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Abstract

This paper presents the architecture, implementation and evaluation of IFTD, a multiprotocol data
transfer service. The architecture allows a single implementation of a data transfer protocol to be used
by any local application for its data transfer needs. This way, IFTD separates the development of
application logic from data transfer logic, allowing application developers to avoid re-implementing data
transfer protocols for each additional application. Also, applications that use IFTD will immediately
benefit from additional data transfer protocols added to it.

This paper first provides an argument for the design considerations and requirements for creating
IFTD based upon common features of real-world data transfer scenarios. It then gives a discription of
how IFTD meets these requirements, and then assesses its effectiveness at performing data transfers in a
series of four performance evaluations with respect to the performances of existing data transfer software.
Finally, it discusses additional considerations that may be used to algorithmically determine the best

data transfer protocol for given data and a given transfer history.

1 Introduction

IFTD is a data transfer service that provides a uniform interface for applications to transfer data via a variety
of data transfer protocols . An application that uses IFTD provides it with as much information as it has
about the desired data (e.g. host, name, size, hash, etc.), as well as any additional information on how IFTD

should use each available protocol (e.g. port numbers, login credentials, certificate authorities, etc.). If the

1In this paper, a data transfer protocol not only refers to any protocol conventionally used to transmit data between two or
more hosts (e.g. HTTP, FTP, BitTorrent, etc.), but also any program or service IFTD can use to send and receive data (e.g.
scp, CoDeeN, Gush, etc). Data transfer protocols exist within IFTD as pairs—a sender and a receiver.



application invokes IFTD to send data, it will additionally provide it with as much information as it has
about the data itself.

If the local IFTD instance is able to connect to an IFTD instance on the remote host, both instances
examine the data features, select a set of protocols available to both of them, and determine the best protocol
for transferring the data. They then rely on the selected protocol to transfer the data from the source host
(the host sending the data) to the destination host (the host receiving the data), but will select different
protocols available to both in the event that the chosen protocol fails. If the local IFTD instance cannot
contact a remote IFTD instance, it instead attempts to connect to the remote host with each protocol it
supports until one is accepted, and then performs the data transfer via that protocol.

Currently, there are many data transfer protocols an application may use to transfer data, each with
its own set of use cases [1]. Depending on the application’s data transfer requirements, some protocols are
preferable to others in certain cases, depending on the specific nature of the data. For example, downloading
a web page to a single host is generally faster with HTTP than with BitTorrent, whereas downloading a
software package to many PlanetLab hosts [14] from a single repository is generally faster with BitTorrent
than HTTP [3], but neither HTTP nor BitTorrent are necessarily faster at sending short messages than IRC.

This variety poses a problem when designing new data transfer applications—the application developer
must determine in advance which protocols to use for data transfer, and in which cases each protocol is
applicable. It is intractable from an engineering standpoint to do this for every single data transfer application
for several reasons. First, a change in the behavior of one protocol may require updating the protocol
implementations in each application that uses it. Also, a change in the data requirements of an application
could mean re-engineering part of or all of the application’s protocol usages. Additionally, applications using
the same protocols may inadvertently interfere with one another’s ability to transfer data (e.g. one may
require exclusive access to the same range of ports, blocking another’s ability to use them). Finally, it can
be difficult to design an application to tolerate protocol errors, depending on how error recovery would need
to be implemented each time the protocol is invoked. These considerations only constrain an application’s

ability to use the best protocol for each data transfer.
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Figure 1: IFTD Overview

The solution to these problems is a data transfer service that intelligently selects the best protocol to
transfer data, based on properties of the data itself and protocol usage information from the application.
If sending data, it should make the data available to be pulled by a destination host via as many different
protocols as possible along with the best protocol. If receiving data, it should also be ready to accept
data pushed to it via any available protocol in addition to the best protocol. This removes the burden of
designing applications to each use many different protocols; instead, the applications only need to use the
data transfer service. Since the service identifies which protocols are best for transferring different classes of
data, and prepares itself to communicate via as many different protocols as possible, the service reduces the
application’s burden of identifying which protocols should be used in which data transfer scenarios.

This paper presents a prototype implementation of such a data transfer service—the Intelligent File Transfer
Daemon (IFTD). The use of IFTD for data transfers provides several opportunities to improve the quality
of transmission that would otherwise be unavailable to individual applications. Since IFTD makes as many
protocols as possible available for each data transfer, the transmission itself tolerates faults in individual
protocols during the transfer. In the event that the transmission is interrupted or fails in one protocol, IFTD
can select from its remaining protocols to resume transmission until either the transmission has completed
or all protocols have been rendered unusable.

To implement automatic protocol fault tolerance, IFTD may break the data into fixed-length chunks



to be sent via its available protocols, making each protocol resumable regardless of whether or not the
protocol originally supported it. This way, in the event that one or more protocols become unavailable
during transmission, the destination host does not need to re-transfer data from the source host.

To increase bandwidth while receiving data, the receiving IFTD chooses the fastest protocol for trans-
mission based on prior experience. It first acquires data features that influence transmission speed from the
sending IFTD and optionally from the application. It then uses these features as input to a discriminatory
classifier to identify the fastest protocol most frequently associated with data with similar features. It informs
the sending IFTD of its decision, so the sending IFTD can subsequently use this protocol most frequently
to send data. Once transmission is complete, the receiving IFTD identifies the fastest protocol used in this
transfer and refines the classifier data with this protocol and the transfer data’s features, this improving its
classifier’s ability to choose the fastest protocol in subsequent transfers.

The remainder of this paper is organized as follows. First, it presents a survey of previous work related
to the ways in which IFTD solves the aforementioned problems. Next, it presents a top-down view of the
architecture of IFTD as a multiprotocol data transfer service, given the context of the related work. It
then presents an evaluation of IFTD’s performance in comparison to two other multi-protocol data transfer
frameworks: the file transfer framework arizonatransfer from Stork [3], and the url1ib2 module in Python
2.5. Finally, this paper discusses further work in refining the selection of “good” protocols for transferring

data under a variety of circumstances.

2 Related Work

There are several bodies of work that explore improving data transfers between applications across a network.
IFTD sets itself apart from these prior works by not only allowing an application to transfer arbitrary data,
but also completely removing the need for an application to be aware of any data transfer implementations
while simultaneously providing a data transfer architecture that supports the concurrent use of arbitrarily
complex data transfer protocols.

The differentiation between content negotiation and data transfer within IFTD is borrowed from the Data-
Oriented Transfer (DOT) architecture [20]. While DOT provides applications with the ability to transfer data
without needing to implement their own data transfer protocols, it still requires that applications perform
content negotiation directly. IFTD performs both tasks on behalf of its client applications.

IFTD’s protocol architecture is inspired by three different existing architectures: the transfer plugin
architecture in DOT, the protocol plugin architecture in the peer-to-peer file-sharing service giFT [9], and

the package transport architecture arizonatransfer from the Stork package manager [3]. All three provide



data transfer protocol architectures that hide the details of the protocol implementation from the applications
using them. Also, they both provide a degree of protocol fault-tolerance during transmission by transparently
switching from a failed protocol to an operational protocol. Unlike giF T, however, the capabilities of IFTD’s
protocols are not constrained by a specific use-case, and unlike DOT, IFTD’s protocol implementations may
be internally non-resumable. Additionally, IFTD can receive data concurrently using different protocols,
which is beyond the capabilities of arizonatransfer.

The way in which IFTD manages protocols to transfer data is inspired by the BASE methodology [17],
is similar in design to the muz conduits and protocol conduits defined in the Conduits+ framework [10], and
is similar in implementation to the way BitTorrent receives data [2]. Protocol behavior is dictated within
IFTD by a high-level construct similar to a mux conduit called a transfer processor, which like BitTorrent
implements a bitmap to represent which byte-ranges of the data have been transferred and which have not.
Protocol implementations run concurrently and rejuvenate on every transfer to achieve a degree of transfer
fault tolerance as recommended by the BASE methodology. Unlike Conduits+, however, IFTD’s transfer
processor is designed to manage application-layer protocols instead of transport-layer protocols. Unlike
BitTorrent, IFTD handles scenarios where information that would otherwise be provided in a .torrent file,
such as file size and chunk hashes, is not known in advance, and also implements a chunk-handling system
that can optionally accommodate more data than expected and make guarantees about the chunk sizes and
file reassembly that BitTorrent does not.

