THE UNIVERSITY OF ARIZONA UA CAMPUS
_| University Libraries REPOSITORY

SPADE: SEMANTICALLY PRESERVING ABSTRACT
DECOMPILER EXPERIMENT

Item type text; Electronic Thesis

Authors DAVIDSON, ANDREW JOSEPH

Publisher The University of Arizona.

Rights Copyright © isheld by the author. Digital accessto this

material is made possible by the University Libraries,
University of Arizona. Further transmission, reproduction
or presentation (such as public display or performance) of
protected items is prohibited except with permission of the
author.

Downloaded 29-Sep-2017 22:32:18

Link to item http://hdl.handle.net/10150/190436

http://hdl.handle.net/10150/190436

SPADE:
SEMANTICALLY PRESERVING ABSTRACT DECOMPILER EXPERIMENT
By
ANDREW JOSEPH DAVIDSON

A Thesis Submitted to The Honors College

In Partial Fulfillment of the Bachelor’s degree
With Honors in

Computer Science
THE UNIVERSITY OF ARIZONA
MAY 2008

Approved by:

Saumya Debray
Department of Computer Science

STATEMENT BY AUTHOR

I hereby grant to the University of Arizona Library the nonexclusive worldwide
right to reproduce and distribute my thesis and abstract (herein, the ”licensed
materials”), in whole or in part, in any and all media of distribution and in any
format in existence now or developed in the future. I represent and warrant to the
University of Arizona that the licensed materials are my original work, that I am
the sole owner of all rights in and to the licensed materials, and that none of the
licensed materials infringe or violate the rights of others. I further represent that
I have obtained all necessary rights to permit the University of Arizona Library to
reproduce and distribute and nonpublic third party software necessary to access,
display, run, or print my thesis. I acknowledge that the University of Arizona
Library may elect not to distribute my thesis in digital format if, in its reasonable
judgment, it believes all such rights have not been secured.

SIGNED:

ABSTRACT

This thesis presents SPADE, an experimental decompiler for the x86-32 in-
struction set. The thesis describes some of the challenges with decompilation in
general, and outlines techniques to impose high level control flow structures and
data types on machine code. To the knowledge of the author, SPADE is the first
decompilation system that does not presuppose that the machine code being an-
alyzed was translated from source code. As a result, particular attention is given
to relying only on program semantics, rather than potentially misleading sources
of program information such as the symbol table, which may be stripped from the

executable or filled with misleading information.

ACKNOWLEDGMENTS

I owe a great debt to many members of the Computer Science Department
for providing me with the skills and encouragement to finish this thesis, but there
are a select few to whom I am particularly grateful:

I would like to thank the members of the SOLAR research team, who allowed
me to play out various ideas and techniques, provided endless encouragement, and
helped to teach me many of the tools required for this work.

I would also like to thank Dr. Greg Andrews for his guidance and advice with
respect to coursework and paper writing in general.

I would especially like to thank my main adviser, Dr. Saumya Debray, whose

patience and insight were of great benefit both to this thesis and to me personally.

TABLE OF CONTENTS

ACKNOWLEDGMENTS

TABLE OF CONTENTS

LIST OF FIGURES
CHAPTER

1 Introduction

1.1 Program Analysis L.

1.1.1 Control Flow Graphs

1.2 Motivationo

1.3 The importance of understanding machine code

1.4 The difficulty in reading machine code directly

1.5 Related Work

List of References Lo

2 Overview

2.1 Disassemblero

2.2 Abstractor

2.3 Code Generator

List of References . .

3 Control Flow Analysis

3.1 Criteria for Evaluation

3.2 Jump conditions

3.3 Loops

1

3.4 Acyclic Control Flow 8
List of References Lo 11

4 Data Type Analysis 12
4.1 Criteria for Evaluation 12
4.2 Challenges of Data Type Analysis 13
421 Aliasing 13

4.2.2 Bookkeeping Code 14

4.3 Primitive Type Analysis 14
4.3.1 Integer Types 15

4.3.2 Floating Point Types 15

4.4 Abstract Type Analysis 15
4.5 Global Memory Analysis 16
4.6 Argument Analysis L 16

5 Results 17
5.1 Control Flow Improvement 17
5.2 Data Improvement oL 19

6 Conclusion 20
6.1 Liveness Analysis 20
6.2 Function Argument Analysis 20
6.3 Expression Amalgamation 20
BIBLIOGRAPHY 22

