
Achieving Database Information Accountability

in the Cloud

Kyriacos E. Pavlou #1 and Richard T. Snodgrass #2

#Department of Computer Science, The University of Arizona

P.O. Box 210077, Tucson, AZ 85721–0077, USA
1
kpavlou@cs.arizona.edu

2
rts@cs.arizona.edu

Abstract—Regulations and societal expectations have recently
emphasized the need to mediate access to valuable databases.
Fraud occurs when a person (mostly an insider) tampers illegally
with a database. Data owners would like to be assured that
such tampering has not occurred, or if it does, that it will be
quickly discovered. The problem is exacerbated with data stored
in cloud databases such as Amazon’s Relational Database Service
(RDS) or Microsoft’s SQL Azure Database. In our previous
work we have shown that information accountability across the
enterprise is a viable alternative to information restriction for
ensuring the correct storage, use, and maintenance of databases
on extant DBMSes. We have developed a prototype audit system
(DRAGOON) that employs cryptographic hashing techniques to
support accountability in high-performance databases.

Cloud databases present a new set of problems that make
extending DRAGOON challenging. In this paper we discuss these
problems and show how the DRAGOON architecture can be
refined to provide a more practical and feasible information
accountability solution for data stored in the cloud.

I. INTRODUCTION

Corporate abuses by Enron and WorldCom have given rise

to recent laws and regulations (e.g., HIPAA [1], Sarbanes-

Oxley Act [2]) which require corporations to ensure trustwor-

thy long-term retention of their routine business documents.

A challenging threat is the existence of insiders who work

actively to defraud both the company and clients. The afore-

mentioned laws as well as widespread coverage of collusion

between auditors and the companies they audit resulted in

increased interest within the file systems and database com-

munities about built-in mechanisms to detect and prevent

tampering, even in the presence of insider threats.

Ensuring record compliance, or information compliance in

general, is usually achieved through information restriction

which entails rendering retained records immutable and con-

trolling access to them. This is particularly difficult for cloud

databases. Even though the growing trend of moving databases

to the cloud provides the benefits of ease of deployment,

minimal management, scalability, and cheap cost, the user

gives up fine control over the data (where it is stored and how)

and relies on the cloud to provide security and privacy. Despite

cloud providers’ best efforts, problems abound (e.g., data loss

in MS Sidekick [3] and Ma.gnolia [4], security problems with

Amazon’s cloud service [5]).

Weitzner et al. argue that access control and cryptography

are not capable of protecting information privacy and that

there is a true dearth of mechanisms for addressing effectively

information leaks. They propose as an alternative that infor-

mation accountability “must become a primary means through

which society addresses appropriate use” [6]. Information

accountability, in this context, states that information should

be transparent so as to easily determine whether a particular

use is appropriate under a given set of rules. We assert that

a shift towards information accountability presents valuable

advantages over information restriction in the correct use and

maintenance of databases, whether located within enterprises

or stored in a cloud.

In our current research we are working to show that

information accountability can effectively realize appropriate

use (i.e., guarantee no unauthorized modifications—insertions,

deletions, updates) in high-performance databases. Our group

has developed DRAGOON, (Database foRensic Analysis safe-

Guard Of arizONa), a prototype information accountability

system which periodically audits a monitored database, detects

tampering, and performs forensic analysis even in the presence

of insider threats [7], [8], [9], [10]. It is scalable and highly

customizable in terms of offering a tunable trade-off between

level of security and monetary cost. DRAGOON only supports

non-cloud-based databases. We discuss here how the existing

prototype can be extended and deployed within a cloud thus

providing a cloud-based information accountability solution.

II. DESCRIPTION OF DRAGOON

Within the domain of cryptographic hashing techniques

used to achieve information accountability in databases, our

research group removed the assumption that the system could

keep a secret key that would not be seen by insiders. We

proposed an innovative approach in which cryptographically-

strong one-way hash functions prevent an intruder, including

an auditor or an employee or even an unknown bug within the

DBMS itself, from silently corrupting the audit log [11]. This

is accomplished by cumulatively hashing all data manipulated

by transactions as they become available to the system, thus

generating a hash chain which at each time instant represents

all the data in the database.



We have also designed a series of forensic analysis al-

gorithms of increasing complexity that allow an analyst to

put tight bounds on the “where” and “when” of a detected

tampering [9], [12], [10].

DRAGOON features a secure master database and enterprise-

level interfaces between the components of the architecture

and the company’s Chief Security Officer (CSO) who states

enterprise-wide security policies, the database administrators

(DBA) who are responsible for specific database(s), and one

or more crime scene investigators (CSI) who investigate tam-

pering and other corruptions.

