

ENVIRONMENTAL MONITORING DETECTOR

Item type text; Electronic Thesis

Authors STEPHENS, JON BARTON

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this
material is made possible by the University Libraries,
University of Arizona. Further transmission, reproduction
or presentation (such as public display or performance) of
protected items is prohibited except with permission of the
author.

Downloaded 29-Sep-2017 22:18:58

Link to item http://hdl.handle.net/10150/614237

http://hdl.handle.net/10150/614237

UNIVERSITY OF ARIZONA HONORS THESIS 1

Environmental Monitoring Detector
Jon Stephens

Advisor: Dr. Saumya Debray

Abstract—Malware authors have developed many techniques that allow a malicious program to change its behavior, many of which
require information from the computing environment. To fully understand how malware will affect a system, all behaviors it can exhibit
need to be examined, so tools are needed that can expose when malware uses information from its environment to change its
behavior. This project created such a tool called the environmental monitoring detector that will run a malicious program and search for
cases of environmental monitoring while the malware is running. The tool is able to detect when a program uses environmental
information to conditionally change its execution path; however, it has been found to be ineffective against obfuscated programs due to
the lack of instruction specific taint propagation policies.

F

1 INTRODUCTION

As computers have become a larger part of everyday life,
people have placed greater trust in them. This trust comes
with the expectation that any personal information entered
in a computer will remain confidential, unmodified and
available for recall; however, malware (short for malicious
software) threatens all of these expectations. Malware analy-
sis is therefore an important area of research so that defenses
against new attacks can be quickly developed.

Malware is a very broad term that is used to identify
software designed with malicious intent that has a negative
impact on some user. As one can imagine, the software
that falls into this category is extremely diverse. All of the
software has a malicious payload to execute, but the method
in which they deliver the payload to a user, hide from
detection, and attack a user can vary. Additionally, malware
is constantly evolving to take advantage of new vulnerabili-
ties, evade new defenses, and circumvent analysis attempts.
The techniques used to analyze malware therefore have to
be extremely general.

Many techniques have been employed to analyze mal-
ware, however this paper will focus on a technique called
dynamic taint analysis, which tracks the flow of data
through a program. This technique has been employed
for many purposes including deobfuscating code [2], [3],
malware analysis [4], [5], and software testing [6], [7]. It
starts by marking the data from some source as tainted, such
as data coming from the network. Taint markings are then
propagated through the program’s execution by marking
written data and the instruction that writes the data as
tainted if it makes use of a piece of tainted data in some
way.

Taint analysis gives an analyst insight into how a pro-
gram uses information from the taint sources, which the
analyst can use to make inferences about the program’s
behavior. For example, a common technique employed by
malware authors is to obfuscate their programs, which
basically complicates the logic so that analysis is more
difficult. Taint analysis has been successfully employed to
deobfuscate programs, which makes further analysis easier
[3]. Additionally, taint analysis can reveal if data from an

untrusted source, such as the network, is used in an unsafe
way, giving insight into how an attack is performed [4].
This project leverages taint analysis to detect if a program is
monitoring its environment.

Environmental monitoring occurs when malware uses
information extracted from the execution environment to
change its behavior. This information could be from many
sources, such as the date or time, and could be used for a
variety of reasons. Identifying instances of environmental
monitoring by finding environmental triggers, or decisions
based on environmental values, is important because all
execution paths must be explored to fully understand how
malware will affect a system. Finding these environmental
triggers manually, however, is extremely tedious, as one
must either try to trigger these behaviors by modifying
their environment, or read a runtime trace in an attempt
to understand the malware’s logic. These manual methods
can easily miss triggers, so tools that can accurately and
automatically detect environmental monitoring are desired
to cut down on analysis time and improve the accuracy of
the results.

One such tool called MineSweeper uses a mix of con-
crete and symbolic execution in an attempt to automatically
detect and report environmental monitoring [10]. While it
can detect environmental triggers in malware, it has some
deficiencies that malware authors can take advantage of.
The tool will assign one symbolic variable per byte of data
drawn from possible sources of environmental information
and will then propagate these values at the byte-level until a
conditional branch is found. Propagating symbolic variables
at the byte level can be taken advantage of to cause large
amounts of data to falsely be marked as symbolic, which
degrades the tool’s performance and the accuracy of the re-
sults. Additionally, MineSweeper cannot handle obfuscated
conditional jumps, allowing possible environmental triggers
to escape its notice.

This project builds a tool that is capable of detecting
environmental monitoring. Unlike other tools, it employs
bit-level taint analysis and identifies conditional control
transfers that have been influenced by the environment,
including those that do not use conditional branches.

UNIVERSITY OF ARIZONA HONORS THESIS 2

1 DATE date
2 date = getDate()
3 if(date.month == APRIL && date.day == 1)
4 //execute payload
5 else
6 //hide

Fig. 1: An example of environmental monitoring that will
only execute its payload on April 1st.

1 long t1, t2, diff
2 t1 = getCycleCount()
3 t2 = getCycleCount()
4 diff = t2-t1
5 if(diff < 256)
6 //execute payload
7 else
8 //hide

Fig. 2: An example of using timing to detect if a program
is being emulated, inspired by [15]. The payload will only
execute if the two consecutive calls to getCycleCount() can
be performed in less than 256 clock ticks, otherwise some
non-malicious behavior will be performed.

2 BACKGROUND

2.1 Environmental Monitoring

Malware authors are acutely aware that once their malware
has been discovered, it will undergo scrutiny. Thus, many
malware authors include code intended to evade detection
and hinder analysis. A common technique to do so is
to monitor the environment by including environmental
triggers that will execute the malware’s payload only if a
set of conditions is met [10]. This allows malware to hide
in a system, taking no malicious actions, until some set of
environmental conditions are met and only then will the
intended payload execute.

