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1. INTRODUCTION

Consider  for  a  moment  the  tremendous  growth  of  electronic  devices  such  as 
cellphones, MP3 players, digital cameras, DVD players and GPS systems within the 
last  decade. With each passing year,  these devices !  known as embedded devices 
because of special!purpose computer system that reside within them ! are shrinking 
in size and weight while performing increasingly advanced functionalities. How are 
engineers achieving these seemingly contradictory goals?

At the heart of this problem is the need to reduce the size of the special!purpose 
computer system that reside within each embedded device. One compelling choice 
is to identify and eliminate any unnecessary code present in the computer system 
and thereby reduce the memory footprint of the operating system "5, 8#. In order to 
carry out  this process  $  known as  dead code elimination $  the use of a pointer 
analysis is an absolute must.

Pointer  alias  analyses  play  a  critical  role  in  various  areas  of  computer  science 
research. The objective of an alias analysis is to answer a central question: can a 
given memory location be accessed in multiple ways? This question arises due to the 
existence  of  a  pointer data  type  in  many  programming  languages  that  make  it 
possible for two expressions to refer to the same mutable location in memory. To 
address  this  question,  an  analysis  is  necessary  in  order  identify  all  the potential 
aliases $  multiple references to the same storage location in memory $  that may 
occur  when  a  program  in  executed  "10#.  In  the  example  of  the  compaction  of 
operating  systems  %OS&  within  embedded  devices  described  above,  the  fact  that 
most OS code make use of pointer data types necessitates the use a pointer alias 
analysis to analyze the OS and identify any repetitious and/or unnecessary code. 

There are numerous classifications of pointer alias analyses in the research field. In 
this thesis,  an alias analysis is broadly defined under two categories: high %source& 
level alias analysis and low %assembly& level alias analysis. A high level alias analysis 
attempts to identify potential aliases by recovering information from a high level 
representation of the source code. Contrastingly, a low level alias analysis seeks to 
disambiguate memory relationships by analyzing the low level representation of the 
source code.  Most  tools  that  exist  today  analyze programs written in  high level 
languages rather than deal with low!level assembly because the latter presents many 
new challenges "11#. Unlike assembly level alias analyses, high level alias analyses that 
work on intermediate representation built from the source code can take advantage 
of source level semantic information and thus yield more precise results "20#.  In 
many cases, however, researchers have access solely to the program assembly code 
and therefore any useful program analysis must be able to handle low!level assembly. 
The decision to use a high level analysis versus a low level analysis is thus often based 
on the needs of the client application. 

In this thesis the terms pointer alias analysis, pointer analysis, and alias analysis are used 
interchangeably to refer to a static code analysis that seeks to establish the possible 
runtime values of each pointer present in the code. The remainder of the thesis is 
organized  as  follows.  Chapter  2  provides  a  thorough  discussion  of  pointers  and 
pointer alias analyses, including their necessity for analyzing programs that employ 
pointers  or  pointer!like  structures.  Chapter  3  provides  an  overview of  the three 
di'erent types of pointer algorithms that I have implemented. Chapters 4 to 6 then 
go into an in!depth discussion of each of the implementations, providing a detailed 
look at the challenges that emerged during the process and the specific application 
of each implemented analysis. Chapter 7 summarizes the conclusions and Chapter 8 
describes possible future extensions to each implementation. The thesis concludes 
with a series of acknowledgments in Chapter 9.
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2. BACKGROUND

Although  research  on  pointer  alias  analyses  dates  back  to  the  late  1970s,  the 
increasing demand for  more accurate and/or cost e(cient analysis algorithms makes 
this topic a focal point in computer science research today. A pointer alias analysis is 
essential  for  analyzing  programs  written  in  languages  that  employ  pointers  and 
pointer!based data structures, such as C, C++, Java and Objective C. The purpose of 
a pointer analysis is to determine the storage or memory locations a pointer may 
point  to when a  program is  executed.  All  pointer  analyses  employ a  static  code 
analysis technique in which the program being analyzed is never actually executed 
but rather the analysis gathers information by exploring  a!  the possible execution 
paths that could occur if the program were executed. 

2.1 Pointers and Their Usage in Programming Languages

A pointer is a data type that refers to another value stored in memory using its 
address  %see  figure  1&.  One  can  obtain  the  value  to  which  a  pointer  refers  by 
dereferencing the  pointer.  In  its  most  fundamental  form,  a  pointer  is  a  memory 
address and thus can be treated as such. Pointers are directly supported in languages 
such as C, C++, Pascal and most assembly languages. Other popular languages, such 
as  Java,  make heavy use of  pointers  in behind!the!scenes implementation of  the 
language and thus shield its users from the challenges that arise through pointer 
usage.  Pointers  are  primarily  used  for  creating  references  and  are  essential  for 
constructing many data structures, including lists, queues and trees, as well as for 
passing data between di'erent parts of a program. 

The diagrams on the following page o'er a brief  look at some common pointer 
usages using C code. Figure 2 illustrates simple pointer manipulation in C using a 
integer pointer.  Figure 3 shows an example specific to C and C!like languages in 
which a function pointer may be used to indirectly call a function.

