THE UNIVERSITY OF ARIZONA UA CAMPUS
_| University Libraries REPOSITORY

EXPLORING THE UNIVERSITY OF ARIZONA STUDENT
POPULATION THROUGH DATA VISUALIZATION

Item type text; Electronic Thesis

Authors VO, KARYN BAO AN

Publisher The University of Arizona.

Rights Copyright © isheld by the author. Digital accessto this

material is made possible by the University Libraries,
University of Arizona. Further transmission, reproduction
or presentation (such as public display or performance) of
protected items is prohibited except with permission of the
author.

Downloaded 29-Sep-2017 22:22:52

Link to item http://hdl.handle.net/10150/613756

http://hdl.handle.net/10150/613756

EXPLORING THE UNIVERSITY OF ARIZONA STUDENT POPULATION
THROUGH DATA VISUALIZATION
By

KARYN BAO AN VO

A Thesis Submitted to the Honors College

In Partial Fulfillment of the Bachelors degree
With Honors in

Computer Science
THE UNIVERSITY OF ARIZONA

MAY 2016

Approved by:

Dr. Carlos Scheidegger
Department of Computer Science

Abstract

What makes some students change their majors often, while other students choose a major and
stick with it for the entirety of their college life? In order to answer this question, we created a
number of interactive data visualizations using data provided by the University of Arizona’s
office of analytics and institutional research. The programs we wrote allow users to explore the
academic careers of the student population at the University of Arizona. Data visualizations are
visual representations of a dataset, instead of presenting the user with lists of numbers,
visualizations attempt to create renditions of the data that are richer and easier to read. The
interactive features we implemented let users filter the dataset, “zooming in” on specific aspects
of interest such as demographic features of the dataset. We used the d3.js library to build these
visualizations. In this document, we discuss some of the design choices, their consequences, and
show some of the findings from this dataset.

Acknowledgements

Special thanks to Dr. Scheidegger for making this all possible. I would also like to thank Dr.
Isaacs for a lot of useful resources and helpful input. Thank you Me, Ba, Ong Ba Ngoai, Bo
Thuy, and Co Kim for supporting me through college even when I couldn’t make up my mind.
Thank you Kris for always being there when I need you, and thank you Chi An, Cookie, Hugh,
Kien, and Cong for always making my days brighter.

Table of Contents

AADSTTACT ...ttt bt 1
ACKNOWIBAGEMENTS ...ttt e reebesreesbaebeaneennes 2
TabIE OF CONENES ...ttt bbbt e e 3
INEFOAUCTION ...ttt bbbttt b et et b e bbbt et e e e e e 4
Materials and MELNOUS.........c.uoiiiieiie e 8
LINE GraPNS. ... 11
THEE PO ..o 20
FOrmatting the datacoceeiiiiiiee s 22
BUIAING the TrEE....c.eiieee e 25
AdJUSLING NOAE SPACINGcviveiiitieiieiieiee et 27
AQJUSEING NOAE SIZE.....ooiiiiiiiie ittt 34
Attempt 1: height = max.x - min.x of childrenccocooeiiiiniiicen, 35
Attempt 2: height = the sum of the heights of all its childrencc.c....... 36
Attempt 3: height = max.x - min.x + (half of the size of the max shape) +
(half of the size of the Min Shape).........cccooiiiiie, 37
Attempt 4: Using Attempt 3 to find the height and shifting the nodes so that
the top of the parent is the same as the top of the highest child 39
Attempt 5: Amending the height and x(y) value of anode.............ccccovevvrnennn, 41
Adding Ghost Nodes to MaxX Depth..........cccccceiveiiiiieieeie e 42
Adjusting Height OF TIeec..ecveiiii e 43
Changing positions of HNKS/TEXTcccvcviiiiiiie e 43
Adding a filter based on count of students in each nodecccoeeveieeienen, 44
INEEIACTIVITY ...ttt re e re e 48
IMproving the 10ad tiMe..........c.ooiiii e 49
WOrKing With NOGE. Sc.veiieiieice et 49
Loading JSON files instead of NeStiNg..........cccccveviiiiiicie e 50
RESUITS/FINTINGS. ...ttt bbb bbbttt 56
3 11010 1] o] o PSSR 66
(0] 0 0] U1 [o SR 67

R B O CES .t nnnnnnn 68

Introduction

I heard that the average number of times an undergraduate student changes their major is
3 times. For me, it was exactly that amount. In fact, almost everyone I knew had changed their
major at least once throughout their college careers. Since everyone’s path is different, the
question I sought to answer was what the progression of a student that begins in a specific major
typically looks like. Having used the University of Arizona directory in the past to reference
students, I knew the University of Arizona had information that includes the majors of each
student for each semester at minimum. With this information available, we can use the power of
programming in order to get a better picture of how people progress through majors based on the
majors they begin with.

Understanding large amounts of data has been most recently brought into the public eye
in the form of data visualization with the massive amount of data that technology can accumulate
today. Putting the student data in the form of an interactive data visualization module is a good
idea because being able to visualize the data gives people a better handle on what the data
represents and what can be presented to them [8]. To be able to interact with the data allows for
users to experiment with different views and representations that can raise new questions and
observations [8]. Using computer programming to build this representation gives us the ability to
create multiple visualizations quickly and dynamically rather than generating each graph
manually or by hand [8]. Visualization “exploit[s] the human visual system as a means of
communication” and spotting interesting things in the data is enabled through this.

The inspiration for the project stems from the New York Times article, “Where We Came
From and Where We Went, State by State” [1]. The article includes multiple interactive
visualization modules in the form of a line graph that displays the states where people move to
and where people are from for each state. Users can specify which state they want to examine
and which location people are linked to within the graphs along with the time in which they
moved.

Where people born in California have moved to:

5%

s Stayed in California

In 1990, 80% of people
borm in California lived in
California.

2

12%

Maved to other states in the West Moved to other states in tme South 8%

. Tu o OTHER STATESINTHEMNORTHEAST 1 1~ — 11
1900 10 20 '30 40 '50 '60 i '80 a0 00 2012

Figure 1. From the New York Times’ “Where We Came From and Where We Went, State by
State”, a view of what migration out of California looked like throughout the years [1].

Where people living in California were born:

In 1990, 46% cf
Californians were born in

e Born N Ca”ﬂl’rnia California.

54%

1900 '10 20 30 A0 ‘50 60 7o 80 ‘a0 oo 2012

Figure 2. From the New York Times’ “Where We Came From and Where We Went, State by
State”, a view of what migration into California looked like throughout the years [1].

From this, users can get a clear idea of what percentage of people move to a particular region or
state just by looking at the graph. Allowing users to select the states they are interested adds to
the level of interaction the users have with the data. The data is presented as a snake-like graph
that resembles a line graph. Each line represents a state and the thickness of the line corresponds
to the number of people relative to the total number of people in the dataset at that point in time.
Being able to see how these proportions change over time is also represented since this is a line
graph. The colors allow each component to stand out appropriately. The similarities between the
question of how people move between states and the question of how undergraduates move
between majors made me choose this article as my inspiration.

With the end goal of allowing others to explore this project, using the d3.js library as a
tool to create the project was optimal. From the d3 webpage, “D3.js is a JavaScript library for
manipulating documents based on data” [3]. Being built specifically for interactive data
visualizations, d3 aligned with my goals for the project with its notable functions for processing
and manipulating large amounts of data in multiple different formats.

Materials and Methods

Dr. Scheidegger and I made contact with Dr. Guillermo Uribe from Institutional Research
at University of Arizona who generously provided a sampling of the UA student data in CSV file
format. The final dataset we ended up using was a merging of two datasets that we received with
additional and different attributes listed in each record along with some similar attributes. The
first set included the semester, student ID, academic plan type, academic plan, and plan
description from Fall 2010 to Spring 2015. The second set included the semester, student ID,
academic plan type, academic career code, ethnicity, gender, age, and residency status also from
Fall 2010 to Spring 2015

S5TRM,PERSON _5ID,acad plan type,acad plan,plan descr
21@4,1e8eal,MAl ,PHLDPH, Public Health

2184 198882 ,MAT,SCPSPHD, School Psychology

2184 196888 ,MAT, TTEPHD, Teaching & Teacher Education
214, 188889 ,MA] , SPANPHD, Spanish

2184 ,188a17 ,MA] , CRTVMFA, Creative Writing

2184, 188621 ,MA1,PSYCBA, Psychology

214 ,186622 ,MAJ ,RCTPHD, "Rhetoric, Comp & Teach English™
2184 ,1e6829,MA7,NDSNDG, Nondegree Seeking
2184,108832,MAT, TTEPHD, Teaching & Teacher Education
2184 ,188834 ,MAT,PHSCPHD, Pharmaceutical Sciences
21@4,1eaa4a,MAl , NURSPHD, Nursing
21@4,1@@a42 ,MA], PHMYPD, Pharmacy
21@4,18@848,MA] ,MEDMD ,Medicine

2184 188858 ,MAT, NDSNDG , Nondegree Seeking

2184 188859 ,MAT ,M5EBSMSE ,Materials Science & Engr
21@4,188862 ,MA] ,CVEBSCVE,Civil Engineering
21@4,1@@a65,MAl, PHMYPD, Pharmacy

2184 1868868 ,MAT,RCSCES,Retailing & Consumer Science
2184 ,188a78,MA] ,MATHBA, Mathematics

214 ,188a76,MA], ANTHBA, Anthropology

Figure 3. The first data file.