1l

Figure

LIST OF FIGURES

Page
Instructions grouped as basic blocks 1
A simple control flow grapho 2
Three phases of decompilation 5
Control flow graph with acyclic control 9
Dominator Trees L. 9

v

CHAPTER 1

Introduction

A decompiler is a program that reads a program written in a machine lan-
guage and translates it into an equivalent program in a high-level language [1].
This thesis will understand the concept of “equivalent” to mean that the seman-
tics of the input program match the semantics of the output program. Since a
completely isomorphic decompilation is reducible to the Halting problem, decom-

pilers necessarily will not be able to produce precise decompilations in all cases

2].

1.1 Program Analysis

Many of the algorithms employed for compiler optimizations can be used in
decompilers. This is not suprising, since the algorithms underlying optimizations
are used to approximate interesting program properties. Since many of these al-

gorithms aid SPADE, some compiler concepts are worth noting:

1.1.1 Control Flow Graphs
A basic block is a sequence of consecutive statements in which flow of con-
trol enters at the beginning and leaves at the end without halt or possibility of

branching except at the end [3]. Consider the following set of instructions:

0x40107¢c incl %Sedx 0x40107c incl Sedx

0x40107d cmpl %edx, $0x9 0x40107d cmpl %edx, $0x9

0x401080 jle 0x401070 0x401080 jle 0x401070

0x401086 addl Oxfffffff0(%ebp) <- $0x3 0x401086 addl Oxfffffff0(%ebp) <- $0x3
0x40108b movl %$exc <-50x4 0x40108b movl %$exc <-50x4

Figure 1. Instructions grouped as basic blocks

A control flow graph is a directed graph in which the nodes represent basic

blocks and the edges represent control flow paths [4]. Here is a very simple control

flow graph:

0x40107c incl %edx
0x40107d cmpl %edx, $0x9
0x401080 jle 0x401070

A

0x401086 addl Oxfffffff0(%ebp) <- $0x3
0x40108b movl $exc <-$0x4

Figure 2. A simple control flow graph

1.2 Motivation
Motivation for using a decompiler comes in two steps. First, why it is impor-
tant to understand what machine code is doing, and second, why it is important

to understand why reading machine code directly is difficult.

1.3 The importance of understanding machine code

With the proliferation of malicious binaries, there is a very real need to un-
derstand the actions of a program before they happen. To claim that machine
code is the product of a compiler is erroneous; not all machine code is written
by compilers. As such, there are circumstances where there may be no high-level
source code to read. Even in those situations where a high-level representation of
a program already exists, it may not be available to the user of the machine code.
This is often the case with malicious code for which the intent of the program is

intentionally hidden.

1.4 The difficulty in reading machine code directly
The primary objectives of high-level languages and machine languages are

fundamentally different. Consider first the goals of a high-level language:

e Abstract machine-specific details away from the program writer.
e Provide semantic constructs that make reading programs easy.

e Provide safety features to identify programmer errors.

Machine languages exist to provide a representation of a program that a par-
ticular architecture can actually execute. Control flow structures such as if state-
ments and loops are absent, replaced instead with machine instructions that mod-
ify the program counter or repeat for a number of iterations. Safety features that
exist in high-level languages such as variable types and data structures are gone
completely, while the machine registers and memory are exposed.

Although not all low level code is written by compilers, a great deal of code is.
Compilers are expected to perform ”optimized” machine code, meaning that the
compiler will automatically perform some transformations on the code to improve
some aspect of the output. In some cases of optimization that improve the runtime
performance of code, machine code is modified such that the flow of control in the
program takes advantages of machine specific details such as number of registers,

branch delay slots, and caching in ways that may obfuscate the program logic.