Finally, with regards to real-world applicability, IFTD instances are not limited to communicating with
other IFTD instances. Like the abilities of the giF T and Slurpie [18] multiprotocol implementations, IFTD
expects its protocol implementations to be able to communicate with alternative remote services well enough

for the remote service to treat IFTD like a typical piece of client software.

3 Architecture

To understand IFTD’s architecture, one must first consider what information is available to the sending and

receiving hosts before they begin transmitting. IFTD is constructed around these five observations:

1. For any source/destination host pairing, neither host knows in advance which protocols the other will

use to perform a transfer, but both know in advance which protocols are locally available.
2. A destination host may have performed data transfers similar to the pending one in the past.
3. A source host can perform measurements on the data in advance of sending it.

4. Tt is possible that no host knows everything about the data in advance.



5. Onme source host may carry out the data transfer with many destination hosts hosts. One destination

host may carry out the data transfer with many source hosts.

These observations suggest that data transmission should occur in at least two stages, as with DOT: a
content negotiation stage and a data transfer stage. A given destination host should not only acquire as
much information as possible about the data to transfer, but also as much information as possible about
the host(s) storing the data. This would include which protocols to use to receive the data, which source
host(s) to contact for which pieces of the data, and how to know whether or not the data are being correctly
transferred. Once a destination host knows these things, it will be better equipped to carry out the data
transfer than if it had not made this attempt. A similar argument can be made about a given source host
attempting to perform a data transfer to one or more destination hosts. Unlike DOT, however, an IFTD-
aware application sends IFTD only the information it knows about the data transfer and about the hosts to
engage so that IFTD can handle the content negotiation on its behalf.

The information IFTD requires from an application is packaged into an IFTD data structure called a
job. A job represents all of the relevant information about a data transfer as a sequence of key/value pairs.
The specific key/value pairs that the application presents are called job attributes, and are shared between
IFTD instances to negotiate a data transfer. Key/value pairs that IFTD maintains internally to monitor the
transfer are called job statistics, and are ultimately used by the classifier to associate classes of data with
their best transfer protocols. The IFTD job attribute keys are summarized in Figure 3. When instantiated,
a job will set default values for these keys.

An application may additionally provide parameters and hints to each protocol through connection at-
tributes. The connection attributes are presented as key/value pairs that map protocol names to additional
sets of key/value pairs, which in turn map protocol-specific connection attribute keys to appropriate values.
Although the data are optional, some protocols require that certain connection attributes be specified in

order for the protocol to be used.

3.1 IFTD Transfer Scenario

To help understand how applications use IFTD, consider this IFTD transfer scenario. Suppose Alice wishes to
retrieve the latest version of the nano software package, and that Bob regularly makes this and other packages
available under the /tmp/pkgs directory on his server. In order for Alice to retrieve the package, she can
use one of several programs to communicate with Bob’s server (e.g. scp, wget, ftp, etc.). Bob, however,
regularly adds and removes services from his server, so at any given time some of these programs will not

work. Since both Alice and Bob currently have an IFTD instance running on their machines, Alice decides



IFTD Job Attributes

JOB_ATTR_FILE_TYPE
JOB_ATTR_FILE_SIZE
JOB_ATTR_FILE MIN _SIZE
JOB_ATTR_FILE MAX_SIZE
JOB_ATTR_CHUNKSIZE
JOB_ATTR_NUM_CHUNKS

JOB_ATTR_FILE_HASH
JOB_ATTR_SRC_NAME
JOB_ATTR_-DEST_NAME
JOB_ATTR_SRC_HOST
JOB_ATTR_DEST_HOST
JOB_ATTR_PROTOS
JOB_ATTR_-TRUNCATE
JOB_ATTR_STRICT_CHUNKSIZE

JOB_ATTR_TRANSFER_TIMEOUT

MIME type of the file to transfer.

Size in bytes of the file to transfer.

Minimum allowable size for the file (if size is unknown).
Maximum allowable size for the file (if size is unknown).

Fixed length of chunks during transfer.

Number of chunks in the file. This is used to cap the number of
chunks to receive if the exact file size is not known.

SHA-1 hash of the file.

Path to the file on the source host.

Path to the file on the destination host.

Hostname or IP address of the source host.

Hostname or IP address of the destination host.

If given, this is a whitelist of protocols that IFTD may use.

If given, IFTD will truncate chunks that are too long.

If set to True, any chunk with a length not equal to the value of
JOB_ATTR_CHUNKSIZE will cause the transfer to fail.
Maximum amount of time the transfer may take.

JOB_ATTR_DO_CHUNKING If set to False, IFTD will send the entire file as one chunk (this is
True by default).

Minimum bandwidth any protocol must maintain while transfer-
ring (in Bps); otherwise the protocol is considered failed.
Maximum number of failures per protocol that IFTD will tolerate
during chunk transfer.

Maximum amount of time a receiving protocol may spend trans-

ferring a chunk.

JOB_ATTR_-MIN_BANDWIDTH

JOB_ATTR-MAX_ATTEMPTS

JOB_ATTR_CHUNK_TIMEOUT

Table 1: Summary of built-in user-accessible IFTD job attributes, some of which are optional. They are
determined by the application, and used by IFTD to carry out data transfers. Additional job attributes may
be defined on a per-application and per-protocol basis.

to create and run a small application—a Python script—to retrieve the package using her IFTD instance. The
application does not choose a specific protocol to use, but instead provides IFTD with some information
about the data transfer so it can make the choice.

When Alice’s local IFTD instance receives her application’s transfer request via XMLRPC [19] for Bob’s
nano package, it examines each of its available protocols to determine which may be used, given Alice’s infor-
mation. It determines that she has given enough information to use its http_receiver or its scp_receiver
protocols to download the package via HTTP or scp respectively. Alice, through her IFTD instance, sends
these protocols, the application’s job attributes (including the package’s presumed location on Bob’s server),
and per-protocol connection attributes to inform Bob’s IFTD instance that she wishes to receive the file.

When Bob’s IFTD receives Alice’s IFTD’s request, it verifies that the package file exists and is accessable
to it. It examines the protocols available to it and the protocols Alice’s IFTD indicated that it can use, and
initializes any sending protocols that wait for a receiving protocol to connect—in this scase, http_sender. It
breaks the package file into a sequence of fixed-sized chunks, writes them to disk in a temporary directory,

and informs the http_sender protocol of their location. Once http_sender is ready to receive connections,



Bob’s IFTD replies to Alice’s IFTD that it can use its http_sender and scp_sender protocols to send data,
and provides the name of the directory in which the chunks reside. It also gives Alice’s IFTD a set of file
features to be fed into Alice’s IFTD’s protocol classifier, as well as the directory it will use to store chunks
of the file and the hashes of each chunk.

When Alice’s IFTD receives this reply from Bob’s IFTD, it creates a feature vector representing the file
features and uses it as input to its protocol classifier. Since other applications on Alice’s workstation have
invoked IFTD to perform data transfers in the past, the classifier calculates the probability of each available
protocol having historically been the best protocol to transfer data with similar features. With this prior
information, the protocol classifier finds that the http_receiver protocol has had the highest probability of
being used to successfully transfer this type of data.

Now that Alice’s IFTD knows which protocols Bob’s IFTD supports, as well as the best protocol to use,
it examines the capabilities of the scp_receiver and http_receiver protocols. Since scp_receiver can
transfer data without needing scp_sender to be present, Alice’s IFTD concludes that Bob’s IFTD does not
need to use its scp_sender protocol. Alice’s IFTD informs Bob’s IFTD of its intent to use http_receiver to
receive data. It also gives Bob’s IFTD the directory in which the chunks of the package will be received. Her
IFTD does not inform Bob’s IFTD that it will also be using scp_receiver, since it does not want his IFTD
to use its corresponding scp_sender. Once Bob’s IFTD receives this information, it waits until Alice’s IFTD
finishes receiving data via HT'TP and scp, since it has been instructed to not use any of its active senders.