One technique used by malware authors is to only run a
payload on a certain date or at a certain time. For example,
two mass-mailing worms from 2004 called NetSky and
MyDoom executed their payloads based on time-sensitive
triggers, as demonstrated in figure 1. NetSky would cause
a computer to beep if the system time met some criteria
that differed for different versions of the worm [11]. NetSky
therefore announced its presence to the computer’s user
once the criteria was met, so by waiting for a particular date,
it could hide and allow more computers to become infected
before anyone knew about it. Similarly, MyDoom would run
a denial of service attack on certain websites based on the
date [12]. Like NetSky, waiting for a particular date before
executing the attack gave the malware time to spread which
would increase the effectiveness of its distributed denial-of-
service (DDoS) attack. Additionally, the system time helped
coordinate the actions of the infected machines so that they
could be directed to attack multiple targets.

Another technique used by malware authors uses timing
information to detect if the software is run under some
sort of emulation. This relies on the fact that it will take
a set of instructions longer to run if the malware is being
emulated [13]. Thus, the malware can time how long it takes

1 int a, b, c
2 a = read()
3 b = a << 1
4 c = b & 0x1
5 if(c == 0)
6 //Always Executed
7 else
8 //Never Executed

Fig. 3: A simple example of a program that will not perform
well using byte or word level taint analysis.

a set of instructions to execute and then run the payload
only if the time was below some threshold as shown in
figure 2. The cutoff threshold must be chosen wisely since
many factors affect runtime, including the load factor of the
CPU and type of CPU. Thus the chosen threshold must be
permissive enough to work on multiple architectures with
various loads, but strict enough to catch most emulators.

These are only a few of the possible sources and uses
of environmental monitoring. Environmental data can be
extracted from many sources making it difficult to pinpoint
a small, constant set of inputs to watch; however, most
comes from system and library calls. While it would be
excessive to monitor every single system or library call,
since many innocuous calls are made as a program runs, a
subset of the executed calls could be selected and monitored.

2.2 Taint Analysis

To effectively implement taint analysis, one has to ensure
that an appropriate amount of taint is being propagated [9].
Under-tainting occurs if data is not marked as tainted, but
should be. By taking advantage of under-tainting, malware
authors can perform actions that escape the notice of the
analysis. Over-tainting, on the other hand, occurs when data
is marked as tainted, but shouldn’t be. By taking advantage
of over-tainting, malware authors reduce the effectiveness of
taint analysis since more data and instructions will be iden-
tified as tainted. An extreme case of over-tainting is referred
to as a taint-explosion, wherein almost every instruction is
marked as tainted. Such an event renders the results of taint
analysis useless.

Precautions must be taken to ensure precise taint prop-
agation, especially when dealing with malicious programs.
Taint markings are maintained by keeping a shadow copy
of the architecture, so that when data is determined to be
tainted, it is marked as such in the shadow copy. A single
taint mark, however, can be used to represent that multiple
bits are actually tainted to cut down on the memory cost of
taint analysis. This has led to three common implementa-
tions of the analysis technique: word-level, byte-level and
bit-level. In these taint-analysis implementations a single
mark is used to indicate if a word (4 bytes), byte or bit
respectively has been tainted. Word-level taint analysis has
the advantage of requiring the least amount of additional
space for the analysis at the cost of precision, while bit-
level taint analysis is the most precise, but requires the most
additional space for the analysis. In the case of malware
analysis, precision is important since malware authors will
employ whatever tricks they can to hinder analyses on their

UNIVERSITY OF ARIZONA HONORS THESIS 3

programs. As such, both word-level and byte-level taint
analysis have been found to be too imprecise to analyze
malware since malware authors can manipulate individual
bits of data to induce under and over-tainting in the analysis
[2]. For instance, consider figure 3. In the given code, the
variable a would be initially marked as tainted since its
value is being set by the function read, which is considered
an input to the program. Then, the variable b is set to the
value of a shifted left by 1. In such a case, the first bit of
b should be untainted, since its value no longer depends
on the result of the input, while the remaining bits are
tainted. Bit-level taint analysis could correctly reflect that b
is only partially tainted; however, both word- and byte-level
taint analysis will cause over-tainting in this case since they
cannot reflect the absence of the first bit’s taint. As a result
of the over-tainting, both word- and byte-level taint analysis
will also taint c, despite the fact that it is merely selecting
the first bit of b. As a result, the if-statement on line 5
would mistakenly be interpreted as a case of environmental
monitoring.

Tracking taint on the bit level is only a part of what
is needed to minimize under- and over-tainting. In the
earlier description of taint analysis, it was mentioned that
a destination needs to be marked as tainted if it uses any
tainted data, but how should the destination be tainted?
This question is answered by a taint propagation policy.
A common taint propagation policy is to taint an entire
destination if any tainted data is used. While such a policy
is simple and easy to implement, it ignores the semantics
of the instruction that is being executed which can be
leveraged to cause under and over-tainting. In the example
shown in figure 3, if such a simple taint propagation policy
were to be implemented b would be marked entirely as
tainted, just like it was with word- and byte-level taint
analysis, since a was tainted. As a result, the analysis would
report a false positive since it would determine that the if-
statement was using tainted data. Thus, in addition to bit-
level taint analysis, taint propagation policies that adhere to
the semantics of an instruction being executed need to be
adopted [2].

2.3 Intel Pin

Pin is a binary instrumentation framework provided by Intel
that allows tools to insert code that will run in another bi-
nary’s execution environment every time a particular event
occurs, such as when an instruction executes or a system
call is made [14]. Pin achieves this by having tools register
callback functions for an event that contains the code the
tool wishes to run when the event occurs.