1.5 Related Work

A number of reverse engineering tools have been written. [5] implements a
disassembler and the binary analysis framework upon which SPADE is built. The
freely available decompiler REC by Giampiero Caprino provides good decompila-

tion when a program does not make any attempt to avoid disassembly, i.e. when

the symbol table remains intact. However, REC does no type analysis when the
symbol table is stripped. Similarly, [1] presents the dcc decompiler, but the scope
of programs that it can disassemble is limited to small programs. The boomerang
project, that carries on the work in [1] also does very little type analysis, and tests
in this thesis show that it is incapable of providing any decompilation at all when
fed a meaningful program. [6] presents a technique to recover some type informa-
tion, but it is limited to analyzing registers only, and there is no known software

implementation of the technique.

List of References

[1] C. Cifuentes, “Reverse compilation techniques,” Ph.D. dissertation, Queens-
land University of Technology, 1978.

[2] P. T. Breuer and J. P. Bowen, “Decompilation: the enumeration of types and
grammars,” ACM TOPLAS, pp. 1613-1647, 1994.

[3] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools. Addison-Wesley Publishing Company, 1986.

[4] F. E. Allen, “Control flow analysis,” in ACM SIGPLAN Notices. ACM, 1970.

[5] B. Schwarz, S. K. Debray, G. R. Andrews, and M. Legendre, “Plto: A link-time
optimizer for the Intel IA-32 architecture,” Proc. 2001 Workshop on Binary
Translation (WTB-2001), 2001.

[6] A. Mycroft, “Type-based decompilation,” Furopean Symposium On Program-
ming, Lecture Notes in Computer Science, 1999.

CHAPTER 2

Overview

A decompiler can be grouped logically into three pipelined modules; a disas-

sembler, an abstractor, and a code generator.

disassembler > abstractor —® code generator

Figure 3. Three phases of decompilation

An overview of each of these modules follows, along with a brief discussion of

some of the challenges faced in each module.

2.1 Disassembler

A disassembler does the job of translating machine code into assembly code.
Conceptually, one can consider disassembly to be an isomorphic translation from
a first generation language to a second generation language.

SPADE is built on top of an existing binary analysis system called PLTO [1],
which already contains a disassembly. However, it should be noted that the von
Neumann architecture does not draw a distinction between data and executable
code, thus making disassembly an imprecise science. Although this paper makes
no contribution to the problem of disassembly, the experimental decompiler does

attempt to clean up the disassembly when possible.

2.2 Abstractor
This thesis will refer to the process of translating second generation code
into a sequence of machine independent constructs as abstracting, and the module

responsible for this translation as an abstractor. In practice, this process entails

taking the input from the disassembler and providing an syntax tree tree to the
code generator.

It is in the abstractor that constructs such as named variables and algebraic
expressions are imposed upon a program. The main contribution of this work is
in the abstractor, which attempts to move the input binary to as abstract a rep-
resentation as possible while still retaining semantic equivalence with the machine

code.

2.3 Code Generator

A code generator produces third generation code from a syntax tree and what-
ever auxilary information is produced in the abstractor. SPADE uses a custom
built code generator to produce output that is similar to C. In cases where no ap-
propriate C statement matches can be enlisted to represent some aspect of a given
syntax tree, the code generator will instead capture that aspect using pseudocode

or the corresponding assembly code.

List of References

[1] B. Schwarz, S. K. Debray, G. R. Andrews, and M. Legendre, “Plto: A link-time
optimizer for the Intel IA-32 architecture,” Proc. 2001 Workshop on Binary
Translation (WTB-2001), 2001.

CHAPTER 3

Control Flow Analysis

3.1 Ciriteria for Evaluation

To the knowledge of the author of this thesis, no reverse engineering tool has
attempted to quantify the effectiveness of imposing high-level control flow struc-
tures onto a function. It has, however, been suggested that an aim of a programmer
should be to make programs in which the code length is proportional to ease of
understanding[1]. Therefore, this thesis proposes that the goal of control flow
analysis in a decompilation context is to minimize the number of non-commenting

source statements in the program while retaining semantic equivalence.

3.2 Jump conditions

Conditional branches in the x86 architecture is usually specified via a pair of
instructions: a conditional jump instruction, i.e. je, that depends on some flags of
the program status word (PSW). This jump is preceded by some instruction that
sets those flags of the PSW. To identify conditional statements, an algorithm is in
place that will begin at every jump instruction and traverse the control flow graph

backwards until a instruction is found that defines the correct PSW flags.

