic process creation
send in asynchronous message passingiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

One virtue of this approach is that it allows the declaration of an operation to be separated from the code that services
it (i.e., proc or input statements). This allows resource and global specifications to be written and used without con-
cern as to how an operation is serviced.

SR provides abbreviations of the above basic mechanisms to simplify the most common usages such as back-
ground process creation, semaphores, and simple asynchronous message passing. Briefly: a process is an abbrevia-
tion for a proc and an implicit send to it when the enclosing resource or global is created; a sem declaration is an
abbreviation for an operation declaration, a P is an abbreviation for an input statement, and a V is an abbreviation for
a send; and a receive statement is an abbreviation for a simple form of input statement.

SR also provides three statements—forward, return, and reply—that provide additional flexibility in servicing
invocations. (However, none of these statements are used in the examples in this paper.) A process executing a reply
statement causes the invocation being serviced to complete; result parameters and return values are immediately
passed back to the caller. The process that executes a reply statement then continues execution with the statement fol-
lowing the reply.

3.2. Support for Sharing

SR provides support for sharing on several levels. First, processes within a resource instance can share variables.
They can coordinate access to shared variables through shared semaphores or other operations declared within the
resource. Second, processes that execute in possibly different resource instances but on the same virtual machine can
share variables and operations declared in the spec of globals.

Consider, for example, a program that is to be written for execution on a shared-memory multiprocessor. It
might be written as a single resource program, with processes sharing variables and operations declared at the
resource level. For a program of any complexity, though, splitting the program into multiple resources is desirable.
This kind of structure is possible, too. Resources can be created on a single virtual machine, with shared variables
and operations declared in one or more globals.
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3.3. Support for Distribution

As suggested in Section 2, virtual machines are the unit for program distribution. They can be created (or destroyed)
dynamically as needed in response to program execution. Instances of resources and globals can then be created on
virtual machines. Processes in different virtual machines communicate with other processes by invoking operations.

Operation invocations exhibit two kinds of transparency. First, an operation is invoked in the same way regard-
less of how a program is distributed. The invocations by the client of the operations in the server remain the same
regardless of whether the client and server are located on the same virtual or physical machine. Second, an operation
is invoked in the same way regardless of how the operation is serviced, i.e., by an input statement or by a proc.

4. Example: Parallel Matrix Multiplication

Matrix computations lie at the heart of most scientific computing problems. Matrix multiplication is one of the most
basic of these computations. Here we develop four realistic algorithms. Two employ shared variables, and hence are
suitable for execution on shared memory multiprocessors. The other two algorithms employ message passing, and
hence are suitable for execution on distributed memory systems. Each algorithm also illustrates a different program-
ming technique and a different combination of SR mechanisms.

The problem is to compute the product of two n × n real matrices a and b. This requires computing n2 inner
products, one for each combination of a row of a and a column of b. On a massively parallel, synchronous multipro-
cessor, all inner products could be computed in parallel with reasonable efficiency since, by default, every processor
executes the same sequence of instructions at the same time. However, on an asynchronous multiprocessor each pro-
cess has to be created and destroyed explicitly, and each inner product requires relatively little computation. In fact,
the parallel program would be much slower than a sequential program since the cost of creating and destroying
processes would far outweigh any benefits derived from parallel execution.

To execute efficiently on an asynchronous multiprocessor, each process in a parallel program must perform
quite a bit of work relative to the amount of time it takes to create the process and the amount of time the process
spends communicating and synchronizing with other processes. In short, the sequential execution time of the process
must be much greater than the concurrency and communication overhead. The exact balance depends, of course, on
the underlying hardware and on the concurrent programming mechanisms that are employed. This section develops
four matrix-multiplication algorithms that employ different combinations of communication and synchronization
mechanisms. Each can readily be modified to alter the balance between sequential execution time and concurrency
overhead.

4.1. Pre-Scheduled Strips

Given are real matrices a[N,N], b[N,N], and c[N,N]. Assume that these are shared variables, and that we wish
to use PR processes to compute the product of a and b and store it in c. For simplicity, we will also assume that N is
a multiple of PR; for example, N might be 100 and PR might be 10.

To balance the amount of computation performed by each process, each should compute N2/PR inner products.
The simplest way to do this is to assign each process responsibility for computing the values for all elements in a strip
of matrix c. In particular, let S be N/PR. Then the first process could compute the values of the first S rows of c, the
second could compute the values of the next S rows of c, and so on. This kind of approach is sometimes called pre-
scheduling since each process is assigned in advance a certain number of ‘‘chores,’’ i.e., inner products in this case.