This project is mainly concerned with Pin’s instruction
instrumentation since taint needs to be propagated when-
ever an instruction is executed. When a binary’s instructions
are instrumented, code is injected every time an instruction
is run, so better runtimes are achieved by reducing the
amount of code that runs per instruction. The authors of Pin
were aware of this fact, and observed that many decisions
only needed to be made once per instruction, and much
of the information about an instruction only needed to be
fetched once as well. They therefore separated the instruc-
tion instrumentation into two steps: the instrumentation

step and the analysis step. The instrumentation step is
meant to only be executed once per instruction, and will
provide a tool with information about an instruction that
does not depend on its runtime environment (instruction
address, registers read, registers written, number of memory
operands, etc). The analysis step will be run every time an
instruction executes, and has access to the runtime informa-
tion that was missing in the instrumentation step (register
values, memory read/write effective addresses, etc) [14].
Tools using Pin’s instruction instrumentation therefore need
to be split into two steps as well. In their instrumentation
step, they need to decide what analysis functions are appro-
priate to analyze an instruction and register these functions
with pin using a callback mechanism. An instruction’s anal-
ysis step performs whatever actions need to be executed
every time a particular instruction occurs.

3 IMPLEMENTATION
The environmental monitoring detector runs on top of Pin
so that it can identify environmental monitoring in a bi-
nary at runtime. There are 4 main parts to its instruction
instrumentation algorithm, which makes up the bulk of
the tool: information gathering, taint propagation policy
selection, taint fetch and taint propagation. The first two
of these steps occur in tool’s instrumentation and are shown
in algorithm 1. The information gathering step queries Pin
to gather static information about an instruction, the most
important of which is information about the source and
destination operands of the instruction. The next step uses
the information to select an analysis function that will
appropriately propagate the taint. Taint fetching, shown in
algorithm 2, occurs at the beginning of the tool’s analysis. It
finds the taint markings for the given source and destination
operands and provides them to a taint propagation policy,
the final step in an instruction’s analysis. There are four total
taint propagation policies. One, algorithm 3, must run every
single time an instruction executes to check if the instruction
bytes themselves are tainted. The remaining policies, algo-
rithms 4, 5 and 6, are selected by the instrumentation step,
and use the taint markings provided by the taint fetch to
update the destination operands’ taint.

3.1 Taint Sources

Taint should originate from any location that can provide
a program with environmental data. A vast majority of
environmental data is extracted using library and system
calls so the environmental monitoring detector allows the
user to specify which calls they would like to treat as
taint sources since it is unlikely that all of them provide
environmental data. All instances of the specified calls will
be tainted, but different approaches must be taken for the
different call types.

When a taint source is a system call, only the outputs
will be marked as tainted. The purpose of a system call is to
send information to and receive information from programs
that run in kernel mode, which is a more privileged execu-
tion environment that isn’t accessible to normal programs
where the operating system and drivers run. Thus, the
only information a program can gather from a system call

UNIVERSITY OF ARIZONA HONORS THESIS 4

1 push ecx
2 call lib
3 lib: pop ecx
4 sub esp, 8
5 mul ecx
6 mov [esp], eax
7 mov [esp+4], edx
8 ret

(a) An example of a library call that will multiply eax and
ecx, then store its result on the stack since it won’t fit in a
register

1 lea eax, [string]
2 push eax
3 call strlen ; eax=strlen
4 mov ecx, esp
5 call lib
6 lib: add eax, 1
7 sub esp, eax
8 push ebp
9 lea ebp, [esp+4]
10 push ecx
11 mov ecx, [ebp+eax]
12 loop: cmp eax, 0
13 jz done
14 sub eax, 1
15 mov dl, [ecx+eax]
16 mov [ebp+eax], dl
17 jmp loop
18 done: pop ecx
19 pop ebp
20 ret
21 mov eax, [length]
22 sub ecx, esp
23 cmp eax, ecx
24 jz payload

(b) An example of a piece of code that will use ESP to
figure if the size of the string copied onto the stack has a
specified length.

Fig. 4: Examples of when tainting ESP is valid and invalid.

comes from the call’s outputs. Pin allows system calls to be
instrumented, and has mechanisms to access the inputs and
outputs of a system call, making this a relatively easy task.
The difficulty, however, comes from the Microsoft Windows
operating system.

Many system calls use the return value as an error flag,
and some of the inputs to the system call actually are
pointers to locations where outputs can be stored. Thus,
the environmental monitoring detector must have some
knowledge of each system call to know which of the system
call’s arguments are outputs, and what the size of each
output is. Therefore, each system call must have a handler
that knows all of this information. Currently the environ-
mental monitoring detector has handlers for NtCreateFile,
NtOpenFile and NtReadFile; however, more can easily be
added as they are needed.

Pin identifies a system call by its ordinal, which is
basically just a number used to identify what function the
system call is referring to. The system call ordinals aren’t
static however, many of them change across major versions
of the windows operating system, and some even change
across minor versions of the operating system. As a result,
the environmental monitoring detector has a table that maps
a system call’s ordinal to its handler. Thus, the tool can run
on multiple versions of the windows operating system by
updating the table to reflect the ordinal numbers on that
version.

When a taint source is a library call, all data operated
on by the library will be marked as tainted except if the
ESP register is one of the destination operands. A library

call is simply a call to a piece of code stored in a library
on the computer that does some useful computation. Unlike
system calls though, a library call will run in the same exe-
cution environment as the program that called it. As a result,
any data originating from a library call has the potential of
being used as a source of environmental monitoring and
should be marked as tainted.