3.3 Loops

SPADE identifies loops using a pre-existing algorithm from the PLTO system.
Essentially, this algorithm finds natural loops by traversing the PLTO generated
control flow graph and identifying any back edge as a natural loop. The exit condi-
tion of the loop is already known from the previous algorithm. If the conditional is
checked at the end of the natural loop, the loop will be structured as a do/while.

If the condition is found at the beginning, the loop is structured as a while

3.4 Acyclic Control Flow

SPADE uses an algorithm to identify conditional branch statements inspired
by the natural loop algorithm presented in the previous section. For simplicity
, discussion of this algorithm will only consider boolean conditions, though the
algorithm can handle n-way conditions.

Intuitively, a branch statement consists of two mutually exclusive branches.
A branch begins with a condition that specifies which of these branches to enter,

and ends with a vertex that all of the subgraphs reach.

Consider each block A with multiple successors. Without loss of generality,
successor b may begin a branch if b will only be executed iff edge (h, b) is taken.
All blocks that satisfy this notion of being part of a branch can be identified using
the following algorithm:

Let h be a basic block in a control flow graph.
Let b be a basic block in a control flow graph.
Let [be a list of basic blocks, initially empty.
Let v be a list of basic blocks, initially empty.
procedure add_to_branch (h, b, I, v)
if b not in v and h preDom b and not b postDom h:

[add b

for each successor s of b:

add_to_branch (h, s, 1)

v add b

add_to_branch(h, b, {}, {}) should be called in turn for each successor b of h.
This should be done for every h

Let r be the entry to a function.
procedure find_headers (r)
stack :=r
headers := empty
visited := empty
while stack is not empty:
pop h off of stack
if h is a branch statement and h is not a loop header:
headers add h
visited add h
push each successor of h not in wisited onto stack

A small example of the above algorithm might operate over the following

snippet of code:

v
2
3
/ v
4 5
Y
6
v
7

Figure 4. Control flow graph with acyclic control

The corresponding dominator trees are as follows:

Predominator Tree Postdominator Tree
1 7
\i Y
2 6
3 6 2 3 4 5

PERENE |

Figure 5. Dominator Trees

After calling find_headers (1), the headers list contains {2,3}. These are
the only branch instructions in the graph. Next, add_to_branch is called for

each edge incident from an element of headers a branch. These calls are detailed

below:

add_to_branch(2,3,{},{})

| v addition?
i { yes, 3
{3} {3} yes, 4

{3,4} | {3,4} no, 6 postDom 2

{34} | {346} |yes 5

{3,4,5} | {3,4,6,5} | no, 6isin v

NININNN N
T O | WD

6| {3,4,5} | {3,4,6,5} | no, 6isin v

add_to_branch(2,6,{},{})

hle|l |v |addition?
216 |{}|{} | no, 6 postDom 2

add_to_branch(3,4,{},{})

hlell v addition?

314 1{} |{} |yes 4
316 {4} | {4} | no, 6 postDom 3

add_to_branch(3,5,{},{})

hilell v addition?

{0 [{} |yes, 5
316|{5}| {5} | no, 6 postDom 3

w
ot

10

In practice, it is also convenient to give each basic block a pointer to the
branch in which it it belongs. If headers are visited in a depth first order, then
each pointer with identify the most deeply nested branch. Note also that edges

that do not participate in loops or branches will be structured as goto statements.

List of References

[1] E. W. Dijkistra, Notes on Structured Programming. New York: Academic
Press, 1972, pp. 1-82.

11

CHAPTER 4

Data Type Analysis

In the context of decompilation, data type analysis can be considered to be
a two-step process. The first step is to partition the uses/definitions of memory
locations and registers into variables; high-level language constructs that have a
specific data type, where type is either a primitive data type such as int, float,
char, or an abstract data type such as an array or a struct. The second step is
to select specific data types for those variables that are as abstract as possible

without violating the semantics of the machine language.