5

20104

20108

20112

20116

20120

B 25

50104

50108

50112

50116

50120

A 20112

Figure 1: Pointers
Pointer A points to memory location B which stores integer values.
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Figure 2: Simple pointer usage %in C&

1: int pointerFun() {

2:   int num1 = 5;  

3:   int num2 = -15;

4:   int *ptr; // ptr is a pointer to an integer

5:   ptr = &num1; // ptr = the address of num1

6:   num2 = num2 + num1;

7:   ptr = &num2; // ptr = the address of num2

8:   return 0;

9: }

ptr 0x7fffffc9a864

0x7fffffc9a864

num1 5

0x7fffffc9a868

num2 -10

ptr 0x7fffffc9a864

0x7fffffc9a864

num1 5

0x7fffffc9a868

num2 -15

1: int add(int i, int j) {

2:    return i+j;

3: }

4: int sub(int i, int j) {

5:    return i-j;

6: }

7:  int pointerFun() {

8:     int num1 = 5; int num2 = -15;

9:     int (*fptr)(int, int); // fptr is a pointer to a function 

10:   fptr = &add; 

11:   fptr = &sub; 

12:   return (*fptr)(num1, num2); // will call function sub and then                  

13:                       // return the value returned from sub

14: }

fptr 0x7fffffe922a0

0x7fffffe922a0

add

0x7fffffe922ac

sub

Figure 3: Indirect call made through a function pointer %in C&

fptr 0x7fffffe922ac

0x7fffffe922a0

add

0x7fffffe922ac

sub



While both of the examples demonstrated in figures 2!3 are trivial, they highlight 
the  essential  functionality  of  pointers.  In  figure  3,  line  12  contains  an  indirect 
function call via the use of a function pointer, fptr. In this particular example it is not 
di(cult to determine that the function call on line 12 will call function sub because 
we  can  see  from  the  sequence  of  statements  executed  that  the  most  recent 
assignment of fptr was to sub %line 11&. However, imagine a scenario where the right!
hand side of the assignment on line 11 was replaced by a call to a function foo defined 
in a distant part of the code which returns a function pointer. Imagine that foo itself 
consisted of multiple calls to functions defined elsewhere. When the call to function 
foo returns and the assignment on line 11 is carried out, it is impossible to determine 
what function fptr points to at this point of execution without a thorough analysis 
of the code. This scenario highlights the ambiguity that can arise when one is trying 
to  determine  the  potential  values  of  a  pointer  at  a  given  point  in  a  program's 
execution. 

In  order  to  disambiguate  the  relationship  between  any  two  given  pointer 
expressions,  an  analysis  must  make  either  one  of  two  assertions.  The  first  and 
weaker assertion is that for some execution path P, two memory references a and b 
refer to the same memory location; this is known as a may!alias relationship. The 
second and stronger conclusion, known as a must!alias relationship, asserts that for 
a! execution paths,  two memory  references  a and  b refer  to  the  same memory 
location.  Due  to  the  nature  of  this  problem,  all  pointer  alias  analyses  are 
undecidable  and  thus,  the  implementation  of  any  alias  analysis  is  based  on  an 
approximation algorithm "14#.  Existing algorithms for pointer alias analysis di'er 
considerably in their precision and cost. However, all analyses are conservative and 
therefore guaranteed to report all possible pointer relationships that could actually 
occur at runtime. An analysis A is said to be more precise than analysis B if solution 
set computed by  A is a subset of the solution set of  B. It is generally agreed that 
more precise algorithms are usually much more costlier to compute but whether the 
additional  cost  is  worth  the  degree  of  accuracy  that  such  algorithms  yield  is 
debatable "16#.  The worst!case time complexities  of existing analyses range from 
almost  linear  to  doubly  exponential  "11#,  although  most  often  the  worst!case 
behavior is not indicative of typical performance. 

There are numerous classifications of pointer alias analyses in the research arena. 
Although some of  these  classifications  will  be  discussed  in  various  parts  of  this 
thesis,  the broadest classification referenced in this thesis divides a pointer alias 
analysis into two categories: high level %source level& alias analysis and low level alias 
analysis. A source level alias analysis can be further classified based on the type of 
information it collects as it analyzes program code. The following two subsections 
provide  a  thorough  discussion  of  each  type  of  analysis  and  the  benefits  and 
drawbacks that each carries. 

2.2  High Level Alias Analysis 

A  pointer  alias  analysis  performed  at  the  program  source  code  level  %or  an 
intermediate high level code representation& is known as a high level alias analysis. 
By  nature,  high level  alias  analyses  can  take  advantage  of  source  level  semantic 
information  and  therefore  provide  more  accurate  disambiguations  of  pointer 
references. A source level analysis can be described in terms of several properties: 
flow!sensitivity, context!sensitivity and type!sensitivity "10#.  

Flow!sensitive alias analyses take into account control flow within the program code 
and thus produces separate aliasing information for di'erent points in the control 
flow  of  the  program.  Contrastingly,  flow!insensitive  analyses  produce  aliasing 
information for the entire program, disregarding both flow of control and statement 
execution order. Therefore, flow!insensitive analyses, while less expensive than their 
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counterparts,  are  more  conservative  in  their  approximations  of  pointer 
relationships.  Context!sensitive  alias  analyses  distinguish  between  di'erent 
invocations of a procedure within the program code. For instance, if a procedure P 
is called from procedure Y and procedure Z, a context!sensitive analysis will produce 
distinct alias information for both PY and PZ. A context!insensitive analysis ignores 
such distinctions and therefore produces a solution set that is more conservative 
and  hence  less  precise.  %As discussed  earlier,  the  smaller  the  solution  set  of  an 
analysis,  the  more  precise  the  analysis  is  considered  to  be  in  relation  to  other 
analyses.  On  the  same  note,  the  more  conservative  an  analysis  is  in  its 
approximations of pointer relationships, the larger the size of the solution set it will 
produce.&

The final  classification of  source level  alias  analyses  pertains  to  the use  of  type 
information.  Type!sensitive  alias  analyses  make  use  of  type  information  when 
deriving aliasing relationships "20#. For instance, a basic type!sensitive alias analysis 
would recognize that two references a and b that are of incompatible types cannot 
alias each other. Although the incorporation of type information in creating aliasing 
relationships  can  significantly  improve  the  results  of  an  alias  analysis,  such 
information is  only  available at  the source code level  and therefore in scenarios 
where users do not have ready access to the program source code, an alternative 
approach must be undertaken for code analysis. 

