
The Implementation of the

SR Concurrent Programming Language

TR95-2

Robert Gebala and Carole McNamee

Department of Computer Science
California State University, Sacramento

Sacramento, CA 95819-6021

916-278-6834
916-278-5949 (fax)

gebalar, mcnamee@dromio.ecs.csus.edu

October 19, 1995

Abstract

Programming languages supporting distributed computation have emerged. These lan-
guages exploit the resources that are made available by networked and/or multiprocessor
systems. While compilers for these languages are increasingly available, few documents
describe the details of their implementation. This report details the implementation of one
such distributed language, SR, including both its compiler, and its extensive runtime support
system that provides the underlying support for SR's concurrency mechanisms.

Keywords: Concurrent programming languages, compilers, runtime support systems



1 Introduction

This report provides a detailed description of the implementation of the SR concurrent program-

ming language [Andrews, Olsson]. The SR implementation is composed of three main compo-

nents: the compiler (sr), the linker (srl), and the run-time support (RTS) library [Morgenstern].

This report describes the overall organization of the SR compiler and RTS.

The motivation for this presentation follows from the authors' e�orts to implement an inter-

preter for the SR language. [Gebala] The details summarized in this report have been extracted

from the source code provided with the standard SR distribution from the University of Ari-

zona. [SR] The authors would have found such a summary helpful in the above mentioned e�ort

and provide it for others who might �nd it useful. As such, the authors credit the many contrib-

utors to the SR project, most notably Greg Andrews at the University of Arizona, Ron Olsson

at the University of California Davis, and Gregg Townsend at the University of Arizona.

2 The SR Compiler

An SR program consists of one or more resources or globals. These resources and globals are

templates for run-time instances executing within one or more virtual machines, which in turn,

reside on one or more physical machines. As a convention, should an SR program contain more

than one resource the last one is taken to be the main resource. sr performs two-passes over

the SR source code to produce the C code for each resource or global. None of the generated C

source contains the function main. After generating the target C code, the C compiler is invoked

to produce object codes.

In order to produce an executable module, srl links all the object code generated during the

previous phase, the SR run-time support library, and the C run-time libraries. The SR RTS

provides the main function expected of all C programs. System initialization and creation of the

main resource are all performed by the RTS library's main.

For example, if an SR program a.sr contains resource b, sr will create a C program b.c. The C

compiler then produces the object code b.o, which gets passed to srl to generate the executable

a.out as shown in Figure 1.

2.1 SR Compilation Process

The sr parser explicitly builds a syntax tree (or parse tree) as the scanner recognizes tokens

from an SR source program. An SR parse tree is a tree representation of an SR program; that is,

sr uses a binary parse tree to internally represent its input. From this internal representation,

the semantic analyzer can, say, verify if it is valid to send to an operation.

A parse tree node structure, as described in the sr source header �le structs.h, contains the

following members:

� e opr is the node type. This may be a declaration, an expression, an item list, a statement

list, an identi�er, and so on.

� e sig is the node signature used to represent, for instance, the type of value returned by a

statement or declaration.

1



SR
code

C code
(no main())

SR RTS
library

(srlib.a)

object
code

(a.sr with
resource b)

(b.c)

(b.o)

executable
(a.out)

SR Compiler

C
compiler

main()
:

rts
routines

main()

parser()

code_gen()

:

:

SR
linker

Figure 1: Generating an executable program from the SR compiler.

� e r is the right child of this node.

� e locn is the source line number that this node represents.

� e u is a union containing information speci�c to a node type. This �eld may contain a

pointer to the left child of this node, or a pointer to a integer/real/string value, or even a

symbol table node. Symbol tables will be discussed in Section 2.2.

resource hello()

write ("Hello, world!")

end

Figure 2: A very simple SR program, hello.sr.

The internal representation, or parse tree, for the program in Figure 2 is depicted in Fig-

ure 3. An SR component refers to either a resource or a global. In Figure 3, resource hello is

represented by the right and left subtrees of the root node component. Resource hello contains

no spec. A seq node is an organizational node representing a list of statements that will be

executed sequentially. The (parse tree) representation of an SR statement is the right subtree

of its seq node. A libcall node contains the name of the library routine and a parameter list for

this routine. write is a prede�ned routine implemented in the RTS library.

C code is generated from the parse tree representation. This generated C code is stored in

the Interfaces directory associated with every compilation. The code contains calls to the RTS,

which includes modules for process management and interprocess communication. In addition,

the RTS calls routines, through function pointers, which are declared in sr's C code output.

Two such functions are the initial and �nal routines associated with each resource.

2



component

sym resource

spec body

seq

seq

libcall

sym list

slit

"hello"

"Hello, world!"

"write"

Figure 3: Parse tree for hello.sr.

2.2 Symbol and Attribute Table Management

The symbol table's structure is in
uenced in large part by the language's scoping rules. It serves

as a central repository of information about program objects such as resource, global, operation,

variables, constants, type de�nitions, etc. These data structures are described in detail in this

section. Details are extracted from the sr source �le structs.h.