To implement this algorithm in SR, we will use one global and one resource, which are compiled in that order.
The global, shown in Figure 2, declares the shared constants N, PR, and S and reads values for N and PR from the
command line. It then computes S; if N is not a multiple of PR, the global prints an error message and stops the pro-
gram. Variables N and PR are given default initial values; these are used if there are no command-line arguments.
(Calling getarg has no effect if there is no corresponding argument.)

The resource, shown in Figure 3, declares the matrices and an array of PR processes to compute the inner pro-
ducts. It also contains a process that implements a barrier synchronization point and final code to print results. Each
instance of process strip first initializes its bands of matrices a, b, and c. For simplicity, we have initialized all
elements of a and b to 1.0; in general, initial values would come from a prior computation or from external files.

Because all elements of a and b must be initialized before they are used by other processes, we need to imple-
ment a barrier synchronization point. Here we have simply used two semaphores and a coordinator process. The
coordinator first waits for all PR instances of strip to signal semaphore done, then it signals semaphore con-
tinue PR times. Since the barrier is executed only once, this approach is reasonable for this program. In general,
however, one will want to use one of the more efficient barriers described in [Andr91] or [MCS91].
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global sizes
var N := 10 # matrix dimension, default 10
var PR := 2 # number of processes, default 2
var S: int # strip size

body sizes
getarg(1, N); getarg(2, PR); S := N/PR
if N mod PR != 0 ->
write("N must be a multiple of PR"); stop (1)

fi
end

Figure 2. Global sizes for strips algorithm
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

resource mult()
import sizes
var a[N,N], b[N,N], c[N,N]: real
sem done := 0, continue := 0

process strip(p := 1 to PR)
const R := (p-1)*S + 1 # starting row of strip
# initialize parts of a and b
fa i := R to R+S-1, j := 1 to N ->
a[i,j] := 1.0; b[i,j] := 1.0

af
# barrier to wait for all initialization
V(done); P(continue)
# compute S*N inner products
fa i := R to R+S-1, j := 1 to N ->
var inner_prod := 0.0 # local accumulator
fa k := 1 to N ->
inner_prod +:= a[i,k]*b[k,j]

af
c[i,j] := inner_prod

af
end

process coordinator
fa i := 1 to PR -> P(done) af
fa i := 1 to PR -> V(continue) af

end

final # print results
fa i := 1 to N ->
fa j := 1 to N -> writes(c[i,j], " ") af
write()

af
end

end

Figure 3. Resource mult for strips algorithm
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The finalization code in mult is executed when all instances of strip have terminated. That code prints the
results. This use of finalization code frees the programmer from having to program termination detection.

Many shared-memory multiprocessors employ caches, with one cache per processor. Each cache contains the
memory blocks most recently referenced by the processor. (A block is typically a few contiguous words.) The pur-
pose of caches is to increase performance, but they have to be used with care by the programmer or they can actually
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decrease performance (due to cache conflicts). Hill and Larus [HiLa90] give three rules-of-thumb programmers need
to keep in mind:

g Perform all operations on a variable, especially updates, in one process (processor).

g Align data so that variables updated by different processors are in different cache blocks.

g Re-use data quickly when possible so that it remains in the cache and does not get ‘‘spilled’’ back to main
memory.

Since SR stores matrices in row-major order (i.e., by rows), the above program uses caches well. In particular, each
strip process reads one distinct strip of a and writes one distinct strip of c, and it references elements of a and c by
sweeping across rows. Every process references all elements of b, but that is unavoidable. (If b were transposed, so
that columns were actually stored in rows, it too could be referenced efficiently.)

4.2. Dynamic Scheduling: A Bag of Tasks

The algorithm in the previous section statically assigned an equal amount of work to each strip process. If the
processes execute on homogeneous processors without interruption, they would be likely to finish at about the same
time. However, if the processes execute on different speed processors, or if they can be interrupted—e.g., in a
timesharing system—then different processes might complete at different times. To dynamically assign work to
processes, we can employ a shared bag of tasks. This approach uses a shared work queue (represented by an opera-
tion). Initially, an administrator process places in the bag the initial tasks to be solved. Multiple worker processes
take tasks from the bag and service them. For this problem, a task corresponds to the finding the N inner products for
a given row of the result matrix c. More generally, the worker processes often generate new tasks—corresponding to
subproblems—that are put into the bag. This is the case in one solution to adaptive quadrature [AnOl92]. There,
worker processes are given tasks of approximating the area for a given interval; they add new tasks—corresponding
to finding areas for two sub-intervals—to the bag if their approximation was not acceptable. In this section, we
present a matrix multiplication program that implements a shared bag of tasks solution.