All data originating from a library call does not equate
to all data written by a library call, so not all destination
operands can blindly be marked as tainted. One common
operation performed by a library is to store the values of
registers it wants to use on the stack and then restore them
at the end of the library call. These values obviously do
not originate from the library call and so they should not
be marked as tainted. To generate taint, the library should
operate on a value in some way, not just move it from one
location to another. As such instructions that move data
should also move the taint markings to the new location
so that tainted data will remain tainted and untainted data
will remain untainted. Lines 9 through 17 of algorithm 1
demonstrates the associated logic. In order to taint all desti-
nation operands using algorithm 5, an instruction cannot be
a mov, push or pop, all of which simply copy a value from
one location to another. The mov, pop and push instructions
that are in a taint source will fall through to the switch
statement on line 15, since they are in a library call, where
the appropriate taint propagation policy for the instruction
type will be called.

The ESP register keeps track of the current position of
the stack and is used by two very common operations: push

UNIVERSITY OF ARIZONA HONORS THESIS 5

1 mov ecx, eax
2 xor eax, ecx
3 jz alwaysExecute

(a) An example of how xor can be used to disguise an
unconditional jump as a conditional jump.

1 call read
2 mov ecx, eax
3 call read
4 xor eax, ecx
5 jz maybeExecute

(b) An example of how xor can be used to compare the
values of two registers .

Fig. 5: Examples of how xor can be used to construct an unconditional or conditional jump.

and pop. The frequent use of ESP makes it extremely dan-
gerous since tainting it can quickly lead to a taint explosion
as all push and pop instructions would be tainted. ESP
therefore needs to be handled with care. In x86, constant
stack adjustments are common since the stack is often used
to store local variables and hold large return values. Figure
4a, for example, does both of these. Two 32 bit numbers are
multiplied together and since the result is too large to fit in
a register, it is returned on the stack using the space that
was allocated on line 4. One cannot extract environmental
information from the stack pointer when constant adjust-
ments such as these are made, so ESP should not be tainted.
If, however, ESP is being adjusted by a value that contains
environmental data, ESP should be tainted. Consider figure
4b. ESP is being adjusted by the length of some string on line
7 so that the string can be stored on the stack. Then on line
24, the program that called the library takes advantage of
this to check the length of the string. It is therefore possible
for ESP to yield environmental information, but only if
environmental data was used to adjust it. This leads to the
final condition on line 9 of algorithm 1. If an instruction
in a taint source is making an adjustment to ESP, that
instruction’s taint propagation policy should be used so that
ESP only becomes tainted if it is being adjusted by a tainted
value.

3.2 Taint Markings
The environmental monitoring detector must be able to
store taint markings for any location that can be influenced
by environmental data. As far as the x86 architecture is
concerned, data can be stored in two places: in the registers
or in memory. As a result, there must be a mechanism to
store taint markings for these locations. In addition, the
purpose of this tool is to detect environmental monitoring,
which occurs when a program will conditionally execute a
piece of code. In x86, the conditional execution is typically
performed using conditional jumps, which decide whether
or not to jump to a particular location based on the status
of a subset of the flags stored in a special register called the
EFLAGS register. To properly detect environmental moni-
toring from conditional jumps, it is therefore necessary to
track taint through the EFLAGS register as well.

Typical implementations of taint analysis use a single bit
to mark if information is tainted; however, useful informa-
tion such as what taint source the data was influenced by
will be lost [2]. Tracking the taint sources that influence a
piece of data is useful for a few reasons. First, if there are
multiple taint sources, it is useful from the analyst’s point
of view to know which of those sources will effect the out-
come of an instruction. Additionally, some instructions’ taint

propagation policies, such as xor, relies on this information.
Consider figure 5 for example. In figure 5a, bits from the
same source are being xor’d on line 2, meaning the result is
always zero. This effectively turns the jump if zero on line
3 into an unconditional jump since the result of the xor will
always be zero. For the taint analysis engine to determine
this though, it must know that the two pieces of data being
xor’d are the same. Determining if data is the same requires
information about its origin, however, since the data must
come from the same place. Knowing that two pieces of data
have the same value is not sufficient as shown in figure 5b
where the data being xor’d comes from two different taint
generating calls. If the values being xor’d on line 4 are the
same, the program will jump to the label maybeExecute,
and if they are not, execution will continue on the current
path. Thus, even if the values of the two operands are the
same, the result of the xor must be tainted because the
output is dependent on the results of the two read calls on
lines 1 and 3. Therefore, information about a bit’s source is
necessary to properly reflect the semantics of instructions
such as xor to ensure no over- or under-tainting occurs.

Multiple taint sources can influence data. For example,
in figure 5b, the zero flag in the EFLAGS register on line
5 is affected by the result of the two reads on lines 1
and 3, so both of them are taint sources for the zero flag.
Accordingly, the environmental monitoring detector must
be able to track all of these taint sources. To do so, each
taint source is provided an id which the environmental
monitoring detector associates with the name of the library
or system call. Each bit then stores a list of the taint source
ids that impact that bit.

Currently, each instance of a taint source is given a single
id to mark all the tainted data from that source. This scheme
will not provide enough information to taint propagation
policies such as xor since each bit is not uniquely identified;
however, currently no instruction specific taint propagation
policies have been implemented that can take advantage
of bit specific ids. It was therefore decided to assign each
instance of a taint source a unique id since the number of
taint source instances will be vastly less than the number
of number of bits of data that will be tainted by a taint
source, meaning a smaller integer could be used to store
the id. Thus, less memory is required by the environmental
monitoring detector, there is still enough information so that
the user can identify where environmental data originated
from and a simple modification can be made to implement
bit-specific taint source ids when they are required.

