
EVALUATION OF THE EFFICACY OF CONTROL FLOW OBFUSCATION

AGAINST PROFILING AND INTELLIGENT STATIC ATTACKS

By

SRINIVASAN CHANDRASEKHARAN

A Thesis submitted to the Honors College

In Partial Fulfillment of the Bachelors degree

With Honors in

Computer Science

UNIVERSITY OF ARIZONA

DECEMBER 2003

Approved by

Dr. Saumya Debray

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for a degree at the

University of Arizona and is deposited in the University Library to be made available to

borrowers under rules of the Library.

Signed: ______________________________________

INTRODUCTION

In today’s world of code tampering, code theft and software piracy, protecting

one’s intellectual property is of utmost importance for every programmer. Protecting

one’s intellectual property has come into focus once again with the introduction of

architecture independent code format (Java bytecode [1]), and because of the emergence

of reverse engineering tools such as decompilers [2, 3]. Programmers have played with

the idea of encryption for many years and have succeeded in implementing the safest

algorithms to protect their data. This is very safe when the attacker does not physically

have the source code but can only execute the code. This means that the software runs on

a remote server and consumers pay to use the software remotely. This is not

economically viable for the consumer and for the software developer for large

applications due to network constraints. The immediate solution for the software

developer is to encrypt the source code and make it available to the consumer. This shall

work only if the entire decryption, encryption and execution process happens in the

hardware. But again in the execution process, if the intermediate code runs on a virtual

machine interpreter then the code and can be intercepted and decompiled [4] which is the

case for most architecture independent code. Therefore one is left with no other choice

but to use architecture specific code. But that too can be reverse engineered with the help

of architecture specific decompilers [2].

Code Obfuscation was introduced in the security and cryptographic communities

to tackle the problem of attackers reverse engineering intermediate code to source code.

Code Obfuscation is an approach whereby one transforms sensitive code to another form.

This transformed code is behaviorally same as the original, but in the process of

obfuscation the transformations results in intermediate code that is difficult for the

attacker to understand even after decompiling it to source level. This is because

obfuscation inserts extra computations into the original code so as to divert and

disillusion the mind of the attacker by giving him a lot of options as to where the code

might go next. Though this process results in software that is slower and larger than the

original, it does to an extent protect the intellectual property of the software developer.

Formal Definition of Obfuscation

 Given a set of obfuscating transformations T = {T1 … Tn} and a program P

consisting of source code objects {classes, methods, statements, etc.} {S1 … Sk}, find a

new program P
1
 = {…, S

1
j = Ti (Sj) …} such that:

 P
1
 has the same observable behavior as P, which means that the semantics are

preserved.

 The obscurity of P
1
 is maximized, which means that reverse engineering and

understanding P
1
 will be more time consuming than reverse engineering and

understanding P.

 The resilience of P
1
 is maximized, where by the transformations cannot be undone

through automatic tools.

 The stealth of each transformation is maximized while the cost (execution time/

space) incurred is minimized. [7]

Obfuscation can be mainly classified into two kinds

 Control Transformation Obfuscation

 Data Transformation Obfuscation

Control Transformation Obfuscation

 We define Control Transformation Obfuscation as those obfuscation schemes that

change the control flow of the program. These are mainly done through the use of

Opaque Constructs. Opaque Predicates are those constructs that always have one value.

We can consider them as Boolean constants. They are always either true or false.

Data Transformation Obfuscation

 We define Data Transformation Obfuscation as those obfuscation schemes that

alter the underlying data structure or the variables used in the program.

Our focus is to figure out the efficacy of obfuscated code through Control

Transformations hence we shall limit our research to Buggy Code and Bogus Predicates.

Both of the above two mentioned are control flow obfuscation schemes developed by the

Sandmark team at the University of Arizona [6]. We shall test how the two obfuscation

schemes fare against profiling and some intelligent static attacks namely, Detection of

Exception Handling Blocks and Dead Method Elimination.

BACKGROUND

 Compatibility of code across different platforms has become one of the most

important aspects of software development today. Therefore we see the emergence of

architecture independent code formats such as Java bytecode, C# etc. which give rise to

the distribution of code in intermediate code format.