"STRM", "PERSON_SID","acad_plan","acad_career"”,"Ethnicity Code EPM 5P","GEMDER_CD","UA AGE","UA TIPEDS_RESIDENCY
"2184","1eeeel”, "PHLDPH", "GRAD" , "BLACK™,"F","38","R"
"21e4","1eeae2” , "SCPSPHD™, "GRAD", "HISPA","F","3@","R"
"21e4","16e8e8" , "TTEPHD", "GRAD", "WHITE","F","51","R"
"2184","1e6889" , "SPANPHD" , "GRAD" , "HISPA" ,"F","34" ,"R"
"21e4", 106817, "CRTVMFA™ , "GRAD" , "WHITE", "F","33","R"
"21e4","1ee821", "PSYCBA", "UGRD" , "HISPA™,"F", 36", "N"
"2194","186822" , "RCTPHD™, "GRAD" , "WHITE™,"F", "48","R"
"2184","1868829" , "NDSNDG™, "GRAD" , "WHITE™,"M","35","R"
"21e4","1eea32", "TTEPHD™, "GRAD" , "WHITE™,"F", "48™,"R"
"21e4","16ea34" , "PHSCPHD" , "GRAD" , "WHITE", "M","36","R"
"2184","106848" , "NURSPHD" , "GRAD" , "WHITE", "F","44" ,"N"
"21e4","1ee842" , "PHMYPD™, "PHRM” , "WHITE","M", 33", "R"
"2184", 16848, "MEDMD™ , "MEDS™ , "WHITE™, "F","32","R"
"2184","1e6858" , "NDSNDG™, "GRAD" , "WHITE","F","33","R"
"2184" , "10e859™ , "MSEBSMSE™, "UGRD™ , "WHITE™, "M™, "22","R"
"2184","1eeee2” , "CVEBSCVE™”, "UGRD" , "WHITE™,"M","22","R"
"21e4","1@e865" , "PHMYFD™, "PHRM" , "ASTAN™,"F","22","R"
"2184","1ee868" , "RCSCBS™, "UGRD" , "HISPA™,"F","22","R"
"21e4","10878" , "MATHBA™, "UGRD" , "HISPA™,"F","22","R"
"21e4™,"1eea76", "ANTHBA", "UGRD", "HISPA™,"F","18","R"
"2184","1eeas81", "PRARND™, "UGRD" , "HISPA™,"M","19","R"
"2184","1ee882" , "GEOSBS™, "UGRD" , "HISPA™,"M","19","R"
"2184","106834" , "NMSCLASND™, "UGRD™, "HISPA™, "M","19","R"
"21e4","16e8s85" , "NUSCBS", "UGRD" , "WHITE","M","19","R"
"2184","10e892" , "NMSCLASND™, "UGRD" , "ASIAN","F","19™,"R"
"21e4","1e6a93", "PRPHND™, "UGRD" , "WHITE™,"M","19","R"
"21e4","100895" , "NMSEGND" , "UGRD" , "WHITE", "M","19","R"
"2184","1eea96", " JOURBA™, "UGRD" , "WHITE","M","28","R"
"2184","10ea97" , "NMSCLASND™, "UGRD" , "WHITE", "M","19","R"
"2184","166898" , "MEEBSMEE”, "UGRD" , "WHITE","F","19","R"
"21e4","10e899" , "ARCHBAR" , "UGRD", "HISPA","M","2@" ,"R"
"2184","1061082" , "NMSCLASND™, "UGRD" , "HISPA™,"F","18","R"
"2184", 71061067, "NMSCLASND™, "UGRD™ , "HISPA™,"F","31","R"
"21e4”,"16e016e8", "SWESPHD" , "GRAD", "HISPA™,"F","31","R"
"2194™,"1868115", "PHLMPH™, "GRAD™ , "WHITE™,"F","27","R"
"21e4","106119", "PHSCPHD™, "GRAD", "ALIEN","F","39","N"
"21e4","1e6124" , "ANTHPHD™ , "GRAD" , "WHITE", "F","31","N"

Figure 4. The second data file.

The two data files were received at different times, so to aggregate all the fields, we
wrote a Java program [4]. They were joined by using a concatenation of the semester, student ID,
and academic plan as an identifier for each row. This was done to ensure the correct records were
merged in the new data file.

ETRM,PERSON_SID,acad_plan_type,acad_plan,plan_descr,acad_career,Ethnicity_Code_EPM_SP,GENDER_CD,UA_ﬂGE,UA_IPEDS_RESIDENCY
2184,122318,MA], PHYSPHD,Physics ,GRAD,ALIEN,M,29,N
2121,667811,MAT, SPANBA, Spanish,UGRD,HISPA,F, R

2114,635648 ,MAT,HISTBA, History ,UGRD, WHITE,M,22,R

2184, 648491 ,MAT, PRNUND, Pre-Nursing,UGRD,HISPA,F,18,R

2131,914245,MAT, NMSSCIND, No Major Selected Science,UGRD,WHITE,M,19,N
2111,642671,MAT, NMSCLASND,No Major Selected Ltr Art S5ci,UGRD,HISPA,M,19,R
2144,1128358,MAT, NURSBSN, Nursing, UGRD, ASTAN,F,22 ,R

2111,653227 ,MA],MISBSBA,Management Information Systems,UGRD,WHITE,M,21,N
2114,661382 ,MAT, POLBA,Political Science,UGRD,WHITE,F,28,R
2114,98343,MA],EASPHD,East Asian 5Studies,GRAD,OTHER,M,32,N
2134,562393,MAT, NDSNDG, Nondegree Seeking,GRAD,HISPA,F,55,N
2151,873318,MA], CHEPHD, Chemical Engineering,GRAD,ALIEN,M,36,N
2151,1133122,MAJ, PRBNND,Pre-Business ,UGRD,WHITE,F,18,N
2134,457259,MAT, NDSNDG, Nondegree Seeking,GRAD,WHITE,F,55,R
2121,753789,MA],BIOLBS,Biclogy, UGRD,HISPA,F, N

2141,682628 ,MA],BIOLBES,Biclogy, UGRD,WHITE,M,21,R
2131,900102,MA],BIOCES,Biochemistry, UGRD,HISPA,F,19,N
2114,672726,MAT, PRBNND, Pre-Business,UGRD,WHITE,M,19,R

2131,657468 ,MA],GERSBA, German Studies,UGRD,WHITE,F,21,R
2114,7608854,MAT, POLBA,Political Science,UGRD,BLACK,M,28,N

2114, 806656 ,MAT, PRENND, Pre-Business,UGRD,ASTAN,M,18,R
2151,1199469,MAT, BNADMBA, Business Administration,GRAD,HISPA,M,29,N
2134,761599,MA], 50CBA, Sociology, UGRD,HISPA,F,20,R

2141, 682669 ,MAT, PSYCBS, Psychology , UGRD, WHITE,M, 28,R
2151,754153,MA], AEEBSAEE, Aerospace Engineering,UGRD,WHITE,M,21,R
2151,1142388,MAT, FINBSBA, Finance ,UGRD,WHITE M, 22,R

2144,761677 ,MAT, ENTRESBAZ ,Entrepreneurship, UGRD,ASIAN,M,21,R
2131,673820,MA], BNECBSBA, Business Economics,UGRD,WHITE,M,21,R
2121,818852,MA], PSYCBS, Psychology , UGRD, WHITE,M, ,R

2141, 808869 ,MAT, PRPND, Pre-Physiclogy,UGRD,HISPA,F,28,N
2141,656378,MA],RCSCBS,Retailing & Consumer Science,UGRD,WHITE,F,22,N
2111,655161,MAT,MCBBS ,Molecular & Cellular Biology,UGRD,WHITE,F,19,R
2121,663143,MA], PRPND, Pre-Physiclogy, UGRD,WHITE,M, ,R

2144 ,759759,MAT,MKTGBSBA, Marketing , UGRD, WHITE ,M, 22 N

2134,649568 ,MAT, NURSBSN, Nursing,UGRD,WHITE,F,23,R

2134,923214 ,MAT,MATHBS ,Mathematics ,UGRD,WHITE M, 19,N
2111,655283,MA], ECONBA, Economics , UGRD,WHITE M, 28 ,N

Figure 5. The new merged data file with post-processing gender data filled in for Spring 2012.

As with most datasets, there were some inconsistencies and missing attributes for some
records. For example, no gender or age data was provided for one semester--Spring 2012. As a
way around this, we filled in the missing pieces for gender data for that semester using Java. An
individual student’s gender can be deduced based what their gender was for other semesters.
This was assuming that the student in the specific record had data that spanned other semesters
and also that the student had not changed gender.

D3.js made it much easier to work with the data since there are built-in functionalities to
aggregate and examine each record within the CSV file. One functionality that made it possible
for me to obtain the sums of students in a specific major for a specific semester is the nested
function. From the D3 wiki, “nesting allows elements in an array to be grouped into a
hierarchical tree structure,” [7]. So instead of having an array of objects that represent each line
in the data, we have this tree structure represented as an array of objects, nested down to the level
we specify. Because we wanted the number of students in a specific major for a specific
semester, we would nest by major then by semester. Doing so gives us an array of objects whose
keys are majors and whose values are an array of objects. This next array of objects within the

10

values of the major object will have a key that is the semester and a value of an array of student
objects with all the attributes of a student.

