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THE MATHEMATICAL THEORY OF THE SATEEN
ARRANGEMENT.

By S. A. SHORTER, D.Sc., late Member of the Research Staff in
Textile Industries, University of Leeds.

GEOMETRICALLY considered the sateen arrangement is a certain regular method
of arranging points on squared paper, each point being placed at the centre
of a square. In textile work the sateen arrangement is used, (1) as a basis
for actual weaves, (2) as a mode of distributing over the surface of a cloth
the repeats of an ornamental design.

We may regard the sateen arrangement as being generated in the following
manner. Let us place on squared paper a point 4 in a certain square *
(see Fig. 1), then a point B in the next column of squares, a certain number
of, say two, squares higher, a point C in the next column the same number of
squares higher than B, and so on. We thus obtain what is known as a ** twill
or ‘“diagonal.” Now suppose that by a thickening of some of the lines of
the squared paper, the paper is divided into larger squares whose sides are,
say, five times as long as those of the small squares. Now suppose that the
arrangement is one which repeats itself in each of the large squares. Placing
D’ and E’ in the large square containing 4 to correspond with D and E, we
obtain one complete element of the pattern which may be repeated ad Iib.
over the rest of the paper.

In the above case I have chosen 5 as the number of times the side of the
small square is contained in that of the large square, and 2 as the number of
squares the ““ twill ” ascends from one column to the other. The resulting
design is a sateen of order 5 (or a 5-end sateen) with a step of 2 (or stepping 2).
These two numbers, the ‘“order” and the ‘step,” completely specify a
sateen. We may not, however, choose any two numbers. In order to obtain
a weavable design we must put a point in every row and every column of the
design square. Thus, if we make the twill of Fig. 1 repeat on a design square of
6, we obtain the result shown in Fig. 2, which does not fulfil this condition,
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This is owing to the fact that the points begin to repeat on the rows of the
design square before all the columns have been filled. In order that this may
not happen the L.C.M. of the order and step must be equal to their product.
Hence the first well-known sateen rule—the order and the step must be
prime to each other.

There is a second well-known rule which relates to the lateral inversion of
the design. Let A4, B and B’ be three points in a sateen arrangement (see
Fig. 3), B and B’ being in a column adjacent to 4, and B’ being an adjacent
repeat of B so that the distance BB’ is equal to the order of the sateen. Now
we may suppose the sateen to have been generated (a) by stepping in the
direction 4 B (5 squares upwards to the right), () by stepping in the direction

*In practice these * points ” are expanded into solid black squares.
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IB’ (3 squares downwards to the right). If a step of this latter magnitude
®re taken in the same direction as the former step, we should evidently obtain
je mirror image of the sateen. Moreover, the sum of the steps is equal to
e order of the sateen. Such steps are said to be complementary. We
tus see that complementary steps give sateens which are the mirror images
Feach other. This is the second well-known sateen rule. In Fig. 4 is shown

“the 5/3 sateen,* which, in accordance with this rule, is the mirror image of
the 5/2 sateen shown in Fig. 1.
¢ These two rules seem to comprise the whole of the hitherto published
{ systematic knowledge of the subject. There is in existence no general theory
L-of sateens, in spite of the importance of the subject in textile designing. The
t.object of the present paper is to formulate a mathematical theory of the
"subject and arrive at the general principles underlying those properties of
sateens which are of importance in designing.
© The first important question is that of the number of essentially distinct
" sateens of any given order. The first rule limits the possible values of the
step to numbers prime to the order. The second rule shows that only half
iof these possible sateens are essentially distinct designs. There is, however,
another limitation. It is evident that the rotation of a sateen through a
right angle will in general give another sateen with a different step (and, of
course, of the same order). The relation between the steps of two sateens
derivable one from the other by a rotation through a right angle is readily
investigated. In Fig. 5 the generating twill of a sateen is continued till
we reach a point H in the top row of a design square, i.e. one row below a
Tepeat (A4”) of the initial point 4. Now we may regard the sateen as being
generated by stepping in the direction A”H. A rotation through a right angle
-converts this into the normal “ upward to the right ” mode of stepping. Now
it is evident that the product of the new step and the old is less by unity than
a multiple of the order. Hence the condition for two steps s, and s, to give
:sateens derivable one from the other by a right angle rotation is that
88, =in~1,
- where 4 i8 an integer.