As in the previous program, we again employ one global and one resource. The global, shown in Figure 4,
declares the matrix dimension N and the number of worker processes W, and reads values for these variables from the
command line. As before, the shared variables are given default initial values.

The resource mult, shown in Figure 5, imports sizes and declares shared matrices a, b, and c; the sizes of
these matrices again depend on N. The resource then declares an operation, bag, which is shared by the worker
processes in the resource. The initialization code in mult sets all elements of a and b to 1.0 and sends each row
index to bag. After initialization has completed, the worker processes are created. Each worker process repeatedly
receives a row index i from bag and computes N inner products, one for each element of row i of result matrix c.
The computation terminates when bag is empty and all worker processes are blocked waiting to receive from it. At
this point, the finalization code is executed; it prints out the values in c.

This program has been executed on a Sequent multiprocessor using 1, 2, 4, and 8 workers and processors. It
shows nearly perfect speedup for reasonable-size matrices, e.g., when N is 100 or more. In this case, the amount of
computation per iteration of a worker process far outweighs the overhead of receiving a message from the bag. Like
the previous program, this one uses caches well since SR stores matrices in row-major order, and each worker fills in
an entire row of c. If the bag of tasks contained column indices instead of row indices, performance would be much
worse since workers would encounter cache update conflicts.

4.3. A Distributed Broadcast Algorithm

The program in the previous section can be modified so that the workers do not share the matrices or bag of tasks. In
particular, each worker (or address space) could be given a copy of a and b, and an administrator process could
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

global sizes
var N := 10 # matrix dimension, default 10
var W := 2 # number of workers, default 2

body sizes
getarg(1, N); getarg(2, W)

end

Figure 4. Global sizes for bag of tasks algorithm
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resource mult()
import sizes
var a[N,N], b[N,N], c[N,N]: real
op bag(row: int)

# initialize the arrays and bag of tasks
fa i := 1 to N ->
fa j := 1 to N ->
a[i,j] := 1.0; b[i,j] := 1.0

af
send bag(i)

af

process worker(id := 1 to W)
var i: int # index of row of c to compute
do true ->
receive bag(i)
fa j := 1 to N ->
var inner_prod := 0.0
fa k := 1 to N ->

inner_prod +:= a[i,k]*b[k,j]
af
c[i,j] := inner_prod

af
od

end

final
fa i := 1 to N ->
fa j := 1 to N -> writes(c[i,j], " ") af
write()

af
end

end

Figure 5. Resource mult for bag of tasks algorithm
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

dispense tasks and collect results. With these changes, the program could execute on a distributed memory machine.

This section and the next present two additional distributed algorithms for matrix multiplication. To simplify
the presentation, we use N2 processes, one to compute each element of c. Initially each such process also has the
corresponding values of a and b. In this section, we have each process broadcast its value of a to other processes on
the same row and broadcast its value of b to other processes on the same column. In the next section, we have each
process interact only with its four neighbors. Both algorithms can readily be generalized to use fewer processes, each
of which is responsible for a block of matrix c.

Our broadcast implementation of matrix multiplication uses three components: a global, a resource to compute
elements of c, and a main resource. They are compiled in that order. The global, shown in Figure 6, declares and
reads a command-line argument for the matrix dimension N.

Instances of resource point, shown in Figure 7, carry out the computation. The main resource creates one
instance for each value of c[i,j]. Each instance exports three operations: one to start the computation, one to
exchange row values, and one to exchange column values. Operation compute is implemented by a proc; it is
invoked by a send statement in the main resource and hence executes as a process. The arguments of the compute
operation are capabilities for other instances of point. Operations rowval and colval are serviced by receive
statements; they are invoked by other instances of point in the same row i and column j, respectively.