Eventually, Alice’s IFTD finishes receiving the file, and sends acknowledgement to Bob’s IFTD so it can
shut down its sending protocols. Alice’s IFTD finishes re-assembling the file from the chunks it received
shortly afterward. It then records the feature vector it calculates from the file data and observes that the
http_receiver protocol received data faster and more successfully than the scp_receiver protocol. Her
IFTD refines its classifier’s records with the feature vector along with the fact that http_receiver had the
highest bandwidth, so that in the future her IFTD will be more likely to use the http_receiver protocol
receive data matching the profile of the nano package.

It is not always the case, however, that both Alice’s and Bob’s IFTDs can always communicate with
one another or have protocols in common. Suppose the next day that Alice tried to use her application
to download vim from Bob’s package directory, but Bob disabled his IFTD’s http_sender and scp_sender
protocols. Then, even though Alice’s IFTD could contact Bob’s IFTD, they could not agree on which
protocols to use.

Fortunately for Alice, Bob’s server also has a running Apache server that serves files from the package
directory. Consequently, when the inter-IFTD content negotiation fails, Alice’s IFTD falls back to simply

using its http_receiver protocol to download the vim package from Apache on Bob’s server.



# Alice’s IFTD application

import iftapi
import sys

# package name is first arg
package = sys.argv[1]

job_attrs = {

"JOB_ATTR_SRC_NAME" : "/tmp/pkgs/" + package,
"JOB_ATTR_DEST_NAME" : "/home/alice/" + package,
"JOB_ATTR_SRC_HOST" : "cl3l.cs.arizona.edu", # Bob’s server
"JOB_ATTR_DEST_HOST" : "localhost"

# use large chunks, but not too large
"JOB_ATTR_CHUNKSIZE" : 65536,

iftd_xmlrpc = iftapi.make_XMLRPC_client ()
rc = iftd_xmlrpc.begin_ift(
job_attrs, # job attribute dict

None, # connection hints

False, # not sending

True, # receiving

4001, # Bob’s iftd xmlrpc api port
"/RPC2", # Bob’s iftd xmlrpc directory
60 ) # timeout after 60 seconds

sys.exit(rc)

Figure 2: Sample IFTD application that retrieves the given file from ¢131.cs.arizona.edu/tmp/pkgs and
stores it in /home/alice.

The following week, Alice attempts to download the ex package from Bob’s server, but Bob had since
uninstalled IFTD and Apache but is running an OpenSSH daemon on the server. Even then, Alice’s IFTD
still retrieves the ex package from Bob’s package directory using her IFTD’s scp_receiver protocol.

Even though all of these package transfer scenarios relied on different protocols and transfer services,
Alice never needed to modify her application in these cases. Her application instead completely relies on
IFTD to perform each protocol-specific content negotiation and data transfer, thus hiding from her all of the

logic and implementation details for handling these different scenarios.

3.2 Chunk Handling

When using one or more resumable protocols or when communicating with a remote IFTD, IFTD sends and
receives data in fixed-length chunks. When sending a file to a remote IFTD, it will read the file given to it

by the application, break it up into chunks, and store the chunks within a temporary directory identified by



the file’s base name and its SHA-1 hash. The receiving IFTD will create a corresponding temporary chunk
directory on its host to store received chunks. The chunks are named in increasing numerical order based on
which byte range of the file they contain, so that given the chunk size and file size, both an IFTD sender and
receiver can identify which chunk names correspond to which pieces of the file. This number is called the
chunk identifier. When IFTD finishes sending, it removes the chunks and the temporary directory. When
IFTD finishes receiving, it reassembles the chunks into the original file and purges the temporary directory.

When receiving chunks, IFTD attempts to verify each chunk’s integrity and writes each chunk to the
appropriate offset within the file being received. Depending on the receiving application’s job attributes,
IFTD accepts, ignores, or truncates chunks that are not the correct size, and never re-receives the same
chunk twice. If available, IFTD compares the SHA-1 hash of each chunk to the hash provided by the sender
so it knows to re-download the chunk in case of data corruption. Once each chunk has been written and data
transfer is finished, it will verify the hash of the re-constructed file against the file’s known hash, if available.

In the event that a local IFTD attempts to receive data from a remote host and cannot communicate with
aremote IFTD, it will instead use its protocols to attempt to get the file directly. If it uses resumable protocols
like BitTorrent or HTTP, IFTD attempts to receive the file in fixed-length chunks to allow protocols to receive
data concurrently and avoid receiving the same chunks twice. If no resumable protocols are available, IFTD
treats the file as a single chunk and uses a non-resumable protocol to attempt to fetch it.

Breaking each file to transfer into chunks, which themselves are also files, offers IFTD-to-IFTD data
transfers three advantages. Since IFTD protocols may not be resumable, this method allows IFTD to use
non-resumable protocols to transfer part of the whole file. Also, combined with the fact that IFTD will
allow each receiving protocol to transfer at most one unique chunk at a time, this method safely allows any
protocol to transfer chunks of the original file concurrently. Additionally, creating chunks allows IFTD to
present both the chunk data and the path to the chunk on disk to its sending protocols. This last advantage
is useful in implementing IFTD protocols which depend on 3rd party transmission software such as scp or

netcat that may require that the data to send be presented to it exclusively as a byte array or as a file path.

3.3 IFTD Content Negotiation

Given observations (4) and (5), the receiving IFTD acquires as much useful information as possible about the
file to transfer in order to optimize the transfer process. For a given IFTD instance, there are three possible
ways for this to occur: the receiving IFTD requests one or more remote IFTD instances to begin transferring
data to it, the receiving IFTD instance is contacted by another IFTD instance wishing to send data to it,

or the receiving IFTD requests a file from one or more remote hosts on which there are no IFTD instances.
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These are the Receiver Startup, Sender Startup, and Lone Receiver scenarios, respectively.

3.3.1 Receiver Startup

IFTD IFTD
(sender) (receiver)

send: file name, protocols,
job attrs, connection attrs

calculate file
attributes

make chunks—

start passive

senders | reply: file attributes, chunk dir
common protos, chunk hashes

| setup chunk
directory

. —— start all receivers
send: job attrs, best proto, sender protos

start active
senders -]
reply: successful rc

Figure 3: Active receiver content negotiation.

In this scenario, an application makes a request to the local IFTD instance to receive data from a remote
IFTD instance on its behalf, similar to Alice’s application in the example. IFTD begins negotiations by
verifying that the path keyed by JOB_ATTR_DEST_NAME is writable. If so, it sends this path, a list of all of its
supported protocols, the application’s job attributes, and the application-given protocol connection attributes
to the remote IFTD instance. If the remote IFTD can read the path keyed by JOB_ATTR_SRC_NAME, it first
attempts to initialize any protocols that need to wait until a receiver connects, if any are deemed usable.
It creates a record of the pending transfer, and assign it a timeout. It then breaks the file into chunks and
puts them in a temporary directory. Finally, it sends back a list of protocols supported by both IFTDs, as
well as the file size, MIME type, SHA-1 hash of the entire file, SHA-1 hash of each chunk, and the path
to the temporary chunk directory it will create. If the application provided any information about the file

that contradicts the remote IFTD’s information, the transfer is aborted. If the timeout passes before content

11



negotiation completes, the transfer is aborted as well.

If the local IFTD instance accepts the information, it will initiate the transfer. Using the information
given to it, it checks that the path keyed by JOB_ATTR_DEST_NAME refers to a writable location. If so, it makes
its temporary chunk directory, initializes a receiver protocol for each protocol both IFTDs have in common
(and are applicable), and identifies the best protocol with which to transfer the data. If not, the transfer is
aborted.