2.3  Low Level Alias Analysis 

An alias  analysis  that analyzes program assembly code %available via the program 
binary& is known as a low level alias analysis. Because of the nature of assembly code, 
the techniques used for source code analysis are insu(cient for analyzing executable 
code. Below is a list of some noteworthy challenges that arises when dealing with 
assembly code %compiled from a publication by Brumley and Newsome "3#&:

! Assembly code lacks the presence of any expressive types and therefore any 
form of heuristic based on type information is obsolete. 

! Assembly code lacks any notion of function abstractions and control flow is 
exclusively defined by either unconditional or conditional jumps to locations. 

! Memory in assembly is  laid out as one, big contiguous chunk of storage, 
making it di(cult to determine where the allocation of one object ends and 
the next one begins.

! Heavy use of address arithmetic in assembly makes such arithmetic di(cult 
to ignore. Many source level alias analyses do not take into account address 
arithmetic  but  all  low  level  analyses  must  do  so  in  order  to  successfully 
handle  memory  dereferences  at  the  assembly  level,  which  almost  always 
involve address arithmetic.

! Widespread use of indirect jumps in assembly makes it di(cult to predict 
flow of control. 

The use  of  a  low level  alias  analysis  becomes necessary  when source code is  not 
available, such as in the case of malware analysis where the malware is only available 
in its executable form. In addition to situations where its use is a must, low level alias 
analyses can provide some significant benefits over source level analyses. Whereas 
source  level  analyses  typically  support  a  specific  high  level  language,  low  level 
analyses  make  no  assumptions  pertaining  to  the  syntactic  constructs  defined  in 
certain high level languages and can therefore handle code that may originally have 
been written in multiple languages. Some source code, while being primarily written 
in one high level language, can also contain inlined assembly code; only a low level 
analysis would be able to analyze such sites of inlined assembly code.   

While the implementation of an alias analysis that processes assembly code can be 
significantly  more  challenging  than  the  implementation  of  a  source  level  alias 
analysis, its usage is sometimes necessary and in many cases, such an analysis can 
provide information that otherwise would be lost.  
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3. OVERVIEW OF CASE STUDIES

The following three chapters  outline the three di'erent  program analyses  that  I 
have implemented in the course of my undergraduate research career. Each analysis 
was implemented because it was deemed to be the most appropriate $ in terms of 
cost, e(ciency and degree of accuracy ! for the problem being addressed. Chapter 4 
discusses my implementation of a source level flow insensitive alias analysis with the 
goal of identifying and eliminating unreachable code in the Linux kernel and thereby 
compacting its size to better satisfy the needs of an embedded device . Chapter 4 
and 5 discuss two di'erent approaches to addressing the same problem: determining 
the transition from seemingly benign to actual malicious code in a malware binary. 
Chapter 4 describes a standalone, rudimentary dynamic assembly level analysis that 
adds instructions to the existing assembly code in order to exert some control over 
the  execution  of  the  binary.  Chapter  5  discusses  the  implementation  of  a  more 
sophisticated  and  detailed  analysis  that  can  process  assembly  code  at  a  finer 
granularity. 
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4. FA ANALYSIS

The ability  to  identify  and eliminate  unused code in an application is  becoming 
increasingly significant as the amount of memory space available in many popular 
special!purpose computer systems becomes limited "6#. A perfect example of this is 
embedded devices.  Over the past decade, the use of embedded devices such as cell 
phones,  MP3  players,  digital  cameras,  microwave  ovens  and  DVD  players,  has 
evolved  rapidly  with  the  continuous  desire  of  consumers  for  newer,  smaller  and 
slicker!looking gadgets.  The  urge  to  decrease  size  and  weight,  reduce  power 
consumption, and lower production cost has limited the amount of memory available 
to the computer systems embedded within these devices. In order to satisfy the ever 
increasing  desire  to  execute more and more  sophisticated  applications  $  such as 
encryption and speech recognition $ these systems must now be able to run larger 
programs on limited space. The accumulation of these desires leads to increasingly 
large programs running on limited memory space, and as a result, the need for an 
operating system that can be tailored to run sophisticated applications while using a 
small amount of memory is invaluable. 

4.1  The Problem

One of the most popular operating systems %OS&  that vendors use for embedded 
devices is Linux, which has been freely available to the public since its creation. Built 
as a general!purpose OS, however, Linux is less sensitive to the limited resources of 
an  embedded  device,  in  particular,  the  reduced  memory  availability.  Thus,  code 
compaction or reducing the code size of the Linux kernel ! the central component of 
the OS responsible for managing system resources such as memory ! is critical in 
tailoring the Linux OS to better suit the environment of an embedded device. The 
applications  in  the  Linux kernel  contain  much more data  that  codes  for  greater 
functionality  than  what  is  needed  or  desired  for  an  embedded  device.  Thus, 
identification and elimination of unused code in the kernel %as per the requirements 
of the device& ! referred to as dead code elimination ! is integral in the compaction of 
the overall operating system "9#. 

In  order  to  identify  unused  or  dead  code in  a  given  program,  it  is  necessary  to 
construct a call graph for the program that provides information about all the calling 
relationships between di'erent functions in the program. Such a program call graph 
can be used to determine, given a set of input functionalities desired of the program, 
what  part  of  the  program code will  never  be called  in  order  to  carry  out  those 
functionalities.  With the construction of an accurate call  graph, one can identify 
code that is never executed and therefore can be eliminated. Hence, it is necessary to 
carefully choose and implement an alias analysis that can construct the most precise 
program call graph while maintaining a manageable cost. 