¥ 34: th: ect One element in maj_data array
key: "Art Education” Nested by major (plan_desc)

Yvalues: Array[i1@] Array of semesters
Yo: Object
key: "2184" Nested by semester

¥Yvalues: ‘qpr-a\!,ri'gjr'l Thisv.lrould hethesgh\setwe
vo: object oo s Saon
Ethnicity Code EPM SP: "WHITE"
GENDER CD: "F"
PERSON SID: "68e647"
STRM: "2104"
UA AGE: "18"
UA IPEDS RESIDENCY: "R"
acad career: "UGRD"
acad plan: "AREDBFA"
acad plan type: "MAJ"
plan descr: "Art Education”

» proto : Object
> 1: Object
> 2: Object

Figure 6. An example of what a nested data structure nested by major then by semester would
look like. This was used to give the count of students.

Line Graphs

Using d3’s nesting was an integral part of creating the views that would represent the
count of students for a given set of restraints. One way to examine the count of students per
major per semester is through a line graph, which can directly display how the count of students
per semester for each major can change through time and how other majors compare to each
other. The goal for the Fall 2015 semester was for me to become familiar with the dataset and the
technology we would be working with. As described previously, some pre-processing of the data
was required to move forward. Figuring out how d3 could manipulate the data for our interests
was the largest learning curve. Creating the plots of the counts of students for each major by
demographic attributes was a good way to ease into using the technology while making use of
what the dataset could offer us. These plots can tell us what general direction each major is
moving towards population-wise compared to other majors.

11

The initial graph we wanted to create would just be the count of all students for each
major for each semester. This does not take into account any additional information of the
student like their age, gender, residency status, etc. For the line graph, each line represents a
major. The x-axis represents the semesters, and the y-axis tells us the amount of students. All
majors were displayed on the same line graph so that one could directly compare the amount of
students in one major relative to another.

To get started, we heavily referenced Mike Bostock’s Multi-Series Line Chart example to
figure out how to create such a visual [7]. This example displays several lines that represent the
temperature of different cities throughout different months. The first iteration of the student
major line graph used a linear y-axis similar to the example. However, it was clear that a linear
y-axis was not fit for our dataset since there were majors with thousands of students and many
more with less than 200. This caused the many lines to overlap and be hidden towards the bottom
of the graph. Meanwhile, only a couple majors would occupy the top of the graph with large
stretches of space. A better way to remedy the skewness towards large values was by adjusting
the scale of the y-axis. Instead of having a linearly scaled y-axis, the y-axis would be on a log
scale that will increase by a magnitude of 10 [12]. By doing so, the spacing of majors on the
y-axis were more evenly distributed since there appear to be a greater number of majors with a
lower number of students [2].

12

Fre-Business

= 1

Semester

Figure 7. Line graph of all students at the University of Arizona with a linear y-axis. There are
only a couple of lines that stand out near the top while the rest are indistinguishable at the
bottom.

Another non-optimal characteristic in the first iteration of the line graph were the colors.

Similar to the example, the line graph had 10 colors that were specified as a d3 categorical
functionality, so each line in the graph was represented with these 10 colors [11].

13

B ;117704
B z710e

M :0ca02c
M 2460728
M :0467bd
M 255640
W #e377c2
B 275767

M sbcbd22
B 21 7bect

Figure 8. Category 10 colors from d3 [11].

14

Fre-Business
—

G300
500

400
300

200

— O
O

o
(=]

Number of Students
P
==

30

B o B B e e e R o

= X by =y Ty X iy

Tt g B T 5
Semester

Figure 9. Line graph of all students at the University of Arizona with category 10 coloring and a
logarithmic y-axis.

With 371 majors represented within the graph, it was easy to get lost in all the colors and just as
simple to lose focus on one particular line. Drawing inspiration from Mike Bostock’s Multi-Line
Voronoi Graph, all lines were made gray until hovered over and/or selected [6]. This allows for
the user to focus on a specific line more easily with the gray lines being more muted and the
colored lines more eye-catching.

15

Ik

2k -

- XL}
o s
£

3 e £ ER
€3 caca
| 11

=]
£ ea oo

Philcsophy, Politics, Econ & G
Law

I

£ n
£33 ca

[

)
3
¥

'3
¥
¥

= = B = S = = S Ih
5
£

Figure 10. The Philosophy,Politics,Econ & Law major is highlighted in blue. The rest of the
majors are less noticeable since they are colored in gray.

After the layout of the graph with all students in each major was optimized to its final
state, additional graphs were generated that include only a specific set of students based on their
attributes. These splittings include the following categories: gender, ethnicity, and residency
status. From the nested dataset of all students for a selected major, we can extract a subset of
those students with specific attributes by filtering the set once more. This gives us the dataset
that is used for each specialized line graph.

16

females

males

]

i

SRERF 8 B

Figure 11. The major “Regional Development” is highlighted in the male and female line graphs.

17

asian

]
-
)
ﬂ | R
E 4 A
2
=
=
=
-
w
§
P i &

Figure 12. Ethnicity splitting with Pre-Physiology highlighted.

18

In addition to these splittings, there was one specialized graph created to better
understand gender ratios among majors. Titled “gender diff”, the values at each vertex is
log(number of males) — log(number of females) . The values within the equation are synonymous
with the values found in the male and female line graphs.

gender diff

2.0 4
Maore male

' Computer Science ro.o

=]
o
|

legimales}-loglfemales)
(=]
(=]
|

0.5

L
ig

T 1
- o
- i
= o
= L

s

-
ot

5

-
b [

&=
L & et

o
P [
¥a) "_,-_J

+]

5

Semester
Figure 13. Line graph showing the gender ratios for each major.

One technicality in building this graph was if there were 0 males or females. As by the equation,
we would take the log of this value, log(0), but it is undefined. To remedy this, we added 1 to

19

the number of students for each calculation so that the equation is actually

log(number of males + 1) — log(number of females + 1) . Adding 1 to the value within a log does
not change the original calculation to the point where it misguides the information we are trying
to convey. Since each calculation in this graph is based off of this equation, the relativity of the
line values will remain the same. Applying this solution gives users a clearer picture of the
gender ratios across majors.

Tree plot

For the Spring 2016 semester, the focus was to build a visualization that would go back
to the original question of how people progress through majors based on the majors they begin
with. Charles Joseph Minard illustrated a chart that detailed Napoleon’s retreat from Moscow;
this chart serves as the primary inspiration for the tree plot we were to build [5].

20

B P b et B o

il #2 L

L e —

noossow™

, —— 3T 3 R S

(et . 7 o) st vy s pomery

=

o

TR

B
4

LT, 2300 e [re———— NP, PRI %0 st s siagipyyn o

wresnd mp - ape VAW T A .5__ Q..:!:n;n:d. n.\m

.mw._.mvm FPAT) OF wud.ﬁ-nﬁm

B e e T ﬂaw—._‘mu J!..aa.&a:_." v W v

SIS~ TIBY Feerry s e “subeduwiy -y ,_..ch..u*.._n...::‘m.u TR,)7 ermmog e panemmgerpadd: gag \-wammu_-:mhm.mmwu »ww.__.ﬁwmu

AP I ENPEIRE 297~ anbenasnn Jrpre e-nmesp e cdzon o .x._..._zsm._:‘..ﬁ%_ st g wmimri g) m;&..n..u...uw e o
mgepgp gz edop apmn e wmmwsond (oan s e ~mer powmsl a1 Riciguevgyp “3vpuazag>p Lmbiaop ‘e W erbama ooy enme

—magzapws b dom 3y ..u&:.w.n..clia..?.. 1l commont p-mbncap shmoy a7 enoken

kS vy wa e ewph ap —we B kel weck gy wm g marwy ¥ e) _.E‘n.an...q el paprorsidaymey epeovnd R 1 Em.!:..ﬂ...r

¢

Figure 14. Charles Minard’s map of Napoleon’s march [5]. This chart conveys how the initial

number of soldiers gradually decreased throughout the march to Moscow.

The idea is to begin with an initial subset of students beginning in a specific major and

semester. This is the root of the tree. The children of this node represent the students from the

root in a different semester. Every node that is a descendent has a subset of students from its

21

parent and subsequently the root. Because students can possibly be declared a different major
from the previous semester, the root can have multiple children since each node represents a
different major. Of course, not all students from the parent node will carryover to one of the
children nodes because some may have dropped out or graduated. Each level of the tree
represents a different semester, and nodes on the same level represent the same semester. The
maximum number of levels a tree can have is 10 since the dataset only spans 10 semesters long.
The point at which a tree ends means there are no students to report in the next semester.

Formatting the data

A fair amount of data formatting was done to enable the building of a tree. The data
structure that would make most sense to model a tree diagram is a tree data structure. To isolate
the subset of students given the major and the semester, we began by nesting the data by major
then by semester. Using this, I do binary search for the selected major since the key in the dataset
represents the major since the majors are sorted alphabetically. Once we find the major, we get
the data associated with that major, which is an array of all the semesters. Each semester contains
an array of all the students in that major and semester. Since we’re getting our subset of students,
initially, based on major and semester, the associated semester is binary searched and returned.
This was achieved using JavaScript, since we wanted to take advantage of d3’s nesting and
manipulation of data.

