AppENDIX C

Operators and
Predefined Functions

SR provides a rich set of operators and predefined functions, both of which
are used in expressions. This appendix summarizes the operators and
describes the meaning and use of each predefined function.

Operators

The table on the following pages lists all of SR’s operators. These are listed in
groups based on precedence and associativity. The first two groups consist of
the unary postfix and prefix operators. The other groups consist of binary
operators. The table also indicates allowed operand types for each operator.
See Chapter 2 for further details and examples (except for the ? operator,
which was introduced in Chapter 11).

The operators within a group have the same precedence. The groups
themselves are listed in decreasing order of precedence. Thus postfix oper-
ators have the highest precedence, followed by prefix operators, and so on;
assignment operators have the lowest precedence.

The operators within a group of binary operators also have the same
associativity. Most of the binary operators are left associative, which means
that operands are evaluated left to right in an expression involving operators
of the same precedence. For example, a*b/ c is evaluated as (a*b)/c. The
exponentiation and assignment operators are right associative.

Parentheses can, as usual, be placed around an expression to give it the
highest precedence. Function invocations have precedence above the postfix
operators. The dot “operator,” which is used to reference fields of records and
unions and to qualify imported names, has precedence equal to that of the
postfix operators.

293

294

Appendix C

Operator Operator Name Operand Types

++ postincrement ordered, real, pointer

-- postdecrement ordered, real, pointer

B pointer dereference pointer

[...] subscript or slice array or string

not,”~ logical/bit-wise complement boolean, integer

+ unary plus (no effect) integer, real

- unary negation integer, real

++ preincrement ordered, real, pointer

-- predecrement ordered, real, pointer

@ address of any variable

? number of invocations operation

*x exponentiation integer, real

* multiplication integer, real

/ division integer, real

% remainder integer, real

nod modulus integer, real

+ plus integer, real, pointer

- minus integer, real, pointer

Il concatenation string, character

<< left shift integer

>> right shift integer

= equal ordered, real, string, pointer,
capability

=, "= not equal ordered, real, string, pointer,
capability

> greater than ordered, real, string

< less than ordered, real, string

>= greater than or equal ordered, real, string

<= less than or equal ordered, real, string

and, & logical/bit-wise and boolean, integer

or, | logical/bit-wise or boolean, integer

xor logical/bit-wise exclusive or boolean, integer

assign

all

Operators and Predefined Functions 295

D= swap all

+: = increment, then assign integer, real, pointer
- = decrement, then assign integer, real, pointer
= multiply, then assign integer, real

/.= divide, then assign integer, real

% = remainder, then assign integer, real

**, = exponentiate, then assign integer, real

|: = or, then assign boolean, integer

& = and, then assign boolean, integer

I = concatenate, then assign string, character

<< = left shift, then assign integer

>> = right shift, then assign integer

Table C.1. Operators in decreasing order of precedence (by groups).

Basic Functions

The following functions can be applied to arguments having the types
specified. (Strictly speaking, | ow, hi gh, and new are not functions; their
names are keywords and their arguments are type names, not expressions.)

abs(x)

The absolute value of x. Defined for integers and reals.
max(x1l, ..., xn)

mn(xl, ..., xn)

The maximum or minimum of the list of arguments. Defined for ordered
types and reals. All arguments must be of the same type, except that
integers and reals can be mixed (in which case the integers are implicitly
converted to reals and the result is a real).

pred(x)

succ(x)

The predecessor or successor of x. Defined for ordered types.
| oW T)

hi gh(T)

The smallest or largest value of type T. Defined for ordered types and reals;
| ow(real) is the smallest representable real value greater than 0.

296 Appendix C

[b(a, n)
ub(a, n)

The lower or upper bound of range n of array a. Argument n is optional; the
default value is 1. If n is present, it must be an integer literal.
| engt h('s)

The number of characters in string s.

max| engt h(s)

The maximum number of characters that can be stored in string s.

new(T)

Allocates storage for a new object of type T and returns a pointer to it.

free(p)

Frees the object pointed to by pointer p; the object must have been allocated
by new(T).

Math Functions

The following functions take real arguments—or integers by the implicit
conversion rule—and they return a real result. For the trigonometric
functions, angles are measured in radians; the return ranges are consistent
with ANSI C [ANSI 1989]. In most cases SR just calls C library routines
directly, so the handling of erroneous arguments is system dependent.

sqrt(x)

The square root of x, for non-negative x.