4.2  FA Analysis Implementation

The flow!insensitive alias %FA& analysis, a type of pointer alias analysis developed by 
Zhang et al. "22, 23#, has been previously shown to produce the most accurate call 
graphs  in  a  comparison  test  with  other  analysis  algorithms  "16#.  In  addition  to 
ignoring  the  order  in  which  statements  are  executed  in  the  code  %hence,  flow!
insensitive&,  the  FA analysis  is  also  context!insensitive,  field  sensitive  and  type 
sensitive. Being both flow! and context!insensitive means that the analysis algorithm 
has a low cost $ running in almost linear time in terms of the size of the program and 
the size of the produced call graph  $ and low precision. For the purposes of creating 
a call graph for the Linux kernel, however, the low precision is tolerable  because 
obtaining  even  some information about  calling  relationships  in  a  relatively  short 
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execution time is invaluable. 

The FA analysis algorithm begins by constructing an object name for each memory 
location found in the code.  As the kernel  code is  processed, the analysis  merges 
object names together into  sets called equivalence classes.  Each equivalence class 
represents a set of aliases. At the end of the analysis, a graph that contains the alias 
sets for all function pointers in the code is created. Once this graph is constructed, 
determining  the  potential  targets  of  an  indirect  call  %made  through  a  function 
pointer&  is  simple.  If  an indirect call  uses  a function pointer  p,  then the possible 
targets of that call are all the function object names in the same equivalence class as 
p. Figure 4 shows a small step!by!step example of how $ given a series of source code 
statements %taken from figure 3  in Chapter  2&  $  the analysis  identifies the set  of 
object names and groups them into equivalence classes.  

11

Figure 4: Set of equivalence classes produced from the source code in figure 3

Note: * = pointer dereferenc" symbol = the value at the location to which a pointer points to; & = address 
of symbol = the address in memory where variable is located



4.3  Application of the FA Analysis 

The  construction  of  a  program call  graph  for  the  Linux  kernel  consists  of  the 
following two steps:

1. Converting the C source code of the Linux kernel  into compilation unit 
summaries  using  an  XML  markup  that  preserves  semantic  information 
pertaining to the high level language, such as the types of variables. Since 
flow  of  control  statements  are  not  taken  into  consideration  by  the  FA 
analysis,  this  information  is  not  present  in  the  final  compilation  unit 
summaries.  This  transformation  of  C  source  code  into  compilation  unit 
summaries %that would then serve as input to the FA analysis& was performed 
by John Trimble, a former undergraduate student in our research group who 
has worked extensively with the FA analysis algorithm, including writing his 
own implementation in Python "20#.

2. My  implementation  of  the  FA analysis,  written  in  the  C  programming 
language, loops through each compilation unit summary produced in step 1 
until  all  summaries  have  been  processed.  In  order  to  process  the  XML 
summaries, my implementation uses Libxml2, a XML C parser and toolkit 
developed  for  the  gnome  project  "15#.  Libxml2  parses  a  XML  file  and 
produces a tree data structure which can then be traversed by the client ! in 
this  case,  my  program  !  in  order  to  process  each  node  information. 
Throughout this processing phase, the equivalence classes defined in the FA 
analysis  algorithm are generated.  At the end,  the analysis  dumps the call 
graph for the kernel, which consists of the following:

1. for each function with indirect calls $ print the list of potential targets 
of that function %as a result of the indirect calls& 

Figure 5 presents the code for a sample Hello program that consists of an indirect 
function call. Figures 6 and 7 contain the resulting compilation unit summary and 
call graph produced by the FA analysis for the Hello program, respectively.  These 
figures  originally  appeared  in  Trimble's  thesis  "20#  and  are  reproduced  here  as 
reference.
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Figure 6: Hello program compilation unit summary

Figure 7: Hello program call graph produced by FA analysis



Once the program call graph of the Linux kernel code has been constructed, it is 
then used by the code compaction software to compact the kernel. The flowchart in 
figure 8 summarizes this sequence of events. 

4.4  Experimental Results and Evaluation

A pointer alias analysis can be evaluated based on several metrics, the most common 
of  which are  accuracy  of  results  and speed %low execution time&.  The desire  for 
accuracy  in  an  analysis  is  obvious  but  e(ciency  is  an  equally  important 
characteristic because often times alias analyses are used by client programs as a 
small  part  in  an  apparatus  that  is  already  complicated  and  expensive.  Thus  the 
motivation to keep the alias analysis itself simple and inexpensive is high. In the 
case of the FA analysis and its role in the kernel code compaction apparatus %see 
figure 8&, it was crucial to have an analysis that would process the entire kernel in a 
relatively short time. Additionally, while the FA analysis was specifically applied to 
the kernel compaction software in our research work, we wanted to implement an 
inexpensive alias analysis that would be an attractive choice for other applications as 
well.