The N2 instances of point interact as follows. The compute process in point first sends its value of aij
to the other instances of point in the same row and receives their elements of a. The compute process then sends
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global sizes
var N := 6 # matrix dimension, default 6

body sizes
getarg(1, N)

end

Figure 6. Global sizes for distributed broadcast algorithm
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

resource point # one instance per point
op compute(rlinks[*], clinks[*]: cap point)
op rowval(sender: int; value: real)
op colval(sender: int; value: real)

body point(i, j: int)
import sizes
var aij := 1.0, bij := 1.0, cij := 0.0
var row[N], col[N]: real
row[j] := aij; col[i] := bij

proc compute(rlinks, clinks)
# broadcast aij to points on same row
fa k := 1 to N st k != j ->
send rlinks[k].rowval(j, aij)

af
# acquire other points from same row
fa k := 1 to N st k != j ->
receive rowval(sender, row[sender])

af
# broadcast bij to points on same column
fa k := 1 to N st k != i ->
send clinks[k].colval(i, bij)

af
# acquire other points from same column
fa k := 1 to N st k != i ->
in colval(sender, v) -> col[sender] := v ni

af
# compute inner product of row and col
fa k := 1 to N -> cij +:= row[k]*col[k] af

end

final writes(cij, " ") end
end point

Figure 7. Resource point for distributed broadcast algorithm
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

its value of bij to other instances of point in the same column and receives their elements of b. After these two
data exchanges, point(i,j) now has row i of a and column j of b. It then computes the inner product of these
two vectors. The final code prints out the value of cij. It is executed when the resource instance is destroyed expli-
citly. (Only the initial instance of the main resource is destroyed implicitly.)

The main resource, shown in Figure 8, creates N2 instances of point and gets back a capability for each,
which it stores in matrix pcap. It then invokes the compute operations, passing each instance of point capabili-
ties for other instances in the same row and column. We can use a row slice pcap[i,1:N] to pass row i of pcap
and a column slice pcap[1:N,j] to pass column j of pcap to compute. When the program terminates, the final
code in main is executed. It destroys instances of point in row-major order, which causes the elements of c to be
printed in row-major order.

As noted, this program can readily be modified to have each instance of point start with a block of a and a
block of b and compute all elements of a block of c. The basic algorithmic structure and communication pattern
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resource main()
import sizes, point
var pcap[N,N]: cap point
# create points
fa i := 1 to N, j := 1 to N ->
pcap[i,j] := create point(i, j)

af
# give each point capabilities for its neighbors
fa i := 1 to N, j := 1 to N ->
send pcap[i,j].compute(pcap[i,1:N], pcap[1:N,j])

af

final
fa i := 1 to N ->
fa j := 1 to N -> destroy pcap[i,j] af
write()

af
end

end

Figure 8. Main resource for distributed broadcast algorithm
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

would be identical.

This program executes on only a single virtual machine, and therefore also on a single physical machine. How-
ever, it can be easily modified so that, for example, instances of the point resource for a given row are placed in
their own virtual machine. Only main’s loop that creates resources needs to be changed; the new loop is:

fa i := 1 to N ->
var vmcap: cap vm
vmcap := create vm()
fa j := 1 to N ->
pcap[i,j] := create point(i, j) on vmcap

af
af

Each iteration of the outer loop creates a new virtual machine (by creating a new instance of vm); the inner loop then
creates instances of point on that virtual machine. The above loop can be further modified, for example, so that
each virtual machine is on a different physical machine. For example, the assignment statement that creates virtual
machines can be changed to the following:

vmcap := create vm() on i

The value of i is taken to be a physical machine number; its use is installation dependent but can be made to be rela-
tively portable.

4.4. A Distributed Heartbeat Algorithm

In the broadcast algorithm, each instance of point acquires an entire row of a and an entire column of b and then
computes their inner product. Also, each instance of point communicates with all other instances on the same row
and same column. Here we present a matrix multiplication algorithm that employs the same number of instances of a
point resource. However, each instance holds only one value of a and one of b at a time. Also, each instance of
point communicates only with its four neighbors. Again the algorithm can readily be generalized to work on blocks
of points and to execute on multiple virtual machines.

As in the broadcast algorithm, we will use N2 processes, one to compute each element of matrix c. Again, each
initially also has the corresponding elements of a and b. The algorithm consists of three stages [Manb89]. In the
first, processes shift values in a circularly to the left; values in row i are shifted left i columns. Second, processes
shift values in b circularly up; values in column j are shift up j rows. The following display illustrates the result of
the initial rearrangement of the values of a and b for a 3 × 3 matrix:
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a[1,2], b[2,1] a[1,3], b[3,2] a[1,1], b[1,3]

a[2,3], b[3,1] a[2,1], b[1,2] a[2,2], b[2,3]

a[3,1], b[1,1] a[3,2], b[2,2] a[3,3], b[3,3]

In the third stage, each process multiplies one element of a and one of b, adds the product to its element of c, shifts
the element of a circularly left one column, and shifts the element of b circularly up one row. This compute and shift
sequence is repeated N-1 times, at which point the matrix product will have been computed.