 Distributed

 Runs the Intermediate Code.

 Figure 1

Code is first compiled into intermediate code that is architecture independent. It is then

the distributed amongst the consumers who just need the architecture specific virtual

machine interpreter to interpret the intermediate code that they have bought. Figure 1

illustrates as to how architecture independent code is compiled, converted into

Intermediate Code, which is then distributed, and then executed with the help of a virtual

machine that is architecture specific. This shows us the flexibility and advantage of using

architecture independent code because the software developer doesn’t have to worry

about customizing his code to fit the needs of different architectures. We use Java Byte

Code, intermediate code generated by the Java Compiler (javac) for our research.

COMPILER Code Intermediate Code

VIRTUAL

MACHINE

INTERPRETER
Intermediate Code

Java Byte Code:

 Java Byte Code is the intermediate, architecture independent code that is

generated when a .java (source file) is compiled. This intermediate code is stored in a

class file, which inherits the same name as the .java (source file) with a .class extension.

This intermediate code can be distributed as is and can be run on a computer that has the

Java Virtual Machine (JVM) installed on it with the help of the java class file executor

(java).

Java File:

 The java file is the source file for the application / applet. It contains the source

code written in the higher-level language, with the Java language syntax specifications.

Class File:

 The class file is the intermediate code that is generated when a Java file is

compiled. It contains the byte code instructions that are needed by the JVM to run the

program.

Jar File:

 The Java Archive (JAR) file format enables you to bundle multiple files into a

single archive file. Typically a JAR file will contain the class files and auxiliary resources

associated with applets and applications. For our purposes we make our JAR files (test

cases) to be Executable Jar files. (java –jar <ExecutableJarFileName>).

Obfuscation Tool and Libraries:

The obfuscation tool that we have used is Sandmark, developed at the University

of Arizona, Computer Science Department [6]. We make use of another library called the

BCEL (Byte-Code Engineering Library) developed by Marcus Dahm [5]. It is a tool that

allows manipulation of byte-code at runtime after which one can save the transformed

class/jar files. Sandmark also uses BCEL to manipulate byte-code instructions for its

obfuscation schemes.

OBFUSCATION SCHEMES

Buggy Code

This algorithm runs through an application (jar file) looking at all its class files. It

then runs through all the methods of each class file looking for a significant section of

code that doesn’t have a conditional or an unconditional branch Instruction. When it has

found such a section it makes a copy of that code and inserts some “junk” instructions

that manipulate bogus variables that it has declared at the beginning of the function. The

algorithm then uses an opaque predicate in a branch Instruction with the obfuscated code

as a fall-through to the branch Instruction and the correct (original) code as a jump to the

branch Instruction. The opaque predicate used is always true.

 Before Obfuscation After Obfuscation

Figure 2.1 Figure 2.2

Figure 2.1 shows the control flow graph containing the basic blocks of a function before

obfuscation. Figure 2.2 on the other hand shows the same function with a colored section,

B1 B1

B2

B3

B4

B2

(Obfuscated Conditional)

B3 B5

(Obfuscated)

)

B4

which indicates to the obfuscated code, and the non-colored part, which indicates to the

original path of code execution. Since the obfuscated part of the code is branched over by

the Opaque Predicate therefore the colored section (obfuscated code) is never executed.

Hence if we are able to somehow keep track of how many times a particular basic block

is executed then we shall successfully identify the colored section (obfuscated code).

Bogus Predicates

This algorithm also makes use of opaque predicates like the buggy code

obfuscation scheme with a slight difference that instead of looking for sections of code

containing no branch instructions it looks for sections of code that do contain conditional

branch instructions. Once it has found one it appends the branch instruction conditions

with a randomly selected opaque predicate.

There is a list of opaque constructs maintained by the obfuscation scheme. At run

time whenever a conditional expression is encountered one of the opaque predicates is

selected from the list randomly and is appended to the current conditional expression

thereby creating another path in the control flow of the program. As a result of the above

there is a single induced edge for every embedded opaque construct in the conditional.

