
1 April 11, 2000; last revised September 15, 2004

Nature uses only the longest threads to weave
her patterns, so each small piece of her fabric
reveals the organization of the entire tapestry.

 — Richard Feynman

There are two distinct processes involved in
analyzing the structure of a woven fabric:

• determining the interlacement of the warp
and weft threads

• producing a draft from the interlacement

A particular method for doing fabric analysis
may intermix these two processes, constructing
the draft as the interlacement is determined. The
two processes can be done separately, however,
and there are advantages to separation:

• Determining the interlacement can be diffi-
cult. It requires a knowledge of weaving and
careful visual examination of the fabric.

• Producing a draft from the interlacement is a
mechanical task of an entirely different na-
ture. It can be done by a person who is unfa-
miliar with weaving or by a computer pro-
gram. A computer program is, of course, fast,
but it offers a more important advantage:
accuracy.

In this article, we’ll describe a method of
going from a drawdown to a draft and show how
it can be done by a program.

Drawdowns

Various systems of notation are used for de-
scribing interlacement, but for the purposes of
producing a draft, they are equivalent. The con-
ventional drawdown grid, in which black squares
indicate intersections where warp threads are on
top and the white squares where weft threads are
on top, is most widely used. Figure 1 shows an
example.

Such a drawdown is designed to make it easy
for a person to see the interlacement (and any
patterns that may exist). For a computer program,
a drawdown is just a rectangular array of zeros and
ones with ones indicating where warp threads are
on top and zeros indicating where weft threads are
on top, as shown in Figure 2.

Figure 1. A Drawdown

1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1

Figure 2. Drawdown Data

Observations

The number of treadles required is the
number of different row patterns. The number
of shafts required is the number of different
column patterns.

From Drawdown to Draft — A Programmer’s View

2 April 11, 2000; last revised September 15, 2004

In a large, complicated drawdown, it’s diffi-
cult for a human being to determine the different
row and column patterns. That’s where a com-
puter program comes in, as we’ll show.

Comment: You can rearrange the rows and
columns of a drawdown or delete duplicates with-
out affecting the number of treadles and shafts
required.

The Process

Creating a draft from a drawdown is a three-
step process. The first two steps, which are central
to the approach we are taking, can be done in either
order.

The first step identifies the different rows and
assigns a treadle number to each. The sequence of
treadle numbers for the rows in the drawdown
gives the treadling sequence.

The second step does the same thing for the
columns to assign shaft numbers to the different
columns and produce the threading sequence.

Comment: For the purposes of getting a work-
able draft, it doesn’t matter which treadles and
shafts are assigned to the different rows and col-
umns. A systematic method, however, such as
working from right to left or left to right, usually
produces a better-organized draft.

The third step is to produce the tie-up that
relates the treadles and shafts according to the
drawdown.

To see how the first two steps might go by
hand, look at figure 3, which shows treadle and
shaft assignments to the upper-left portion of the
drawdown we’ve been considering.

 shafts

 treadles 1 2 3 4 5 6 7 8 7 6 …

 1 1 1 1 0 0 0 1 0 1 0 0 0 1 …
 2 0 1 1 1 0 0 0 1 0 0 0 1 1 …
 3 1 0 1 1 1 0 0 0 0 0 1 1 1 …
 4 0 1 0 1 1 1 0 0 0 1 1 1 0 …
 5 0 0 1 0 1 1 1 0 1 1 1 0 1 …
 6 0 0 0 1 0 1 1 1 1 1 0 1 0 …
 7 1 0 0 0 1 0 1 1 1 0 1 0 0 …
 8 1 1 0 0 0 1 0 1 0 1 0 0 0 …
 7 1 0 0 0 1 0 1 1 1 0 1 0 0 …
 6 0 0 0 1 0 1 1 1 1 1 0 1 0 …
 … …

Figure 3. Treadle and Shaft Assignments

We can easily see that the beginnings of the
first eight rows are different and therefore they are
different patterns and each gets a separate treadle.
The ninth row starts out like the seventh row and
if we look at the complete drawdown in Figure 1

we can see they are the same. Similarly, the tenth
row is the same as the sixth. The same is true of the
columns.