[og(x, b)

The logarithm of x with respect to base b, for x >0 and b > 1. Argument b is
optional; the default value is the base e of the natural logarithms (i.e.,
2.7182...).

exp(x, b)

The value of b raised to the power x; this is equivalent to b** x, except that
the result is always real. Argument b is optional; the default value is the
base e of the natural logarithms (i.e., 2.7182...).

Operators and Predefined Functions 297

ceil (x)
floor(x)

The smallest integer not less than x or the largest integer not greater than x.
Both functions return real results.

round(x)

The integer nearest to x (returned as a real). If x is halfway between two
integers, the real equivalent of the even integer is returned.

sin(r)
cos(r)
tan(r)

The sine, cosine, or tangent of r .

asi n(x)
acos(x)
atan(x,y)

The arc sine or arc cosine of X, or the arc tangent of X/ y. For asi n, X must be
between -1 and 1, and the result is between -1/2 and W2. For acos, x must
be between -1 and 1, and the result is between 0 and 1. For at an, argument
y is optional (the default value is 1), either x or y can be zero (but not both),
and the result is between —1Tand 1T

Random Number Generation

The following functions produce sequences of (pseudo-) random numbers. A
sequence is not reproducible unless it is explicitly seeded with a nonzero
value.

randon()
r andoni ub)
randon{| b, ub)

The first function returns a random number r such that 0.0 <r < 1.0. The
second returns an r such that 0.0 <r < ub. The third returns an r such that
I b<r <ub.

seed(x)

Seeds the random number generator with real value x. If x is zero, an
irreproducible value is used.

298 Appendix C

Processes, Resources, and Virtual Machines

The following functions deal with process priorities, capabilities for resources
and virtual machines, and the mapping from virtual to physical machines in
a distributed program.

setpriority(n)

Sets the current process’s priority to integer value n. This will cause the
current process to relinquish the CPU to a higher-priority task.

nmypriority()

Returns the executing process’s current priority.

nmyr esour ce()

Returns a capability for the resource in which the function is called.

myvn()

Returns a capability for the virtual machine on which the function is called.

nmymachi ne()

Returns the integer number of the physical machine on which the function is
called. By convention, program execution begins on machine 0. Numbers of
other machines are installation dependent; see Appendix D for details.

| ocat e(x, s)
| ocate(x, s, p)

Defines integer value X to be synonymous with the network node (machine)
named by string s when used in create vn() on x. If argument p is
present, it is a string specifying a pathname that will be used to load the
executable program on machine x; see Appendix D for details.

Timing Functions

SR provides two functions that enable a program to determine how long it
has been executing or to delay execution. The first is useful for timing
program execution; the second is used to delay a process.

age()

Returns an integer that gives the elapsed time, in milliseconds, since the local
virtual machine was created.

Operators and Predefined Functions 299

nap(nmsec)

Blocks the executing process for integer value msec milliseconds. Resched-
ules the executing process if nsec is zero or negative; this may or may not
cause the process to be preempted, depending on the existence of other ready
processes and their priorities.

Type Conversion Functions

SR provides several functions for converting (casting) values of one type into
those of another. Values can be converted to and from types i nt, real,
char, enum bool, ptr, string, and []char (array of char). All com-
binations are possible, although some (e.g., bool to pt r) make little sense.

Conversion functions are also associated with user-defined types that are
equivalent to the above types. In addition, a record constructor function is
implicitly associated with each user-defined record type.

The conversion functions have no effect when given an argument of the
same type as that returned by the function; e.g., i nt (5) returns 5. In a
conversion from string or []char to anything other than string or
[]1char, both leading and trailing whitespace are discarded before interpre-
tation; the whitespace characters are blank, tab, newline, return, vertical tab,
and formfeed. When converting to and from ordered types, values of type
char are viewed by the conversion functions as small integers, not as short
strings.

i nt (x)

The return value depends on the type of x, as follows:

real integer portion of X, which must not cause overflow
char integer value of X, with no sign extension

bool 1 for true, O for false

enum integer value of x; enumeration literals start at 0
ptr integer value of the address of x

string converted value; string must be a valid integer literal,
possibly with a leading - or + sign;
octal and hexadecimal literals are allowed

[]char same asforstring

real (x)

The return value depends on the type of X, as shown in the table at the top of
the next page.