* For the sake of brevity we will call the sateen of order n and step s the n/s sateen,
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_ A consideration of the step 4'E (Fig. 5) will readily show that if the con.
dition s8g=1n+1
is fulfilled, the rotation of one sateen gives the mirror image of the other.

We thus have a third rule limiting the number of essentially distinct patterng,
An application of the three rules shows that even for high orders the numbey,
of patterns is in general small. For example, consider sateens of order 20,
Applying the first rule we obtain the possible steps *

3,7,9,11, 13, 17.
We may cut out the second three as yielding mirror images of the first three ;

and since 3 x 7 =20 + 1, we may cut out the 7. We thus have only two distinct
patterns given by the 3 and the 9 (or by the 7 and 11, 13 and 9, etc.).
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We obviously have the best chance of obtaining a large number of patterns
when the order is a prime number. Thus in the case of the order 13, the steps
2,3, 4,5, 6,

left by the application of the second rule, may be reduced to

2,35

by the application of the third rule, so that even in this case theré are only
3 distinct patterns. It will be seen that the 2 cuts out the 6 and the 3 the 4.
The step 5 is peculiar; we have 52=2 x13~1. Hence the 13/5 sateen is
unaffected by a rotation through a right angle. This sateen is shown in
Fig. 6. It will be noticed that the points lie at the intersections of a square
lattice, which, as can be shown from elementary considerations, is not altered
in appearance by rotation through a right angle.

We will not consider further the question of the number of sateens of any
given order, but will proceed to the consideration of what may be termed the
* sateen lattice.” We may regard the points of a sateen arrangement as lying
at the intersections of two series of equidistant parallel lines. This * sateen
lattice ”” is not unique for any given sateen. Every sateen may be regarded
as giving rise to an infinity of lattices, though the number actually suggested
to the eye by any sateen is limited. Thus in the 17/10 sateen indicated in
Fig. 7, the elementary parallelograms of two possible lattices are shown.

*The step of one, or one less than the order, gives a continuous twill which is not
regarded as a sateen.
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In distributing an ornamental figure on a sateen basis, the shape, size and
orientation of such parallelograms are obviously of importance in relation
to the shape, size and orientation of the figure. It may perhaps not be out
of place to point out at this stage the characteristic virtue of the sateen
distribution—not possessed by simpler arrangements (such as the ‘ half-drop ”
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arrangement, much used in the design of wallpapers, which is founded on a
lattice arrangement whose elementary equilateral parallelogram has its two
diagonals respectively horizontal and vertical). A sateen arrangement which
possesses a square or nearly square lattice does not obtrude its regularity on
the eye, and may even produce a pleasing effect of irregularity.

Not every lattice arrangement gives rise to a sateen. If we suppose the
lattice to be specified in shape and size of mesh and orientation by the four
measurements a, b, ¢, d indicated in Fig. 8, it is necessary that a should be
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prime to ¢, and b to d. This follows from elementary considerations. We
may thus generate a sateen from an elementary parallelogram specified by
any four numbers, a, b, ¢, d fulfilling this condition. The following problem
immediately suggests itself. What is the relation between the order » and
step s on the one hand, and the four numbers a, b, ¢, d ? A purely empirical
way of solving the problem in a concrete case would be to fill in the design
according to the specified plan until two points were obtained, (a) in the
same column, (b) in adjacent columns. The vertical distance between the
points would give in case (a) the order, and in case (b) the step (or its comple-
ment). A systematic method of obtaining the order is shown in Fig. 7. Let
us start from a point 4 along an “ upwards to the right » lattice line till we
arrive at a point B whose horizontal distance from the starting-point, which
is obviously a multiple of a, is also a multiple of ¢. Since @ and ¢ are prime
1o each other, this distance must be ac. If now we proceed back towards the
initial column along an ‘ upwards to the left ” lattice line, we shall obtain a
point A’ vertically above 4. The first part of the journey consists of ¢ stages,
each with a vertical component b, and the second part of a stages each with
a vertical component d. Hence the total vertical component is bc+ad.
Hence we have for the order,
n=ad +bc

a b
_d,

or n=
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which is a very simple relation between the order and the rectangular coordi.
nates of the diametrically opposite corners of an elementary parallelogram
relative to one of the.remaining corners.