We can continue in this fashion, but we have
to be careful, because it’s easy to get confused and
make mistakes.

In this example, there are only eight different
row patterns and eight different column patterns.
They can be distinguished by the first three digits
they contain. But another drawdown might be
more complex, irregular, and not so easily ana-
lyzed by hand.

Programs

In this section, we’ll show programs for deter-
mining the loom resources required and produc-
ing a draft from a drawdown.

You don’t need to be a programmer to get an
idea of what’s going on. If you’re not a program-
mer, just read through what follows and ignore the
details.

How easy it is to write program to analyze a
drawdown depends to a considerable extent on the
programming language used. In our examples here,
we’ll use Icon [1, 2], a high-level programming
language designed for the manipulation of strings
of characters (like row and column patterns) and
structures (like lists of patterns).

If you’re a programmer but not familiar with
Icon, just browse through what follows, note the
comments, and imagine how you’d do it in your
favorite programming language.

First, a word about strings and data structures
in Icon. Strings are sequences of characters. A data
structure is a collection of values that are organized
in a particular way. We’ll use three kinds of data
structures in the programs that follow:

A list is a sequence of values. The values may
be strings or other types of values.

A set is an unordered collection of unique
values. A set can be created from a list; any dupli-
cate values in the list are discarded.

A table is like a set, except that it has unique
keys with which values can be associated.

Strings, lists, sets, and tables are created and
modified as a program runs.

Computing Treadle and Shaft Requirements

Here’s a little program that reads a draw-

3 April 11, 2000; last revised September 15, 2004

down in the form of rows of zeros and ones such as
shown in Figure 2. It writes out the number of
treadles and shafts required.

procedure main()

 # Read the drawdown and put it in a list.

 rows := [] # empty list to start

 while put(rows, read()) # add the row patterns

 # Write the number of treadles needed.

 write(∗set(rows), " treadles needed")

 # Rotate the drawdown 90 degrees to put the
 # columns in the place of rows.

 cols := rotate(rows)

 # Write the number of shafts needed.

 write(∗set(cols), " shafts needed")

end

The conversion of the list rows to a set, using
set(rows), creates a set of rows without the dupli-
cates. The operation ∗ produces the number of
members in the set. The procedure rotate() is shown
in the complete program listing in Appendix A.
The number of shafts required is then determined
in the same way as the number of treadles.

The output of the program for the data shown
in Figure 2 is

8 shafts needed
8 treadles needed

Comment: A drawdown must, of course con-
tain at least one full repeat. If it contains more, the
extra rows and columns are just duplicates and do
not affect the result.

Producing a Draft

To produce a draft, a little more work is
required. Here’s a program.

procedure main()

 # Read the drawdown and put it in a list.

 rows := [] # empty list to start

 while put(rows, read()) # add the row patterns

 cols := rotate(rows) # list of columns

 # Compute the treadling sequence.

 number := 0 # treadle counter
 treadles := table() # table of row patterns

 # Build a table of the different row patterns and
 # assign a shaft number to each.

 every treadles[!set(rows)] := (number +:= 1)

 # Compute the threading sequence the same way.

 shafts := table()
 number := 0

 every shafts[!set(cols)] := (number +:= 1)

 # Create the tie–up.

 tieup := table()

 every row := key(treadles) do {
 tie_line := repl("0", ∗shafts)# no ties to start
 every i := 1 to ∗row do # go through row
 if row[i] == "1" then # tie if warp on top
 tie_line[threading[i]] := "1" # for rising shed
 tieup[treadles[row]] := tie_line # add tie-up line
 }

 # Write the treadling sequence.

 write("Treadling sequence:")

 every writes(treadles[!rows], " ")
 write()

 # Write the threading sequence.

 write("Threadling sequence:")

 every writes(shafts[!cols], " ")
 write()

 # Write the tie–up.

 every i := 1 to ∗treadles do
 write(tieup[i])

end

The operator ! generates the members of a set.
Each one becomes a key in a table, with which a
number is associated (+:= 1 increments the value of
number). To produce the sequences, the rows and
columns are generated and used as keys to the
tables, which in turn produces the numbers.