This induced edge is never traversed for any input because it is a fall through edge of a

conditional that is always true (embedded opaque predicate). Hence if we are able to find

out how many times a particular edge is traversed then we can identify this induced edge.

Once this induced edge is identified we can hypothesize that both the parent and the child

of the edge is obfuscated.

Before Obfuscation After Obfuscation

 Figure 3.1

 Figure 3.2

Figure 3.2 illustrates how an opaque predicate is initialized (B6), calculated and then

stored (B7). If we compare Figure 3.1 and 3.2 we clearly see the induced edge (in red)

between basic block # 8 and basic block # 4 which shall never be executed for any input.

B1 B1

B2

B2

B8

(Obfuscated Conditional)

B3 B4

B5

B5

B4 B3

B6

(Initialization)

B7

(Calculation)

(Storage)

THEORY BEHIND THE IMPLEMENTATION

 After looking at the algorithms of both buggy code and bogus predicates one

comes to the conclusion that buggy code obfuscation scheme shall crack when subjected

to basic block profiling. Basic Block Profiling [8] is a technique whereby one can find

out certain properties of a certain basic block in a control flow of a program. The

property that we shall implement is to find out the count of how many times a particular

block is executed.

 Bogus predicates obfuscation scheme on the other hand is vulnerable to an attack

through edge profiling. Edge Profiling [8] is a technique whereby one can find out certain

properties of edges in a control flow of a program. Edges are the arbitrary arrows

(defining flow of control) between two basic blocks. The property that we shall

implement is the count of how many times a certain edge is traversed when the program

is executed.

 Both these implementations give results after the program has done executing

hence they are dynamic attacks.

 We subject the two obfuscation schemes to a set of static attacks namely

identification of exception-handling routines and Dead Method Elimination. This was

implemented because most of the code is not executed at runtime hence counts for many

basic blocks would come to be zero. Also for a “good” run for a program, which means

that there are no exceptions generated while execution, exception-handling routines shall

never be executed. The above two mentioned techniques were introduced into the

research so as to reduce the huge number of false positives that we were getting after just

profiling the obfuscated code.

IMPLEMENTATION

All the tools mentioned above were implemented in Java using Sandmark [6] and

BCEL libraries [5].

Basic Block Profiling

 In Basic Block Profiling we used a global static array that kept counts of all the

basic blocks in the application to be profiled. This array was stored in the main class of

the application. Each basic block is associated with a unique number. The mapping is the

number to be incremented in the global array. When the program quits a special function

is called that prints out the global array with all the counts of each basic block. This

function is also inserted in the application while the application is being prepared for

profiling.

 Since we know the mapping between the identifier of the basic block and the

index to the array we insert lines of intermediate code (Java bytecode instructions) right

before every basic block which increments the count of that particular basic block by one.

So every time a certain basic block is traversed the profiling code is executed and count

incremented. Figure 4.1 and 4.2 illustrate non-instrumented and instrumented code

respectively. In Figure 4.2 the colored basic blocks are the instrumentation code that

increment the count of the successor basic block in the global array of counts of basic

blocks. INC(basic block) is the function illustrated in the Figure 4.2 which does the

incrementation as explained above.

Figure 4.1 Figure 4.2

Edge Profiling

 In this tool we use the same notion of storing counts similar to Basic Block

Profiling but here we store the counts for edges. The edges in the control flow graph can

be uniquely identified by their source and destination, both of which are basic blocks in

the control flow graph of the method. Therefore for each edge we create an edge

identifier as the pair of its source and destination. This mapping is used to instrument the

code. A function is used for incrementing the global array of counts and just like in Basic

Block Profiling the counts are printed out at the end when the application quits. So

whenever an edge is traversed count for that edge is incremented in the global array.

Figure 5.1 and 5.2 illustrate non-instrumented and instrumented code respectively. In

Figure 5.2 the colored basic blocks are the instrumentation code that increment the count

of the edge that is traversed by using the edge identifier as described above.