Since  the  source  level  code  of  the  Linux  kernel  was  converted  into  a  XML 
representation,  the  implementation  of  the  FA analysis  was  not  required  to  be 
written in  any specific  language.  One of  the primary  motivations of  writing the 
implementation in C was to take advantage of the flexibility that C data structures 
allow in  order  create  an e(cient  analysis.  My initial  implementation of  the  FA 
analysis took upwards of 8 hours to process the entire Linux kernel, the approximate 
size of which is  781,826 bytes.  Using program profiling tools  such as  gprof,  the 
GNU profiler "8#, I was able to identify several execution bottlenecks ! areas of the 
code where most of the execution time was being spent ! in my implementation 
code. Mostly all of the identified bottlenecks pointed to sections of the code that 
used expensive string comparison operations to process tree nodes. After modifying 
my implementation to make use of a more e(cient string table lookup to process 
the tree nodes, I was able to reduce the execution time of the analysis to 2.5 hours. 
This  speedup,  while  significant,  was  still  far  from an ideal  execution time for  a 
pointer alias analysis. Further use of gprof gave mixed results as to any remaining 
bottlenecks in the code, making it di(cult to determine the underlying source of 
the execution time overhead.
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In regards to the accuracy of the program call graph produced by the FA analysis, 
results varied depending on the input size. When analyzing individual modules of 
the Linux kernel, the analysis proved to be fairly accurate, producing a call graph 
that had at most twenty potential targets for any given function with indirect calls. 
When analyzing the entire kernel code, however, imprecision crept into the analysis 
results, generating a call graph that for some functions with indirect calls, produced 
hundreds of potential targets. 

It is di(cult to pinpoint exactly the source of the disappointing results of the FA 
analysis  implementation.  The  following  are  some  hypotheses  regarding  the 
outcome:

1. The Libxml2 parser may have played a role in the poor performance of the 
FA analysis.  The  XML parser  was  repeatedly  invoked  by  the  analysis  in 
order  to  process  each  compilation  unit  summary.  However,  due  to  the 
existence of the parser's source code in a separate library %not available to 
us&, the GNU profiler was unable to perform any profiling analysis on the 
parser.  This may explain why the profiler produced such mixed results at 
times, unable to pinpoint the execution time bottlenecks in the code.

2. Information lost in the process of converting the Linux kernel source code 
files into XML compilation unit summaries may have led to the imprecision 
observed in the FA analysis results. 
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5. DYNAMIC ASSEMBLY ANALYSIS

Security  of  computer  systems  has  been  a  key  component  of  computer  science 
research for many decades but in recent years, with an explosive surge in malware 
attacks,  computer  security  has  come  to  the  forefront  of  research  investigations. 
Today, there is a growing market for security products that can detect and eliminate 
viruses and worms from a computer system before any harm is done. Thus, the need 
for tools to better understand a binary executable and determine whether it exhibits 
any suspicious characteristics commonly observed in malicious code is critical for 
ensuring computer security.

5.1  The Problem

Recently,  one  of  the  most  common  virus  detection  methods  employed  by  the 
software security industry involves a brute!force test on the suspect file by trying to 
match byte patterns from the file to a database of known malware byte patterns. 
Many malware writers today fight against such detection methods by transmitting 
malware in a packed or encrypted form and thereby scrambling the bytes in the 
executable "21#. In a packed malware, the malicious code is originally encrypted to 
evade  detection  by  antivirus  scanners  and  is  only  unpacked  %decrypted&  and 
executed when the malware is run. When the malware is executed, control jumps to 
the unpacker routine, descrambling the bytes until the malicious code is  visible, and 
then jumps to the recently unpacked malware code. Because of the nature of packed 
malware, any binary exhibiting the characteristics of a self!modifying piece of code 
is flagged as suspicious.

This  packed  format  presents  an  obstacle  for  researchers  wishing  to  analyze 
malicious code, many of whom turn to dynamic code analysis techniques for the 
task "12#. Most of the existing dynamic analyses used in malware detection function 
by  executing each instruction in the binary  and scanning memory in search for 
matches with the known malware database. While such an analysis can successfully 
detect a packed malware, any information distinguishing the part of the malware 
code  that  is  responsible  for  carrying  out  the  unpacking  %the  unpacker  routine& 
versus the part that actually executes the unpacked and malicious code is unknown. 
The lack of such information prevents researchers from forming any concrete ideas 
about  the  control  flow  graph  of  the  malicious  code  and  therefore,  fully 
understanding the behavior of the malware. 

5.2  Dynamic Assembly Analysis Implementation

Our first, simple approach in determining whether a binary executable is a packed 
malware and then identifying the point of transfer from the unpacker routine to the 
actual malicious code in the binary involves a brute!force dynamic assembly analysis. 
The objective of the analysis is to process and execute the binary instruction!by!
instruction  until  a  point  deemed  to  be  the  transition  point  is  reached.  The 
transition point is defined to be the moment right before the analysis executes an 
instruction that has been modified by a previously executed instruction.

Before  the  analysis  phase  begins,  an  initial  disassembly  of  the  binary  %using  an 
existing disassembler tool& breaks down the executable into basic blocks and within 
each basic block, into a list of assembly instructions. The dynamic assembly analysis 
processes  the  global  list  of  instructions  generated  from  the  disassembly  and 
maintains  a  list  of  all  the  memory  locations  that  have  been  written  to  by  the 
instructions, referred to as the write set. 
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For each assembly instruction, the analysis performs the following:

1. Prior to executing the instruction, a check is performed to see if the address 
of  the instruction to be executed exists in the  write set

2. If  the  instruction  address  exists  in  the  write set,  the  analysis  stops 
because the transition point has been found.

3. If  the instruction address  does not exist  in the  write set,  the analysis 
executes the instruction. If the instruction is an instruction that writes to 
memory, the destination address of the instruction %the location where it 
writes to memory& is added to the write set.

4. Repeat the process for next instruction.

My implementation of  the dynamic assembly analysis  involved adding the above 
described functionalities in the form of additional assembly instructions inserted 
into the global instruction list. The implementation also included the addition of 
assembly instructions that ensured the safe manipulation of the stack and all the 
registers prior to the execution of each original instruction from the binary. While I 
implemented the described instrumentations of the global instruction list, a key part 
of the instrumentation required the usage of address translation routines that was 
implemented  earlier by a graduate student in our research group. 