The tie-up is created using a table.
key(treadles) produces the row patterns. Each line
of the tie-up starts with zeros, indicating the ab-
sence of ties. Then for every position of the row
pattern that is one, the position in the row of the
corresponding shaft is set to one to indicate a tie.

The sequences are produced from left to right,
since that is the most natural and easiest way to
program the process.

4 April 11, 2000; last revised September 15, 2004

The output for the data shown in Figure 2 is:

Treadling sequence:
1 2 3 4 5 6 7 8 7 6 5 4 3 2 3 4 5 6 7 6 5 4 3 2 1 2 3 4
5 6 5 4 3 2 1 2 3 4 5 6 7 6 5 4 3 2 3 4 5 6 7 8 7 6 5 4
3 2
Threading sequence:
1 2 3 4 5 6 7 8 7 6 5 4 3 2 3 4 5 6 7 6 5 4 3 2 1 2 3 4
5 6 5 4 3 2 1 2 3 4 5 6 7 6 5 4 3 2 3 4 5 6 7 8 7 6 5 4
3 2
Tie-up:
11100010
01110001
10111000
01011100
00101110
00010111
10001011
11000101

Note that the treadling and threading sequences
are the same: The draft is treadled as drawn.

Figure 4 shows a conventional draft produced
from the results given by the program above.

Figure 4. The Draft

Related Issues

WIFs

The program that produces the draft informa-
tion can be modified to produce a WIF [3], which
can be imported into a weaving program and
exchanged with other weavers.

This is not difficult to do, but WIF is a verbose

format and the code needed to produce a WIF is
considerably longer than the code to analyze the
drawdown.

The Appendix A shows the complete pro-
gram for going from the raw data to a WIF. Appen-
dix B shows the WIF for the data shown in Figure
2.

Drafts from Images

Any black and white image∗ can be consid-
ered to be a drawdown — the black pixels (indi-
vidual dots) correspond to where imaginary warp
threads are on top and the white pixels correspond
to where imaginary weft threads are on top.

To get a draft for weaving the equivalent of
such an image, it only is necessary to convert the
pixels in the image to patterns of zeroes and ones as
shown in Figure 2.

This requires a little bit of computer graphics.
In Icon, it looks like this [4]:

 WOpen("image=design.gif") # window for image

 width := WAttrib("width") # dimensions
 height := WAttrib("height")

 rows := []

 # Get the row patterns

 every y := 0 to height – 1 do {
 row := ""
 every p := Pixel(0, y, width, 1) do
 if ColorValue(p) == "0,0,0" then row ||:= "1"
 else row ||:= "0"
 put(rows, row)
 }

The value "0,0,0" corresponds to a black pixel.
Other pixels are assumed to be white. The rest of
the program is the same as before.

Comment: Some weaving programs, such as
SwiftWeave [5], provide a facility for going from
black-and-white images to drafts. SwiftWeave calls
it a drawup.

A draft created from an image can be used as
a profile draft or a threading draft. For a threading
draft, modifications may be needed to make it
weavable.

Although any two-color pattern can be con-
verted to a draft, the problem is the loom resources
∗In fact, any two-color image can be considered to be a draw-
down; simply change one color to black for the warp and the
other to white for the weft.

5 April 11, 2000; last revised September 15, 2004

required — the number of shafts and treadles —
which exceed the capacity of your loom — or any
loom (recall that the number of treadles required is
the number of different rows and the number of
shafts required is the number of different col-
umns).