Figure 1 provides a high-level structure of the tamper detec-

tion protocol and layout of the system architecture, showing

how the total chain is computed during the normal processing

execution phase. A user application performs transactions on

the database, each of which insert, delete, and update rows of

the current state. Behind the scenes, the DBMS maintains the

audit log by rendering a specified relation as a transaction-time

table. Major DBMS vendors are now supporting transaction-

time tables (e.g., Oracle 11g [13]) so the DRAGOON archi-

tecture does not require the use of any modified DBMSes.

Furthermore, the DBMS sends all record changes to a repli-

cation service in order to increase the horizontal scalability

of the database. (The flow of information described is shown

with magenta solid arrows.) The replication service notarizer

hashes the data and sends the hash value to an external digital

notarization service (EDNS) to be notarized. The notary ID

returned by the EDNS along with the initially computed hash

values are stored in a separate, much smaller database called

the secure master database. This database is assumed to exist

in a different physical location from the DBMS under audit.

It is also assumed to be located along with the replication

service in a secure site. (The flow of information described is

shown with red dotted arrows.) Validation of the monitored

database is executed to check for potential tampering. It

involves recomputing a hash value over the same data at a

later point in time and comparing this new hash value with the

one previously notarized. A mismatch between the two values

indicates tampering. The CSO and DBA GUIs specify which

databases are monitored and specify how often notarizations

and validations occur. If the monitored database has been

compromised the CSI initiates the forensic analysis phase

which utilizes the forensic analysis algorithms. The results of

the forensic analysis are reported back to the CSI (information

flow shown with thick green arrows).

III. RESEARCH PROBLEM

We propose extending the DRAGOON architecture with the

capability of being utilized in a cloud computing service and to

support the monitoring of multiple databases. This extension

will render information accountability-based security viable,

protect against a variety of threats, and successfully deal with

the aftermath of information restriction failure concerning data

stored in the cloud. It will also demonstrate the advantages

of information accountability over information restriction in

(including

External

Digital

Service

Notarization

record

Audit Log)

transactions

hash value

notary ID

Secure Site

changes
DBMS

Replication

Notarizer

User

Application

hash value notary ID

Service

CSI GUI

CSO GUI

DBA GUI
Database

Database
(including
Audit Log)

Secure 
Master 
Database

Algorithms

Forensic
Analysis

result(s)

hash values

Fig. 1. Total Chain Computation during Normal Processing.

the area of correct storage, use, and maintenance of cloud

databases.

A. Migrating DRAGOON to the Cloud

There are several advantages to extending the DRAGOON

architecture to allow the DBMS and associated database to

reside in the cloud. Such a move greatly increases scalability

whereby multiple databases and multiple DBMSes can be

supported. It also results in more versatility and a lower set-up

and maintenance overhead.

However, a naı̈ve approach of moving all components in

Figure 1, other than the user application and the EDNS, to

the cloud is not desirable. It decreases security by introducing

a big insider threat from the cloud itself: the cloud vendor

controls the DBMS, the database storage, the forensic analysis,

and the secure master database. This also leads to a dubious

business relationship between the cloud vendor and the EDNS,

in which the former exerts a disproportionate influence on the

latter. The result is a reemerged insider threat, from a different

perspective, the very problem DRAGOON was developed to

address.

We now propose an enhanced architecture that can leverage

the cloud to provide increased security. Figure 2 presents a

preliminary enhanced architecture for deploying the monitored

database in the cloud. This architecture identifies four different

domains of control. The first is the domain of user applica-

tions and of the GUIs, controlled by the company that has

administrative control of the monitored database. The second

is the domain of the cloud provider where the monitored

database resides (cloud A). The third domain is that of the

cloud provider where the DRAGOON database resides (cloud

B). It is best that this be a separate vendor. The final domain

is the EDNS, which should not use cloud services from either

of these vendors(!)

The flow of information is similar to the normal processing

and tamper detection phases described previously (forensic

analysis is not shown, but is similar to before). The magenta-

colored dashed arrow depicts the stream of data being repli-



Database 
(including
Audit Log)

DRAGOON 
Database

DBMS

transactions

transactions

recor
d 

chang
es

hash 
value

notary IDhash value
+ notary ID

rehash

notary ID
new

 has
h va

lue

+ no
tary

 ID

result

DBA GUI

CSI GUI

transactions

User

Application

Notarizer

EDNS

Validator

result

A

B

CSO GUI

Fig. 2. Normal Processing, Computation of Total Chain, and Tamper Detection of Database in the Cloud.

cated and sent to the notarizer before it reaches the cloud. An

alternative architecture has the DBMS sending the changed

data to notarizer.