The x86 architecture can manipulate individual bits of
data, but the smallest amount of data that it can operate on is
a byte. It therefore makes sense to group the corresponding

UNIVERSITY OF ARIZONA HONORS THESIS 6

struct TaintByte {
UINT8 mask;
list<unsigned short> srcs[8];

};

Fig. 6: The struct used by the environmental monitoring
detector for a taint byte

struct ShadowArch {
TaintByte regs[8][4];
map<Addr, TaintByte> mem;
TaintByte flags[4];

};

Fig. 7: The struct used by the environmental monitoring
detector to store the taint markings

taint markings for a byte of data together since it reduces
the amount of taint fetching that must be performed, and
decreases the complexity of the taint propagation policies.
As a result, each byte of data is associated with the taint
markings of the bits in that byte, which will be referred to as
a taint byte. Each bit of data requires a single bit to indicate
if the data is tainted, so that the tool can quickly check its
status, and a list of taint sources that affect that bit. The taint
byte therefore has an 8 bit mask containing the taint status
for each bit of data, and an array of size 8 that tracks the
taint sources for the corresponding bit as shown in figure 6.

A shadow copy of the architecture will be maintained to
store taint markings for the registers, memory and EFLAGS.
In x86, both the registers and EFLAGS have a small, static
size, so they can be defined statically. The 8 32-bit general
purpose registers can be represented as 8 arrays that contain
4 taint bytes each, and the 32-bit EFLAGS register can be
represented as 4 taint bytes. Memory, on the other hand, has
a fixed size on a single machine, but it is very large, making
it impractical to statically define taint markings for memory.
To make it appear as if memory had been statically defined
though, a hash map is used to map the address of a byte of
data in memory to its corresponding taint byte. This allows
quick access to each taint byte, and reduces the memory
requirement of the environmental monitoring detector since
the size of the hash map should be on the same order of
magnitude as the amount of tainted data. Figure 7 shows
the representation of the shadow architecture used by the
environmental monitoring detector.

3.3 Taint Propagation

In the x86 architecture there are hundreds of instructions
that all need their own semantic-specific taint propagation
policies. This, however, is a momentous undertaking so cur-
rently the environmental monitoring detector has a single
taint propagation policy and the infrastructure has been
established so more can easily be added. The algorithm
for the current taint propagation policy, referred to as the
default taint propagation policy, is shown in algorithm 6.
Since the policy does not know anything about the seman-
tics of the instruction, it assumes that any tainted source bits
could taint any of the destination’s bits. Thus, if any of the
sources are tainted, all of the destinations must be tainted as
well. The policy ensures that no under-tainting will occur,
which will guarantee that all instances of environmental
monitoring will be found.

While all environmental triggers will be found, it is not
guaranteed that they are the only ones that will be found.
Ignoring the semantics of the executed instruction leads to
an extreme amount of over-tainting. Consider figure 5a for
example. If eax was initially tainted, after line 1 ecx would

be tainted as well. At line 2 since both eax and ecx are
tainted, the zero flag, which is set by xor, will be tainted.
This means the conditional jump on line 3 will be marked
as an instance of environmental monitoring, even though
it is not. Thus, more taint propagation policies need to be
added in the future since the default policy is too general.

To make the creation of new taint propagation policies
easier, the environmental monitoring detector will relieve
the policies of the burden of fetching the taint. Many x86 in-
structions allow data to to come from either memory or from
the registers, so taint propagation policies must be capable
of doing the same. Doing so can lead to a lot of duplicate
code since each combination of operand source would have
to be considered. Since many instructions would fetch taint
in the same way, it made sense to separate the taint fetch
from the taint propagation. The taint fetch retrieves the taint
for each source and destination operand of the instruction
and provides it to the taint propagation policy as shown
in algorithm 2. Since the shadow architecture uses a taint
byte regardless of whether taint originates from registers or
memory, the taint propagation policy can remain ignorant
to the storage medium the data came from. Thus, a new
taint propagation policy only needs to update the taint bytes
it is given, and the shadow architecture will be updated
accordingly.

Once a new taint propagation policy for an instruction is
created, it must be added to the selection process. Doing so
only requires that a new case be added to the switch state-
ment on line 15 of algorithm 1 that will register a call back
to the appropriate taint propagation function. Thus, while
there is currently only a single taint propagation function,
the environmental monitoring detector has been built with
the expectation that many taint propagation policies will be
used and reduces the amount of work required to add new
policies.

3.4 Detecting Environmental Monitoring

Environmental monitoring occurs when a program condi-
tionally executes some program behavior. Typically, con-
ditional execution is performed using conditional jumps,
however this is not the only method that can be used.
Currently, the environmental monitoring detector supports
3 different types of conditional execution.

Environmental conditional control flows that use condi-
tional jumps or indirect jumps can be detected using similar
methods. A conditional jump will use information stored in
the EFLAGS register to determine if a particular condition
is met, and if it is the execution will continue at the jump
location. If a conditional jump is used to monitor its envi-
ronment, then one of the EFLAGS used by the jump must
be influenced by environmental data, and therefore must be

UNIVERSITY OF ARIZONA HONORS THESIS 7

1 call read
2 cmp eax, [expected]
3 mov ecx, 0
4 sete cl
5 lea eax, [payload]
6 sub eax, [notPayload]
7 mul ecx
8 lea ecx, [notPayload]
9 add ecx, eax
10 jmp ecx

Fig. 8: An example of conditional execution implemented
using indirect jumps

jmp: jmp payload
...