The best protocol for the transfer may not be common to both IFTD instances since the classifier considers
all previous transfers in making its decision. Regardless of whether or not the best protocol can be used,
and as long as there is at least one usable protocol and the destination path is acceptable, the local IFTD
requests that the remote IFTD start sending data to it since it now knows what to expect and how to receive
it. The request includes the local chunk path, the choice for the best protocol (or a sentinel value indicating
that the best protocol is unavailable), and a list of protocols that were successfully initialized and the sender
should attempt to use. As shown in the example of Alice and Bob, the local IFTD does not tell the remote
IFTD to start any protocol that will send data without the local IFTD’s oversight.

Once the remote IFTD receives this information, it initializes all protocols that do not require a receiver
to connect and prepares to send data. It will create its temporary chunk directory, split the file into chunks
and populate its temporary chunk directory with them, initialize the protocols the receiver indicated it should

use, and finally acknowledge the local IFTD. This completes the content negotiation in this scenario.

3.3.2 Sender Startup

IFTD IFTD
(sender) (receiver)

setup chunk __|
directory
start passive —

senders send: job attrs, protos, connection attrs,

chunk hashes, XMLRPC URL

setup chunk
directory

L start all receivers

reply: chunk dir., best proto, common protos

start active
senders

Figure 4: Active sender content negotiation.

In this scenario, an application makes a request to the local IFTD instance to send data to the host

12



indicated by the JOB_ATTR_DEST_HOST job attribute. Using the Alice and Bob example, in this scenario Bob
pushes a package to Alice. To begin the content negotiation, the local IFTD first ensures that the path
keyed by JOB_ATTR_SRC_NAME is readable. If so, the local IFTD determines the prerequisite file metadata the
remote receiving IFTD needs in order to begin transferring data—the file’s MIME type, SHA-1 hash, size,
chunk hashes, and temporary chunk directory, as well as the job attributes from the application and any
connection attributes the application provided. It breaks the file into chunks, and sets up all of the sender
protocols that need to wait for a corresponding receiver to connect. It makes the chunk data available to each
of these. Then, it attempts to send the file metadata to the remote IFTD receiver. If the remote receiver
does not respond, the transfer is aborted, the protocols shut down, and the chunks removed.

When the receiver gets this information, it checks to see that the path keyed by JOB_ATTR_DEST_NAME
is writable. If so, it creates its temporary chunk directory and starts receiving with all protocols it has in
common with the sender; if not, the transfer is aborted. If at least one protocol successfully initializes, the
receiver uses the information about the file as input to its protocol classifier. It will respond to the sending
IFTD with the best protocol choice (or a sentinel indicating that the classifier’s choice was not a common
protocol), the protocols that it successfully initialized, and its chunk directory.

Upon receiving this acknowledgment, the sender initializes its active sending protocols. This completes

the content negotiation in this scenario.

3.3.3 Lone Receiver

If the receiving IFTD cannot contact a sending IFTD, it assumes that there is no remote IFTD instance.
Consequently, during data transmission it will only know any information about the data that the application
gave it initially, and it may gather information from remote hosts based on the capabilities of the available
protocols. The directory on the remote host containing the file is treated like the sender’s temporary chunk
directory, and depending on the capabilities of the available protocols, the file itself may be treated as a
single chunk if none of the protocols are resumable. As with the receiver startup scenario, IFTD will only
receive the file to a path under the directory it is configured to use to store files it receives.

To perform the transfer, IFTD attempts to use each of its available receiver protocols until one successfully
downloads the file. If available, IFTD intelligently uses protocols that can perform partial data requests, such
as HTTP and BitTorrent, to request different parts of the file to maximize bandwidth. Once the receiver
completes the transfer, it uses any of the (otherwise sender-provided) information it was given by the receiving

application to attempt to verify the integrity of the file.
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3.4 Data Transfer Protocol Architecture

IFTD protocols are implemented as Python objects which inherit functionality from abstract IFTD-provided
Python classes that drive the transmission process. IFTD defines abstract classes for a sender and a receiver,
and both are considered to be distinct protocols. This means that http_sender is a different protocol from
http_receiver.

IFTD protocols may use any means necessary to exchange data. For example, the default IFTD source
package includes protocols that communicate directly through a TCP socket, use an HT'TP server and client
to download chunks, run the scp program as a shell subprocess to transfer files, get data from a local squid
cache, and join a BitTorrent swarm get chunks using the Rasterbar libtorrent API [13]. IFTD protocols may
even invoke IFTD recursively to perform a transfer, or invoke additional multiprotocol transfer frameworks
on [FTD’s behalf.

IFTD makes a distinction between active and passive protocols as well as sending and receiving protocols.
An active protocol is a protocol that drives the data transfer and is responsible for triggering data movement.
For example, IFTD’s http_receiver protocol is an active receiver, since it triggers data transmission from
an HTTP server by sending it a GET message. Conversely, a passive protocol is a protocol that waits for
its counterpart to initiate the data transfer. In this example, the HTTP server is a passive sender, since
it makes data available to be served but does not actually move the data without receiver intervention.
Both sender and receiver can be active, such as the scp-driven scp_sender and scp_receiver protocols,
and both sender and receiver can be passive, as with BitTorrent-driven protocols bittorrent_sender and
bittorrent_receiver.

IFTD additionally identifies protocols based on how well it can use any inherent resumability in the
protocol (it’s chunking capability). Protocols like HT'TP, which can send and receive given byte ranges of
a file, are known to IFTD as deterministic chunking protocols (DCPs). That is, IFTD identifies one or more
one or more chunks in the file to transfer, and the protocol transfers only those specific chunks without having
to rely on one of the IFTDs to break the file into chunks for it. Protocols that can still send and receive
chunks of a file but do not allow IFTD to choose which chunks are known as mondeterministic chunking
protocols (NCPs). This includes protocols such as IFTD’s default BitTorrent sender and receiver and raw
TCP socket receiver, since the protocol, and by extension IFTD cannot know in advance which chunks will
be transferred. This distinction is important for managing transmission in that consideration of a protocol’s
chunking capability can be used to avoid duplicate chunk transfers.

Each IFTD protocol has a lifespan of four stages: its one-time setup stage, its per-transfer setup stage,

its data transfer stage, and its clean-up stage. The last three stages are invoked for each data transfer, and
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for receivers last two stages occur within a separate thread from the main IFTD thread to help protect the

software from a fatal protocol error or timeout. The flow control of each stage is summarized in Figure 5.
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Figure 5: Lifecycle of a sender and receiver protocol within IFTD.

3.4.1 Protocol One-Time Setup

Before a protocol can be used, it must be instantiated for the first time when IFTD starts up and then
given a chance to perform any protocol-specific one-time configuration. The setup(setup_attrs) method is
responsible for this and is called by IFTD once the first protocol instance is loaded into memory. For example,
the http_sender protocol that comes with IFTD will start an HTTP server when its setup method is invoked.
The setup_attrs argument is a Python dictionary that maps protocol-specific connection attributes to
meaningful values, and is constructed from IFTD’s configuration file.

Once a protocol object has completed its one-time setup, IFTD will keep a single instance of it in memory
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and, through virtue of Python’s copy module, create a copy of it to use for each subsequent transfer. This
way, protocol instances do not need to be designed to be reusable-once a protocol’s copy completes one

transfer, the copy is destroyed.

3.4.2 Protocol Per-Transfer Setup

The per-transfer setup stage in each protocol is invoked on a copy of a protocol. This stage is responsible
for carrying out that protocol’s content negotiation. The process is divided into three steps: acting on the
application’s job, setting up a connection, and preparing to transfer chunks. For senders, the three methods

that carry out these steps are:

send_job(job)
await_receiver(connection_attrs, timeout)
prepare_transmit (job)

For receivers, these methods are:

recv_job(job)
await_sender (connection_attrs, timeout)
prepare_receive(job)

The purpose of the first step is two-fold. First, it gives the protocol a chance to extract any useful
information that the application provided in its job attributes so it can later negotiate with the remote host.
This way, the protocols can raise errors if any of the given data are malformed or missing before further
initialization occurs. Second, this step allows the protocol to add any additional information to the job for
other protocols to use, since the job is shared between each protocol and the IFTD transmission logic. For
example, if the job does not provide a file size, the http_receiver protocol will attempt to contact the
remote HTTP server to query the size and store it in the job for other protocols to use.