B1

B2

B3

INC(B2)

B1

INC(B3)

INC(B1)

B2

B3

Figure 5.1 Figure 5.2

Exception Handler Removal

 This tool was implemented because for a “good” run of an application exception-

handling code is never executed. Exception handling code is present in most Java

programs because they use libraries and library methods that throw exceptions. As our

hypothesis suspects zero count blocks to be obfuscated we would get huge false positives

for a “good” run of the program. So to reduce the number of false positives from the

profile data we identify the blocks that correspond to exception-handling routines in the

application. This is done through the BCEL library, which extracts exception-handling

information from the byte code file. The library therefore allows one to identify the

exception-handling code in a given method. We can then find out the basic blocks that

are in an exception-handling routine. These blocks are removed from the set of false

positives that we contain because we make sure that during the execution of the

B1

B2

B3

B1

INC(B1-B2)

B2

B3

INC(B2-B3)

obfuscated code we provide the application “good” set of inputs that do not cause any of

exception-handling routines to be executed. Figure 6 illustrates the exception handling

code range (B1 to B5). If there is an exception in the exception handling code range then

the control shifts to the exception handling code (EXC1 to EXC2).

Figure 6.

The green arrows illustrate an execution with no exceptions and the red arrows show the

transfer of control to the exception handling routine. This shows that EXC1 and EXC2

will not get executed if the green path is taken.

B1

B2 B3 EXC1

B4 EXC2

B5

B6

Dead Method Elimination

 The other source of huge false positives could be methods that are never executed.

They might be present in the program as mere debugging tools that the programmer

forgot to remove. The do no harm to the program as they are never executed hence these

shall also pop up in the profile data with zero counts. This is also backed by the 80-20

rule, which says that most of the time is spent in twenty percent of the code. To tackle

this problem we implement a simple reachability algorithm that takes into account the

name of the method, the class in which it is defined and the parameters that it takes. We

construct a graph with vertices as methods signatures (the string comprising of the class

name the method is defined in concatenated with the method name concatenated with the

parameters) and edges as calls to other functions. We shall name such a graph as a C-

Graph. The reachability algorithm figures out if all the methods in the graph were

reachable by the “main” function of the Main-Class or not. All those methods not

reachable from the “main” function are termed unreachable and their basic blocks

removed from the profile data. The method name coupled with the class name of the

method and the signature of the method was used as the identifier for the vertex. This

takes care of methods having similar names with different parameters (functional

overloading).

After we find out the methods that are unreachable we double check with the

profile data if they really have zero counts or not. We do this test because Java Reflection

could have been used where one can call a method at runtime, whose name might be

determined at runtime. Therefore statically it would be impossible to figure out what the

method was called. If the blocks of the method termed “unreachable” do have counts

greater than zero then we discard those methods as they might have been called through

Java Reflection or implicitly (static functions).

Algorithm A

List N contains all methods.

Tree T contains the parent as the caller and the child as the callee.

Method boolean ifReachable(String src, String dest)

 reached = false

 If src == null

 return false

 If src == dest

 return true

 findNode of src in the List N

 If src is visited

 return false

 else

 set src to visited

Iterate through all the children of the src getting srcNode from T

 If child == src

 reached = true and break

If reached == false

Iterate through all the children of src getting srcNode from T

 If IfReachable(child, dest) == true

 reached = true and break

 return reached

Figure 8 illustrates the above algorithm on a small test case with two class files. The

figure is the graph constructed on which the above reachability algorithm is executed.

The figure clearly shows that the graph will not contain the unreachable methods and

hence the algorithm will point out that those methods are unreachable. Code 1 is the

pseudo-code of the test case.

 Class T1 Class T2

 Int a Int b

 T1 k

 T1()

a = 0 T2()

 b = 0

Int sub(Int a)

 Return this.a – a main()

 T2 t

 Print() t.k.sub(6)

 print a

 End of Class

 End of Class

Code 1.

The above code generates the following C-Graph.

Therefore when Algorithm A is executed on such a C-Graph we see that reachability of

T1.Print() from T2.main() fails. Therefore we can remove all the blocks in T1.Print()

from the set of suspected obfuscated blocks.

T1.Print()

()

T1()

()

T2()

()

T2.sub()

(I)I

T2.main()

([L java/lang/String;)V

TEST CASES

The test cases used in our research for obfuscation and then subsequently used in

profiling and static attack techniques were chosen with the following criteria.