1 call read
2 cmp eax, [expected]
3 mov ecx, 0
4 sete cl
5 mov eax, [jmp]
6 sub eax, [nop]
7 mul ecx
8 add [nop], eax
9 nop: nop

Fig. 9: An example of conditional execution implemented by
rewriting the binary

tainted. Indirect jumps, on the other hand, will jump to a
location given by either a register or memory location. This
type of jump can be used to conditionally transfer control by
modifying the jump location based on the output of some
computation. Consider figure 8 for example. On line 2, the
output of the read call will be compared to some expected
value. Then on line 4, the result of this comparison will be
used to set the ecx register to either 1 or 0 based on whether
or not the two are equal. If the two are equal, then the offset
between the two labels payload and notPayload will be
multiplied by 1 and added to the location of notPayload
stored in ecx. This will effectively change ecx so that it
contains payload’s location, causing the jump on line 10 to
go to the payload label. If the two are not equal, then the
offset between payload and notPayload will be multiplied
by 0 and added to the notPayload’s location in ecx. This
means that ecx will still contain notPayload’s location and
so the jump on line 10 will go to notPayload. A program
can use environmental data to modify the destination of the
indirect jump, therefore allowing the program to monitor
its environment. If this were to occur, however, the address
of the jump would be tainted, since it is influenced by
environmental data. Thus, to detect environmental monitor-
ing through the use of either conditional jumps or indirect
jumps, all one must do is check if a jump is using any
environmental data as shown in algorithm 4.

The binary itself can be rewritten at runtime to perform
conditional execution. To do so a program will write to
a location in memory that will be executed in the future.
Figure 9 shows an example that will conditionally write
a jump into the binary based on the outcome of a call
to read. Similar to the example in figure 8, the output of
read will be compared to some expected value, and if the
values match either a 1 or a 0 will be written into ecx.
Lines 5 reads the binary of the jump instruction into the
eax register and then Line 6 calculates the offset required
to change the nop instruction on line 9 into the given jump
instruction. The offset is then multiplied by the outcome of
the comparison stored in ecx and the result is added to the
nop instruction. If the outcome of the read was equal to to
the expected value, then when execution reaches line 9, the
jump instruction will actually be executed since the offset
added to the binary at the nop label will change the nop
instruction into a jump. If the outcome of the read was not
equal to the expected value, then when execution reaches

line 9, a nop will be executed since the offset was 0. Binary
can therefore be rewritten to perform conditional execution.
If the binary were to be rewritten based on information
derived from the environment, however, the bytes that
make up the instruction would be marked as tainted in the
environmental monitoring detector. Therefore, conditional
execution as a result of rewriting the binary can be detected
by checking if an instruction’s bytes are marked as tainted,
as shown by algorithm 3.

Once environmental monitoring is detected, it must be
reported to the user. Currently a message is printed to the
user identifying the instruction that monitors its environ-
ment, and the taint source(s) that generated the environ-
mental data. This allows an analyst to examine how the
environment can be modified to cause the program to travel
down an alternate execution path. To aid in this process,
the environmental monitoring detector currently prints out
a full runtime trace of the program being analyzed as well.
While this is excessive since the analyst does not need a full
trace, they just need the tainted instructions that operate
the environmental data before it is used to monitor the
environment, having a full trace makes debugging easier.

4 EVALUATION
4.1 Performance

Any tool that analyzes a binary at runtime will have some
sort of slowdown when the execution time is compared
with that of the analyzed program alone. It is important
to know how much slowdown a tool incurs though since
it gives the user an idea of how long they need to wait
for the results. Additionally, at the University of Arizona
there are tools available that can analyze a runtime trace
of a program, so any runtime system should be faster to
execute than collecting a trace and running one of these
tools on it. Runtime statistics were collected for 4 different
programs. Two of the programs, factorial and fibonacci, are
meant to simulate computation intensive software while the
other two, MD5 and SHA1, simulate I/O intensive software.
The table in figure 10 summarizes the runtime statistics of
the environmental monitoring detector (EMD), and another
tool called Instruction Trace, which uses Pin to generate a
runtime trace of a program.

In its current state, the environmental monitoring detec-
tor comes with an extremely high performance cost. To put it

UNIVERSITY OF ARIZONA HONORS THESIS 8

Program Original EMD with Trace Instruction Trace EMD without Trace
Runtime Slowdown Runtime Slowdown Runtime Slowdown Runtime Slowdown

Fibonacci 0.845s 1x 2h 31m 52.989s 10782.323x 2h 13m 10.468s 9454.1774x 8m 21.492s 593.36446x
Factorial 0.670s 1x 1h 29m 33.158s 8020.1007x 1h 44m 18.024s 9340.8724x 5m 56.358s 531.90819x
MD5 0.690s 1x 1h 57m 8.711s 10184.627x 1h 46m 2.007s 9218.5707x 10m 18.541s 896.26858x
SHA1 0.708s 1x 5h 31m 34.591s 28100.931x 4h 23m 54.732s 22366.417x 18m 58.462s 1608.0673x
Average 1x 14271.995x 12595.009x 907.40213x

Fig. 10: Performance statistics relating to the Environmental Monitoring Detector collected on a virtual machine with a 1
core CPU and 128MB of memory.

into perspective, an average slowdown of 14,272 means that
it will take about 4 hours for the environmental monitoring
detector to perform 1 second worth of computation from the
original program. The environmental monitoring detector is
also about 1.15 times slower than Instruction Trace. While
this may seem disappointing, these results make sense. Cur-
rently the environmental monitoring detector will generate
a full trace of the program as it performs its analysis. It will
therefore have to perform more computations per instruc-
tion than Instruction Trace, which will naturally increase the
slowdown of the tool.