Once it has its job information, a protocol may need to set up a connection to a remote host before it can
prepare to transfer chunks. This step may be a blocking operation. For example, the TCP socket receiver
protocol uses its await_sender method to start a server socket and wait for the sender to connect to it before
it can begin receiving data. Both senders and receivers are passed a timeout value that they are expected to
honor. Protocols are not required to implement these methods, however, if this step is not needed.

The final step in protocol-specific content negotiation finishes any remaining per-transfer setup tasks,
such as checking the job for any additional information supplied by other protocols. For example, the
bittorrent_sender protocol uses its prepare_transmit method to create a torrent file for the data it will
begin to share. Protocols are not required to implement these methods if there are no remaining setup tasks

to perform.

16



3.4.3 Sending Data

Once each protocol finishes its negotiation, IFTD begins to use them to transfer data. In sending protocols,

sending data is accomplished by two methods:

send_chunk(chunk, chunk_id, chunk_path, remote_chunk_path)
send_finished(status)

The first method is called repeatedly to send individual chunks, and the second method is called within
the protocol to indicate that the protocol can no longer send chunks and should be given a chance to shut
down. The chunk and chunk_id arguments are a byte array containing the chunk data and the numerical
chunk identifier, respectively. The chunk_path and remote_chunk _path arguments are the path to the chunk
on disk to send and the path on the remote host’s disk where the chunk is to be sent. The first method
returns the number of bytes sent. Returning 0 is interpreted to mean that the protocol can no longer send
data, but its transfer status should not be marked as a failure.

Depending on whether or not the protocol is a passive sender, send_chunk may not actually write data over
the network. For example, the http_sender protocol, since it is passive, accumulates the arguments given to
this method over time to determine which chunks on disk it is allowed to serve to the active http_receiver
protocol. In the case of the bittorrent_sender, this method does absolutely nothing since the BitTorrent

library it uses performs the actual transmission without IFTD’s interference.

3.4.4 Receiving Data

When a receiving protocol is transferring the application’s data, it uses thread given to it by IFTD to
continuously attempt to receive chunks. The methods that control this stage of life are analogous to those

of a sending protocol:

recv_chunks (remote_chunk_dir, desired_chunks)
recv_files(remote file paths, local file dir)
add_chunk( chunk_id, chunk_bytes )

add_file( chunk_id, chunk_path )

whole_file( file_path )
recv_finished(status)

IFTD receiver protocols may receive data either as strings of bytes or as files, depending on whether or
not the protocol is inherently resumable. Resumable protocols are expected to implement the recv_chunks
method, while non-resumable protocols are expected to implement the recv_files method. The method
IFTD uses to drive transmission is selected and used exclusively for the duration of the transfer once this

stage in its lifecycle is entered, based on the protocol’s chunking capability.
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In recv_chunks, remote_chunk _dir refers to the path to the temporary chunk directory on the sender’s
disk, and desired_chunks is a list of chunk names IFTD needs to receive. If the protocol is resumable,
this method will be called repeatedly until the protocol implementation invokes the recv_finished(status)
method to signal to IFTD that it can no longer receive. It passes the chunks it receives to IFTD via the
add_chunk method.

Analogously, non-resumable protocols use the recv_files method to receive data as files instead of as
byte streams. The remote_file paths argument is an array that identifies the remote path to each file on
the remote sender, as well as which chunk it represents. local_file_dir represents the location on disk to
which to write any received files.

Since non-resumable protocols may be used with or without the presence of a remote sending IFTD,
there are two methods a non-resumable protocol uses to identify the data it receives to IFTD. The former—
add_file-is used to identify the location on disk of a chunk of the larger file being received. These chunks are
ultimately read by IFTD when it reassembles the chunks into the whole file. The latter method—whole file—
is used to inform IFTD in the event that the protocol receives the file in its entirety. This method may be
used when there is no remote IFTD sender and a non-resumable protocol succeeds in downloading the entire
file all at once.

To ensure that multiple receiving protocols do not download the same chunks, IFTD implements a global
chunk reservation system as part of its file I/O subsystem. This allows a protocol to temporarily gain exclusive
access to a given chunk. While a chunk is reserved, no other protocol will intentionally receive it.

If there is a remote IFTD sender available, or the protocol is a DCP, the protocol first queries the
reservation system for an unreserved chunk. The protocol continuously delays and tries again if no chunks
are available and the file has not yet been reassembled. When it succeeds in reserving a chunk, it records how
long the reservation lasts (given in JOB_ATTR_CHUNK_TIMEOUT) until another protocol can reserve it. This way,
if the protocol hangs during transmission, another protocol can re-reserve and download the chunk instead.
Once a chunk has been reserved, the protocol proceeds to transfer the chunk to the chunk directory.

If the protocol is an NCP, it does reserve a chunk in advance since it does not know which chunk will be
transferred. Any attempt to do so would otherwise carry the risk of inadvertently reserving chunks that the
NCP will not write, blocking other protocols from reserving them and thus decreasing the effective bandwidth.
Instead, an NCP receives its chunk first, and then attempts to store it in the file if there is not yet any data
for the given chunk.

When the transfer completes, the protocol atomically checks to see that there are no data written in the
file for this chunk and if not, it writes the data to the file. Once the chunk has been written, the protocol

atomically releases the chunk and marks it as downloaded. Then, subsequent writes or reservation requests
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for that chunk will be rejected by the reservation system. Transmission continues in this manner until all
chunks are received, or until one protocol manages to download the entire file all at once.

The chunk reservation system is unused in the event that there is no remote IFTD and that the only
protocols available are all non-resumable. In such a case, using the reservation system adds needless overhead
to data transfers since the only way to transfer the file in this scenario is to try each protocol until one performs
the whole transfer or they all fail.

In the event that the receiving IFTD does not know the file size, the chunk reservation system will
dynamically add more chunks to the file as they are received. That is, if a protocol receives a chunk
that logically occurs k chunks after the last chunk of the file, the chunk reservation system will add mud
site:7chan.orgk additional chunks to the file that other protocols may reserve. It will not allow protocols to

reserve chunks that are beyond the maximum allowed size of the file.

3.4.5 Protocol Shutdown

Because protocols define both a one-time setup and per-transfer setup procedure, they must additionally
define a per-transfer shutdown and one-time shutdown procedure. To shut down a single transfer, IFTD
invokes a protocol’s proto_clean() method in order give it a chance to release any global resources held
during transmission before the protocol data are freed. This includes temporary files, pipes, sockets, etc.
To perform a one-time shutdown, IFTD invokes a protocol’s kill() method to give it a chance to perma-
nently stop transmission. This method is called when IFTD itself shuts down. For example, the default
bittorrent_receiver protocol will leave the BitTorrent swarm when its proto_clean() method is called,

but will shut down the Rasterbar 1ibtorrent library when its ki1l () method is called.

3.5 IFTD Data Transfer

Data transmission in IFTD is driven by singleton entity called the transfer core. Its purpose is two-fold—
it manages and maintains data on all active transmissions, and it separates the content negotiation code
(including the XMLRPC API) from the data transmission processing. The XMLRPC server in IFTD passes
the data it acquires during negotiation to the transfer core, so the transfer core can drive the transmission
process in a separate thread while the XMLRPC server handles additional application requests and content
negotiations.

As a security measure, IFTD maintains two thread pools from which the transfer core acquires worker
threads to drive transmissions. One pool is for sending threads, and the other is for receiving threads. If a

thread pool is full, subsequent requests for threads result in causing the pending transmission to be aborted.
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This limits the ability of a malicious user to deny the services of IFTD and its host server from legitimate

users, and limits the damange a buggy application can do by requesting too many transfers at once.

3.5.1 Sending Data

Regardless of which protocol the receiver deemed the best protocol to use, the transfer core in the sending
IFTD makes all chunks available to passive senders. This is because passive senders do not actually send
data across a network until instructed to do so, but instead make it available to their receiver counterparts.
Consequently, there is little if any bandwidth cost associated with sending data with passive sender protocols?,
and sending all chunks through all passive senders allows any active receiver protocol to perform data transfers
for the receiving IFTD.