Now that we have the student ID’s of the students we’re interested in, we need to get
information about the subsequent semesters for each student to examine the rest of their
academic career. To obtain this information, we create a new nested dataset, this time nested by
student ID number and, again do binary search to find each student.

22

¥ 1302: Dbiect One student record

key: "1009908" Nested by student ID
¥Yvalues: Array[4] Array of semesters
¥0: Object
key: "2134" Nested by semester
¥ values: Array[1]
¥Y0: Object

Ethnicity Code EPM SP: "BLACK"
GENDER CD: "F"

PERSON SID: "18@9968"

STRM: "2134"

UA AGE: "18"

UA IPEDS RESIDENCY: "R™

acad career: "UGRD"

acad plan: "PRPHND"

acad plan type: "MAJ"

plan descr: "Pre-Pharmacy"”

Figure 15. An example of the data nested by student ID then by semester.

From there, we push the student objects that we are interested into a different array. At this point,
we have an array of students that are ones whose academic careers we want to examine starting
with the semester specified from the beginning. Now we examine each student record, looking at
only the specified semester and onwards and build a dollar-sign ($) separated major list. Since
we start with a particular major, all students begin with the same major and then branch to others
while others stay. The student ID and the dollar-sign separated major list are pushed to an
associative array.

23

773291: "Pre-Physiology$Physiology”

773398: "Pre-Physiology$Pre-Physiology”

773543: "Pre-Physiology$Pre-Physiology”

774485: "Pre-Physiology$Pre-Physiology”

775226: "Pre-Physiology$Pre-Physiology”

775404: "Pre-Physiology$Physiology”

775868: "Pre-Physiology$Pre-Physiology"”

777329: "Pre-Physiology$Pre-Physiology”

782986: "Pre-Physiology$Molecular & Cellular Biology™
784426: "Pre-Physiology™

784504: "Pre-Physiology$Physiology"
787222: "Pre-Physiology$Pre-Physiology’
787326: "Pre-pPhysiology™

787826: "Pre-pPhysiology$Pre-pPhysiology’
791131: "Pre-Physiology$Pre-rPhysiology’
792319: "Pre-pPhysiology™

793139: "Pre-Physiology$Nutritional Sciences”
794381: "Pre-Physiology$Pre-Physiology”
794425: "Pre-Physiology$Physiology”

794606: "Pre-Physiology$Pre-Physiology”

n

Figure 16. Associative array containing student ID’s as the key and a dollar sign separated major

list. This example’s selection Pre-Physiology 2144 (Fall 2014). Since there are only 10 semesters
in this dataset starting with Fall 2010 and ending with Spring 2015, the displayed majors end at

Spring 2015, or earlier if there are no semesters that the student displayed beyond Fall 2014.

la3iles:
183123:
1e317e:
183986:
185296:
185376:
1le6174:
186358:
187286:
1le8a3o:
189134:

"Pre-
"Pre-
“PrE-
"Pre-
"Pre-
"Pre
"Pre-
"Pre

"Pr
“Pre-
"Pre-

m

Physiology$Pre-Physiology$Pre-Physiology"

Physiclogy$lo Major Selected Ltr Art Sci$Psychology$Psychology$Psychology$Psychology$Psychology$iPsychology”
Physiclogy$Physiclogy$Physiclogy$Physiclogy™

Physiclogy$Pre-Physiclogy$Physiology$Physiology™

Physiclogy$Neuroscience$Neuroscience$Neuroscience”

-Physiology$Pre-Physioclogy$Pre-Physiology3Pre-Physiology$Pre-Physiology$Family Studies & Human Deav™

Physiology$Physiology$Physiology$Physiology$Physiology™

-Physiclogy$Physiology™
-Physiology$Microbiology$Microbiology$Microbiology”

Physiclogy$Pre-Physioclogy”
Physiclogy$Pre-Physioclogy$Psychology$Psychology$Psychology”

Figure 17. Associative array representing the same idea as Figure 16 but starting from Fall 2010.

Next we build a tree based on the associative array. To begin this, we had to define a Node

object and come up with variables that are relevant such as an array of children, the level, the

count of students, etc. We build the tree recursively starting with the root, which contains the

subset of students for the specified major and semester. The result is a root that represents the
initial set of students. One level below that, its children, is the subset of students for the next

semester. The children of a node are where students ended the next semester.

24

¥ Node {name: "Pre-Physiology", count: 1576, children: Array[47],

¥ children: Array[47] b
¥ @: Node
P children: Array[e]
count: 1136 ¢

level: 1
name: "Pre-Physiology"
» proto : Node
¥ 1: Node
» children: Array[e]
count: 117
level: 1
name: “"Physiology"
» protoc : Node
¥ 2: Node
P children: Array[e]
count: 6
level: 1
name: “"Molecular & Cellular Biology”
» protc : Node
P 3: Node
B 4: Node

Level: 8}

Figure 18. An example of a tree for 2 semesters. (a) The root of the tree includes all the students
with Pre-Physiology as their major (1576) in the Fall 2014 semester. (b) The root has 47 children
meaning there were 47 different majors, including the root major, students from the initial set
moved to the next semester (Spring 2015). (¢) 1136 students stayed in the Pre-Physiology major,
while 117 moved to Physiology, 6 moved to Molecular & Cellular Biology. These are only 3/47

majors students moved to from Pre-Physiology in Spring 2015.

Building the tree

D3 supplies a built-in tree layout that can be applied to any data set of the correct

structure [14]. We decided to use the basic tree layout as a starting point since it includes basic

layout features of interest. This includes dynamic node spacing features and different levels. To
use d3’s built-in tree layout, the data must come in the form of a JSON array. The data structure

we created resembles the required data format, so we were directly able to apply the d3 tree

layout to the dataset.

25

{ JSON Array

"name™: "Top Node™,
"children™: [
i
"name™: "Bob: Child of Top Node™,
"parent™: "Top NHode™,
"children™: [
i
"name": "Son of Bob",
"parent™: "Bob: Child of Top NHode"™
I
i
"name": "Daughter of Bob"™,
"parent™: "Bob: Child of Top Node"
1
}f
{
"name™: "Sally: Child of Top Hode™,
"parent™: "Top Hode™

Figure 19. The JSON array specifies the name of the object, children, and parent [13].

¥ Node {name: “Anthropology”, count: 436, children: Array[17], Level: 8}
® children: Array[17]
count: 436
depth: @
id: a4
level: @
name: "Anthropology™
¥: 3608.69767441860466
y: @
* proto : Node

Figure 20. Our data structure specifies a name, children, and other variables.

26

Anthropologyo

Sociologyo

Pre-Retailing & Consumer Scio
Microbiologyo

Historyo

MNondegree Seekingo

English As A Second Languageo

Antlwropologyommecu'ar & Cellular Elmlogyo
Plant Scienceso
Mathematicso

Fublic Management & F'olicyo

General Studieso

F'S\,rcholog',-o
F're—NursingO

Speech, Language & Hearing Scio

Anthropology

Molecular & Cellular Biology
Geosciences

Sociology

General Studies
Pre-Architecture

Studio Art

Creative Writing
Psychology

OSocioIog‘;

ORetaiIing & Consumer Science
OMicrobiolog\;

OHistory

OHeritage Conservation
OEninsh As A Second Language
Ol-."lolecular & Cellular Biology
OPIantSciences

OEast Asian Studies

OPuinc Management & Policy
8General Studies
Anthropology
OF‘sycholog‘,-
OPre—Nursing

OSpeech. Language & Hearing Sci

Environmental Studieso OEnvironmentaI Studies

F‘re—EducationO OPre—Education

Figure 21. Tree svg of students starting in semester 2141 (Spring 2014). This tree ends with
Spring 2015 since this is as far as the data we have. The 3 levels (columns) of nodes represents 3
separate semesters: Spring 2014, Fall 2014, Spring 2015.

Adjusting node spacing

As a way to eventually move towards having the size of nodes being proportional to the
number of student a node represents, the space around a node must first be adjusted. We decided
that we should use the spacing encoded in d3’s tree layout to our advantage to create the amount
of space we wanted. The number of children nodes directly increases the space of the parent
between nodes on the parent’s level. With this idea in mind, we decided that for each leaf within
the tree, we could add a number of nodes with empty values to the leaf’s children that are
proportional to the number of student the leaf holds. The leaf node will have more space around
it. In turn, the spacing recursively moves up the tree until we reach the root. We refer to these
additional empty nodes used for spacing purposes as “ghost” nodes.

We modified the buildTree method so that if a node had no children and it hit the base
case, it would add a ghost node.

27

L4

Select a major:

Select a semester | Spring 14 v |

Computer Sciermeo

Computer St:ienceo

Computer S:ienceo

: Genﬁral udies
Info Resources & Library Sci nfo Resorr 2Py Efm%e'w iee
&2 ghast

Appl
Information Q Infermation Science & Arts

Figure 22. Added ghost nodes to tree.