Unlike Instruction Trace, the environmental monitoring
detector does not need to generate a full trace, it is just useful
for debugging purposes. Once complete with instruction-
specific taint propagation policies, if only the tainted in-
structions that affected an instance of environmental mon-
itoring were to be printed it is likely that the number of
printed instructions would be much less than the number
of instructions in a trace. Thus, runtime statistics were also
taken with the tracing behavior removed. This shows the
slowdown incurred by the taint analysis engine alone and
will hopefully be close to the runtime of the final product
since few instructions would be printed. Without printing a
trace, the runtime of the environmental monitoring detector
improved by a factor of 15.72, meaning that only about 15
minutes is required to perform 1 second worth of computa-
tion.

4.2 Precision

To be useful, the tool must be precise. The goal is to
minimize the number of conditional branches that must be
investigated by an analyst to find environmental monitor-
ing. It is therefore not useful to use a tool that will identify
all conditional branches as environmental triggers since it is
already known that any branch could be an environmental
trigger. Thus precision is important in a tool such as this.
In the current state, however, the precision is lacking. It
was mentioned earlier that there is currently only one taint
propagation policy that is very general. Such a policy leads
to frequent over-tainting, especially in obfuscated binaries.

The environmental monitoring detector has been tested
on several binaries, both obfuscated and not. The tool
performs well on simple programs such as fibonacci or
factorial where there aren’t very many complex operations.
On programs such as these, the environmental monitoring
detector can successfully identify all areas of the simulated
environmental monitoring with no false positives. As the
complexity of the program increases, the precision of the

analysis decreases which is particularly evident on obfus-
cated binaries. Nearly every instruction becomes tainted,
leading to every conditional branch being marked as an
environmental trigger. The same can be seen in binaries with
no obfuscations as well because of common tricks that the
environmental monitoring tool’s taint propagation policy
cannot handle. For example, there is a common way to set a
register to be zero by performing an exclusive-or (xor) on the
register with itself. With a proper taint propagation policy
for xor, this could easily be handled and the register would
be marked as untainted. The environmental monitoring
detector, however, will taint an entire destination if the
source is tainted and so if such an operation were to be
performed, the register would remain tainted.

Even though the current version of the environmental
monitoring detector lacks precision, it should not be ruled
a failure. First of all, no false negatives were found, which
is encouraging. The taint propagation policy should result
in over-tainting, but not under-tainting. Thus if there were a
false negative, it would be due to a problem in the program
logic. Secondly, whenever a false positive was found while
testing the tool, the taint was able to be tracked back to
an instruction that would not be handled properly by the
current taint propagation policy. This indicates that there is
not a bug in the taint analysis engine, but rather simply too
few taint propagation policies, which can be added later.

5 FUTURE WORK
1) Instruction specific taint propagation policies need

to be added to the program. As discussed previ-
ously in this paper, there currently is a large amount
of over-tainting which leads to a large number of
false positives. The over-tainting is caused by the
lack of taint propagation policies that adhere to the
semantics of the executed instruction, so more taint
propagation policies need to be added.

2) Currently, the environmental monitoring detector
cannot analyze multi-treaded programs. To analyze
these types of programs, mechanisms need to be
added to propagate thread-specific taint and there
are times that data is stored inbetween callback
functions that will need to be stored in thread-
specific storage.

3) Taint is only propagated through direct data depen-
dencies, however it should be propagated through
control dependencies as well. A direct data depen-
dency occurs when the outcome of an instruction
is tainted because the instruction uses tainted data

UNIVERSITY OF ARIZONA HONORS THESIS 9

from a previously executed instruction. A control
dependency occurs when tainted data affects con-
trol flow, and then the change in execution path
affects other data. By not considering control depen-
dencies, under-tainting occurs.

4) Currently only 3 system call handlers have been
added into the environmental monitoring detector
to taint the outputs of a system call. More need
be added to the environmental monitoring detector
before it can be used to analyze malicious programs.

5) Outputting a full trace is only useful for debugging
purposes. To improve runtime, the amount of I/O
performed by the environmental monitoring detec-
tor should be reduced. To do so, only tainted in-
structions should be printed so that the analyst can
see the execution path taken between a taint source,
and an instance of environmental monitoring.

6 CONCLUSION
This project was ultimately able to create a tool that uses
dynamic taint analysis to detect environmental monitoring
within binaries. While it is not yet prepared to take on the
task of analyzing obfuscated binaries, the environmental
monitoring detector was able to show that it is capable of
discovering environmental triggers hidden in software. The
groundwork has been laid, and now the long, tedious task
of creating x86 taint propagation policies must begin.

REFERENCES

[1] Schwartz, Edward J., Thanassis Avgerinos, and David Brumley.
”All you ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid to ask).”
In Security and privacy (SP), 2010 IEEE symposium on, pp. 317-331.
IEEE, 2010.

[2] Yadegari, Babak, and Saumya Debray. ”Bit-level taint analysis.”
In 2014 IEEE 14th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pp. 255-264. IEEE, 2014.

[3] Yadegari, Babak, Brian Johannesmeyer, Ben Whitely, and Saumya
Debray. ”A generic approach to automatic deobfuscation of exe-
cutable code.” In Security and Privacy (SP), 2015 IEEE Symposium
on, pp. 674-691. IEEE, 2015.

[4] Newsome, James, and Dawn Song. ”Dynamic taint analysis for
automatic detection, analysis, and signature generation of exploits
on commodity software.” (2005).

[5] Song, Dawn, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. ”BitBlaze: A new approach to
computer security via binary analysis.” In Information systems
security, pp. 1-25. Springer Berlin Heidelberg, 2008.

[6] Ganesh, Vijay, Tim Leek, and Martin Rinard. ”Taint-based directed
whitebox fuzzing.” In Proceedings of the 31st International Conference
on Software Engineering, pp. 474-484. IEEE Computer Society, 2009.