SR 2.3 implements the symbol table as a tree of symbol nodes, each node of type Symbol.

Identi�ers are searched from the current block's symbols (leaf nodes) all the way up to its proper

ancestors. Each symbol has at least one of the following attributes attached to it:

� Var represents user variables, temporaries, and constants

� Signat speci�es a symbol's signature (or type)

� Res identi�es resource and global

� Op maintains information on user-de�ned operations

� Param describes a parameter object

� Proto describes resource and operation prototyping

� Recdata provides information for symbols of type record

� Class provides a mechanism to identify operations belonging to the same class

3



Table 1: Structure of the Symbol node.
MemberName Information

s kind symbol kind

s depth nesting depth

s name SR source name

s gname generated name

s imp ptr to symbol table of

imported resource

s next forward link

s prev backward link

s child pointer to symbol node of

an enclosed block

s sig pointer to signature

s u may be a pointer to:

Var, Signat, Res, Op, Param,

Proto, Recdata, Class

2.2.1 Symbol Structure

All program objects, such as variables, operations, blocks, parameters, and so on, are repre-

sented by a symbol node. Table 1 summarizes the symbol structure. Details are as follows:

� s kind is the symbol kind. Table 2 tabulates the known symbol kinds and the use of each.

� s depth identi�es the scope's nesting depth. Prede�ned identi�ers are at depth 0; a resource

or global starts at depth 1.

� s name is the name known by SR. Normally, it indicates the lexeme that is found in the

source text. Some symbols have names which are assigned by sr.

� s gname is the generated name, and is used when emitting the target C code.

� s imp is a pointer to the symbol node of the resource from which the current symbol is

imported.

� s next and s prev provide forward and backward links, respectively. Symbols on the same

level and in the same block are maintained as a doubly-linked list.

� s child is yet another pointer to a symbol node. This is used by K IMP and K BLOCK;

the latter, to realize scoping rules.

� s sig provides a pointer to the symbol's signature.

� s u is a union which, depending on the symbol kind, may have di�erent contents. Table 3

shows the possible information maintained in this union.

4



Table 2: The di�erent kinds of symbols.
SymbolKind Purpose=Meaning

K BLOCK scoping

K VAR name of variable or constant

K FVAL formal parameter, passed by value

K FVAR formal parameter, variable

K FRES formal parameter, result only

K FREF formal parameter, passed by reference

K RES resource

K OP user-de�ned operation

K IMP link to imported symbol

K PREDEF prede�ned function

K FIELD record or union �eld

K TYPE user-de�ned type

K ELIT enumeration literal

2.2.2 Var Structure

A Var structure is maintained for each variable. This includes named user variables, tempo-

rary variables generated by the compiler, record �elds, and so on, as shown in Table 4. Details

are as follows:

� v vty de�nes the variable variety as listed in Table 5.

� v dcl speci�es how the object is declared as shown in Table 6.

� v sym provides a pointer to the object's symbol node.

� v sig provides a pointer to the variable's signature.

� v value provides a pointer to a parse tree node. This �eld has a meaning only if the object

is a compile-time constant.

� v seq is a serial number used to generate names. This is used as the argument number or

index in an operation's formal parameter list.

� v set and v used are 
ags used by the compiler to detect uninitialized and unreferenced

variables.

5



Table 3: Information maintained in s u �eld.
SymbolKind fieldname Information

K RES su res pointer to Res structure

K OP su op pointer to Op structure

K VAR su var pointer to Var structure

K BLOCK su pb pointer to parameter block name

K PREDEF su pre prede�ned function index

K TYPE su lnk link to another symbol node

K FIELD

K ELIT su seq enumeration literal

K FVAL or parameter number

K FVAR

K FRES

K FREF

Table 4: Structure of Var.
MemberName Information

v vty variable variety

v dcl how declared

v sym symbol node pointer

v sig signature pointer

v value parse tree node

v seq serial number

v set initialized 
ag

v used referenced 
ag

2.2.3 Signat Structure

Each memory object's type is stored in the signature structure. The �elds of Signat are

shown in Table 7. Details are as follows:

� g type, the entry type, is one of the following:

1. T VOID (no type applies)

2. T ANY (argument type for externals)

3. T NLIT (NULL/NOOP literals)

4. T BOOL

5. T CHAR

6. T INT

7. T ENUM

8. T REAL

6



Table 5: Variable varieties.
V ariety Meaning

V GLOBAL global variable

V RPARAM resource parameter

V RVAR resource variable

V PARAM normal procedure parameter

V REFNCE reference parameter

V LOCAL local variable

V RMBR record member/�eld

Table 6: De�nition of the v dcl �eld.
v dcl Meaning

O VARDCL declared as variable

O CONDCL declared constant

O FLDDCL declared as record member

O PARDCL declared as parameter

9. T FILE

10. T STRING

11. T ARRAY

12. T PTR

13. T REC

14. T VCAP (virtual machine capability)

15. T RCAP (resource capability)

16. T OCAP (operation capability)

17. T GLB (global)

18. T RES (resource)

19. T OP (operation)

� g usig is a pointer to the signature of the underlying type. For example, given an array A

of record R, the g usig of A is a pointer to the signature of R.