300 Appendix C

i nt real equivalent of x

char real equivalent of i nt (x)
bool real equivalent of i nt (x)
enum real equivalent of i nt (x)
ptr real equivalent of i nt (x)

string converted value according to rules of C’s scanf ("% f")
[]char converted value according to rules of C’s scanf ("% f")

char (x)

The return value depends on the type of x, as follows:

i nt character constructed from low order 8 bits of x;
the discarded bits must be all 0 or all 1

real same as char (i nt (x))

enum same as char (i nt (x))

bool same as char (i nt (x))

ptr same as char (i nt (x))

string first non-whitespace character in x; returns \ 0
if there is no such character
[]char same asforstring

bool (x)

The return value depends on the type of x, as follows:

i nt true if X # 0; false otherwise

r eal true if i nt (x) # 0; false otherwise
char true if i nt (x) # 0; false otherwise
enum true if i nt (x) # 0; false otherwise
ptr true if x # nul | ; false otherwise

string trueifxis"t" or"true";falseifxis"f" or"fal se";
fatal error if x is any other value
the comparison is case insensitive

[]char same asforstring

string(x)

Returns a string formatted according to the following rules, which depend on
the type of x:

Operators and Predefined Functions 301

[1char
char
int
enum

r eal
bool

ptr

char s(x)

the equivalent string

a one-element string containing the character

a string consisting of the equivalent decimal number

a string consisting of an integer literal that specifies
the position of enumeration literal x in the type

a string consisting of an equivalent real literal

returns "t rue" or "fal se", depending on the value of x

if X is a null pointer, returns " ==nul | ==" ; otherwise
returns the address of x as a string of eight
hexadecimal digits

Returns the same result as string(x), but the result is an array of
characters instead of a string. Note that char s is a true predefined function,
not a language keyword like previous conversion functions.

T(x)

T is the name of a user-defined type. If T names a type equivalent to one of
the following, the effect is as indicated:

int
real
char
bool
enum

string
[1char
rec

same as i nt (x)

same as r eal (x)

same as char (x)

same as bool (x)

same as e(i nt (X)), where e is the name of the
equivalent enumeration type; X must be a number,
not an enumeration literal

same as st ri ng(x) ; resulting length must be legal for T

same as char s(x) ; resulting length must be legal for T

constructs a record of type T; in this case, the conversion
function has one argument for each field of type T

If T names a type equivalent to a pointer type p, the effect depends on the
type of X, as follows:

string

[1char
others

if X is equal to " ==nul | ==" (ignoring whitespace), then
return nul | ; otherwise interpret x as a string of
hexadecimal digits and cast that number to type T

same as for stri ng

return i nt (x) converted to an address

302 Appendix C

File Access Functions

The following functions are used to open, close, or remove a file; to flush a file
buffer; or to adjust the read/write pointer on a random access file.

open(pat hname, node)

Opens file pat hnane and returns a file descriptor, which is a value of type
file. Returns nul | if the file cannot be opened. The value of pat hnane is a
string containing an absolute or relative file name. If nbde is READ, an
existing file is opened for reading. If mode is WRI TE, a new file is created, or
an existing file is truncated. If mode is READWRI TE, an existing file is opened
for both reading and writing. In all cases, the read/write pointer starts at the
beginning of the file. For files opened in READWRI TE mode, seek must be
used when switching access modes. (Files corresponding to terminals that
are to be read and written should be opened twice: once for reading from the
keyboard and once for writing to the display.)

f1ush(f)

Flushes the output buffers of file f, which should be open for writing. An
unsuccessful flush is a fatal error. Output statements implicitly flush
output buffers, so f | ush is not actually needed.

cl ose(f)
Closes file f , which should be open. Open files are implicitly closed when a
program terminates. An unsuccessful cl ose is a fatal error.

renove(pat hnane)

Removes file pat hnanme from the file system and returns true if successful,
false if not. The value of pat hnane is a string containing an absolute or
relative file name. If the file is open, its contents will not disappear until the
file is closed.

seek(f, stype, of fset)

Seeks in file f and returns the new position of the read/write pointer. The
type of seek is determined by the value of stype. If stype is ABSOLUTE,
then the read/write pointer is set to of fset. If stype is RELATI VE, then
of f set is added to the read/write pointer. If stype is EXTEND, then the
read/write pointer is set to the end of the file plus of f set .

wher e(f)

Returns the current position of the read/write pointer in file f .

Operators and Predefined Functions 303

Input/Output Functions

SR provides three groups of input/output functions. The first treats a file as a
stream of characters, the second provides implicit type conversions and
formatting, the third supports user-specified formatting. With the formatting
functions, if a particular formatting specification is not supported by the
underlying C implementation, the mismatch is not detected and program
behavior is unpredictable. Strings (and character arrays) used with
formatted I/0 may not contain the ASCII NUL character (\ 0).