[7] Clause, James, Wanchun Li, and Alessandro Orso. ”Dytan: a
generic dynamic taint analysis framework.” In Proceedings of the
2007 international symposium on Software testing and analysis, pp.
196-206. ACM, 2007.

[8] Bosman, Erik, Asia Slowinska, and Herbert Bos. ”Minemu: The
worlds fastest taint tracker.” In Recent Advances in Intrusion Detec-
tion, pp. 1-20. Springer Berlin Heidelberg, 2011.

[9] Cavallaro, Lorenzo, Prateek Saxena, and R. Sekar. ”Anti-taint-
analysis: Practical evasion techniques against information flow
based malware defense.” Secure Systems Lab at Stony Brook Uni-
versity, Tech. Rep (2007).

[10] Brumley, David, Cody Hartwig, Zhenkai Liang, James Newsome,
Dawn Song, and Heng Yin. ”Automatically identifying trigger-
based behavior in malware.” In Botnet Detection, pp. 65-88.
Springer US, 2008.

[11] Hindocha, Neal. ”W32.Netsky.D@mm.” Symantec. 2004.
https://www.symantec.com/security response/writeup.jsp?docid=2004-
030110-0232-99&tabid=2.

[12] Gettis, Scott. ”W32.Mydoom.B@mm.” Symantec. 2004.
https://www.symantec.com/security response/writeup.jsp?docid=2004-
012816-3647-99&tabid=2.

[13] Ferrie, Peter. ”Attacks on more virtual machine emulators.”
Symantec Technology Exchange (2007): 55.

[14] Berkowits, Sion. ”Pin - A Dynamic Binary Instrumentation
Tool.” Intel Developer Zone. 2012. https://software.intel.com/en-
us/articles/pintool.

[15] Kang, Min Gyung, Heng Yin, Steve Hanna, Stephen McCamant,
and Dawn Song. ”Emulating emulation-resistant malware.” In
Proceedings of the 1st ACM workshop on Virtual machine secu-
rity, pp. 11-22. ACM, 2009.

UNIVERSITY OF ARIZONA HONORS THESIS 10

APPENDIX

Algorithm 1 The instruction instrumentation function

1: procedure INSINSTRUMENT(Instruction ins)
2: regCallback(chkInsTaint, addr(ins), size(ins))
3: regSrcs← insRegSources(ins)
4: memSrcs← insMemSources(ins)
5: flagSrcs← insFlagSources(ins)
6: regDsts← insRegDestinations(ins)
7: memDsts← insMemDestinations(ins)
8: flagDsts← insFlagDestinations(ins)
9: if inTaintSrc(ins) AND NOT (isMov(ins) OR isPush(ins) OR isPop(ins) OR includes(regDsts, ESP)) then

10: regCallback(ins, getTaint, taintAll, regDsts, memDsts, flagDsts)
11: else
12: if !inLibrary(ins) AND (isCondBr(ins) OR isJmp(ins) OR isCall(ins)) then
13: regCallback(ins, getTaint, chkEnvMonitor, regSrcs, memSrcs, flagSrcs, dsts, regDsts, memDsts,

flagDsts)
14: else
15: switch opcode(ins) do
16: case default:
17: regCallback(ins, getTaint, taintDefault, regSrcs, memSrcs, flagSrcs, dsts, regDsts, memDsts,

flagDsts)

Algorithm 2 Fetches taint from the shadow architecture

1: procedure GETTAINT(FuncPtr propagate, RegVect srcRegs, UINT32 srcMemAddr, UINT32 srcMemSize, Flags
srcF lags, RegVect dstRegs, UINT32 dstMemAddrs[], UINT32 dstMemSizes[], Flags dstF lags)

2: srcRegTaint← getRegTaint(srcRegs)
3: srcMemTaint← getMemTaint(srcMemAddr, srcMemSize)
4: srcF lagTaint← getFlagTaint(srcF lags)
5: dstRegTaint← getRegTaint(dstRegs)
6: dstMemTaint← getMemTaint(dstMemAddr, dstMemSize)
7: dstF lagTaint← getFlagTaint(dstF lags)
8: srcTaint← combineTaint(srcRegTaint, srcMemTaint, srcF lagTaint)
9: dstTaint← combineTaint(dstRegTaint, dstMemTaint, dstF lagTaint)

10: propagate(srcTaint, dstTaint)

Algorithm 3 Check if instruction bytes are tainted

1: procedure CHKINSTAINT(UINT32 addr, UINT32 size)
2: t← getMemTaint(addr, size)
3: if isTainted(t) then
4: reportEnvMonitor()

Algorithm 4 Check if conditional branches are tainted

1: procedure CHKENVMONITOR(Taint srcs[], Taint dsts[])
2: sourceId← emptySourceId()
3: tainted← false
4: for s in srcs do
5: if isTainted(s) then
6: tainted← true
7: sourceId← addId(sourceId, s.sourceId)
8: if tainted then
9: reportEnvMonitor()

10: for d in dsts do
11: setTaint(d, sourceId)

UNIVERSITY OF ARIZONA HONORS THESIS 11

Algorithm 5 Taints all destinations

1: procedure TAINTALL(Taint srcs[], Taint dsts[])
2: sourceId← getTaintSourceId()
3: for d in dsts do
4: setTaint(d, sourceId)

Algorithm 6 Applies the default taint propagation policy

1: procedure TAINTDEFAULT(Taint srcs[], Taint dsts[])
2: sourceId← emptySourceId()
3: tainted← false
4: for s in srcs do
5: if isTainted(s) then
6: tainted← true
7: sourceId← addId(sourceId, s.sourceId)
8: if tainted then
9: for d in dsts do

10: setTaint(d, sourceId)