28

Select a major: | Computer Science v
Select a semester: | Spring 14 «

Computer Science O

Computer Scienl:.eo

Computer Scien ceo

Info R & Liby] Co‘rsren%r'?'légunedieg

nfo Resources & Library Sci L

A?i“ 4 iéd‘lt:e Info Hesource?& E|br.3r~,rr§0|
Information Pesfé;&'—«ﬁg

Information Science & Arts

Figure 23. Made links to ghost nodes hidden visibility. As a result, a big space is left where
hidden fields are.

This worked until some nodes that were not leaves were producing ghost nodes. This was
because sometimes, depending on the order of students, the root would not have children for a
while as students are added since they do not stay beyond a semester. So the root would be a leaf
temporarily causing us to add a ghost node. To resolve this, we add a boolean in the Node
structure called isLeaf. It is initially set to true for all nodes and set to false as children are added
to a node. After we buildTree, we traverse the whole tree, look for the isLeaf nodes, and add
ghost nodes corresponding to the count.

Since the spacing looked tight between nodes with less students, we reduced the size of ghost
nodes drawn for nodes whose counts were greater than 50. If the count is greater than 50, we
divide that value by 5 until the value is less than 50. The result is the number of ghost nodes
drawn for that node.

29

Cormpuier Suu'mo

Compuier SGE"DCEO

Cx.n:;:mSuu-mo Goeral Su:h.-.'o

Compuier Suamo
Info Resxiroes & ;.:r.r.:n'&:ro-
Info Resouroes & Library S:O

Aepied Sieen(() Qo=
ot Sudes(C) O

rformation Science & .ﬂ:so irformetion Scene & .afso

Qo=

Figure 24. Number of ghost nodes are reduced to take up less room. This gives more space to

nodes with less people.

30

Compurer Susmo

Compuier Sut:'muo

Goneral Stucdies|
I Resources BUtrary 5o b ey P

A et ghast
Glotel Stcies gt
Informartaon Science & At Frirrnaston Sownoe & At

b
b
-
-
—
g
=
-
g
=
e
=
=
g
=
=
g
=
T
=
=
=
=
=
b=
=
=
o
=1
o
—
=
=
=1
=
o
-
-
=
=
-
ot
=
=
el
=
=
=
o
=
=
=
T
=
—
b
-
=
T
-~
=
i
L]

Figure 25. The same graph as Figure 24 but without adjustment of number of ghost nodes. The

spacing of the nodes at the bottom look squished.

31

Pre-Compuier Sccmo

Gompter Scesce(0)

Chemisiyl
Gerwral Stuches|
Medsiior & Calluir Bickoay

Pre- Campaser Scienca(D) Paychiony

M Majer Sebeiod L5 A—-.&-O

Pro Berpziciogy
Maruypmes bfration Syskens|

Mazemaes(C)
Fre musnis(C)

Acpiiad Shence
Crirniradl Justeon Slodes|
Earst Amiog St
Joyrmsimr

Paitcal Scwmea
rformmation Science & Tech
Aettroniogy

Compuer Cw_'.wneo

Compter Seiemen{()

Wasrres

»Campuser Science () Prer Busrss
A= tmgursios|

erma B Acierat oo

Frmaon Soemen & s

iarmasion Science & Tacn()

it Seence & Teen{)

Cormpgar S
Sy z—.gm-wgg Symens Ervgrmering|
. [Fpm———

Martumariis e
- "':""O M abes(

” o '\ Dlecricd & Campes Erginer
Eiecricy & Comaisr Engreis
v, © =i

Pre-Computer Sciemo

Gomputer Science ()}

‘Chemistry
General Stuies
Wolézutar & Celular Biskogy
Paychology

No Major Selected Lir An Sei(()
Pre-Fhysiology
Mznagement Infamistion Systems

usthematics (O)
Bredusiness ()

Applied Science
Criminal Justics' Stidies
East Asian Siudiss
Jotrnalism|

Poiitical Stianes!
Infermation Science & Tech
Anthropalogy {

PreLomputer Scienze ()

Computer Science ()

Computer Scaem:eo

Mathematios |
“Computer Science () Fre-Bsiness|
Linguistics: Linguistics

Arima] S2iences Anima Soiences

Information Soienes & Ans
Information Science & Teoh:
Information Scierice & Tech(()

Systems Engineering
Mathematics
Exonorics (O} i

(ﬁcmcal & Computer Enginesr:

Compidter Scienge
Systems Enginesring
Mathematics {

Electrical & Compiter Engineer|

shes

e

-
g

I 4 hht

tre
&

CEEEEEE @

Figure 26 (left). Starting in Spr. ‘14 for Pre-Computer Science. There is more branching and the
spaces do correspond to the number of people, which is helpful. Figure 27 (right). This is the

same as Figure 26 but with the ghosts shown.

32

hi:rrn.icn SCIG'IDE 5_.9\;6
hh'rrulmSc.sne& Tl

i ~Carnier-
PP Sy S i 3 irwenasicw: Firsevve BT

Figure 28. Startmg Fall ‘12 for Pre-Computer Science. Starting from an earlier semester quickly
gives us a scarier, more cramped graph very easily.

33

Computer S:ier:eo

Computer E:EF:EO

Nondegree EEE\'.E.'-;O
Mathematics O

Computer Science o

Computer S ierceo

Computer 5o 5:’:50 Computer S{er—ceo
Computer Ecierceo
Info Resources & Library E:=O
Info Resources & Library E{:-O
Applied E:i;r:eo
lectrical & Computer Er;-'o Electrical & Computer El‘-grO
Nondegres EE!:F;O Mondegres Seak !"QG-E'?EH Information-Systems o Mondegres Seeking O
Mathematies O Mathematics o

Figure 29. Starting Fall ‘12 for Computer Science. Since there is less movement in Computer

Science than Pre-Computer Science, it produces a much neater looking tree.

Adjusting node size

Having the node size relative to the number of students in the subset can greatly improve

the quality of the visualization. Since we already having the spacing in place to accommodate a

larger node, we need to find out how to adjust the sizing of nodes so that it makes sense. The

algorithm for this should be able to be adapted to all nodes in the tree. This requires some

calculations of the location of ghost nodes that we made previously since this will be the space
we are working with. Here we worked with the x-values of the nodes. Although normally this

would be the y-value on a normal graph, we refer to them as x-values because d3’s tree

algorithm builds the tree vertically and then rotates it 90 degrees so that the x and y-axes are

flipped.

34

Attempt 1: height = max.x - min.x of children

We tried finding the height of a parent node by taking the child with the max.x-value and

subtracting it from the child with the min.x-value, but as we went up the tree, it did not span the

heights of the nodes like we were expecting. Instead, it was only the x-value where the svg

elements were placed, subtracted from each other.

Computer Soonoe

Computer Soonce =

i Rtsources & Library S0

Figure 30. The colored lines are the min and max values of the children for the parent node.

Cornpder Soence ﬂ

General Sildies D
Computer Scenos D

i Rlessources-& Library 5d D

L@WDDDDUDDEDUDUDDEDEDUDDDU

RREEEAE AR

i

BREE AR

iR

BARE AR

L §

a o
i i

{jm!

L

35

We wanted the top of the svg element of the max and the bottom of the svg element of the
minimum to be the height of the parent.

Attempt 2: height = the sum of the heights of all its children

Next we tried setting the height to the sum of the heights of all the parent’s children using
post-order traversal. This gave an accurate number of height, but did not include the spaces
between the nodes. Also since this was processed before the tree was drawn, there was no
x-values to go off of since nothing was drawn yet.

36

Cornpuier Soence

Compuier Scenoe =

firin Riessotyoes Bl jbrary Sa

Computer Soenon =

Goneral Siidies

Compuier Soence D

it Rlemources-& | ibrary 5a D

Figure 31. Colored points (green and purple) are height amounts unaccounted for, for each of the

parent nodes.

Attempt 3: height = max.x - min.x + (half of the size of the max shape) + (half of the size of the

min shape)

37

In order to be table to use the x-values of the tree diagram, we do the height declaration while

drawing the tree. This works since the tree is drawn from the leaves to the root. This next attempt

takes into account the space between the children nodes. This is done by taking the top of the

max child which is calculated using:
top of max child = max.x + max.height/2
Likewise, the bottom of min is found using:

bottom of min child = min.x + min.height/2

Selzct o major: | Computer Soanos r]|
Sedect o semmester: | Spang 14« |

Crormpader Srsaws

Lo SO

half of shape

max.x - m

= half of shape

i Ml i & Library D-_-..'
B
A S Iju.-
[Du.-
Informaten Sk & R nionmslen Soss & Arls s
O] O

38

Figure 32. The height of the node with orange boxes is calculated by first finding the purple
distance. Next we take 2 of the height of those shapes. The sum of all these gives us the height
of the parent node. However, the orange boxes show how the bottom portion covers up other
nodes and should be shifted to the top orange box.

Attempt 4: Using Attempt 3 to find the height and shifting the nodes so that the top of the parent
is the same as the top of the highest child

Before, the y-position was found by taking the element’s x-position and subtracting the
element’s node height by 2 so that the link would fall in the middle of the node. We had to
modify it again so that instead of having the link fall in the middle of the node, the y-position of
the parent node would match the y-position of the min.x element. This was found using:

y-position = highest child’s y-position + (height of highest child/2)

39

Selert a major: [Computer Science =
Select a semester: | Spring 14 « |
Teggle Ghosts

Compuier Sgence = Compuier Sgence =

Compuier STEEE. P

Gemeral Studies D

S R s R EETEEEEEEEEEEEEEEEEEE

jirrin Rlescurions & Library 5a I—I Compuier Scenos I—I

Figure 33. The middle two Computer Science nodes are aligned at the top. This does the job until
a parent that uses a child’s old y-position to find its new position is encountered as seen by the
orange box.