When an SR process calls an input function, it delays until the function
returns; however, another process may execute in the meantime. On the
other hand, when a process calls an output function, it retains control of the
processor. A process is not preempted when doing output, so write state-
ments added for debugging will not affect the order in which processes
execute. The - A option to the SR linker srl makes output asynchronous; in
this case a process might be preempted while waiting for output to complete.

get (str)
get (f,str)

Reads characters from st di n or file f and stores them in str. Argument
str is either a string variable or an array of characters. If str is a string
and the input file contains at least max| engt h(str) more characters, that
many are read. Otherwise, all remaining characters are read. If at least one
character was read, get returns a count of the number of characters that
were read and sets the length of str to that value. If end-of-file is
encountered immediately, no characters are read and get returns EOF. The
argument to get can also be a character array, in which case the entire array
is filled (unless ECF is encountered).

put (str)
put (f,str)

Writes | engt h(str) characters to st dout or file f. Argument str can also
be an array of characters, in which case the entire array is written.

read(x,...)
read(f,x,...)

Reads values from st di n or file f, stores them in the arguments, and returns
the number of values successfully read. If end-of-file is encountered before
any value is read, r ead returns EOF. It returns O if there is an error reading
the first value.

The arguments are assigned values in order. The value assigned to
argument x depends on its type. If x is a string or array of characters, the
next input line is read into Xx. The newline at the end of the line is discarded,

304 Appendix C

not stored. If the line is too long, it is truncated, and the rest of the line
remains unread. If x is a string, its length is set. If X is of type [] char and
the input line is shorter than the length of the array, extra elements of x are
filled with blanks.

If x is any other type T, the next token is read as a string s and converted
to T using type-conversion function T(s). A token is defined as a sequence of
non-whitespace characters terminated by whitespace. Leading whitespace
characters are skipped; trailing whitespace characters are consumed and
discarded up to and including the first newline character. If the conversion
T(s) succeeds, read continues with the next argument (if any). If the
conversion fails, r ead returns immediately and x is not modified.

wite(x,...)
wite(f,x,...)
wites(x,...)
wites(f,x,...)

Formats and writes the arguments to st dout or file f . For each argument X,
the value written is string(x). For write, one space is written between
each pair of output values and a newline is written after the last value. No
implicit spaces or newline characters are written by wri t es.

printf(format,x,...)
printf(f,format,x,...)

Prints its arguments on st dout or file f using the format specified by string
value f ormat. The format specification must be acceptable to C’s printf
function, except that a new specification has been added for SR’s boolean
type. An argument x of the correct type must be supplied for each conversion
character. The format characters and corresponding argument types are

%, % , %0, %, %, %X, Y%u i nt or enum

%, ¥YB bool

% char

% stringor[]char

% , %, Y&, %g, %5 real (orint,by conversion rules)
%p any pointer

% not allowed by SR

%0 (no argument)

Format %g is an alternate form of %©. Format % writes t rue or f al se, and
98 writes TRUE or FALSE; width and precision are interpreted as with ¥%s.
Pointers are written in hexadecimal using %98X format because %p is not yet
supported by all C implementations.

Operators and Predefined Functions 305

All of the ANSI C “flags” ("-+ O#") are allowed and have the same
meanings. None of the word size modifiers (" hl L") is allowed, however. Use
of * as a width or precision specifier is also not allowed. Each conversion is
limited to a maximum of 509 characters (as in ANSI C).

sprintf(buffer,formt,x...)

Formats and writes its arguments like pri nt f, but the output is placed in
string variable buf fer. The length of buffer is set to the length of the
output string; it is an error if buf f er is too small.

scanf (format, x,...)
scanf (f,format,x,...)

Reads formatted input from st di n or file f, stores it in arguments x, and
returns the number of items converted and assigned. If end-of-file is reached
before a successful conversion is performed, EOF is returned. The input
format is specified by string value f or mat , which must be acceptable to C’s
scanf function.

Field specifiers in f or mat are of the form "% *] [digits] $", where $ is
one of the formats described below. None of C’s word size modifiers ("hl L") is
allowed. The optional digits field specifies the maximum number of
characters to be scanned for this field. The optional * indicates suppression;
the input will be read but no assignment will be made. Even if assignment is
suppressed, format checking still occurs, so invalid input will cause a failure.