Note that the DRAGOON database is much smaller than

the database being monitored as it only stores hash values,

timestamps, notary IDs, and settings from the GUIs.

B. Threat Analysis

We identify three separate sources of threat: an external

threat, which we assume does not arise from any of the four

control domains, and two insider threats for the two cloud

vendors. Observe that the proposed architecture eliminates

insider threats from the company that owns the monitored

database because users have no physical access to the data

and must utilize the cloud interface instead.

Tampering by an external threat, e.g., a black hat, is detected

via record changes communicated from the DBMS to the

notarizer and the notarization/validation process of cloud B

and the EDNS.

An insider threat from cloud A is detected via transactions

communicated from the cloud API, also to the notarizer. Data

are sent to the notarizer before they are stored on cloud A.

If the stored data are tampered by an insider they yield a

different hash value during validation from the hash value

previously computed by the notarizer. This additional channel

of information (i.e., the dashed arrow) safeguards the security

and integrity of cloud A. Hence, migrating DRAGOON to the

cloud can provide guarantees about the cloud service itself.

If an insider threat from cloud B tampers the monitored

database, this scenario reduces to the external threat case. If

the insider only tampers the DRAGOON database then this

tampering is again detected by a mismatch in the hash values

or the inability of the EDNS to locate the provided notary ID.

More sophisticated attacks are possible since the DRAGOON

database is under the control of a single domain. However, its

security, especially the settings and the possibility of spoofing

the notarizer and validator, can be enhanced by monitoring it,

in the same way as the originally-monitored database.

In general, the fact that there are four separate companies

involved greatly increases the difficulty of effecting an un-

detected tampering. To do so requires colluding insiders at

four domains as well as the ability to fake the hashing of

the tampered data and subsequent insertion into the security

infrastructure (e.g., Merkle tree) of the EDNS.

C. Scalability and Performance

If the transaction stream is replicated at the user applica-

tion level then we have to deal with concurrency issues. In

particular, the notarizer requires information on how to order

the transactions (information that is usually provided by the

DBMS) so they can be hashed. This is an open problem.

Supporting multiple user clients is not an issue if we trust

cloud A. However, if the database is replicated in the cloud

as well as distributed, then stale data might be hashed by the

notarizer and thus additional effort is needed to ensure that

transactions are hashed in the correct order.

Another open design issue is whether hashing occurs at the

application level or by the notarizer in cloud B.

A final open question is how to distribute the notarizer,

validator, and the DRAGOON database across geographically

distributed processing nodes.

IV. RELATED WORK

The published work featured below describes the state-of-

the-art in the fields of database tamper detection and forensics,

and secure storage in the cloud.

Basu presents a method of forensic tamper detection and

localization of corrupted data in SQL Server [14]. His method



does not provide tamper-prevention measures, but shows how

tampering can be detected and the affected data localized.

The solution is based on creating an interwoven chain of

hash values used by a detection algorithm to determine if

a particular audit log table row is modified, inserted, or

deleted. Although this method has advantages (e.g., no special

deployment strategy required), it suffers from the use of

non-cryptographically strong hash functions, and the limited

forensic strength of the detection algorithm.

Guo, Jajodia, Li, and Liu formulated a fragile watermarking

scheme for databases [15], [16]. Their scheme is based on a

watermark that is invisible (watermark does not distort data)

and can be blindly verified (original unmarked relation is not

required for verification). The watermark depends on the hash

values of the tuples’ primary key value, their attribute values,

and a secret embedding key. During verification, the extracted

watermark indicates the locations of alterations down to the

granularity of a range of tuples. Unauthorized tampering of

data is detected when forensic analysis yields a mismatch

between the originally-embedded watermark and the extracted

watermark.

A recent attempt was made to address the issue of secure

storage in the cloud with the development of DEPSKY [17].

This system provides storage in a cloud-of-clouds that im-

proves the availability, integrity and confidentiality of infor-

mation stored in the cloud. It achieves this by employing a

combination of Byzantine quorum system protocols, cryptog-

raphy, secret sharing, and erasure codes which make the whole

system fault-tolerant. However, DEPSKY’s objectives do not

include information accountability.

Wang et al.’s work shares the goal of data integrity and uses

cryptographic hashing to enable “a third-party auditor (TPA)

on behalf of the could client to verify the integrity of the

dynamic data stored in the cloud” [18]. However, this work

is theoretical, not providing an architecture nor incorporating

forensic analysis should tampering be detected by the TPA.

V. CONTRIBUTIONS

The DRAGOON extension we have proposed here allows

organizations using cloud DBMSes to be assured that tam-

pering, including by cloud vendor insiders, has not occurred.