Since active sender protocols attempt to write data across a network, the transfer core selectively uses
active sender protocols to send chunks. In this case, the transfer core sends chunks with an active sender’s
send_chunk method until the entire file is sent or the protocol encounters an error. If there was an error, the
transfer core falls back to using a different active sender protocol it has in common with the receiver, and
continues to fall back on the remaining active sender protocols until every protocol has failed more times
than the application’s tolerance for protocol error. The best protocol, if it is available and is an active sender,
is the first protocol attempted. If the receiver does not give a preferred protocol, the receiver cycles through
the active protocols, given each of them a chunk in turn, until the file is sent or each of them has failed more

times than the application’s tolerance for protocol errors.

3.5.2 Receiving Data

When IFTD begins to receive data, it creates a separate thread for each receiving protocol to use. This is
done for two reasons. First, this way every passive receiver protocol can wait for an active sender concur-
rently, minimizing the odds that an active sender will send data in vain. Second, with or without a remote
IFTD, letting every active receiver request and save different chunks from one or more source hosts concur-
rently results faster data transfer rates than receiving from only one protocol at a time in the event that
certain protocols maintain higher bandwidth than others. The global chunk reservation system facilitates
this independently of the transfer methods within the protocols’ implementations.

In order to determine whether or not a given transfer succeeded, the transfer core monitors the trans-
mission states of all running protocols for that transmission. If no protocols are running and the file is

incomplete, or all protocols have failed, then the transfer itself fails. If one or more protocols indicate that

2The exception to this are NCP protocols such as BitTorrent, but since in implementation IFTD does not know in advance
which, if any, chunks it will send, IFTD naively assumes that it will not send data until a peer requests data from it.
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there are no more chunks to reserve in the event that the file size is known, or all protocols cease transferring
without any indication of error in the event that the file size is unknown, then the transfer succeeds since
this means that all chunks have arrived.

While each protocol receives data, the transfer core periodically calculates each protocol’s bandwidth.
If the bandwidth drops beneath an application-specified minimum bandwidth, the transfer core will stop
the protocol. This is advantageous since the Python global interpreter lock severely limits the ability of
multithreaded Python software to achieve true concurrency without resorting to running multiple Python
virtual machines or invoking 3rd party libraries and/or blocking operations [15]. Additionally, killing slow
protocols allows a transfer to fail in a reasonable amount of time in the event that the network between the
receiving IFTD and some or all of the source hosts is inadvertently or intentionally congested.

The receiving transfer core additionally monitors the total effective data transferred between all protocols.
If the total amount of data received exceeds the application-specified maximum allowable file size, the transfer
fails and all protocols are stopped. This prevents the scenario where the destination host does not have enough
space for a file with an underestimated size, and the scenario where a malicious source host continuously

sends data with the intent of filling the destination host’s storage to capacity [4].

3.6 Protocol Classification

The features of the data that are measured to help IFTD choose the best protocol are the success/failure
of the data transfer, the MIME type of the data, the approximate size of the data, and the approximate
time of day at which the transfer completed. These features are chosen based on prior real-world events,
and are intuitively likely to affect the best protocol choice. For example, some of the more popular Linux
distributions offer several different ways of downloading their ISO images, such as HTTP, FTP, BitTorrent,
and Jigsaw Download [11], and cite protocol performance for large files as a consideration in making the
choice [7, 8, 21]. Consequently, IFTD considers approximate file size when choosing the best protocol to
transfer data. The intuition that the MIME type possibly affects the best protocol choice is not without
precedent either, since some file servers have the ability to throttle data based on MIME type [12]. The time
of day is considered relevant since the number of users are actively transferring data at a given time changes
based on when people are likely to use their computers throughout the day [6].

When a protocol transfers a chunk, IFTD will record the protocol’s name, the status (success or failure) of
the transfer, the start and end times of the transfer, and the number of bytes transferred. IFTD accumulates
this data within the job statistics, so when the transfer completes IFTD will have a record of every chunk

transferred. When a transfer finishes, IFTD ranks the protocols in order from highest bandwidth to lowest
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bandwidth, as calculated from the per-chunk transfer records created by the protocols. Then, IFTD calculates
a feature vector from the re-assembled file that contains the file’s MIME type, the file’s approximate size, the
approximate time of day the transfer occurred, and whether or not the transfer was successful. It combines
the feature vector with the protocol with the highest bandwidth to produce a labeled feature vector, which it
logs into a temporary buffer that, when full, will be used to refine the protocol classifier before being emptied.

IFTD uses a naive Bayes classifier to determine the best protocol to transfer data when given its feature
vector. A naive Bayes classifier is a probabilistic classifier that uses Bayes’ Theorem to select protocol
b that maximizes p(b|X), where X = (xo,21,...,2,) is the data feature vector [16]. In other words, the
classifier calculates p(b|X) = p(X|b)p(b)/p(X) for all protocols b and selects b with the maximum p(b|X). It
is considered to be naive because it assumes that x; is independent of x; whenever ¢ # j. Consequently, it
calculates p(X|b) as the joint probability [] p(z;|b). It calculates values for p(x;|b) using the labeled feature
vectors IFTD accumulates with each successive transfer.

There is a trade-off between how detailed the feature vector can be and how useful the values of p(z;|b)
are. As the granularity of the data increases, the number of unique feature vectors increases, and the values
of p(x;|b) cluster near 0 consequently since there are less cases where x; more than once given b. Conversely,
as the granularity decreases, the number of unique feature vectors decreases and the values of p(x;|b) increase
and cluster near 1 as a result since there are more cases where x; occurs multiple times given b. This is
why IFTD records an approximate file size and an approximate time of day instead of their more precise

measurements °.

4 Evaluation

This section presents results and interpretations of four experiments designed to evaluate the performance

and behavior of IFTD. The questions explored by these experiments include:

1. How well can IFTD tolerate protocol errors in the active receiver scenario when the best protocol is

unknown?

2. How much overhead does a lone receiver IFTD introduce into data transfers relative to other similar

multiprotocol data transfer software?

3. How well can a lone receiver IFTD, using DCPs, maximize effective bandwidth relative to other, similar

multiprotocol data transfer software?

3In practice, IFTD arbitrarily records the file size as the multiple of 216 bytes closest to the actual size, and the time of day
as the multiple of 3 hours closest to the actual time. These values were chosen to keep the number of different x; values for size
and time on the order of 10

22



4. If given time to learn, does the naive Bayes classifier in a lone receiver IFTD correctly identify the best

data transfer protocol for prior labeled data feature vectors?

These experiments were run on two single-processor machines on a gigabit copper switched LAN with no
other network traffic present. Each machine had an Intel® Pentium® 4 CPU clocked at 2.4 GHz with 2 GB
of RAM, of which 1.25 GB was allocated to a RAM disk. Each machine had an Intel(R) 82540EM gigabit
Ethernet controller. On each machine the files to transfer and the IFTD chunk directory were stored on the

RAM disk so that the time-dependent experiments would not be affected by disk I/O operations.

4.1 Protocol Fault Tolerance
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Figure 6: Number of chunks transferred by each protocol as a function of time. The HTTP protocol is
programmed to transfer 65 chunks and fail, while the BitTorrent and scp protocols continue to receive the
remaining 135 chunks.

An important aspect of a multiprotocol data transfer service is how well it can tolerate errors in single
protocols. The purpose of this experiment is to demonstrate how well IFTD can tolerate protocol failures by
measuring how many chunks each available protocol transfers at different times during a transfer. For this
experiment the local IFTD is configured to use three protocols to receive a million-byte file that has been
broken into 200 evenly-sized chunks by a remote IFTD. The first protocol uses the scp binary to retrieve
chunks from the remote host. The second protocol uses the Rasterbar libtorrent library [13] to retrieve pieces
of the file from a BitTorrent swarm, where the remote IFTD is a seed for the file. The third protocol uses
http to retrieve chunks from the remote host, but is programmed to arbitrarily fail after receiving 65 chunks.