� g lb and g ub are pointers to expression nodes giving the lower and upper bounds, respec-

tively, of array objects.

� g sym is a pointer to a symbol node of a record member or argument list, or resource

symbol.

� g rec points to the record detail structure if the object is of record type.

7



Table 7: Structure of Signat.
MemberName Information

g type signature type

g usig underlying type

g lb lower bound

g ub upper bound

g sym symbol node pointer

g rec record detail pointer

2.2.4 Res Structure

Resource and global details are maintained in a Res structure shown in Figure 8. The �elds of

this structure are as follows:

Table 8: Structure of Res.
MemberName Information

r opr operator �eld

r sym symbol node pointer

r sig signature pointer

r param pointer to symbol

node for parameters

r abstract abstract 
ag

� r opr is an operator �eld, which is either O RESOURCE or O GLOBAL.

� r sym is a pointer to the resource's or global's symbol node.

� r sig is a pointer to the object's signature.

� r param is a pointer to a symbol node for this object's parameters. This symbol node has

type K BLOCK, specifying a resource parameter block.

� r abstract is a boolean �eld, indicating whether this is an abstract resource or global. An

abstract resource has speci�cations but no body. It is intended to be extended by other

resources. For more information on abstract resources, refer to [Andrews].

2.2.5 Op Structure

Information about an operation is stored in a structure called Op, whose structure is summarized

in Table 9. This structure contains the following information:

� o sym provides a pointer to the operation's symbol node.

� o asig provides a pointer to its declared signature.

8



Table 9: Structure of Op.
MemberName Information

o sym symbol node pointer

o asig pointer to declared signature

o usig pointer to underlying signature

o seg segment or location

o impl how implemented

o class class pointer

o classmate pointer to classmate

o exported export 
ag

o dclsema declared as semaphore?

o nosema nonzero if cannot implement

as a semaphore

o sepctx needs separate context?

� o usig provides a pointer to the operation's underlying signature.

� o seg speci�es where this operation resides. An operation may reside in one of the following

segments:

1. inside a proc (SG PROC)

2. declared at the resource level (SG RESOURCE)

3. imported from another resource (SG IMPORT)

4. imported from a global (SG GLOBAL)

� o impl indicates how the operation is implemented. From the perspective of the compiler,

an operation is implemented or declared in one of �ve ways:

1. declared as a proc (I PROC)

2. implemented by an input statement (I IN)

3. declared (or optimized) as a semaphore (I SEM)

4. declared as an operation capability (I CAP)

5. declared as external (I EXTERNAL)

� o class serves as a pointer to this operation's class if it is a member of one.

� o classmate provides a link to another operation in the same class.

� o exported indicates whether this operation is exported or not.

� o dclsema speci�es if the operation is indeed declared as a semaphore.

� o nosema indicates if a semaphore implementation (or optimization) is not feasible.

� o sepctx speci�es if the operation requires a separate context. A proc requires a separate

context if one of the following is true:

9



1. it uses the forward statement

2. it uses the reply statement

3. it invokes the prede�ned setpriority routine

2.2.6 Class Structure

Operations which are serviced by the same input statement belong to one class. Should an

operation be serviced by more than one input statement, SR computes the transitive re
exive

closure of the operations serviced by the same input statements to de�ne a single class.

For example, in Figure 4, assume that operations a, b, and c are declared in the same resource.

All three operations belong to the same class. Note that an operation may belong to exactly

one class.

...

in a() !
...

[] b() !
...

ni
...

in b() !
...

[] c() !
...

ni

Figure 4: An SR program fragment with two input statements.

Table 10: Structure of Class.
MemberName Information

c num class number

c members class cardinality

c �rst pointer to Op structure

c seg class segment

The Class structure provides a mechanism for the SR compiler to keep track of which oper-

ations belong to the same class. The information maintained by this structure is summarized

in Table 10. Details are as follows:

� c num is the class number. A class number of 0 indicates global.

� c members de�nes the number of members in this class.

10



� c �rst is a pointer to an Op structure. This represents the �rst member of this class. From

the Op structure, other members can be tracked down via the o classmate �eld.

� c seg indicates this class' segment. This may be SG GLOBAL, SG RESOURCE, or

SG PROC.

2.2.7 Proto Structure

Operation and resource prototypes are represented internally by the SR compiler using the Proto

structure. This structure is shown in Table 11, and is composed of the following �elds:

Table 11: Structure of Proto.
MemberName Information

p rstr restriction

p param pointer to parameters

p def typedef name

� p rstr is generally a restriction operator �eld but may also be O RESOURCE (for resource

prototyping) or O FINAL (for generating �nal code). As a restriction �eld, the values may

be O RNONE (no restriction, wherein call and send are allowed), O RSEND (send only for

operations declared as process), O RCALL (call only for operations declared as procedure).