5.3  Application of Dynamic Assembly Analysis 

The dynamic assembly analysis that we implemented was applied to a known packed 
malware: the Hybris C email worm. %figure 9 displays the unpacker code for this 
malware.&  The malware initialization begins by loading registers with the address 
%0x401000& and size %5418 words& of the region to be unpacked, and the decryption 
key.  The code then iterates through a loop, decrypting the specified region until the 
counter goes to zero. At this point the execution drops out of the loop and jumps to 
the unpacked region, which now contains the descrambled, malicious code. While 
unpackers employed by other malware may vary in certain aspects, all  unpackers 
share the common self!modifying characteristic evident in Hybris C; that is, the 
property  of  modifying  memory to  create  new code that  was  not  present  in the 
original binary.  

5.4  Experimental Results and Evaluation

The dynamic assembly  analysis  was tested on the Hybris!C and Hybris!D email 
worms.  Hybris!D is  an extension of  the Hybris!C worm and the code for  both 
malware  is  almost  identical  except  for  the  technique  each  employs  in  directing 
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control to the unpacked code once the unpacker routine has completed. In the case 
of Hybris!D, instead of employing the more obvious single jump statement for this 
purpose %as is evident in Hybris C, see figure 9, I8&, it uses two instructions $ a push 
and a return $ to push the address of the unpacked malware body onto the stack and 
then jump to that address. The dynamic assembly analysis was successfully able to 
recognize the suspicious behavior of these two malware and identify the transition 
from unpacker code to unpacked malware body in each. In the case of the Hybris C 
example  shown  in  figure  9,  the  correctly  identified  transition  point  is  I8  :  jmp 
0x401000. 

While  the  dynamic  assembly  analysis  successfully  recognized  the  Hybris!C  and 
Hybris!D worms as malicious binaries and identified the transition point in each 
code, both of these examples are relatively small and simple. When dealing with 
more  complex  and  larger  malware  files,  the  approach   taken  by  the  dynamic 
assembly  analysis  will  be  significantly  less  e(cient  because  it  requires  the 
instrumentation of each individual instruction that appears  in the original binary 
prior to the execution of the unpacked malware body. Most packed malware today 
employs complex unpacker routines that consist of at least hundreds of instructions. 
Individual instrumentation of each of these instructions would be costly, resulting in 
a high execution time for the analysis. Furthermore, dynamic analysis of malware 
binaries is also subject to certain vulnerabilities that are discussed in detail in the 
next chapter. 

 

18



6. VALUE SET ANALYSIS

The drawbacks of the dynamic assembly analysis described in the previous chapter 
has  necessitated  the  need  for  a  more  sophisticated  approach  to  addressing  the 
problem of malware detection and behavior analysis. One of the major drawbacks 
with analyzing malware binaries dynamically is that it allows the malware to employ 
dynamic defenses such as anti!debugging defense, time bombs and logic bombs "5, 
12#. A malware binary with an anti!debugging defense attempts to detect whether 
the binary's execution is being monitored by the host system and if so, does not 
carry out the execution of the malicious code. Other examples of dynamic defenses 
include time bombs, which cause the malware to be activated only on certain times 
or dates, and logic bombs, which cause the malware to be activated based on the 
detection of some environmental trigger. A dynamic analysis of a malware binary 
only explores one execution path of the malware and therefore in the case where 
dynamic defenses are employed, cannot always recognize the suspicious nature of 
the code. Hence, in order to analyze packed malware binaries that may also make 
use of dynamic defenses, it is necessary to conduct a static analysis that explores all 
possible execution paths of the binary.

Our method for analyzing packed malware statically can be summarized into two 
phases:  %1&  given  an  initial  disassembly  of  a  binary  executable,  identify  code 
unpacking and find the associated unpacker routine and %2& transform the unpacker 
code into a customized unpacker that can then be emulated to unpack the malicious 
binary. A fundamental component of this method is a pointer alias analysis that is 
necessary  for  both  %a&  the  identification  of  transition  points  that  signal  where 
control may be transferred to unpacked, malicious code and %b& the identification of 
the actual static unpacker routine. Alias information obtained from an analysis is 
essential  in determining  the  possible  targets  of  indirect  memory operations  and 
indirect control transfers in the malware binary. 

The nature of this work requires a low level pointer  analysis that can obtain alias 
information from an executable in the absence of source code, as is necessary when 
analyzing viruses and worms. Developing a pointer alias analysis algorithm that can 
be  used  to  analyze  potential  malware  executables  with  a  satisfactory  degree  of 
precision is nontrivial. Thus, we chose to resort to existing literature to identify a 
suitable  algorithm rather than formulating our own.  The extensive work of Gogul 
Balakrishnan as published in his dissertation in December 2007 "2# provided us with 
a  fairly  recent,  well!written  and  thoroughly  detailed  alias  analysis  algorithm,  the 
performance  and  precision  of  which  can  be  further  improved,  if  so  desired,  by 
additional optimizations outlined by the author.