This is pretty good until a parent attempts to use the old, unshifted y-position of a child to find its

new y-position.

40

Attempt 5: Amending the height and x(y) value of a node

We changed the way in which we approached this by pre-processing the heights and x-values
before the tree was beginning to draw. The same way the y-values of each node was changed
before the drawing began, we changed the x-values. This was done by using post-order traversal
to traverse the tree, finding the min and max x-values, and setting the height field of each node
based on their children. The key was to ignore the position of the links and modify the x-values
rather than trying to individually translate and calculate the heights of each node during the
construction of the tree.

| e R i D o B P B O
RN
..... O w1 — w0 e w1
| =1
| | et s
I e B e B
R e o bbby [oem b [e B e e S
i s mpeic o
el N e O
e et [
e O — e o
I It o R R e B T B

Figure 34. Computer Science Fall ‘10 is shown. Heights correspond to the heights of their
children. Toggling ghosts will make this more obvious, but the highest child decides the parent’s
x-position and the difference of the highest child and lowest child plus the height of the lowest
child gives us the height of the parent.

The links connect each node based on these x-values. This is why they connect the top of nodes
rather than the middle as before. The x-value is also where the top of each node is drawn.

41

Adding Ghost Nodes to Max Depth

To fill in the tree with ghosts nodes that go to the max depth of the tree, we have to find max
depth. We did this by taking advantage of the depth field added when d3 adds attributes to the

tree when you use d3.tree.layout. Another way we could do this is by traversing the tree and
keeping track of the depth.

Comrser-Soenos—p=— Comrser-Soenos—p=— Gormprer- Soenoe —pe— Gornprer - Soenne —p=— Gornprer - Soenne —pe=—

Mondegres Sekirg =

L " = - e
Herdagree Sooung D Herdagres Sooung D Horrdegrme Smerg I:I Horrdegrme Smerg D T D

Figure 35. Ghost nodes are added all the way to max depth, which in this case is 10.

Ghosts nodes are added all the way to the end because nodes were being overlapped by others
before since the tree layout only gives you enough room for nodes in the current level.

42

Computer Science pe—— Computer Science Computer Science p=— Computer Science pe— Computer Science p—

Mondegree Sesking oSt

MNondegree Sacking MNondegres Seeking Mondegree S=eking MNondegres Seeking host

oSt

Figure 36. In the same graph before ghost nodes are drawn to the ends, we can see that the
Nondegree Seeking nodes get covered by the Computer Science nodes.

Adjusting Height of Tree

On many occasions, a tree will be too big to fit within a fixed-sized svg. This causes the trees to
look cramped. We decided that the height of an svg element should be relative to the number of
students for each set of data. To do this, we needed to find the number of ghost nodes at the
bottommost level and multiply it by how much space we wanted a ghost node to occupy. We had
to come up with some logic to get the number of ghosts at the bottommost level and not those at
higher levels that were added from before. From there, the height of the svg was calculated by
multiplying a constant by the number of ghosts at the bottommost level.

Changing positions of links/text

To change the position of the text, when the text field was being added, we adjusted the
y-position of the text to be /2 of the height of the node’s rectangle height which we already store
in the Node object. This shifted the y-position of the text by that amount since it is contained
within the g element. To make it so that the position of the links fall within the middle of each
node, we re-processed the x-values for each node by adding half of the height of the node to the
current y-position. So this shifted the values down by half of the height of the rectangle.

43

Computer Science
Computer Science

Computer Science

et

General Studies D

Computer Science D
nfo Resources & Library Sci

nfo Rescurces & Library Sci D

applied Stience I:l

Global Studies D

Infermation Science & Arts D Infermation Science & Arts D

Figure 37. Text and link positions shifted to the center of each node.

Adding a filter based on count of students in each node

We first implemented this by looking at all the nodes and seeing if the number of students
met a certain threshold value. If a node didn’t make it, then we would change the visibility of the
node to hidden.

44

Biclogy

Molecular & Cellular Biclogy Molecular & Cellular Biology

Figure 38. Biology Fall 2010 with nodes greater than 2. There are very wide spaces between
nodes because of the hidden nodes.

Biclogy

Figure 39. Biology Fall 2010 with nodes greater than 2. There are very wide spaces between
nodes because of the hidden nodes.

Pre-Physiclogy

Pre-Physiclogy

Then we realized this probably isn’t very useful, so instead of just hiding a node we take it out of

the tree. After building the whole tree data structure, we had to recursively look at every node

and remove them from the tree as needed.

46

Pre-Business

Psychelogy Psychology Ps

Biclogy

olecular & Cellular Biclegy Molecular & Cellular Biclogy Iolecular & Cellular Biclogy folecular & Cellula

Pre-Business

Psychology Psychology Psychology Ps

blegy & Evolutionary Biclogy blegy & Evelutionary Biclegy blegy & Evolutionary Biclogy blegy & Evelutionan

Mutritional Sciences Mutritienal Sciences Mutritional Sciences Mutritional !
Anthropelogy
Pre-Physiclogy Pre-Physiclogy Pre-Physiology Pre-Pt
1

Figure 40. Biology Fall 2010 with nodes greater than 2. The re-structured data structure
representation is much cleaner and probably more useful since there isn’t as much space between
nodes.

The purpose of rescaling the node size given a threshold greater than 1 is to conserve space. If
we only want to see nodes that have a value greater than 10, then the node size does not need to
be 11 ghost nodes big. Instead, it can be the smallest it needs to be, which is normally the size of
anode if it is 1 ghost node big. This modified by taking the count of a leaf node and dividing it
by our scale. We are left with the number of ghost nodes that should be attached to the leaf.
Modifying the leaves in turn modifies the rest of the tree.

47

Figure 41. Biology Fall ‘10 with nodes greater than 10 without scale. Here the smallest node size
is 12 for Pre-Physiology. The node looks big.

Select a major: | Biology v
Select a semester: |Fall 10 r |
View nodes greater than: [10 v

Toggle Ghosts |

Biology(270)

Biclogy(425)

Bl ST} Pre-Physiology 12}

Pre-Physiclogy(12}

Figure 42. Biology Fall ‘10 with nodes greater than 10 with scale. The box is red is the same
node as viewed in Figure 41. Here the node sizes are more appropriate since we only want to
view nodes with values greater than 10.

Interactivity

48

Aside from the major, semester, and node filters that are mandatory, other filters are
implemented to utilize the dataset to its potential. These filters allow the user to select the subset
of students they are interested in examining further. The optional filters include other options
like gender, ethnicity, residency status, academic program, and age range. To get the subset
specifications, we took the subset and ran it through each filter using conditionals. To get the age
range bar, we implemented noUISlider that we found on the internet [10].

Select a major: | Computer Science v | Select Gender: [M v Select an age range
Select a semester: | Spring 14 Select Ethnicity: | WHITE v S—
View nodes greater than: [0« Select Academic Plan |UGRD Gy
Toggle Ghosts Select Resident Status: | Resident v
100.00
Computer Science(10} Computer Science{ 7}

imputer Science|18)

Applied Science(1) D

Figure 43. Demonstration of filters.

Improving the load time

We used node.js to create separate JSON files for each nested data structure in hopes of
increasing the speed of the load time [9]. Instead of loading the data as an entire CSV file then
creating 3 separating nested data structures, we can save the nested data structures as JSON files
and load from there. This could not be done using normal Javascript because Javascript cannot
write files.

Working with Node.js

We used the npm to install d3 and wrote a script to create 3 separate files for the 3 nested data
structures that we use within the tree diagram.

semester_data.txt was saved

49

Figure 44. 2 out of 3 files were created after the initial file was.

We only had to run the script 1 or 2 times to write all the files that we wanted.

Loading JSON files instead of nesting

In tree.html, we changed the loading of the data so that instead of loading in the CSV file of the
student data and creating 3 different nested data structures, we load 3 different nested data
structures from the 3 JSON files that we already created. A problem that we ran into was dealing
with the asynchronous timing of loading the 3 files when the rest of the code depends on the
loaded data.

3 Success! semester_data.txt loaded tree.html:448
@ Puncaught TypeError: Cannot read property 'length’ of d3.js:844

undefined

1 Success! maj_data.txt loaded tree.html:428

2 Success! student data.txt loaded tree.html:438

&

Figure 45. As evidenced by the error message, the part of the program that depends on the data
was executing before the data was loaded.

To solve this, we tried implementing a d3 queue where the data would load asynchronously upon
which once this was finished, the rest of the code would execute. We recorded the time to load
and it seems that maybe the old time is better than the new one. The longer execution time is the
result of such large data files. Because this was the cause, data normalization could possibly cut
down on the loading of redundant attributes. We decided to apply data normalization to the
original CSV file instead of having the program load 3 different JSON files.

For the data normalization, we created a new csv file that replaces the data that is
repeated many times throughout the file with integers. That data is mapped to an integer in a
JSON file. We did this for academic plan, semester, major, and ethnicity since those contained
longer strings.