Further, the forensic analysis capabilities of the proposed

system identifies tampering

Such an architecture will be valuable to virtually all appli-

cations storing their valuable data in the cloud. For example,

cloud-based DRAGOON can help ensure record compliance

for financial and medical institutions. It can also be of use

to biosciences labs because it can ensure non-deviation from

standard operating protocols thus providing a certain type of

provenance for their final results.

The techniques proposed will not just protect data but also

through continuous assurance will be able to detect corruption

shortly after tampering as well as automate to a great extent the

work required in the aftermath of a database corruption. This

saves both time and money for those affected. The techniques

will also highlight the advantages over approaches relying

heavily on information restriction through either hardware

which can have prohibitive costs for small institutions, have a

limited shelf-life and are relatively complex; or cryptography

which does not adequately offer remedies after a leak.

The resulting architecture is scalable and customizable in

terms of offering a tunable trade-off between level of security

and monetary/forensic cost, as well as strong guarantees,

which are of interest to all cloud database users. That said,

there is more to be done to realize this approach and to address

the identified open problems.

ACKNOWLEDGMENT

The authors would like to thank Nirav Merchant, Somu

Perianayagam, Radu Sion, and Marianne Winslett for numer-

ous and very helpful discussions on compliant databases and

cloud computing. NSF grants IIS-0415101, IIS-0803229, and a

grant from Surety, LLC provided partial support for this work.

REFERENCES

[1] U.S. Department of Health & Human Services. (2006) The Health
Insurance Portability and Accountability Act (HIPAA). [Online].
Available: http://www.cms.gov/HIPAAGenInfo/

[2] “U.S. Public Law No. 107–204, 116 Stat. 745. The Public Company
Accounting Reform and Investor Protection Act,” 2002.

[3] D. Sarno. (2009) Microsoft says lost sidekick data will be
restored to users. [Online]. Available: http://latimesblogs.latimes.com/
technology/2009/10/microsoft-says-lost-sidekick-data-will-be-restored
-to-users.html

[4] E. Naone. (2009) Are we safeguarding social data? [Online]. Available:
https://www.technologyreview.com/blog/editors/22924/

[5] A. R. Hickey. (2011) Researchers uncover ‘massive security
flaws’ in Amazon cloud. [Online]. Available: http://www.crn.com/
news/cloud/231901911/researchers-uncover-massive-security-flaws-in
-amazon-cloud.htm

[6] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler,
and G. J. Sussman, “Information accountability,” Communications of the

ACM, vol. 51, no. 6, pp. 82–87, June 2008.
[7] K. E. Pavlou. (2011) SIGMOD/IDAR Workshop ‘Database forensics

in the service of information accountability’. [Online]. Available:
https://sites.google.com/a/ualberta.ca/idar2011/

[8] DRAGOON. (2011). [Online]. Available: http://www.cs.arizona.edu/
projects/tau/dragoon/

[9] K. E. Pavlou and R. T. Snodgrass, “Forensic analysis of database
tampering,” in Proc. ACM SIGMOD’06, June 2006, pp. 109–120.

[10] ——, “Forensic analysis of database tampering,” ACM Transactions on

Database Systems, vol. 33, no. 4, pp. 30:1–30:47, November 2008.
[11] R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamper detection in audit

logs,” in Proc. VLDB’04, September 2004, pp. 504–515.
[12] K. E. Pavlou and R. T. Snodgrass, “The tiled bitmap forensic analysis

algorithm,” IEEE Trans. Knowledge Data Eng., vol. 22, no. 4, pp. 590–
601, April 2010.

[13] Oracle Corp., “Workspace Manager Developer’s Guide 11g Release 1
(11.1),” Aug. 2008.

[14] A. Basu. (2006) Forensic Tamper Detection in SQL
Server. [Online]. Available: http://www.sqlsecurity.com/images/tamper/
tamperdetection.htm

[15] H. Guo, Y. Li, A. Liu, and S. Jajodia, “A fragile watermarking scheme
for detecting malicious modifications of database relations,” Inf. Sci.,
vol. 176, no. 10, pp. 1350–1378, 2006.

[16] Y. Li, H. Guo, and S. Jajodia, “Tamper Detection and Localization for
Categorical Data Using Fragile Watermarks,” in Proc. 4th ACM-DRM,
2004, pp. 73–82.

[17] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “DEPSKY:
Dependable and secure storage in a cloud-of-clouds,” in The 6th ACM

SIGOPS/EuroSys European Systems Conference, April 2011.
[18] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public veri-

fiability and data dynamics for storage security and cloud computing,”
in Poc. ESORICS’09, 2009, pp. 335–370.