6.1  Value Set Analysis Implementation 

Our  alias  analysis  implementation  based  on  Balakrishnan’s  dissertation  work 
involved  two  distinct  tasks.  The  first  task  was  to  implement  all  the  necessary 
internal  data  structures  such  as  representations  of  individual  memory  regions, 
abstract locations corresponding to variable!like entities in an executable, value sets 
denoting  the  set  of  addresses  in  a  memory  region  and  finally,  mappings  from 
abstract locations to value sets and from memory regions to value sets. Once all the 
data structures were in place, the next step was to implement the flow!sensitive, 
context!sensitive,  intraprocedural  analysis  algorithm  that  aims  to  explore  a 
program’s behavior for all possible inputs and all possible states that the program 
can reach. 
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At the topmost level, the value set analysis deals with a data structure known as  the 
AbsEnv,  which represents the abstract environment of the program at any given 
point during its execution. The AbsEnv maintains a list of all the memory regions 
defined in the program. The analysis classifies all data objects into three distinct 
categories of memory regions:  %1&  global region !  for memory locations that hold 
global  data,  %2&  activatio#  record region  $  for  memory  locations  pertaining  to  a 
particular  function or  procedure %local  data&,  and %3&  ma!oc or  heap region $  for 
memory  locations  allocated  at  a  particular  heap  site.  In  order  to  represent  the 
potential  value  of  any  given  memory  location,  Balakrishnan's  algorithm employs 
several di'erent levels of data structures, the most basic of which represents the 
value as a set, defined by a strided interval. Figure 10 provides a detailed look at the 
data  structures  involved  in  the  value  set  analysis  algorithm.  While  the 
implementation  of  the  value  set  analysis  was  a  group  e'ort,  I  was  personally 
responsible  for  implementing  most  of  the  underlying  functionalities  of  the data 
structures shown in figure 10. 
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The  value  set  analysis  processes  the  malware  binary  instruction!by!instruction, 
updating  all  components  of  the  current  abstract  environment  %AbsEnv&  for  the 
program as necessary. In addition to keeping track of all data objects, the  AbsEnv 
also  maintains  information  pertaining  to  the  potential  value%s&  of  each  of  the 
registers at any given time.   

6.2  Value Set Analysis Application

The value set analysis plays a critical role in our desire to determine whether a given 
binary executable exhibits the characteristics of a packed malware and if so, identify 
the  transition  point  from  the  unpacker  routine  to  malicious  code.  Before  the 
analysis phase begins, the binary is disassembled using PLTO, a disassembler tool 
developed  by  our  research  group  "19#.   The  disassembly  partitions  the  original 
malware code into basic blocks and within each basic block, into a list of assembly 
instructions. The value set analysis then processes this global list of instructions, 
determining  the  possible  target  addresses  of  indirect  memory  operations  in  the 
disassembled code. Using the information gathered by the value set analysis, a list of 
potential  transition  points  %or  transfer  of  control  to  the  unpacked  code&  is 
generated. The list generated is referred to as the set of “potential” transition points 
in  order  to  account  for  imprecision  in  the  binary  level  alias  analysis.  For  each 
potential transition point t, the results of the value set analysis is used to determine 
the set of memory locations that can be modified along the execution paths to $ to 
identify  the  static  unpacker.  Once  the  static  unpacker  has  been  extracted,  it  is 
transformed  in  order  to  eliminate  any  dynamic  defense  code  and  add 
instrumentation to identify the true transition point in the malware. Finally, the 
static  unpacker  is  emulated  to  observe  its  e'ects  on  memory  and  hence,  the 
remainder of the malware code.

Figure 11 provides an overview of the sequence of events described above. Step 1, 
parts of step 2, step 3 and most of step 4 was implemented by other members of my 
research group. In addition to my work on the value set analysis, I also implemented 
the instrumentation of the static unpacker %in its transformation phase&  and the 
final emulation. Many parts of the code used for the instrumentation and emulation 
of  the  static  unpacker  was  recycled  from  the  dynamic  assembly  level  analysis 
implementation described in Chapter 5.    
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6.3  Experimental Results and Evaluation

The static unpacker  was tested on the original Hybris!C email worm described in 
Chapter 6 as well as several variants of the Hybris code. The variants, constructed 
by  a  doctoral  student  in  our  group,  was  specifically  handcrafted  to  incorporate 
di'erent types of dynamic defenses. Figure 12%a& shows the control flow graph of the 
original  Hybris code.  In this example,  while the packed code begins with B0 at 
address 0x401000, the malware begins execution with the unpacker routine at B1 
%address  0x4064a8&.  As the loop in the unpacker routine executes %block B2&,  it 
overwrites the garbage instructions that are visible in B0 with actual malicious code. 
Figure  12%b&  shows a  variant  of  the Hybris  code that  begins  execution at  Bdd by 
loading a value into register %eax and then conditionally branching to the unpacker 
routine if the value is nonzero.  
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Figure 12: Two versions of the Hybris!C worm



Our prototype static unpacker was able to successfully identify the transition point, 
extract, modify and emulate the unpacker routine in each malware. In the case with 
the dynamic defense,  the static  unpacker correctly identified and eliminated the 
dynamic defense code.
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 7. CONCLUSION

After nearly two years of research work relating to pointer alias analyses,  I have 
learned  that  implementations  of  most  pointer  analyses  $  even  ones  based  on 
relatively  simple  algorithms  such  as  the  FA  analysis  $  are  nontrivial.  While 
implementations of binary level alias analyses are much more complex and di(cult 
than source level analyses, the latter is by no means a walk in the park. Below are 
several lessons I have learned over the course of my research experience:

1. Familiarity with the code base that one will be interacting with during the 
course of writing any implementation is crucial in successfully completing a 
good implementation. In the ideal case, we would all be working with our 
own code all the time and hence there would be no need to understand 
code written by another programmer. In reality, however, we are often given 
the task of continuing to build or extend a project that has been previously 
implemented  by  one  or  more  programmers.  In  these  situations,  I  have 
learned that it is essential to understand what others have written thus far 
before beginning one's own implementation. Sometimes we are lucky and 
the previous authors are available and willing to help in the understanding 
of their code in person or via email. Other times we are not so lucky and 
the task becomes more di(cult. 

While working on the FA analysis implementation, I decided to not worry 
myself with the GCC frontend, implemented by John Trimble, because it 
was independent of the analysis implementation. In retrospect, I wish I had 
spent  more  time  understanding  the  frontend  that  produced  the  XML 
compilation  unit  summaries  that  my  implementation  had  to  process.  I 
believe  that  had  I  spent  some  time  in  understanding  Trimble’s 
transformation of Linux kernel source code into XML summaries, I might 
have had a better understanding of the imprecision that was observed in my 
analysis results and its potential causes.