� p param is a pointer to a Param structure described below. The �rst item in a parameter

list, as it is implemented, is always the return value. This �rst Param may be a dummy

structure for procs which do not return a result.

� p def is the type de�nition name of the parameter structure.

2.2.8 Param Structure

Each entry in a parameter list is represented by a Param structure as shown in Table 12.

Table 12: Structure of Param.
MemberName Information

m name parameter name

m seq position number

m sig pointer to signature

m pass how passed

m next pointer to next parameter

The �elds comprising this structure are:

� m name is the name of this parameter, if there is one.

11



� m seq is a number identifying the ordinal position of this parameter in the parameter list.

The return value is 0; the �rst parameter 1, and so on.

� m sig is a pointer to this parameter's signature.

� m pass is an operator �eld, specifying how this parameter is passed.

� m next is a pointer to the next parameter in the list.

2.2.9 Recdata Structure

To implement record data types, SR 2.3 maintains a Recdata structure as shown in Table 13.

Details are as follows:

� k size is the size (in bytes) of the record structure.

� k tdef is the name of the generated type de�nition.

� k init is the record initializer name.

Table 13: Structure of Recdata.
MemberName Information

k size record size

k tdef name of generated typedef

k init name of initializer

12



2.3 An Example

Having examined all the possible attributes that may be attached by the SR compiler to symbols

in the source program, we now look at how these tables are organized for the program shown in

Figure 5.

[1] resource b()

[2] var z1 := 1234

[3] var z2 : int

[4] process p (i := 1 to 2)

[5] fa k := 1 to 4 !

[6] write("in p",i,k)

[7] af

[8] write(z1)

[9] end

[10] process q

[11] z2 := 87654

[12] write("in q")

[13] z2 := z1+z2

[14] write(z2)

[15] end

[16] z1 := 1234

[17] z2 := 567

[18] end

Figure 5: A short SR program with two processes p and q.

The symbol and attribute tables are shown in Figure 6. Fields which are not signi�cant are

not shown.

13



V
_

R
V

A
R

s
ig

:
s

y
m

ta
b

:

V
_

R
V

A
R

s
ig

:

s
ym

ta
b

:

K
_

B
L

O
C

K

(q
)

K
_

O
P

"q
"

s
ig

:

K
_

B
L

O
C

K

[p
q

u
a

n
t]

T
_

IN
T

K
_

V
A

R

"k
"

s
ig

:

v
a

r:

K
_

B
L

O
C

K

[f
a

]

V
_

P
A

R
A

M

s
ig

:

s
y

m
ta

b
:

s
e

q
:

0

V
_

P
A

R
A

M

s
ig

:

sy
m

ta
b

:

s
e

q
:

0

V
_

P
A

R
A

M

si
g

:

sy
m

ta
b

:

se
q

:
1

V
_

L
O

C
A

L

s
ig

:

s
ym

ta
b

:

s/
u

V
_

L
O

C
A

L
s

ig
:

s
y

m
ta

b
:

s/
u

K
_

O
P

"p
"

s
ig

:

K
_

B
L

O
C

K

(p
)

T
_

IN
T

T
_

IN
T

T
_

IN
T

T
_

V
O

ID
T

_
V

O
ID

T
_

V
O

ID
T

_
V

O
ID

"i
"

K
_

F
V

A
L

s
ig

:

"i
"

s
ig

:

K
_

V
A

R

v
a

r:

"i
"

s
ig

:

K
_

V
A

R

v
a

r:

K
_

F
R

E
S

[a
n

o
n

]

s
ig

:

K
_

F
R

E
S

[a
n

o
n

]

s
ig

:

K
_

V
A

R

[a
n

o
n

]

s
ig

:
va

r:

K
_

V
A

R

[a
n

o
n

]

s
ig

:
v

a
r:

"i
"

s
ig

:

s
y

m
ta

b
:

[a
n

o
n

]

s
ig

:

sy
m

ta
b

:
O

_
R

E
S

p
a

ra
m

:
O

_
R

S
E

N
D

T
_

IN
T

T
_

IN
T

T
_

R
E

S

K
_

V
A

R

"z
2

"

s
ig

:
va

r:

K
_

B
L

O
C

K

[r
p

a
ra

m
s

]

K
_

V
A

R

"z
1

"

si
g

:
v

a
r:

K
_

R
E

S

"b
"

s
ig

:

K
_

B
L

O
C

K

[r
e

so
u

rc
e

]

O
_

V
A

L

[a
n

o
n

]

s
ig

:

s
ym

ta
b

:
O

_
R

E
S

p
a

ra
m

:

T
_

O
P

p
ro

to
:

O
_

R
S

E
N

D

D
e

p
th

1

D
e

p
th

2

D
e

p
th

3

D
e

p
th

4

T
_

O
P

p
ro

to
:

Figure 6: Symbol and attribute tables for resource b.