If you want to try this, pick images that are
small, with straight lines, and lots of duplicate
rows and columns. Horizontal and vertical sym-
metry come free.

Appendix C shows an image and the draw-
down produced by this method.

On-Line Resources

The programs described here, along with
sample data and images, are available on the Web
[6].

6 April 11, 2000; last revised September 15, 2004

References

1. The Icon Programming Language, third edition, Ralph E. Griswold and Madge T. Griswold, Peer-to-Peer
Communications, Inc., 1996:
 http://www.cs.arizona.edu/icon/books.htm

2. The Icon Programming Language:
 http://www.cs.arizona.edu/icon/

3. WIF Specification:
 http://www.mhsoft.com/wif/wif.html

4. Graphics Programming in Icon, Ralph E. Griswold, Clinton L. Jeffery, and Gregg M. Townsend , Peer-to-
Peer Communications, Inc., 1998.

5. Swiftweave:
 http://www.swiftweave.com/

6. Weaving Programs:
 http://www.cs.arizona.edu/patterns/weaving/programs.html

Ralph E. Griswold
Department of Computer Science

The University of Arizona
Tucson, Arizona

© 2000, 2004 Ralph E. Griswold

Madge T. Griswold

Madge T. Griswold

Madge T. Griswold

Madge T. Griswold

Madge T. Griswold

http://www.cs.arizona.edu/icon/books.htm
http://www.cs.arizona.edu/icon/
http://www.mhsoft.com/wif/wif.html
http://www.swiftweave.com/
http://www.cs.arizona.edu/patterns/weaving/programs.html

7 April 11, 2000; last revised September 15, 2004

Appendix A — WIFs from Drawdowns

procedure main()

 # Read the drawdown and put it in a list.

 rows := [] # empty list to start

 while put(rows, read()) # add the row patterns

 cols := rotate(rows) # list of columns

 # Compute the treadling sequence.

 number := 0 # treadle counter
 treadles := table() # table of row patterns

 # Build a table of the different row patterns and
 # assign a shaft number to each.

 every treadles[!set(rows)] := (number +:= 1)

 # Compute the threading sequence the same way.

 shafts := table()
 number := 0

 every shafts[!set(cols)] := (number +:= 1)

 # Create the tie–up.

 tieup := table()
 every row := key(treadles) do {
 tie_line := repl("0", ∗shafts) # no ties to
start
 every i := 1 to ∗row do # go through row
 if row[i] == "1" then # tie if warp on top
 tie_line[threading[i]] := "1"
 tieup[treadles[row]] := tie_line # add tie–up line

Appendix A — WIFs from Drawdowns

procedure main()

 # Read the drawdown and put it in a list.

 rows := [] # empty list to start

 while put(rows, read()) # add the row patterns

 cols := rotate(rows) # list of columns

 # Compute the treadling sequence.

 number := 0 # treadle counter
 treadles := table() # table of row patterns

 # Build a table of the different row patterns and
 # assign a shaft number to each.

 every treadles[!set(rows)] := (number +:= 1)

 # Compute the threading sequence the same way.

 shafts := table()
 number := 0

 every shafts[!set(cols)] := (number +:= 1)

 # Create the tie–up.

 tieup := table()
 every row := key(treadles) do {
 tie_line := repl("0", ∗shafts) # no ties to
start
 every i := 1 to ∗row do # go through row
 if row[i] == "1" then # tie if warp on top
 tie_line[threading[i]] := "1"
 tieup[treadles[row]] := tie_line # add tie–up line