50

[sTRM__]PERSON <plan_descacad_care Ethnicity GENDER (UA_AGE UA_IPEDS_RESIDENCY

0 1223210 0 0 0 M 29 M
1 667811 1 1 1F R
2 635048 2 1 2 M 22 R
0 648491 3 1 1F 18 R
3 914245 4 1 2 M 19 M
4 642671 3 1 1M 15R
5 1128358 b 1 3F 22 R
4 653227 7 1 2 M 21N
2 B6l1382 8 1 2 F 20 R
2 98343 9 0 4 M 32N
6 562393 10 0 1|F 35 N
7 B73318 11 0 oM 36 N
7 1133122 12 1 2 F 18 M
6 457259 10 0 2 F 35 R
1 753738 13 1 1|F M
8 632028 13 1 2 M 21 R
3 500102 14 1 1|F 19 M
2 672726 12 1 2 M 15R
3 657468 15 1 2 F 21 R
2 760854 8 1 3 M 20N
2 206656 12 1 am 18 R
7 1199469 16 0 1M 29N
6 761599 17 1 1|F 20 R
8 632069 18 1 2 M 28 R

Figure 46. Normalized CSV file.

Figure 47. The JSON file for ethnicity.

51

[(1] | Elements Console Sources Network Timeline Profiles Resources Security » | 3

® © | Capturee @ sProfile O Memory O Paint O Screenshots | §
| s000ms 10000ms 15000ms 20000ms 25000ms 30000ms 35000ms 40000ms 45000ms
1 == g = e . = ¥ =

50¢
FPs
CPU
MET

35000ms =~ 40000ms 45000ms 5(«

‘Summary ‘ Bottom-Up Call Tree Event Log

Range: 0 -48.00s

43.8ms [l Loading
32418.7 ms [@ Scripting
813.7 ms [l Rendering
6.3ms [l Painting
124654 ms [Other
2249.0ms || Idle

Total: 48.00s

Figure 48. Tree 1 (original loading of data). This one takes a long time maybe because it’s the
first time we load the page.

52

& Developer Tools - http://www.cs.arizona.edu/ ~kbvo/treed.himl - O H

= ﬂ| Elements Conscle Sources MNetwork Timeline Profiles Resources Security » |

I

T T
T
| e

Summary | Bottom-Up Call Tree Event Log

Range: 1.25s5- 32845

484 ms [l Loading
23474.6 ms [Scripting
76.6 ms [l Rendering
10.2 ms [l Painting
1223.4ms [Other
6757.7ms || Idle

Total: 31.595s

Figure 49. New loading of data. Also takes longer than normal probably because it’s the first
time we load the page.

53

¢ Developer Tools - http://www.cs.arizona.edu/~kbvo/tree.html — O >

(= ﬂl Elements Console Sources Network Timeline Profiles Resources Security » | @

@® O | Capturer @ ISprofile O Memory O Paint O Screenshots | §
| z00ms 4000ms| £000ms. 8000 ms 10000 ms 12000 ms 14000 ms| '150c|'1ms

|

ZTOMS 4000 ms 6000 ms 8000 ms 10000 ms 12000 ms 14000 ms 161~
76263 ms 5937.7 ms N

|I|I|I_ N T T T I T] I B

|
m (anonymous function)]

| i

|Summaryl Bottom-Up Call Tree Event Log

Range: 421 ms - 15.44 s

| 11.3ms [l Loading
iy 6216.4ms [Scripting
:'_, 14.0ms [l Rendering
] 1.0ms [l Painting
. 4 693.4ms [@ Other

8083.8 ms Idle
Total: 15.02s

Figure 50. Original loading of data loading it for maybe the 3rd time. The loading is considerably
faster and this is with disabled caching.

54

& Developer Tools - http:/fwww.cs.arizona.edu// ~kbvo/treed.html = O *
(= ﬂ Elements Conscle Sources Network Timeline Profiles Resources Security » :

® O | capture: @ J5profile O Memory O paint O Screenshots |

| . 2000 ms 4000 ms 6000 ms 8000 ms 10000 ms . I 12000 ms
Fi
m
CE
T . ' - NI
J 2000 ms 4000 ms 6000 ms BDO0 ms 10000 ms
4585.0ms 48387 ms 2
|| MRS RN LR R LR AN | xR (newDatasicsy) N |
Function Call (d3js:1935) |
respond
{an..on) event

I

I

I

| dsv..rse (anonymous function)

I d.. (anonymous function)

I restOfMain

| nestentries

I map map entries
I
I
I
I
I
I

Summary | Bottom-Up Call Tree Event Log

Range: 98 ms — 10.83 s

10.4ms @ Loading
5320.5ms [Scripting

12.8ms [l Rendering

1.0ms [Painting
294.6 ms [Other

5093.9ms Idle
Total: 10.73 s

Figure 51. New loading of data, also probably the 3rd time loading the page. This is also

considerably faster than the first time. The new loading of data reduces the load time of the page

by a couple seconds--about 2-3 seconds faster than Figure 50.

Overall, the results varied across a large range, but I think the new loading of data improved the

runtime by a couple of seconds.

55

Results/Findings

The resulting line graphs include the number of students in each major for each semester.
Additional graphs include splittings of student demographic data that include gender, ethnicity,
and residency status. Users can select which major they are curious to examine using the
dropdown menu which is populated with majors from the University of Arizona.

white bozpamic blaclk: 3zism mative_smerican hawragian inrernaticnal ather

Figure 52. Graphs are grouped into divs that describe the characteristic the graph is splitting by.
(a) This graph includes all students. (b) The gender group includes the male and female graphs,

56

along with the additional gender ratio graph. (c) These ethnicity groups include ethnicities that
the UA uses for its demographic data. (d) Each student is also classified into resident and
non-resident groups. Because the English is selected in the dropdown menu, this line is
highlighted in red across all the graphs.

Select a major: | Pre-Computer Science r

Mumber of Students
i
1

Lol

L =]

Semester

Figure 53. This is the graph for all students in the dataset at the UA. The line highlighted in red
tells us that this is the Pre-Computer Science major as indicated by the selection in the dropdown
menu. We can see that the number of students within this major is steadily increasing. From Fall

2010 to Spring 2015, the number of students nearly doubles. Because this is a log y-axis,
increases further up the y-axis are much more significant than increases lower on the graph.

57

males females gender_diff

20
ik ~| 3 - Miara faia
2k —I 2k -
ahk ko
o i
Tnd Ao <
RS0 A5G —
00 | 2)
A0 - 400 =
30 300 =
[|]
AdR st |
U - A= e _
; _Bs
g..] B 5
=8 i
ﬁ T = ﬁ 106 - i
B - B - 5
U E = 78 g,
G 8= B 80+ I 0o
e =B - =
Yo - e -
40+ 40 - A
§ § £
B 3p 2 Z 1 -]
20~ T i
] ! L
g- g o
;| 7 I
AL a-
L 5
& = o o
3 I 3 I n
I ')
2= -
Mare fpmals
| E . " | -2.0 i i i i [i i i i
- = + o hox 2 S S S T - . - & & - S - . G
E oo o0» B OE &b BOE A& T B F B B OB B OB I o By OB - T - S 1
2f 2 & & & i - & oo £ £ i £ 4 T F £
B A e o 2k & 2l Ak =il e 53 ek] f
Lemester Semester Semester

Figure 54. These are the gender graphs for Pre-Computer Science. During the Fall 2010
semester, we can see there are nearly ten times the amount of males than females. However with
each increasing semester, the gap is closing. This is also illustrated in the gender diff graph. The

ratio of males to females is decreasing.

58

white hispanic black asian

* 3~ 3k o 3 o

L 2k o 2k A

Number of Students
P et
5SS
| L%

% i

H §

: E

i H

5 5

] i

H i 5

2 " H
20— 20—

; |

= : 0 d
8 i i
3 4
5 5- 5
e 4 4
3 3l 3!
. » 5]
24 24 24

CoE A & F

Semester Semester Semester Semester

native american hawaiian international other

2 2 3 34
2 7 x| 2k 4
Ak 1k ol .
1 3 E 1
i &l & B
600 800 800 800
500 500 500 500
400 400 400 400
300 300 3004 200 4
200 200 200 200
g £ g
e e 7 :
5 55: 5 55: & i
5 60 5 60 5 i
5 50 5 50 5
i g% i
2 1 : .
20 za-l 20+
| |
8 19 19 1
5‘1 B B
£ 3 £ ;W
8- [&= 8-
5 5 5- 5-
4 4 44 Pl
3 3 3 3 4
|

Semester Semester Semester

Figure 55. As reflected in nearly all graphs for ethnicity, the Pre-Computer Science major is
growing.

residents nonresidents

Tk Ik

2k 2k

=
=
FL =
|
Krsr
3 = e

=K =
£3 €0 £ 0 e e

Ju
-
o
bl]|
B e o£m
-

(=1

m w
Eia g
#EEo §
2 BT
S -
B ab- 5
5 90 z
§ % §
Z ap -t = a0 -
204 20—
[}
el i
11 o
i B_
- f [}
£ g
R)
a5 E—I
4 - 4 -
1 | 1 |
3 4 3
2 - 2=
g G Vde U e % S
F b oF = T = T = T - | 5 b F - I - - - - -]
A A A A P A A A A A
Semester Semester

Figure 56. The number of non-residents majoring in Pre-Computer Science about doubled from
Fall 2010 to Spring 2015, whereas Residents increased around 150%.