14



Each symbol node is identi�ed by a name. Symbol names which are found in the program

text are denoted by enclosing double quotes. Some symbols, such as [resource], [rparams], [pquant],

[anon], [fa], (p), (q), are generated by sr.

In the Figure 6, nesting depths are separated by dotted lines. Directed vertical lines from

one symbol node to another symbol node represent the s child �eld. Horizontal lines from one

symbol to another represent the s next and s prev �elds of the symbol node. In addition, the

diagram shows exactly how the structures are maintained; that is, how the symbol tree is rep-

resented. If the symbol node marked [resource] is the root, its children are all the symbol nodes

at depth 2, and so on. Also shown in the diagram are the attributes associated with each symbol.

The �rst K BLOCK named [resource] is the root of the symbol tree for the program in

Figure 5. The nesting depth at this level is 1. At depth 2, the symbol tree shows that the

resource is named b and receives no parameters. It it did have parameters, the s child �eld of

the K BLOCK node labeled [rparams] will point to a symbol node at depth 3. The following two

K VARs correspond to the resource variables z1 and z2. Both variables are declared as integers

as indicated by their signatures. The next symbol corresponds to the implicit declaration of op-

eration p. Operation p is restricted to send, as its prototype shows (O RSEND). This operation

does not return any result (O RES is [anon] with T VOID signature), but accepts one integer

value parameter (O VAL with T INT signature).

Operation p's body introduces a new scope as indicated by the symbol type K BLOCK

named (p). The formal parameters of operation p are represented at depth 3 as parameter vari-

ables. The K BLOCK labeled [fa] introduces yet another scope for the for-all statement. The

variable k is local to the fa block.

The next K BLOCK at depth 2 corresponds to an implicit quanti�er to create multiple in-

stances of process p.

Operation q, like p, is restricted to send. This operation neither returns a result nor receives

a parameter. The K BLOCK for q introduces one additional symbol, the dummy [anon], corre-

sponding to the unnamed parameter 0, the return value.

The parse tree for process q (lines 10-15) is shown in Figure 7. A process declaration is a

short-hand for an op serviced by a proc. In addition, such operations are restricted to a send;

that is, a call to that process will generate an error at compile-time.

An op parse node contains the operation name (left-subtree) and prototype (right-subtree).

A prototype node has the information about formal parameters of and restrictions on the oper-

ation. The left-subtree of the list node under proto contains the name and type of the result. If

q receives parameters, they would appear on the right subtree of the same list node.

The proc node contains a list of the argument names and the block containing the IR of the

code to service operation q. The target code for process q, internally represented by the block

subtree under proc, can be generated by performing a preorder traversal of the tree rooted at

block.

15



process

seq

op proc

subs proto

sym list rsend

pardcl

subs parattr

sym void res

list block

sym sym seq

seq

seq libcall

seq assign

seq libcall

seq assign

sym ilit

sym

sym

sym

list

list

slit

sym add

sym sym

"q" "q"

"anon"

"anon"

"z2" 87654

"write"

"write"

"in q"

"z1" "z2"

"z2"
"z2"

Figure 7: Parse tree for process q.

16



3 Run-Time Support System

The SR RTS may very well be considered the soul of the SR implementation: SR programs

run under the control of the RTS. Section 3.1 shows how the RTS manages run-time memory;

Section 3.2 explains how the main resource is created and destroyed, and how operations are

represented at run-time; and Section 3.3 discusses how SR processes are managed.

3.1 Memory Management

Certain memory regions, such as those which contain resource variables, are owned by a speci�c

resource. The RTS records the ownership of these memory blocks by using memory headers.

This header contain the following information:

� res contains the address of the resource instance which owns the allocated region.

� mnext, mlast are forward and backward pointers, respectively, in a global memory list.

� rnext, rlast are forward and backward pointers, respectively, in a resource memory list.

Some data structures of a given type are grouped by the RTS into pools. Memory objects

in this category are not owned by any resource [Morgenstern]. A pool is represented internally

using the structure below.

� name, the pool name.

� lockname, name of pool's lock. This is only used for debugging.

� free, a list of free pool items.

� inuse, a list of in-use pool items.

� blk, a pointer to the next allocated pool block.

� el size, the size of a pool element.

� el max, the maximum number of items allowed.

� el cur, the current number of items allocated.

� init, the function to call on new elements.

� reinit, the function to call on used elements.

� pmutex, the lock which protects access to the pool.

To illustrate, consider a pool of operations shown in Figure 8. The pool block contains three

items, where the �rst one is reserved for the block link. The two pool items, labeled 1 and 2,

are both in-use.

17



next = 0

prev

1

2

prev = 0

next = 0

"operations"

free = 0

inuse

blk

el_cur = 2

:

el_size

reserved for
block link

next

Figure 8: An operation pool with two in-use items.