 }

 # Now output the WIF.

 write("[WIF]")
 write("Version=1.1")
 write("Date=" || &dateline)
 write("Developers=ralph@cs.arizona.edu")
 write("Source Program=dd2wif.icn")
 write("[CONTENTS]")
 write("Color Palette=yes")
 write("Text=yes")
 write("Weaving=yes")
 write("Tieup=yes")
 write("Color Table=yes")
 write("Threading=yes")
 write("Treadling=yes")
 write("Warp colors=yes")
 write("Weft colors=yes")
 write("Warp=yes")
 write("Weft=yes")
 write("[COLOR PALETTE]")
 write("Entries=", 2)
 write("Form=RGB")
 write("Range=0,65535)
 write("[TEXT]")
 write("Title=example")
 write("Author=Ralph E. Griswold")
 write("Address=5302 E. 4th St., Tucson, AZ 85711")
 write("EMail=ralph@cs.arizona.edu")
 write("Telephone=520-881–1470")
 write("FAX=520–325–3948")
 write("[WEAVING]")
 write("Shafts=", ∗shafts)
 write("Treadles=", ∗treadles)
 write("Rising shed=yes")
 write("[WARP]")

8 April 11, 2000; last revised September 15, 2004

 write("Threads=", ∗threading)
 write("Units=Decipoints")
 write("Thickness=10")
 write("Color=1")
 write("[WEFT]")
 write("Threads=", ∗treadling)
 write("Units=Decipoints")
 write("Thickness=10")
 write("Color=2")
 write("[WARP THICKNESS]")
 write("[WEFT THICKNESS]")
 write("[COLOR TABLE]")
 write("1=0,0,0")
 write("2=65535,65535,65535")
 write("[THREADING]")
 every i := 1 to ∗threading do
 write(i, "=", threading[i])
 write("[TREADLING]")
 every i := 1 to ∗treadling do
 write(i, "=", treadling[i])
 write("[TIEUP]")
 every i := 1 to ∗tieup do
 write(i, "=", tromp(tieup[i]))

end

procedure tromp(treadle)

 result := ""

 every i := 1 to ∗treadle do
 if treadle[i] == "1" then result ||:= i || ","

 return result[1:–1] # remove trailing comma

end

procedure rotate(rows)

 cols := list(∗rows[1], "")

 every row := !rows do {
 i := 0
 every grid := !row do
 cols[i +:= 1] := grid || cols[i]
 }

 return cols

end

Appendix B — WIF Output

[WIF]
Version=1.1
Date=Tuesday, April 11, 2000 11:25 am
Developers=ralph@cs.arizona.edu
Source Program=dd2wif.icn
[CONTENTS]
Color Palette=yes
Text=yes
Weaving=yes
Tieup=yes
Color Table=yes
Threading=yes
Treadling=yes
Warp colors=yes
Weft colors=yes
Warp=yes
Weft=yes
[COLOR PALETTE]
Entries=2
Form=RGB
Range=0,65535
[TEXT]
Title=example
Author=Ralph E. Griswold
Address=5302 E. 4th St., Tucson, AZ 85711
EMail=ralph@cs.arizona.edu
Telephone=520–881–1470
FAX=520–325–3948
[WEAVING]
Shafts=8
Treadles=8
Rising shed=yes
[WARP]
Threads=58
Units=Decipoints
Thickness=10
Color=1
[WEFT]
Threads=58
Units=Decipoints
Thickness=10
Color=2
[WARP THICKNESS]
[WEFT THICKNESS]
[COLOR TABLE]
1=0,0,0
2=65535,65535,65535
[THREADING]
1=1
2=2
3=3

9 April 11, 2000; last revised September 15, 2004

4=4
5=5

… (lines omitted)
54=6
55=5
56=4
57=3
58=2
[TREADLING]
1=1
2=2
3=3
4=4
5=5

… (lines omitted)
54=6
55=5
56=4
57=3
58=2
[TIEUP]
1=1,2,3,7
2=2,3,4,8
3=1,3,4,5
4=2,4,5,6
5=3,5,6,7
6=4,6,7,8
7=1,5,7,8
8=1,2,6,8

Appendix C – Draft from Image

Figure 1 shows a Japanese repeat pattern. It is
65 by 65 pixels.

Figure 1 A Japanese Pattern

The resulting draft requires 32 shafts and 32
treadles. See Figure 2.

Figure 2. Draft for Japanese Pattern