4.1 Criteria for Evaluation

As is the case with control flow analysis, there is no known precedent for
evaluating a decompiler’s data type analysis. Maximizing the number of primitive
variables would wrongly reward fragmented decompilations, such as one that as-
signs a variable to every use or definition of a register or memory location. On
the other hand, minimizing the number of primitive variables would reward de-
compilations that make no effort to split variables into live ranges. However, since
the objective of a decompiler is to develop a more structured representation of a
program, it follows logically that a highly structured set of variables is more desir-
able than an unstructured set of variables. This thesis proposes the use of levels of
nesting within the fields of abstract data types as a quantifiable measurement of
progress for a data type analysis. This criterion rewards analyses that detect live
ranges for variables, since a precise type can be assigned to those types, which is
a necessary prerequisite in determining if one variable is in fact a field of a struc-
ture or array. At the same time, the criterion does not reward a decompiler that

splurges on variables, since none of these variables can properly be represented as

12

abstract data types.

4.2 Challenges of Data Type Analysis
Determining the set of variables for a function, and the type of those variables,
is an extremely valuable part of any decompilation. However, several factors in

the x86 instruction set complicate type analysis

4.2.1 Aliasing

x86 is a load /store architecture. This gives rise to the possibility that a value
may be referenced in more than one register. Since SPADE does not implement
an alias analysis, it is very difficult to infer behavior of a type based on the uses of
that variable, because that same variable may be used in a different way through

a different alias.

Consider the following example:

1. mov %eax, 0x401050
2. mov %ebx, %ecx

3. mov (%ebx), 5

4.

mov Y%edx, (%eax)

%heax is loaded with a constant value on line 1. That value is dereferenced
on line 4, meaning that %eax is a pointer to some value. However, %ebx is loaded
with an unknown value from %ecx on line 2.If %,ecx contains 0x401050, then %ebx,
hecx, and %eax all alias the same value at the end of statement 2. When the
value pointed to be %ebx is modified on line 3, the effect of line 4 may be effected

if %ebx aliases %eax

In situations where a truly unknown value is dereferenced, as in the code

snippet above, the special value UNKNOWN will be assigned from the unknown value.

13

SPADE will be fall back on an extremely conservative analysis where all possible
values that the pointer could alias will lose their type information. If an advanced
alias analysis algorithm were dropped into the system, the UNKNOWN value could
be replaced with a set of possible locations pointed to. In that case, less type

information would be lost.

4.2.2 Bookkeeping Code

Assembly /machine code introduce a bookkeeping code to reserve space for
arguments to functions and local variables. Since much of this bookkeeping is not
related to an abstraction of the function, this stack code should not appear in a
high-level representation. SPADE recognizes the depth of a stack by measuring
the contribution each instruction makes to the stack using the existing PLTO
use-depth and kill-depth analyses. If a function is well-behaved, it has a known
number of stack slots that can be evaluated as memory locations just as though
they were on the heap. However, the lack of an alias analysis in SPADE prevents

bookkeeping information from being removed from the high-level output.

4.3 Primitive Type Analysis

The SPADE system uses an iterative analysis to abstract a set of local variables
on a per function basis and a set of global variables that can be accessed by each
function. The initial set of variables consists of 1 variable for each register used in a
function and 1 variable for each distinct memory location in that function. This is
an overly conservative estimate of types that does not take into account the concept
of live ranges, namely that a register may be involved in some computation and
may then have its value redefined for use in a completely different computation.
While keeping a one to one correspondence between a memory location/register

and a variable is a tolerable approximation for small examples, it does not prove

14

sufficient for larger cases.

4.3.1 Integer Types
Each integer register and memory location begins with the void * type. If it
can be determined that an integer register or the contents of a memory location

are never dereferenced, then the type of that variable is narrowed to int.

4.3.2 Floating Point Types
If a memory location is loaded into a floating point register, the contents of
that memory location are typed float. Similarly, if a floating point register is
stored at a memory location, that memory location is given the type float.
Use-depth analysis to determine stack slots. Currently a register is consid-
ered a distinct location, but live range is our goal. Abstract data type analysis.

Amalgamate primitive types based on control flow.

4.4 Abstract Type Analysis

This paper introduces a novel technique for building abstract type information
from primitive types. The general idea is that abstract types gain their meaning
from the context in which they are accessed. For example, arrays are data struc-
tures whose elements are accessed iteratively. Structs are data structures whose
elements are accessed off of a common base address. is usually accessed by running
over each element sequentially in a loop. If a user were to program an array with
exactly 2 indices, each of which was accessed completely statically and without
respect to the other index, it would be more accurate to abstract the executable to
represent two distinct values, since they are not being used in any way together.