We wanted to test our profiling and static attack techniques on real programs,

programs that contained redundancy of code and extra methods hence we chose 2 student

projects (Test9obf) and (Hash2) that implemented hash tables turned in as a class project

for CSC 345 in Spring 2003. The 2
nd

 set of test cases (Illness, Matrix and Decode) was

taken from the Sandmark test suite. The 3
rd

 set of test cases was the SpecJvm 98 suite of

which 5 test cases were chosen (_200_checkobf, _201_compress, _205_raytrace,

_227_mtrt and _222_mpegaudio). After the profiling data was collected we classify the

basic blocks based on the count and whether they existed in the list of obfuscated blocks.

So we get a 4-bucket arrangement as explained in Figure 8.

 0 COUNT NON-ZERO COUNT

JUNK Obfuscated Blocks with 0 Count Obfuscated Blocks with non 0 Count

NONJUNK Good Code with 0 Count Rest of the code

Figure 8.

Following are the characteristics of the test cases used.

Static Test9obf Hash2 Illness Matrix Decode
200
check

201
compress

205
raytrace

227
mtrt

222
mpegaudio

Classes 6 5 16 2 4 17 22 29 29 5

Methods 53 39 104 10 20 108 175 227 227 56

Basic Block 1565 1059 1655 209 595 2285 3331 3205 3212 308

Instructions 2843 2013 3933 576 1586 4075 7303 7187 7199 541

Table 1.

RESULTS AND OBSERVATIONS

From the data collected we see that we are able to trace down a part of the obfuscated

code because we had the list containing the obfuscated basic blocks. But since the

attacker doesn’t have this list we introduce the term focus percentage, which is defined as

the percentage of code the attacker should see with respect to the original code length to

find obfuscation. The following chart shows to us that the focus of the attacker is

decreased considerably for all the test cases.

Focus % at different levels of sophistication

0
10
20
30
40
50
60
70
80
90

Tes
t9

ob
f

H
as

h2

Ill
ne

ss

M
at

rix

D
ec

od
e

_2
00

_c
he

ck

_2
01

_c
om

pr
es

s

_2
05

_r
ay

tra
ce

_2
27

_m
trt

_2
22

_m
pe

ga
ud

io

BBP

EXC

DME

BBP = Basic Block Profile

EXC = Isolation of Exception Handling Routines

DME = Dead Method Elimination

Chart 1

From the chart we see that the focus of the attacker is reduced considerably when the

code that is obfuscated by buggy code is subjected to Basic Block Profiling and then

subsequently to the static attacks shown above.

Focus % at different levels of sophistication

0
10
20
30
40
50
60
70
80
90

Tes
t9

ob
f

H
as

h2

Ill
ne

ss

M
at

rix

D
ec

od
e

_2
00

_c
he

ck

_2
01

_c
om

pr
es

s

_2
05

_r
ay

tra
ce

_2
27

_m
trt

_2
22

_m
pe

ga
ud

io

EP

EXC

DME

BBP = Basic Block Profile

EXC = Isolation of Exception Handling Routines

DME = Dead Method Elimination

Chart 2.

Once again we see that by using the above three mentioned techniques we are able to

focus the attackers attention to a certain section of the code that does contain the

obfuscation. Therefore we conclude that Edge Profiling and static attacks can be used to

crack programs obfuscated through Bogus Predicates.

 Test9obf Hash2 Illness Matrix Decode

 0 Non 0 0 non 0 0 non 0 0 non 0 0 non 0

Profiling JUNK 1 1 2 0 3 0 3 1 0 0

 NON 885 267 562 9 (Noobf)

 Blocks 52 52 14 0

Exception JUNK 1 1 2 0 3 0 3 1

 NON 833 215 548 9

 Blocks 505 30 376 0

Dead Method JUNK 1 1 2 0 3 0 3 1

 NON 328 185 172 9

200
check

201
compress

205
raytrace

227
mtrt

222
mpegaudio

 0 non 0 0 non 0 0 non 0 0 non 0 0 non 0

Profiling JUNK 2 1 6 1 4 0 3 1 4 0

 NON 1176 1265 478 571 260

 Blocks
136, 76=0
 60 Non 0

169, 166=0
3 Non 0

35, 1=0
34 Non 0 35 1

Exception JUNK 2 1 6 1 4 0 3 1 4 0

 NON 1110 1099 477 536 259

 Blocks 484 653 419 419 217

Dead Method JUNK 2 1 6 1 3 1 3 1 4 0

 NON 626 446 132 117 42

 Table 2.