For the same sateen we may have an infinity of sets of values of a, b, ¢, d,
which should give, according to the above formula, the same value of .
If we consider the series of parallelograms on the same base and between the
same parallel lattice lines (two consecutive members of which are shown in
Fig. 7), we see that the passage from one member to the next corresponds
to the addition of members of one row of the determinant to the corre-
sponding members of the other row, a process which does not alter the value
of the determinant.

The value of the step may be determined in similar manner. If % stages
upwards to the right and k stages upwards to the left terminate at a point
in a column immediately to the right of that occupied by the initial point,

we have ha ~ke=1.
The step is given by s=hb +kd.
Eliminating %, and making use of the formula for the order, we obtain the
relation B —d
s = )
C

in which % is the least integer which will give an integral value for s.

In Fig. 7, for the “squarer” of the two lattices indicated, @, b, ¢ and &
have respectively the values 2, 3, 3 and 4. Our formula for the order gives
the value 17. For the step we have

_17h -4
§=—a—>
which for 2 =2 gives s =10. Hence the sateen is of order 17 and step 10.

We will conclude by considering one more question of the many arising out
of a consideration of the sateen arrangement. This question relates to what
may be termed the “twilliness” of a sateen. Certain sateens suggest to
the eye a definite * twill,” while others are devoid of any such suggestion,
For most purposes for which the sateen arrangement is used in textile work
this suggestion is a defect, though for certain special effects a marked * twilli-
ness ” may be desirable. A comparison of the 17/2 sateen shown in Fig. 9
with the 5/3 sateen shown in Fig. 4 will reveal the origin of * twilliness.” If
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the most nearly rectangular parallelogram has very unequal pairs of sides,
then there is a marked twill in the direction of the shorter sides, the nearness
of the points suggesting to the eye a continuous line. If the sateen yields
a square lattice, then we get a minimum of * twilliness.” Such sateens are
generally called “ perfect ™ sateens, since they possess in the most marked
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degree that combination of the regular and the chaotic which was the primary
object of the invention of the sateen arrangement.

The condition for a square sateen is evidently that d and ¢ should be respec-
tively equal to 2 and b. Hence we have

n=a+b2,
t.e. the order of a square sateen is equal to the sum of the squares of two
numbers which are prime to each other. The step may be deduced from the
relation s=in—1

which expresses the fact that the sateen is not altered by rotation through a
right angle. The smallest value of ¢ giving an integral value of s, gives the
smaller of the two complementary steps.

The following table shows the order and step of the first seven
sateens :

113

perfect ”

Order. Step.

5(12 +22)
10(12 +32)
13(22 +32)
17(1z +42)
25(37 +42)
26(12 +5?)
29(22 + 52)
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In the general case the ratio of the distances between consecutive members
of the two sets of lattice lines is evidently

\/a? +5?
¢t +d*
Hence the deviation from the value unity of this quantity in the case of the
most nearly rectangular lattice given by any sateen affords a kind of numerical
measure of the “ twilliness.” *

There are many other problems of a mathematical nature connected with
the sateen arrangement, and with textile designing in general, but the present
paper will, I hope, be sufficient to show that even so technical a subject

as textile designing presents many problems of interest to the pure
mathematician. S.A.S.

* Assuming that a square sateen has ‘‘twilliness” of zero, the most suitable measure

of the ““twilliness” would of course be logn/aZ+ 0¥\ cEF d2,

50. ... During these graduate years at Pembroke Hall ... Mr. Pitt laid
in his principal stores of knowledge . .. In mathematics, the especial pride
of Cambridge, he took great delight. He frequently alluded in later life to
the practical advantage he had derived from them, and declared that no
portion of his time had been more usefully employed than that which he
devoted to this study. He was master of everything usually known by the
academic ‘‘ wranglers,” and felt a great desire—but Mr. Pretyman did not
think it right to indulge the inclination—to fathom st;]] farther the depths
of pure mathematics. When,” adds Mr. Pretyman, * the connection of
tutor and pupil was about to cease between us, he expressed a hope that
he should find leisure and opportunity to read Newton’s Principia again with
me after some summer circuit.”—[George Pretyman, Sen. Wrangler, 1772,
tutor of Pembroke Hall, tutor of William Pitt, in 1803 took name of Tomhne.
Bishop Winchester, 1820, d. 1827, b. 1750, Bury St. Edmunds.]