As speci�ed in pool.c, when a request is made to add an element into the operations pool,

the RTS returns the �rst element in the free list1, if there is one. If no pool item is free and

the maximum number of allowed elements has not been reached, a new block of pool items is

allocated from which a free list is built. Figure 9 shows the new pool. In this example, we assume

that the RTS allocates three pool elements per block at a time, including the item reserved for

the block link.

next = 0

prev

1

2

prev

next

next

prev = 0

prev = 0

3

next = 0

next = 0

"operations"

free

inuse

blk

el_cur = 3

:

next

Figure 9: The operation pool after a request to add an item.

1Freed elements are kept in the pool for future reuse.

18



3.2 Resource and Operation Management

As mentioned in Chapter 2, in some cases a resource may be used in place of a global. In fact,

SR 2.3 implements an instance of a global as a resource instance with special properties:

� a global instance is created automatically the �rst time it is referenced.

� only one global instance per global declaration may exist in one virtual machine (VM).

� a global may only be destroyed if its VM is destroyed explicitly.

On program startup, the RTS creates one virtual machine on the local physical machine.

Once the virtual machine is initialized, an instance of the program's main resource is cre-

ated [Andrews]. A process (with process type INIT PR, and subsequently named body) is created

to execute the initialization code for that resource. The initialization routine can be found from

the resource pattern2.

A resource pattern is a triple consisting of:

� resource name.

� address of initialization routine. By convention, the routine name is the resource name

prepended with R .

� address of �nalization routine. By convention, the routine name is the resource name

prepended with F .

The RTS maintains a table of active resource instances per VM. This table is implemented

as a linked-list [Andrews]. A resource table entry, called Rinst, is the RTS representation of a

resource instance. Each Rinst is allocated from a pool of active resources. Table 14 depicts the

contents of this structure, de�ned in res.h.

Details are as follows:

� rpatid, the resource pattern identi�er.

� seqn, an identifying sequence number for a given resource instance. This is used by RTS

to verify that a resource capability refers to an existing resource instance.

� is global, a boolean 
ag which distinguishes resource instance from global instance.

� rv base, the base address of the resource variable area. A create request block (CRB) is

used whenever an instance of a resource needs to be created, either locally (on the same

physical machine) or remotely (on another physical machine).

� crb addr, the address of the CRB.

� rmutex, the descriptor lock.

� procs, a list of active processes owned by this resource instance.

� meml, a list of memory blocks owned by this resource instance.

2The resource pattern is declared in the generated C code for the given resource.

19



Table 14: Resource instance representation.
MemberName Information

rpatid resource pattern id

seqn sequence number

is global global 
ag

rv base resource variable base address

crb addr CRB address

rmutex descriptor lock

procs active process list

memlist memory block list

rcp resource capability address

oper list operations list

status status 
ag

next link to next resource instance

� rcp, the address of the resource capability.

� rc size, the number of bytes used to represent the �rst component of a resource capability,

Rcap.

� oper list, a list of operations owned by this resource.

� status, a status 
ag. This may be one of the following: initial, �nal, or reply.

� next, the link to the next resource instance (or the free list).

3.2.1 Resource and Operation Capability

A resource capability has two components: a structure called Rcap and a vector of operation

capabilities (Ocap). Figure 10 shows how a resource capability is maintained.

Rcap consists of the following:

� vm, the identi�er of the VM where the resource is instantiated. The identi�er of the main

virtual machine (MAIN VM) is 1.

� seqn, a sequence number assigned when the resource instance is created; that is, when a

request is made to add a resource instance entry into the resource table (the pool of active

resources).

� res, a pointer to the resource instance Rinst.

Ocap contains basically the same information that Rcap maintains, except that instead of

having a pointer to Rinst, the third component is a pointer to an operation table entry, Oper.

Opers are allocated from the pool of operations. This structure contains the following �elds:

20



Rcap

Ocap

:

Ocap

Figure 10: Representation of a resource capability.

� res, a pointer to the resource instance which owns this operation.

� seqn, operation sequence number. This should be the same sequence number as its Ocap's.

� pending, indicates the number of pending invocations.

� type, the operation type. Some of the operation types are PROC OP (operation imple-

mented by a proc), INPUT OP (operation implemented by an input statement), PROC SEP OP

(a proc operation which requires a separate context), and SEMA OP (operations imple-

mented by, or optimized as, a semaphore).

� u, a union which may be one of the following:

1. code, address of the code which implements the operation. Typically used for opera-

tions of type PROC OP.

2. clap, input operation class. Used for INPUT OP operations.

3. sema, a semaphore used for SEMA OP operations.

� next, a pointer to the next Oper, if one exists.

� omutex, a lock used by MultiSR.

3.2.2 Main Resource Creation

Before the main resource is created, the environment in which the SR program runs needs to be

initialized. Described below is the process of initializing the environment; that is, setting up the

virtual machine, and the creation of the main resource. [Morgenstern] provides a description of

the SR RTS interface.