SPADE will mark a variable as an array when there is a memory access that is
iteratively updated off of a base address. It is theoretically possible to recursively

perform type analysis on the elements of an array, but in practice this technique

15

has never been able to recover a structure more deeply nested than an array of a
primitive type.

Conceptually, structs can be decompiled using a similar heuristic to arrays; if
a base address is computed and then a second address is used to index off of that
base address, it is possible to represent the base address as the start of a struct
and the indices as elements thereof. Structs are rarely decompiled, because direct
access to the fields of a struct (instead of using a base and index) appear to be uses
and definitions of unrelated types. This is actually not considered by the author
to be a weakness of the analysis. Rather, it fits with the design goal of this thesis

to abstract machine code, rather than reverse engineer it.

4.5 Global Memory Analysis

In a CISC architecture like IA32 that supports x86-32, values that have scope
outside of a function will rarely, if ever, be kept in register. Therefore, absolute
memory addresses that are dereferenced and used as data are heuristically defined
to be global memory locations. In situations where a global variable does live in
a register, it should be considered to be passed in as an argument to any function

that uses that variable.

4.6 Argument Analysis

If use/def information is present for a function, there will be a set of variables
for which the underlying registers and memory locations are used in a function
before being defined. Assuming that global memory is correctly identified and

ignored, the remaining values will have been passed in as arguments to the function.

16

CHAPTER 5

Results

5.1 Control Flow Improvement

As mentioned in Chapter 3, minimizing non-commenting source statements

can be used as a quantitative measurement for how much progress has been made

from low-level code to high-level code. For SPADE, this was done by taking the

number of statements from the disassemnbly without any abstraction or improve-

ment whatsoever and comparing it to the number of statements with as much

abstraction and improvement as possible. These numbers are shown here:

Decompilation Comparison

Program Before Improvement | After Improvement | Percent Reduction
AcroRd32.exe 3111 2889 7.1
bzip2.exe 18472 18347 0.7
gimp-2.2.exe 25613 15032 41.3
iPodService.exe 46625 40996 12.1
moviemk.exe 628388 19634 96.9
PictureViewer.exe 27619 24474 11.4
RAWImage.exe 60927 24841 59.2
SDViewerDSC.exe 13754 9825 28.6
SlideShow 79065 54458 31.1
winamp 63123 54783 13.2
YahooMessenger.exe | 694377 50305 92.8
ZoomBrowser.exe 4058 3370 17.0

17

It is also interesting to consider SPADE’s result against that of other decom-
pilers. Three decompilers were tested over the programs listed above: SPADE,
REC, and boomerang. Of the test cases listed in the previous table, boomerang
fails to provide output an all but three test programs, so it has not been shown
for comparison.

One problem faced by a researcher attempting to compare decompilations is
that each decompiler relies on its own disassembly techniques. Attempting to count
the number of non-commenting source statements relies heavily on the quality of
these techniques, which varies widely. A figure that is more robust to varying
disassemblies is to determine the number of control flow structures (NCFS) that
are recognized by each decompiler over the total number of source statements
that it disassembles (NCSS). The following table summarizes the results of this
comparison, over all those test cases for which both REC and SPADE provide

reasonable disassemblies:

Decompilation Comparison

Program SPADE | SPADE | REC REC | SPADE REC
NCSS NCFS | NCSS | NCFS | NCFS/NCSS | NCFS/NCSS
AcroRd32.exe 4315 269 3126 252 0.062 0.081
bzip2.exe 25060 2804 96918 | 1999 | 0.112 0.021
gimp-2.2.exe 18195 1513 1271 50 0.083 0.039
iPodService.exe 42393 328 362610 | 6449 | 0.008 0.018
PictureViewer.exe 25235 195 92946 | 1394 0.008 0.015
RAWImage.exe 30910 2863 4275 186 0.093 0.044
SDViewerDSC.exe 32754 885 3399 256 0.064 0.075
YahooMessenger.exe | 68568 3780 364446 | 5182 | 0.053 0.041
ZoomBrowser.exe 4763 368 65016 | 1227 0.077 0.019

18

5.2 Data Improvement

To the knowledge of the author, no other decompiler exists that is capable
of inferring type information reliably. Although SPADE proposes a technique for
imposing primitive and complex types on a binary, memory references cannot be
perfectly analyzed. Furthermore, neither SPADE nor REC has an alias analysis
system capable of reducing the possible locations to a tractable set of values.
However, in limited cases, as described in the previous sections on type analysis,
some heuristic methods can be applied to show a memory location as an abstract
data structure.

