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ON THE NUMBERS OF PATTERNS WHICH CAN
BE DERIVED FROM CERTAIN ELEMENTS.

By Professor J. E. A. Steggall.

A SQUARE being divided into n* equal squares, and n of
these being shaded and placed in such a way that no two
shall be in the same row or column, we get what may
be called an element of a pattern. If similar elements be, in
turn, repeated by the additien lengthwise and breadthwise of
other squares identical with the first, we get a pattern. It is
clear that the number of elements is n!; the number of patterns
derivable from the elements is much fewer. For example,
taking n equal to 4, we have only three possible patterns,
which may be expressed thus:—(1234), (1432), (1243), of
which the first and second are left- and right-handed; as
shown in figure

(1234) (1243)
The image of this gives (1432)

Let a,a,...a, be any element, and 55,..5 any other
element, the a’s and b’s being simply the first n natural
numbers in any orders. It is clear that these give the same
pattern (1) if both elements are the same cyclical permutation
of the numbers, e.g. (134625) and (462513) give identical
patterns; (2) if by adding any constant % to the a’s we obtain
the &’s in the same order, e.g. (134625) and (356241) give
identical patterns, n being in this case 6, and % being 2.
Thus a pattern can be represented in n ways by a horizontal
change (mere cyclical transformation); but we have still to
find in how many ways by a vertical cliange (addition of a
constant number) the elements of the same pattern can be
#ransformed non-cyclically. '
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Let the arrangement aa,...z, be transformed to . ,,...2,,
where of course @, =a, In the same cyclical order, by the
addition of £ to each term. Then if % 1s not a factor of = it Is
clear that the same arrangement, as regards cyclical order,
will be arrived at by adding a smaller number than £: .e.
the greatest common factor of £ and n. Hence we may now
consider k to be a factor of n, say n=pk.

" We therefore get the series of equations

a’r+l=al+k’ aroaza:-l_k? e ar+a=an+k’

l+ 2]{:’ a!r{»l: a!+ 2k7 ) """27‘+n= an+ 2]‘:1

a(p-l)r+l=al+ (Z’ - 1) k’ erey a(p—l)r-x»n: a, + (p - 1) k’
apri-l:a'l +pk’ A apr+n=un+pk;
the cycle being now completed.
From this table we infef
(1) That pris a multiple of n, and therefore r of %;

(2) That r,2r, 3r, ... (p—1)r are all incongruent (mod z})s
for otherwise we should have, say, (¢—1)% divisible by =n;
hence » must equal gk, where ¢ is prime to p;

(8) The groups beginning with a, @, ,, @,y vy Gy
respectively, are identical, in some order, with the groups
beginning

Ay Takary Tapwry +0y Vpen

(4) The array

a, a, vy @y
a, +k, a,+k, vy @tk
a,+ 2k, a,+ 2k, ceny O+ 2Ky

. a,+{p—1k a+(p=1k ., a+(p=1)*k
includes the whole series of nnmbers
Ay By weey Gy

Hence a,, a,, ..., a, are all incongruent (mod %), and may
therefore be taken as equal to the natural numbers 1 to % in
any order, each having any multiple of % added to it. In
-other words the terms a,, a,, ..., a, may be taken as equal to
b +mk, b +mpk, ..., b+mk, where 5,5, ..., b, are, in any
.order, the numbers 1to £; and m,, m,, ..., m, are any integers,
xepeated or not, from 0 to p -1 inclusive.
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Now every value of #, or of g, gives a different sequence
to the groups of %; and thus the number of arrangements of
the numbers 1 to n such that the addition of % to each leaves
the cyclical order unchanged is U,=¢ (p) x p*x k!, where
¢ (p) denotes the number of numbers less than, and prime
to, p. .

’}’i‘his number of arrangements clearly includes all those
that repeat not only when % is added, but also all those that
repeat when any sabmultiple of % is added; to discriminate
between the two we have to solve some simultaneous equations.

If % is the least number that when added to the constituents
of any arrangement causes it to repeat cyclically, the pattern
can be represented in nk ways. Hence the total number of
possible patterns is equal to the sum of all the terms

number of arrangements repeating by addition of %
and not before

nk

Now if U,=number of arrangements that repeat after
addition of %, and submultiples, u,=number of arrangements
that repeat after addition of % only, we have

U=u+u,+u+u,+..+u,

where each subscript is a factor of £.
For example

U,=u,+u,+u+u+u+u
U =u+u+u+u,
U =u+u+u,

4

127

U, =u+u,
Ije =ul+u:7
Ux =“n

giving six equations to determine the u’s in terms of the U’s,
which latter are readily found by the formule,
The solutions here are

y =Un
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A few special cases may be examined :—
(1) nprime, k=1, p=n, or k=n, p=1.

U=u+u=nrl

U= w=n(n-1);

whence u,=nl—n(n-1).

Therefore number of patterns

| . — —

_n! nn(gn 1) + n(nn 1)

(n—1)1 4 (n—1)?

== .

n

This gives for n=2, 8, 5, 7, respectively, 1, 2, 8, 108.
{2) n=ab, a and b prime.

Here
Uab=u\+ua+ub+uab=nx)
U,=u+u,=ald*b-1),
U, =u+u,=bld(a—-1),
| U, =u,=abla~1)(b=1);
therefore '

u,=a(@a—=1)b@H-1){la=2)1s"—1},
u,=bb-1)a(a—1){(b—~2)1a"*~1},
u,=(ab)!—ab(@a—1) 6—1) {(@=2)16*" + (b - 2)1a** =1},
eg. n=6, a=2, 6=3;
v =12, u,=24, u,=36, u,=0648,
Number of patterns 618 + 3¢ + 24 + 12 =24,
(8) n=4d’, a prime,
U=u+u+u,=nl
U=u+u=al(a—1)a%
U=u=d(a=1)
therefore u,=a'(a—1){(a-1)1a"* =1},

y,=nl-ala*(a=1),

e.g. » a=2, n=4,
u1 =8,
w,+ U, =8,

u+u,+ u‘=24;



60 DProf. Steggall, Patterns derived from certain elements,

therefore u,=16, u,=0, u =8,
Therefore number of patterns =18+ ¢ +§=4.
(4) n=2",
U, =u+u+u..+u,=n!

i
Upn=u+u,+...tu,, =222

2r-)
Upn=u4u,+.oct uy,, =2771.42722,

U’l - “; = 21'. 27-—1.
Hence
Un = Un - zfén,
Un = ijlz"_ lfé"’
ul= Ul (/l’
w= U .
Therefore number of patterns
v, 2u du 2"
=_;+~$”+—¥+...+—€fi
n i/ n n
&
U+ Upn+2Upn 4.4 27,
= - nt 1
e.g. : re=3 n=8§,
o+ v, +u,+u, =81,
utu+u,  =41.24
u,+u, =21.4"2,
u, =8.4,
u, = 32,
u, = 320,
u, =2%104.41,

Therefore number of patterns

24.104.4) 320 382 32

o o220 %e 02D 84 o2
64 =TT

=624+ 10+ 2 + 4 =640,

The following table shows the number of artangements
that repeat, for the first time, on addition of % to each
constituent for all values of n from 1 to 12,
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Mr. Berry, A note on the infegral |7 (sinx/x) dx.

Ug Uy Uy Ug Uy Ug Uy s Uy
0
. 16
. . 100
36 . . 648
. . . . 4998
. 320 . . . 39936
270 . . . . 362556
. 3800 . . . . 3624800
. . . . . . . 39916990
720 3744 . 45216 .
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OC 0 R b =

24

108

640

4492

36336

829900

478951776 3326788