On startup, what the RTS mainly does is to initialize the process management system as

discussed in 3.3. This is achieved by invoking the routine sr init proc and passing the address of

the startup code. In a nutshell, sr init proc will build a context for the SR process to execute the

startup code, in addition to setting up the job servers.

Each job server executes the code as speci�ed in function vm jobserver in process.c. The �rst

thing it does is to create an idle process by calling make idle proc. This builds a context for an

idle process, and enqueues this newly created process into sr idle list. This idle process may be

moved to the sr ready list if there is nothing else to run from the ready queue. In such an event,

a call to sr reschedule is made to add the idle process to the ready queue, and a subsequent call to

sr scheduler is performed to request a context switch. The startup process will then be dispatched.

21



startup is responsible for initializing the RTS and creating the main resource (by calling

sr create resource). The following are initialized: event list, RTS memory, capability for main

resource and global, di�erent pools, I/O descriptors, and random seed.

sr create resource, implemented in res.c, initializes the creation request block that is passed

to it, and returns a resource capability pointer for the created resource. In addition, it also

performs the following3:

1. Allocate a new resource instance descriptor.

2. Make the newly created resource the owner of CRB.

3. Spawn (via sr spawn) a process to execute the initialization of this resource. The address

of the initialization routine is found from the resource pattern4.

4. Call sr activate to add the newly spawned process into the ready list. This eventually

causes the main resource initializer to be executed.

The resource initializer is responsible for allocating space for the resource variables. It calls

sr alloc rv to reserve a speci�ed number of bytes of memory whose owner is the current resource.

Proc and input operations are also created in the resource initialization routine. Moreover, the

resource body is executed by this process. As such, this process is named `body' with process

type INIT PR. After executing the code speci�ed in the resource body, a call to sr �nished init

is made. This function does not return, and it kills the calling process.

Figures 11 and 12 shows part of the data structures maintained by the RTS to record re-

source and operation instances for the example in Section 2.3. Recall that an Rinst is allocated

from a pool of active resources, and each Oper actually reside in the operations pool. These

pools, and the memory list, are not explicitly shown in these �gures.

3.2.3 Resource Destruction

When there are no more processes to run, a dummy process named `�nal' is created. This pro-

cess has type FINAL PR and its sole responsibility is to execute the �nal code for the resource.

Like the initial code, the �nal code may be located from the resource pattern.

The last statement in the �nal code is always a call to sr �nished �nal. This tells the RTS

that the �nal code has completed. A destroying process is activated to execute sr stop, and the

calling process (`�nal') is killed.

3.3 Process Management

The SR RTS provides a light-thread process management package. A process is dispatched to

execute a resource's initialization and �nalization code. In addition, operations which requires

3A call to sr create res is made to accomplish the enumerated items.
4It must be noted that spawned processes are not immediately dispatched by the scheduler. This only means

that a new context has been created.

22



{"b" , R__b, F__b}
r pa t

r pa t i d= 0

seqn =

is _g l oba l=0

r v_b ase

c rb _ad dr

rmu tex = . . .

p roc s

me ml

rcp

rc_size = K

op er _ l i s t

status = .. .

n ex t

r i n s t

_ p

_ q

_z 1

_z 2

m yre sou rce

r va r

Oper fo r q

r es

seqn =

pend ing = . . .

type = PROC_OP

c ode

ne x t

omutex = .. .

res

seqn =

pending = .. .

t ype = PROC_OP

cod e

n ex t

omutex = .. .

Oper for p

t o P_qto P_p

CRB st ruc ture

Figure 11: RTS structures for the SR program in Section 2.3.

rpa tid = 0

i s_ g loba l =0

rv_ base

c rb_add r

r mu tex = . . .

p r ocs

mem l

rcp

rc_ s i ze=8

ope r _ l i s t

s ta t us= . . .

nex t

r i n s t

r v a r

Rcap for b

Ocap for p

Ocap fo r q

_z1

_ z2

s e e b e l o w

seqn = 0

seqn = 0

seqn = 0

vm = 1

res

vm = 1

ope r_en t r y

vm = 1

ope r_ en t r y

Rcap for b

Ocap for p

Ocap for q

Oper fo r p

r es

pend ing = ...

type = PROC_OPtype = PROC_OP

code

nex t

omutex = . ..

Oper fo r q

CRB fo r b

ph

rpat id = 0

vm = 1

rcp

rc_si ze = 8

c rb_s i ze=36

res

seqn = ...seqn = .. .

pending = .. .

code

nex t

omutex = .. .

to P_p to P_q

seqn= . . .

Figure 12: Extended RTS structures for the SR program in Section 2.3.

23



a separate context, such as those serviced by procs, run as SR processes. process.c contains the

RTS routines to comtrol SR processes.

3.3.1 Initializing the Process Management System

As mentioned in Section 3.2 the process management system is initialized by the RTS via a call

to sr init proc, passing the address of the startup code to it. sr init proc does the following:

1. Initialize the semaphore pool.

2. Set the following queues to empty: sr ready list, sr io list, and sr idle list.

3. Set up a free list of process descriptors.

4. Create an SR process context for the startup code and add it to the ready queue. It should

be the �rst process in the ready queue. The startup process has INITIAL PR type with

READY status.