The protocol usages are summarized in Figure 6. Upon execution, the HTTP protocol will reserve a

chunk, retrieve it, write it, and repeat the process 65 times before failing. The scp protocol runs concurrently
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with the HTTP and BitTorrent protocols, but since it must perform public/private key encryption to begin
receiving each chunk, it receives data at a much slower rate than the other two. The BitTorrent protocol
takes longer to start receiving—longer than it takes the HT'TP protocol to receive all of its pre-programmed
chunks—but once it learns the IP address of the remote host from the BitTorrent tracker, it quickly receives
most of the data and concurrently stores them alongside the scp protocol. It contacts the remote IFTD
periodically for more chunks and receives a few more at nearly 8.4 seconds into the transmission.

The local IFTD does not have any prior information with which to train its classifier, so it receives data
using all three protocols concurrently. Consequently, the behavior demonstrated here is typical only when
IFTD has not performed enough transfers to initialize its classifier.

Since the BitTorrent receiver implementation is an NCP and does not know in advance which chunks
will be sent to it, it receives many duplicate chunks relative to the HTTP and scp receivers. In fact, it
received two chunks that the scp protocol, a DCP, had reserved and was in the process of downloading. The

duplicated effort resulting from using BitTorrent alongside HTTP and scp is summarized in the following

table.
HTTP | BitTorrent | scp
Chunks Saved 65 113 22
Chunks Re-downloaded | 0 86 2

Table 2: How many chunks were written versus how many chunks were rejected by the chunk reservation
system using the protocols in Figure 6.

Duplication notwithstanding, this experiment demonstrates that IFTD can tolerate a complete protocol
failure and continue to receive data. The application for which IFTD performs a transfer does not need to

implement any logic for handling such errors.

4.2 Transfer Overhead

One consideration in choosing a multiprotocol data transfer service is the measure of how much overhead each
service adds to an application’s transfer processing. This experiment demonstrates how fast IFTD retrieves a
file from a remote host relative to arizonatransfer and url1ib2. All three pieces of transfer software retrieved
files from a CherryPy 3.1.2 HTTP server [5], and were given the file’s size in advance. IFTD used only its
HTTP protocol, received only from CherryPy, and retrieved each file as a single chunk?.

The data in Figure 7 represent the average of 10 consecutive transfers for each piece of transfer software
for a range of file sizes. The bandwidth was calculated as the file size divided by the amount of time

spent setting up, receiving data from, and shutting down a connection to the remote host. In IFTD, the

4In implementation, this allowed IFTD’s HTTP protocol to avoid performing byte-range GETSs, making it comparable to
arizonatransfer and urllib2.
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Figure 7: Bandwidth as a function of file size. Because all three pieces of software transfer data across a
gigabit LAN, the affect of transfer overhead on each piece of software’s bandwidth is noticeable for files less
than 10MB in size.

amount of time measured is the round-trip time for an XMLRPC call to IFTD’s begin_ift () method. In
arizonatransfer, the amount of time measured is the time taken for the call to the getfiles1() method to
complete. In urllib2, the amount of time measured is the time taken for opening a new file, calling the
urlopen() method to contact the remote host, calling the read() method on the Response object returned
by urlopen() to receive all the data, writing the data to the file, and closing the file. In the first two cases,
file integrity checking is disabled.

Predictably, ur1l1ib2 retrieved all files faster than arizonatransfer and IFTD. This is because the method
used to receive data in a url1ib2 Response object is mapped directly to the Python socket package’s recv ()
method [22], which in turn calls the POSIX recv() function with the actual socket descriptor in Linux to
receive data from the remote host. Also, unlike arizonatransfer and IFTD, an application that uses urllib2
supplies the protocol and URL that identify the way in which to receive data, thus freeing urllib2 from
the responsibility of determining which protocol to use. Consequentially, there is much less overhead in
transferring data using urllib2 than with arizonatransfer and IFTD, because the latter two must identify
which protocol(s) to use before they can begin transferring data.

For files less than 10MB in size, IFTD has a higher bandwidth than arizonatransfer. This is partly
because arizonatransfer loads and initializes its transfer protocol modules each time an application calls its
getfiles1() method, and because it receives data to a temporary file which is then moved to the application’s
requested destination path using the Python shutil package. IFTD does neither of these; instead, it loads
and initializes its protocols only once when it starts up and writes data chunks directly to the destination

path. Consequently it has better performance for smaller files, even though using it incurs the cost of an
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XMLRPC round-trip.

When processing files on the order of 10MB, IFTD is noticeably slower than arizonatransfer. Although
the data show that IF'TD is still slower than arizonatransfer at transferring files on the order of 100MB, the
difference in bandwidth for 100MB files is significantly less than it is for 10MB files. The reasons for this are
unclear.

Even though urllib2 had the highest bandwidth in all cases, the data show that IFTD was able to
maintain bandwidths comparable to arizonatransfer. This suggests that IFTD may be a suitable replacement

for arizonatransfer in the Stork package manager.

4.3 Recoverability Performance
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Figure 8: Number of bytes received by each data transfer software as a function of time when a 100 MB file is
re-requested after one fourth of it downloads. Although urllib2 and arizonatransfer have higher bandwidths
than IFTD, they transfer more data than IFTD since they are not resumable.

When the unit cost of moving data across a network is nontrivial, data transfer resumability and re-
coverability become desirable features in a transfer service. The purpose of this experiment is to measure
how much data is transferred over time when both arizonatransfer and IFTD use two different HTTP pro-
tocol implementations, one of which is programmed to fail after transferring one fourth of the requested
data. Both arizonatransfer and IFTD are expected to tolerate this protocol error and continue to receive
data. Arizonatransfer is expected to fail over to its next available protocol and in doing so re-transfer the
first fourth of the data, whereas IFTD is expected to use its still-operational protocol to receive only the
remaining three-fourths of the data. At each 0.2 second interval, the experiment measures how much data
arizonatransfer and IFTD were able to download with one faulty HT'TP protocol implementation. The total

amount of data to transfer is 100 million bytes. IFTD’s chunk size was 5 million bytes. The remote host
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used CherryPy 3.1.2 to serve data via HT'TP on two different ports.

For comparison, the experiment calculated the amount of data transferred by url1ib2 when using urllib2
to set up a connection to the remote host, transfer 25 million bytes, close the connection, re-open the
connection, transfer all 100 million bytes, write the data to disk, and close the connection again. The reason
for this particular behavior is to emulate the behavior of a hypothetical application that repeatedly attempts
to receive data with urllib2 by re-requesting the data if the previous transfer request fails. In this scenario,
the first transfer request fails after receiving 25 million bytes, and the second request succeeds in receiving
all 100 million bytes (meaning that the application transfer 125 million bytes before successfully receiving
the data).

The times of arizonatransfer’s and IFTD’s protocol failures are indicated in Figure 8 with vertical bars.
IFTD receives 100 million bytes, whereas both url1ib2 and arizonatransfer receive 125 million as expected.

IFTD only receives 100 million bytes and encounters the error after receiving 50 million bytes because
it concurrently uses both its faulty and operational HTTP protocol implementations to receive data in 5
million byte chunks. By the time its faulty HTTP implementation fails, both it and the operational HTTP
implementation will have received 25 million bytes each. IFTD uses the operational HT'TP implementation
to receive the remaining 50 million bytes of the file, despite the failure of the faulty HTTP implementation.

In this experiment, the data show that IFTD’s protocol architecture and fault tolerance give it the
ability to use DCPs like HTTP to avoid re-transferring data that has already been received from a remote
host without IFTD. This resumability allows an application to receive less data than it would have with

arizonatransfer or this particular usage of urllib2 in the event of one or more protocol errors.