Additionally, my work on the FA analysis has taught me the uncertainties 
that  accompany any usage of  libraries  created by other research groups. 
Like in the case of most libraries available for free on the web, the writer%s& 
of  the  Libxml2  parser  %that  I  used  in  my  FA analysis  implementation& 
provided  an  API  %application  programming  interface&  outlining  all  the 
functionalities that the parser supported. The source code for the parser 
was not  readily  available to all  its  users  and hence,  I  was never  able to 
confirm  our  hypothesis  that  the  ine(ciency  evident  in  my  analysis 
implementation was somehow related to the parser implementation. 

Learning from the FA analysis work, when it came to implementing the 
value  set  analysis  outlined  by  Gogul  Balakrishnan,  instead  of  using  the 
analysis API that Balakrishnan and his research group made available to 
other  academic  research  groups,  we  decided  to  build  our  own 
implementation from scratch. This gave us the advantage of being able to 
modify Balakrishnan’s  algorithm for our own purposes and made us well 
aware and knowledgeable about the code base we were working with. 

As  I  have  learned  from  experience,  familiarity  with  one’s  code  base  is 
critical  in  hunting  down  program  bugs  and  understanding  program 
behavior. 
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2. Accuracy  always  trumps  e(ciency  and  any  optimizations  should  be 
implemented at the end only if there is good indication that the benefits it 
provides  will  outweigh  the  cost  of  the  additional  work.  In  each  of  the 
analyses I have helped to implement thus far, our first and foremost goal 
has  always  been  accuracy.  Often  times,  this  meant  that  our  initial 
implementation was always the most simple and straight!forward method 
of addressing the task, even if the methodology was ine(cient. 

In the case of the FA analysis, my first implementation involved a simple 
linked!list data structure to process all the tree node information received 
from the parser. In my later, more e(cient implementation, I made several 
optimizations to the code, including the addition of other data structures, 
such as a hash table for string lookup and comparisons.

Likewise,  in  the  course  of  our  value  set  analysis  implementation,  we 
decided  to  keep  things  simple,  implementing  only  the  first  part  of 
Balakrishnan’s algorithm: an intraprocedural analysis.  While the addition 
of an interprocedural phase to the analysis will most likely be necessary in 
the future, we wanted to have a simple, running analysis that we could test 
using our basic test cases. 

During the implementation of both the dynamic assembly analysis and the 
value  set  analysis,  we  also  considered  several  optimization  algorithms. 
When dealing with assembly level code, the optimal functionality for any 
program analysis is to be able to recognize when the code enters a loop and 
instead of emulating all the iterations of that loop %a very expensive and 
time consuming task&, make some smart conclusions about the data objects 
whose  values the loop modifies after emulating the e'ects of one or at 
most  two  iterations  of  the  loop.  There  are  some  existing  complex 
optimization  algorithms  that  deal  particularly  with  these  types  of 
situations.  For  the  dynamic  assembly  analysis,  no  optimizations  were 
implemented.  For  the  value  set  analysis,  we  initially  considered 
implementing one such optimization known as widening and its inverse, 
narrowing. Simply put, in the case when the value of a data object is being 
modified inside a loop, a complex widening and narrowing optimization "4# 
would  recognize  the  repeated  modification  and  make  an  intelligent 
conclusion about the final value of the data object at the end of the loop. 

Because of the complexity involved in implementing such an optimization, 
at this time we have decided to resort to a very simple version of widening 
in our analysis.  In our current  implementation of  the value set  analysis, 
when the value of a data object is recognized as being continually modified 
inside a loop %usually after two iterations&, the analysis immediately sets the 
value set corresponding to that object as unknown. In this manner, we are 
not  being  precise  in  our  implementation  but  at  the  same  time,  we  are 
ensuring that incorrectness does not creep into our analysis results. For the 
Hybris!C virus variants on which we have tested our analysis thus far, our 
implementation has proved to be su(cient. It is likely, however, that down 
the road we will be implementing these optimizations when dealing with 
more complex malware that necessitate the use of a smarter analysis.   

It is di(cult to quantify the amount of work, time and e'ort that has gone into the 
implementations discussed in this thesis. As is the case with most big programming 
projects, each implementation phase not only involved writing many lines of code $ 
at least several thousand $ but also countless hours of debugging, the joys of which 
only a programmer can appreciate.  
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8. FUTURE WORK 

For the Linux kernel code compaction project, the source level FA analysis provided 
aliasing  information  only  at  the  function  level.  This,  unfortunately,  limits  the 
amount of unreachable code in the Linux kernel that can be identified and therefore 
eliminated.  If  we were  able  to  collect  more  information from the  Linux  kernel 
source code, an extension to the FA analysis may be made to provide further finer 
grained aliasing information, specifically relating to memory references "20#. This 
information would, in turn, be beneficial to the code compaction software. 

In regards to the binary level value set analysis, several extensions of the current 
implementation is planned for the future in order to successfully handle a larger 
collection  of  malware.  Due  to  time  constraints,  our  initial  implementation  of 
Balakrishnan's value set analysis consisted only of an intraprocedural phase. In order 
to handle procedure calls as well as indirect jumps and calls, we would like to extend 
our  current  implementation  to  include  an  interprocedual  analysis  phase. 
Additionally,  we  would  like  to  explore  possible  implementations  of  several 
optimizations briefly discussed in Balakrishnan's thesis, specifically a sophisticated 
widening algorithm "4# and an a(ne!relation analysis "17#.
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