Through a quick lookup of the Pre-Computer Science major, these line graphs clearly
communicate that the major is rapidly growing, there are approximately 100 males per every
female within the major, and the growth is present in nearly all ethnicities regardless of residency
status.

The resulting tree diagram allows user to examine the major path of students based on the
subset of students the user selects. This subset of students makes up the root of the tree diagram
on the far left while each level of the tree represents the subsequent semester. The starting subset
can be manipulated through a number of filters specified at the top. Each set of nodes in a level is

60

a subset of its parent’s set of students. There are 4 filters that must have a value set at all times.
These are the major, semester, nodes that contain at least a number of students, and the age
range. The optional filters that may be empty, (and empty meaning all the listed options are
included), include gender, ethnicity, academic plan, and resident status.

61

{5 1y 1 paopg: ok

i
5
!
;

: ipimmarg S Jssmumng g
TR RS
R L B I N TR , B 1 B T, g) [[—
[enemspoames wamund | -isueoy g samoginmucd | -ioheoy g aamog wssud |-y paamog o |-{e0] p rotoss tomuo
: G RSOG SnCiLn, D (G RULROG SrounT D LB Reog SnouwnT h (QROLBOG SnoWnT) BPAOLS0G SrcuD;
[tereernsancg mmucd |- ienmoy g ammog wssue] | -isieny prmes womweucy .
[=g ons [ez leusng snduon i
[J-enems= smog osmn] |-ieneay g eamos e |-l Feamss waru
D AE SRS AR n AESTER LI
D ; D ? = e B e I R Il] fenoumes mrdung e
AR RTlanS Sncun g
4 ROURDE, SRNELDT. AR ROUROE, SNt L OUR0s Senduo
igyietimng Snoung sy
D e SRty D ElRcumas mnduny nnn.humhsn__hu
4 ousng. Sndung-au {5 ien0SES Bndung B4
D I SO -Sd D o T S-S D {owmns SIELOD aid
§) Bunds Fhlied ¥1 Buuds €k lied €} Buuds Zhlied zh Bunds bhlleq) Bunds ok led
00001
e [| =mes uspisey KRS
[+ 0290 ueld wapedy P3jes = | uey 15122 sapou may,

A E—

- DLiE] Uelsawes B paes
abuel abe ue pajpg [|:1apusg pajpsg [+

=0USEg IENdWe-2ug | lolew B pajes

62

Figure 57. This is the subset of students that were listed as Pre-Computer Science in Fall

2010. Nodes that have less than 3 students are excluded. Looking each level, the most common

majors students switch to from Pre-Computer Science are Computer Science, Information
Science & Tech, Pre-Business, and Mathematics.

Fall 14 Spring 15

Pre- Bumreess) 2058

Busireess Managermoen| 58},

Aocoirring] S5}

Foanormics) 32}

Peyofalogy] 13p

Frrancs 87}

M esingl S04

Pre- Bumresss) 30 bl Frricr e s ory Svseeprs! 554

Businesg Ecanamecs] 14}

Eperal Siudies 37

o

A [etaling & Comumer 5ci{ ST}

Polifical Scjence! 17}

fapor Selecied L Adl Sol£5)

Urh] | Regonal Develagrmend] 19]

Figure 58. This is the subset of students that were listed as Pre-Business in Fall 2014.

Nodes that have less than 11 students are excluded. Because Pre-Business has the most number

of students (as found from exploring the line graphs), it makes sense that there are a greater

63

more focused majors within Eller whereas others move into different disciplines entirely
(Psychology, Political Science, etc.).

number of students switching to a different major. Most majors these students switch into are

[] i somng mosany [
{71 Mgwmp) o g
iz} ISptmng i
[T} 195 int 31 pesos o
fasMopsty + {epMEopssi
AR RG-St {E1 MpmR HIEnG a4
LB RS {51 MEopLpisg
ez MEODG izrh ok 11 MEoR=isy
{zt MBomadsg dzy Mo pisg i1 MEopupisg R
iz MEomunisg
{pzh g izeh ipaiFopms
] : M B B 42501 MBopmdyg g
D AELMER RS S e MBopmiyg A
1 e e
i fi iepMBopEiLgRig
B8 m {EwL MBopmiyg aug et g
{prr B g
e} "
{geibopmiic igpbonsig insiEop=yg
g MO ipghd
g} Buuds Flles #) Buuds £hles ¢} Buudg ZLles 24 Buuds e o s cia

64

Figure 59. This is the subset of students that were listed as Pre-Physiology in Fall 2010. Nodes
that have less than 11 students are excluded. As with the pre-majors, there appears to be a lot of
movement. For Pre-Physiology students, Physiology, Psychology, and Pre-Public Health are
popular majors to switch into.

Using the tree diagram visualization as a tool to figure out where people from specific
majors is very effective. Although the size of the nodes are not exactly proportional to the
number of students that the node represents, the relative size of nodes compared to the size of the
root node gives users a rough idea of how many people decide to stay and leave.

65

Discussion

Working with d3 taught us how much this library has to offer in terms of what you can
build with it. There was a very steep learning curve throughout building these visualizations. At
first, the challenge was how to obtain the aggregates of students given a specific set of
characteristics. A lot of times, d3’s built-in methods would return an object with multiple levels
of nesting to which we did not know how to get to a specific level of nestedness within that data
structure. However in those situations, we could use our knowledge of Javascript to help.
Another challenging aspect of working with d3 was how to draw the visualizations that went
beyond the default, built-in layout. This required us to look at how the built-in layouts were
constructed and figure out what needed to be changed for the visualizations to look the way we
wanted it to.

There were a number of other features we did not have time to implement. To make the
visualizations more effective, it would have been better to allow users to compare 2 different
diagrams side-by-side. Another helpful feature would be using colors to color each node based
on major so that users can easily identify popular majors. Colors can also be used as a tool to
spot the number of students that a node represents. A node with darker color can represent a node
with a greater number of students whereas a node with less students can be a lighter shade of the
same color. If we had the data regarding which college each major was a part of, colors could be
used to denote the different colleges. Input from people who might be interested in using this
tool would also be useful in finding out what additional features could have been added. Looking
at a subset of students across all time for a major would have probably been the most valuable
feature. This allows for a better idea of the proportion of students that move if the numbers
across all semesters were aggregated.

Another point of weakness that we did not have time for was coming up with a way to
make it so that the number of students within a node was reflected using the size of a node. As it
stands now, the size of a node is determined by the number of students contained in a node’s
leaves.

66

Conclusion

In completing this project, I was able to answer my question of what the progression of a
student that begins in a specific major typically looks like. The path does not necessarily look the
same for all students across time; however [was able to get a general idea of how certain
students move throughout the university. Something that struck me was how each student’s path
is truly unique. Throughout each diagram I examined, I was not expecting the amount of students
who were the only ones to switch to a specific major for a semester. Both the tree diagrams and
the line graphs gave me a greater understanding of how students are grouped at the university.

67

References

[1] Aisch, Gregor, Robert Gebeloff, and Kevin Quealy, “Where We Came From and Where We
Went, State by State,” New York Times, August 19, 2014, accessed May 3, 2016,
http://www.nytimes.com/interactive/2014/08/13/upshot/where-people-in-each-state-were-
born.html.

[2] Cleveland, William S. The Elements of Graphing Data. Hobart Press, 1994.

[3] “Data-Driven Documents,” accessed May 3, 2016, https://d3js.org.

[4] “Java Platform, Standard Edition 7 API Specification,” accessed April 29, 2016,
https://docs.oracle.com/javase/7/docs/api/.

[5] Minard, Charles Joseph, “Carte Figurative des pertes successives en hommes de I'Armée
Francaise dans la campagne de Russie 1812-1813" Paris 1869.

[6] “Multi-Line Voronoi,” accessed February 12, 2016, last modified February 8, 2016,
https://bl.ocks.org/mbostock/8033015.

[7] “Multi-Series Line Chart,” accessed May 3, 2016, last modified April 29, 2016,
https://bl.ocks.org/mbostock/3884955.

[8] Munzner, Tamara. Visualization Analysis and Design. CRC Press, 2014.
[9] “node.js,” accessed April 12, 2016, https://nodejs.org/en/.

[10] “noUiSlider: JavaScript Range Slider,” accessed April 19, 2016,
http://refreshless.com/nouislider/.

[11] “Ordinal Scales: Categorical Colors,” accessed May 3, 2016, last modified December 9,
2014, https://github.com/mbostock/d3/wiki/Ordinal-Scales#category10.

[12] “Quantitative Scales: Log Scales,” accessed May 3, 2016, last modified November 23,
20135, https://github.com/mbostock/d3/wiki/Quantitative-Scales#log.

[13] “Tree diagrams in d3.js,” accessed May 3, 2016, last modified January 11, 2014,

68

http://www.d3noob.org/2014/01/tree-diagrams-in-d3js_11.html.

[14] “Tree Layout,” accessed April 29, 2016, last modified October 9, 2014,
https://github.com/mbostock/d3/wiki/Tree-Layout.

69