5. Create the vm job servers5, i.e., build a context for each one. The �rst job server to get

to the ready queue will execute the startup code.

3.3.2 Representation of an SR Process

Each SR process is represented by a structure called proc st, maintained by the process manage-

ment subsystem of RTS. Some of this structure's members are listed below.

� ptype, the process type. A FREE PR process is a free process which resides in the free list

process pool. A process with type INITIAL PR is reserved for the process which executes

the resource's initial code, while a FINAL PR process executes the �nal code of a resource.

IDLE PR processes are created by make idle proc. Processes of this type sit in the idle list

until no other process is in the ready list.

� itype, the invocation type if process type is PROC PR. This may be one of the fol-

lowing: CALL IN (call/input), SEND IN (send/in), COCALL IN (concurrent-call/in),

COSEND IN (concurrent-send/in), and REM COCALL IN (remote concurrent-call/in).

� pname, the process name known to the RTS. When executing user code, this may be the

proc name, `body' (resource initial code or body), or `�nal' (resource �nal code).

� priority, the process execution priority. This tells the scheduler where to insert the process

in the ready list.

� stack, the process stack containing its context.

� status, the process status. A process may be in one of the following states: ACTIVE, DO-

ING IO, READY, BLOCKED, BLOCKED DOING IO, INFANT (initial state of spawned

processes), FREE (for FREE PR type processes), TO BE FREED, and DISCARDED.

� blocked on, a pointer to a list of processes to which a process is currently blocked on.

5A VM job server grabs the �rst process in the ready list and becomes it.

24



� should die, a boolean 
ag indicating whether the process should be destroyed. This is set

if another process attempts to kill a process which may be executing in another job server.

� waiting killer, a pointer to a semaphore. This semaphore is used if an active process

requests to kill another active process running in another job server. The killing process

waits for the other process to set this semaphore. The process being killed will set this

semaphore when it is ready to die.

� res, a pointer to the resource which owns this process.

3.3.3 Process Creation

SR processes are created thru a call to sr spawn. Process creation involves allocating a new

descriptor from the pool of processes. Once a process descriptor has been allocated, this de-

scriptor, a representation of an SR process, is added to the list of processes for the resource.

Stack space is also allocated for this process. The stack is set up so that the process may be

properly activated later. This newly created process has an INFANT status.

Normally, a newly spawned process is added to the ready list. Its status is set to READY

and a call is made to sr add readyq. This routine maintains the ready list in non-increasing

process priority.

3.3.4 Process Destruction

Destroying a process, achieved by sr kill, is a non-trivial task. The possibility of having multiple

job servers implies that multiple processes may be active at any given time. Consequently, the

process to be killed may be executing in another job server. Enumerated below is the algorithm

used to destroy a process:

1. Remove the process from process list for its owning resource.

2. Remove the process from the appropriate scheduler list. The status of the process to be

destroyed dictates the steps involved to achieve this end. We look at the di�erent cases:

� Case 1: status is INFANT. Simply set the status to TO BE FREED and free the

process.

� Case 2: status is READY. Dequeue the process from sr ready list. Set process status

to TO BE FREED, and free the process.

� Case 3: status is either ACTIVE or DOING IO. If the process to be destroyed is

the current one, set its status to TO BE FREED and call sr scheduler. The process

will be freed in that routine. However, if the process to be killed in not the current

one, that is, executing in another job server, the following steps are taken: (a) a

semaphore wait is created and initialized to 0. waiting killer of the process to be killed

is made to point to this newly created semaphore; (b) set should die 
ag of process

to be killed to TRUE; (c) wait for the other process to die by doing a P(wait). The

process to be killed will do a V on this semaphore the next time it is dispatched (i.e.,

in sr scheduler); and (d) delete the semaphore wait.

25



� Case 4: status is BLOCKED or BLOCKED DOING IO. Here, the process is removed

from its blocked on queue, the status is set to TO BE FREED, and then the process

is freed.

26



References

[Andrews] Andrews, G. R., and Olsson, R. A. The SR Programming Language: Concurrency

in Practice. Redwood City, CA: Benjamin/Cummings; 1993.

[Gebala] Gebala, R., SRI: An Interpreter for the SR Concurrent Programming Language.

Master's Project, Department of Computer Science, California State University,

Sacramento, Fall 1995.

[Morgenstern] Morgenstern, A. and Thomas, V. The SR Run-Time System Interface. Depart-

ment of Computer Science, The University of Arizona, Aug. 1992.

[Olsson] Olsson, R. A., Andrews, G. R., Co�n, M. H., and Townsend, G. M. SR: A

Language for Parallel and Distributed Programming. TR 92-09, Department of

Computer Science, The University of Arizona, Mar. 1992.

[SR] SR Version 2.3, Department of Computer Science, The University of Arizona.

27