We call this kind of algorithm a heartbeat algorithm since the actions of each process are like the beating of a
heart: first send data out to neighbors, then bring data in from neighbors and use it. To implement the algorithm in
SR, we again use one global and two resources, as in the broadcast algorithm. The global, shown in Figure 9, is ident-
ical to the one in the previous section.

The computation is carried out by N2 instances of a point resource, shown in Figure 10. It exports three
operations as did its counterpart in the previous section. However, here the compute operation passes capabilities
for only the left and upward neighbors, and the rowval and colval operations are invoked by only one neighbor.
Also, the body of point implements a different algorithm.

Finally, the main resource, shown in Figure 11, creates instances of point and passes each capabilities for its
left and upward neighbors. Function prev in main uses modular arithmetic so that instances of point on the left
and top borders communicate with instances on the right and bottom borders, respectively.

5. Concluding Remarks

The examples in the previous section illustrated the flavor of SR programming for parallel and distributed environ-
ments, as well as some specific usages of SR mechanisms. SR’s mechanisms can also be used in ways not illustrated
by the examples. For example, SR allows operations to be declared within processes, or even within blocks of code,
and allows these local operations to be assigned to operation capability variables. These are useful, for example, in
programming conversational continuity. In such an interaction, a client process interacts with a server process and
wishes to carry out a private conversation with it (see [Andr91]).

In many ways, the mechanisms that SR provides for sharing, distribution, and synchronization are a superset of
those found in other languages, such as Ada [US83], Concurrent C [Geha89], Argus [Lisk83], and occam [Burn88].
SR achieves this flexibility by having just a few well-integrated mechanisms, which can be used alone or freely in
combination with others. One interesting question is whether such generalization is inherently more costly. For
example, since SR operations subsume rendezvous, local procedure call, remote procedure call, process creation,
semaphores, etc., are they therefore expensive to use? Our implementation currently recognizes some commonly
occurring patterns and generates lower-cost code than would be required in the worst, most general case. The version
1 SR compiler, for example, optimizes certain message passing scenarios to use low-cost semaphores, and certain
remote procedure call scenarios to use conventional procedure call. The results are that the cost of synchronization in
SR is competitive with those reported for other languages [Atki88].

One current effort involves identifying further optimization of synchronization mechanisms, including those
that cross resource boundaries. Our overall approach applies source-level transformations to concurrent programs,
replacing costly synchronization mechanisms with less costly ones [McOl90a,OlMc91]. The techniques involve the
application of dataflow analysis and an extension of interprocedural analysis and inter-module analysis to concurrent
programs. An interesting aspect of this work is the use of attribute grammars to perform such analysis [McOl90b].
These techniques are also applicable to other programming languages, e.g., Ada, Concurrent C, Argus, and occam.

Version 2 of SR works on a variety of UNIX-based systems, including a Sequent multiprocessor, and is in the
public domain. For information on how to obtain SR, contact the authors or the SR project (by electronic mail to sr-
project@cs.arizona.edu).
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global sizes
var N := 6 # matrix dimension, default 6

body sizes
getarg(1, N)

end

Figure 9. Global sizes for distributed heartbeat algorithm
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resource point # one instance per point
op compute(left, up: cap point)
op rowval(value: real), colval(value: real)

body point(i, j: int)
import sizes
var aij: real := i, bij: real := j, cij := 0.0

proc compute(left, up)
# shift values in aij circularly left i columns
fa k := 1 to i ->
send left.rowval(aij); receive rowval(aij)

af
# shift values in bij circularly up j rows
fa k := 1 to j ->
send up.colval(bij); receive colval(bij)

af
cij := aij*bij
fa k := 1 to N-1 ->
# shift aij left, bij up, then multiply
send left.rowval(aij); send up.colval(bij)
receive rowval(aij); receive colval(bij)
cij +:= aij*bij

af
end

final writes(cij, " ") end
end point

Figure 10. Resource point for distributed heartbeat algorithm
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resource main()
import sizes, point
var pcap[N,N]: cap point

procedure prev(index: int) returns lft: int
lft := (index-2) mod N + 1

end

# create points
fa i := 1 to N, j := 1 to N ->
pcap[i,j] := create point(i, j)

af
# give each point capabilities for its left
# and upward neighbors
fa i := 1 to N, j := 1 to N ->
send pcap[i,j].compute(pcap[i,prev(j)], pcap[prev(i),j])

af

final
fa i := 1 to N ->
fa j := 1 to N -> destroy pcap[i,j] af
write()

af
end

end

Figure 11. Main resource for distributed heartbeat algorithm
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