SPADE cannot guarantee that some function will not be reached into by
another function and have data modified in a way that violates its type constraints.
As such, it is not safe to impose a particular abstract data type on a given memory
location in the test cases presented. That being said, there are some assumptions
that SPADE makes to reasonably structure types. If each function is considered
independently (i.e. every function is considered to have disjoint uses and definitions
of registers and stack), then at least one abstract data structure can be found in

each of the test programs of depth 1.

19

CHAPTER 6

Conclusion

Although the SPADE system shows theoretical potential beyond its current
implementation, more analyses need to be implemented in order to correct for large
generalizations that the system currently makes. As it currently stands, SPADE is
comparable to the best known freeware decompiler and superior to the best known
open-source decompiler. The remainder of this section will explore the major areas

for improvement on SPADE:

6.1 Liveness Analysis

The largest problem for the type analysis in SPADE stems from the conglom-
eration of all uses and definitions of a register into a single variable. Because
registers are used so frequently in so many different capacities, SPADE is overly

conservative with the types that can be assigned to variables.

6.2 Function Argument Analysis

SPADE’s inability to recognize function arguments compounds the problem
with variable recognition. Since there is no guarantee that variables are killed
across function bodies, the type of a register or memory location is polluted by

being used in different ways in different functions.

6.3 Expression Amalgamation

As minimizing non-commenting source statements is the criterion for the con-
trol flow analysis, a useful analysis to add to SPADE would be to determine when
one expression is a subexpression of another and combine them into a single high-
level expression. This would eliminate the appearance of intermediate computa-

tions as independent statements and therefore increase both readability and non-

20

commenting source statements score.

21

BIBLIOGRAPHY

Aho, A. V., Sethi, R., and Ullman, J. D., Compilers: Principles, Techniques, and
Tools. Addison-Wesley Publishing Company, 1986.

Allen, F. E., “Control flow analysis,” in ACM SIGPLAN Notices. ACM, 1970.

Breuer, P. T. and Bowen, J. P., “Decompilation: the enumeration of types and
grammars,” ACM TOPLAS, pp. 16131647, 1994.

Cifuentes, C., “Reverse compilation techniques,” Ph.D. dissertation, Queensland
University of Technology, 1978.

Dijkistra, E. W., Notes on Structured Programming. New York: Academic Press,
1972, pp. 1-82.

Mycroft, A., “Type-based decompilation,” Furopean Symposium On Programming,
Lecture Notes in Computer Science, 1999.

Schwarz, B., Debray, S. K., Andrews, G. R., and Legendre, M., “Plto: A link-time
optimizer for the Intel IA-32 architecture,” Proc. 2001 Workshop on Binary
Translation (WTB-2001), 2001.

22

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	Introduction
	Program Analysis
	Control Flow Graphs

	Motivation
	The importance of understanding machine code
	The difficulty in reading machine code directly
	Related Work
	List of References

	Overview
	Disassembler
	Abstractor
	Code Generator
	List of References

	Control Flow Analysis
	Criteria for Evaluation
	Jump conditions
	Loops
	Acyclic Control Flow
	List of References

	Data Type Analysis
	Criteria for Evaluation
	Challenges of Data Type Analysis
	Aliasing
	Bookkeeping Code

	Primitive Type Analysis
	Integer Types
	Floating Point Types

	Abstract Type Analysis
	Global Memory Analysis
	Argument Analysis

	Results
	Control Flow Improvement
	Data Improvement

	Conclusion
	Liveness Analysis
	Function Argument Analysis
	Expression Amalgamation

	BIBLIOGRAPHY