Table 2 is the data collected from the Buggy Code obfuscation scheme. It shows the 4-

bucket analysis of the code after each level of sophistication. We see that as expected the

number of false positives decreased as we applied some intelligent static attacks on the

code.

 Test9obf Hash2 Illness Matrix Decode

 0 non 0 0 non 0 0 non 0 0 non 0 0 non 0

Profiling JUNK 301 70 156 95 44 11 41 55 54 39

 NON 952 366 545 45 394

 Blocks 57 57 14 0 0

Exception JUNK 301 156 95 44 11 41 55 54 39

 NON 895 309 531 45 394

 Blocks 612 60 397 0 104

Dead Method JUNK 301 70 156 95 44 11 41 55 54 39

 NON 283 249 134 45 297

200
check

201
compress

205
raytrace

227
mtrt

222
mpegaudio

 0 non 0 0 non 0 0 non 0 0 non 0 0 non 0

Profiling JUNK 563 94 174 91 137 327 143 321 24 13

 NON 1607 1331 1029 1015 263

 Blocks 185 124 35 35 1

Exception JUNK 563 94 174 91 137 327 143 321 24 13

 NON 1445 1215 1021 980 262

 Blocks 448 719 650 617 203

Dead Method JUNK 563 94 174 91 137 327 143 321 24 13

 NON 997 496 371 363 59

 Table 3.

Table 3 is the data collected from the Bogus Predicates obfuscation scheme. Here too we

use the same notions as used in Table 2. The 4-bucket analysis again shows to us that the

focus of the attacker is brought down considerably.

CONCLUSION AND FURTHER RESEARCH

From the analysis we conclude that we have aided the attacker into finding out

where control flow obfuscation is present. This shows to us that control flow obfuscation

is weak and can be broken by using simple profiling techniques. Therefore control flow

obfuscation is not very effective against dynamic profiling techniques.

Another way that one could further bring down the focus percentage is to analyze

branch instructions. Control Flow Obfuscation rely on branch Instructions for their

obfuscation and so if one can just profile branch Instructions and deduce some opaque

properties of its conditionals then we can further reduce the focus percentage making any

control flow obfuscation even more susceptible to dynamic and intelligent static attacks.

References

[1] James, Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-

Wesley, 1996. ISBN 0-201-63451-1

[2] Christina Cifuentes and K. John Gough. “Decompilation of binary programs.”

Software – Practice & Experience, 25(7):811-829, July 1995

[3] Todd A. Proebsting and Scott A. Watterson. Krakatoa: Decompilation in Java (Does

bytecode reveal source?). In Third USENIX Conference on Object-Oriented

Technologies and Systems (COOTS), June 1997

[4] Christian Collberg, Clark Thomborson and Douglas Low: Manufacturing Cheap,

Resilient, and Stealthy Opaque Constructs. Proc. Symposium on Principle of

Programming Languages (POPL ’98), Jan 1998.

[5] Marcus Dahm: BCEL (Byte Code Engineering Library). http://bcel.sourceforge.net,

2002.

[6] Christian Collberg, Sandmark: A Tool for the Study of Software Protection

Algorithms. http://www.cs.arizona.edu/sandmark/

[7] Christian Collberg, Clark Thomborson: Watermarking, Tamper-Proofing, and

Obfuscation – Tools for Software Protection. IEEE Transactions on Software

Engineering, Volume 28, Number 8, Aug 2002.

[8] Thomas Ball, James R. Larus, "'Optimally Profiling and Tracing Programs,"

Technical Report #1031, University of Wisconsin, Madison (July 1991)

http://bcel.sourceforge.net/
http://www.cs.arizona.edu/sandmark/