4.4 Protocol Classification

One benefit of using a classifier to select the best protocol for a data transfer is that it allows IFTD to
choose low-latency but low-bandwidth protocols to transfer small amounts of data, and high-latency but
high-bandwidth protocols to transfer large amounts of data. In this experiment, IFTD uses two different
HTTP implementations to transfer data of various sizes from a remote HTTP server. The first HTTP
implementation, http_slow, is programmed to receive data as fast as possible for small files, but to introduce
a sharp, artificial delay for each chunk proportional to the inverse of the file size when transferring large files.
The second HTTP implementation, http_delay, is programmed to wait 10 seconds before receiving data
and then to receive data as fast as possible. Their bandwidths, calculated as an average of 10 consecutive
transfers for each given file, are plotted in Figure 9 on a logarithmic bandwidth scale to emphasize the point

where http_delay’s bandwidth exceeds http_slow’s bandwidth. For the purpose of this experiment, IFTD
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Figure 9: The IFTD-measured bandwidths of two different HTTP implementations for different file sizes.
IFTD chooses http_slow for smaller files since it has a higher average bandwidth than http_delay for
small amounts of data. IFTD chooses http_delay over http_slow once the files become big enough that
transferring it with http_delay is faster.

is configured to refine its classifier after every 10 transfers.

After the experiment transfers each file 10 times from the remote host, it checks the probabilities of each
protocol given the data feature vector. The experiment always chooses a chunk size for IFTD to guarantee
that there will be 20 evenly-sized chunks to transfer. The probabilities of each protocol given the data
features correlate strongly with the protocol with the highest average bandwidth for that data—in this case,
the probability of either protocol given the data feature vector is either 0.0 or 1.0, depending on which
received the most data for each set of transfers.

To summarize, in this experiment the data show that IFTD can detect and correctly associate small
data transfers with a low-latency, low-bandwidth protocol and large data transfers with a high-latency,
high-bandwidth protocol. The probabilities of both protocols being the best for the transfer given the data

correlate with the prior bandwidths IFTD had measured while using them.

5 Discussion

The experiments presented in this paper are conducted in an idealized environment. In all cases, there is one
source host and one destination host connected on a LAN, there is no other network traffic, the bandwidth
is practically free, and the system load on both hosts is minimal. This allows IFTD to benefit from using
additional but less desirable protocols to transfer data while incurring little cost, it allows IFTD to, in some

cases, receive more data than necessary, and it mitigates the advantages of identifying the best data transfer
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protocol.

5.1 Handling Protocol Behavior

In real-world uses, there is a cost associated with using an active protocol to send or receive. Some protocols
may require a nontrivial amount of memory or CPU time to run effectively due to features such as internal
bufferring, internal integrity checks, encryption, etc. While IFTD measures protocol bandwidth to decide
which protocol is the best protocol for receiving data, it does not consider how using the protocol affects
the system’s available resources. This is problematic for applications that already require a large percentage
of the system’s resources, since using IFTD to handle such an application’s transfer needs may accidentally
cause the system’s resources to become too scarce for the application to run effectively. While an application
may inform IFTD in advance of which protocols are acceptable to use to mitigate this problem, ideally it
would only need to inform IFTD of its maximum tolerances for system resource usages and have IFTD only
use protocols that keep its resource usage below the maximum.

Another real-world consideration is that the protocol with the highest bandwidth may not be the most
desirable protocol for a particular application. For example, the protocol with the lowest latency may be
preferable to protocol with the highest bandwidth in certain cases, and the protocol that can compress data
to the smallest possible size may be preferred in other cases. One future improvement on IFTD is to allow an
application to identify a set of features for IFTD to measure in order to cause the classifier to favor protocols
based on different criteria than the highest bandwidth.

The fact that IFTD starts passive receivers automatically, regardless of whether or not they have histori-
cally been the best protocol with which to receive data, poses a problem for applications in situations where
bandwidth is expensive. The experimental results from Figure 2 indicate that using an NCP concurrently
with one or more DCPs can increase the number of duplicate chunk transfers over 50 percent. However, as
seen in Figure 6, there are scenarios where an NCP is considered to be the best protocol with which to per-
form transfers since it has the highest bandwidth. Also, using a DCP while an NCP is not receiving data, like
how the HTTP protocol received all 65 of its chunks before the BitTorrent protocol began to receive, could
potentially increase IFTD’s total bandwidth without using too many system resources. These observations
suggest that the best protocol with which to receive data can change during the course of a data transfer,
and that the calculation for the best protocol must consider more information than average bandwidth.

One possible improvement to IFTD’s data transfer algorithm is to recalculate p(X,0w|b) periodically
during the data transfer and then calculate the best protocol b given data feature vector X, ,,, representing

the data transferred thus far. If b changes, and IFTD is receiving data from a remote IFTD, it would inform
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the remote IFTD of the change. However, communicating with the remote IFTD would incur the cost of
an XMLRPC round-trip, and it is not immediately clear how representative X,,,, is of the data yet to be
transferred. Also, the relevance of prior completed transfers should be considered, since the current transfer
may be unrepresentative of typical data transfers for this classification of data. The weight of each calculation
used to choose protocols that maximize data transfer bandwidth still need to be explored.

Another possible improvement is to make use of the fact that data used by the naive Bayes classifier can
be used to calculate p(b;|X) for any protocol. As a result, IFTD can calculate the best k protocols to use to
transfer data with features X, where k can be given by the application. Doing this means that IFTD does
not necessarily need to start all passive receivers; instead it may have at most k receivers running at once
regardless of whether or not they are passive or active. This represents a compromise between running all
receivers, which potentially takes up too many system resources, and running only the best receiver, which
increases the likelihood that a source host sends the destination host data only to have it rejected since the
data cannot be received by the currently running protocol. The effects that the values for p(b;|X) for the k
best protocols and the effects that the choice for k£ given n protocols have on the choice of the best protocol

are yet to be determined.

5.2 Choosing the Best Protocol

There are many alternative methods of calculating the best protocol with which to transfer data given IFTD’s
architecture. For example, in order to consider the system-wide effects of using a given protocol, IFTD could
record the average bandwidth/(1 + ACPU) or bandwidth/(1 + AMemory) or a combination of the two,
calculated per transfer, in order favor high-bandwidth protocols that increase IFTD’s CPU and memory
usage minimally. Also, IFTD could instead calculate 1/latency for each protocol to favor the protocol with
the lowest latency. Additionally, an application could supply IFTD with weights for each protocol’s p(b;|X)
based on application-defined desirable traits, such as the presence of data encryption or the usage of certain
port ranges. This favorability information may be beyond the scope of IFTD to calculate but may affect the
usability of the protocols enough that providing it is warranted for a specific transfer. Future experimentation
with IFTD may determine which if any of these alternatives allow IFTD to make better decisions in general.

Since IFTD depends on a naive Bayes classifier for choosing the best protocol, the choices for the features
it measures for data transferred were made with the intuition that they have little or no correlation among
themselves in general. If this is true, then the assumption made by the classifier that x; is independent of
x; when i # j is well-founded. However, a naive Bayes classifier can perform well even when its probability

assumptions are incorrect [16]. Consequentially, IFTD may make more accurate choices if it considered some
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(but not many) additional features. For example, IFTD could record the set of IP addresses from the remote
hosts it engages during data transfer, the port number(s) used during the transfer, and some information
about the remote services engaged to perform the transfer (e.g. the version number, software brand name,
etc.), since these features may also have an effect on how well the data is transferred. Further experimentation
with real-world data transfers is needed to determine which subset of features are the most useful for choosing

the best protocol.

6 Conclusion

This paper presented the design and implementation of a prototype data transfer service that decouples an
application from data transmission. The prototype implementation IFTD provides a protocol architecture
that allows for arbitrarily complex data transmission schemes and automatically makes every protocol it uses
resumable. It also remembers each data transfer it performs so it can intelligently choose which protocols to
use based not only on the capabilities of the remote hosts it engages, but also based on the properties of the
data itself. Additionally, IFTD can use existing data transfer services to perform a data transfer, allowing it
to be incrementally deployed. Applications using IFTD do not need to implement protocol-specific content
negotiation, data transmission, or error handling logic in order to perform data transfers.

This paper also presented a set of four simple performance evaluations of IFTD. While using IFTD adds
transfer overhead, its automatic protocol resumability allows it to avoid re-transferring data it has already
received, as well as tolerate multiple fatal protocol errors. Additionally, it has been shown to correctly identify
the protocol with the highest bandwidth over time with successive data transfers. While the evaluations were
limited in scope, the results indicate that pursuing further development and experimentation with IFTD is

a worthwhile endeavor.
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