An argument x of the correct type must be supplied for each conversion
character in f or mat not accompanied by the * assignment-suppression flag.
Arguments must be SR variables, not pointers to variables as in C. The
format characters and corresponding types are

%, % , %0, %, Yu, % int

% bool

%, % , %9 real

%,%...],% stringor[]char

%,% ... char if field width is 1

% any pointer (default input format ¥8x)
% not allowed by SR

%0 (no argument)

The input expected for each kind of format is:

%l, % decimal integer

% SR integer literal (decimal, octal, or hexadecimal)

%, % octal integer, with or without a trailing q or Q

x hexadecimal integer, with or without a trailing x or X

306 Appendix C

% true, fal se, TRUE, or FALSE
% an address specified by a string of hexadecimal digits,
or the special string ==nul | == for a null pointer

Each of the above formats may have an optional field-width specifier. If a
field width is specified, up to that many characters are read. For example,
given a format of ¥6s and input string " abr ahani', the argument string will
be assigned " abr aha". The next character read will be " ni'.

The default field width for the integer, real and s formats is the ANSI
limit of 512. For the p format, the default is 8. For c, it is 1. The b format
has a variable default length: 4 characters for "t rue" and 5 for " f al se".

For each argument, scanf consumes input until the field width is
exhausted or a character is read that is not part of a legal value. For
example, consider the string " 3BACGELS" scanned using a " % " format. This
reads 3BA because 3BA is an initial substring of the legal value 3BAx. But
because 3BA is not legal by itself, nothing is assigned to the corresponding
variable, and scanf returns on the mismatch. Subsequent reads begin at the
letter G

If argument x is a string variable and the scanned input string is longer
than the maximum length of x, then the input string is truncated before
being assigned to x. No warning is given of this, so if in doubt use the
optional field width specifier.

sscanf (buffer,format, x...)

Reads and formats input like scanf, but the input is read from string value
buffer.

Accessing Command-Line Arguments

Two operations provide access to the arguments of the UNIX command that
invoked execution of an SR program.

getarg(n, x)

Reads argument n into variable x. If n is 0, x is assigned the command name
itself (ar gv[0]). If argument n does not exist, get ar g returns EOF.

If x is of type string or [] char, get ar g copies argument n into x until
either the argument is consumed or x is filled. In this case get ar g returns
the number of characters that were copied. If x is a string, its length is set to
this same value.

If x is of any other type T, the command-line argument is read as a string
s, converted to type T using the rules for conversion function T(s), and then
assigned to x. If conversion succeeds, get ar g returns 1. If it fails, get arg
returns 0 and x is not modified.

Operators and Predefined Functions 307

numar gs()

Returns the number of command-line arguments, not counting the command
name.

External Operations

As described in Section 6.4, external operations provide access to procedures
or functions written in C or a language compatible with the C calling
sequence. (The name of an external should not begin with sr _ since names of
that form are used by the SR implementation.) Like an op, an external may
be invoked by either call or send statements. An external may also have a
return specification and hence may be used to invoke a C function.

The declaration of an external specifies the type of each argument and
how it is passed. An invocation block is allocated to pass parameters to and
from an external. Before an external is invoked, val and var parameters are
copied into the invocation block; for ref parameters, a pointer to the
parameter is copied into the invocation block. If an external is called (not
sent), var and r es parameters are copied back when the call completes.

The following table indicates the SR data types that can be passed to an
external only by value or by reference; these should not be declared as var or
r es parameters.

SR type Passed by valas Passed by ref as

bool i nt (char *)
char i nt (char *)
i nt i nt (int *)
enum i nt (int *)
r eal doubl e (doubl e *)
file (FILE *) (FILE **)
ptr (char *) (char **)

All four parameter passing modes may be used for string, rec, and
array types. To an external, they always appear to be passed by reference
using a (char *) pointer. For a string declared as a val or var parameter,
SR ensures that the string is terminated by a '\ 0’ character before the
external is invoked.

Care should be taken when passing an external an array of strings or
array of records because individual elements are not converted. In this case
the programmer needs to determine the internal representation used by the
SR implementation.

For externals that have return specifications, the allowed SR return types
and the corresponding C function types are as follows:

308 Appendix C

SR type C function type

bool i nt

char i nt

i nt i nt

enum i nt

r eal doubl e

file (FILE *)

ptr (char *) or(void *)

string (char *)

If a C function returns a pointer to a null-terminated character string, it may
be described in SR as returning stri ng[n] as long as n is large enough to
accept the largest string ever expected. (If n turns out to be insufficiently
large, the returned string will be silently truncated.) If the C function
returns a null pointer, an empty string will be returned to the SR program.
For return values—and var or r es parameters—declared as stri ng, the C
strl en() function is called implicitly to set the SR string length after the C
function returns.

