A FRAMEWORK FOR MONITORING PROGRAM
EXECUTION

Clinton L ewis Jeffery

TR 93-21

July 30, 1993

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

This work was supported in part by the National Science Foundation under Grant CCR-8713690 and a grant from the AT& T
Research Foundation.

Copyright (© Clinton Lewis Jeffery 1993

Thistechnical report has been submitted as a dissertation
to the faculty of the Department of Computer Sciencein
partial fulfillment of the requirements for the degree
of Doctor of Philosophy in the Graduate College of
the University of Arizona

TABLE OF CONTENTS

ABSTRACT . . . o e e 1
CHAPTER 1: Introduction e 2
1.1 Understandingprogrambehavioro 2
1.2 Typesof programunderstandingtools oL 3
13 Scopeofthisresearch 3
14 Dissetationcontributions oL 5
15 Oveviewof thisdissertation e 6
CHAPTER 2: Related Work o e 7
2.1 Informationsourcesandaccessmethods oL 7
22 ExecutionModels 8
2.3 User-interactionfacilities. 8
24 Run-timeinstrumentationsystems L L 9
241 DDbX. . . 9

242 Dalek . . . e 9

243 Parasight e 10

244 FIELD o e 10

25 Manud instrumentationsystems L L. oL e 10
251 BALSA . . e 10

252 Smaltalk 11

253 TaNQgo. e e e e e e 11

2.6 Interpreterinstrumentationo Lo Lo e 11
261 SNOBOL4 e 11

26.2 PECAN. . . . e 12

263 KAESTLEandFooScape o ittt 12

264 Dewlap e 12

265 SeePS .. e 12

266 Dynascope L 13

27 Instrumentingcompilers L L 13
271 VOYEUr e e e e e e 13

272 UW lllustratingcompiler Lo 13

273 SMLD . . e 14

2.8 Featuresin existing systemsthat facilitate monitor development 14
CHAPTER 3: Overview of theFramework 15
31 Framework inventory e 15
3.2 Standard execution monitoringscenario 16

3.3

Framework characteristics e e e e 18

34 Comparisonwithearliersystems. L L 22

CHAPTER 4: A Multi-Taskinglcon Interpreter 24
41 IntroduCtion e e e 24

42 COBXPrESSIONS .« . v v v ot i e e e e e e e e e e 24
4.3 MTlconpreiminary terminology e 25
44 Tasks: anextended co-expressionmodelo Lo 26
45 Taskereation e e e 26
46 Runningother programs e e e 27
47 DataaCtessS. e e e e 27
CHAPTER 5: Execution MonitoringinMT lcon 30
51 Terminology o 30

52 Obtainingevents L 31
53 Instrumentationinthelconinterpreter L. oL oL 32

54 Artificid events 33
55 Monitoring Techniques. L e 34
5.6 lcongraphicscapabilities L 36
57 Someuseful library procedures.o 37
CHAPTER 6: FollowingtheLocusof Execution 39
6.1 LocationeventS 39
6.2 Asimplelineenumber monitor oL 39
6.3 Alocationprofilescatterplot L 40
CHAPTER 7: Monitoring Procedure and Generator Activity 43
7.1 ActivationTrees oL e e 43
7.2 Ananimated call-result scatterplot oL 46
73 Algae. e 50
CHAPTER 8: MonitoringMemory Usage o ottt it e 54
8.1 Allocationbytype e 54
811 Pinwhed e 54

8.12 NOva . . . o L 56

8.2 Cumulativealocationbytype 57
821 Animatingabargraph 58

822 Pechats. e 60

83 Runningallocationbytype. L 60
8.4 Surviva ratesacrosscollections L. Lo 63
CHAPTER 9: Monitoring StringScanning oot 64
9.1 Oveviewof Stringscanning« oo vt vt i e 64
9.2 SringSCaNNiNgeveNtS o i it e e e e 65
9.3 Absoluteandrelativepositionchanges Lo Lo 65

9.4 Scanning operationsand theenvironmenttree L. 67

95 ConclUSIONS o e e e e e e 70

CHAPTER 10: Monitoring Data Structuresand VariableUsage 71

101 LiSEACCESSES . . . o o o e e e e e e e e 71
10.2 Monitoringvariablereferences L 75
1021 ASSIgNMENteventSo e e e e 75

10.2.2 Monitoringvariablesbyname o Lo oo 75

10.2.3 Monitoringindividual variableso oL oo 76

10.24 Detecting structurevariablereferences 77
CHAPTER 11: Monitor Coordination and Communication 79
11.1 Somemonitoringconfigurationso 79
11.2 Advantagesand disadvantagesof theMCapproach 81
11.3 Eve, anexecution monitor coordinatoro 81
11.4 WritingEMstorununderEve L 82
115 Eveinoperation i e e e e e e e e 83
1151 Computationof theminimal eventset 83

1152 Theeventcodetable 84

1153 Eventhandling 84

1154 EvEsmManloop 85

11.6 Interactiveerror CONVErSION o v v v v it e e e e e e e e e e 85
CHAPTER 12: Performance e e e 87
12.1 Costsof multi-tasking and of interpreter instrumentation. 87
12.2 Relative costs of monitoring different languagefeatures 88
12.3 Limitationsof graphicshardwareand software 89
12.4 Costincurred by monitor coordinators o 90
CHAPTER 13: Conclusionsand FutureWork 91
13.1 Successesof theframework 91
13.2 Limitationsof theframework 92
13.3 Enhancementsand futuredirections oL oL 93
134 Finalthoughts e 95

REFERENCES e e 118

ABSTRACT

Program execution monitors are used to improve human beings understanding of program run-time
behavior in a variety of important applications such as debugging, performance tuning, and the study of
algorithms. Unfortunately, many program execution monitors fail to provide adegquate understanding of
program behavior, and progress in this area of systems software has been slow due to the difficulty of the
task of writing execution monitors.

In high-level programming languages the task of writing execution monitors is made more complex by
features such as non-traditional control flow and complex semantics. Additionally, in many languages, such
as thelcon programming language, a significant part of the execution behavior that various monitors need to
observe occurs in the language run-time system code rather than the source code of the monitored program.

This dissertation presents a framework for monitoring Icon programs that allows rapid devel opment
of execution monitors in the Icon language itself. Monitors have full source-level access to the target
program with which to gather and process execution information, without intrusive modification to the target
executable. Inaddition, theframework supportsthe monitoring of implicit run-time system behavior crucial
to program understanding.

In order to demonstrate its practicality, the framework has been used to implement a collection of
program visualization tools. Program visualization provides graphical feedback about program execution
that allows human beingsto deal with volumes of data more effectively than textual techniques. Ideally, the
user specifies program execution controlsin such tools directly in the graphics used to visualize execution,
employing the same visual language that is used to render the output. Some monitors that exhibit this
characteristic are presented.

CHAPTER 1
I ntroduction

This dissertation presents a framework for monitoring the execution of programs written in the Icon
programming language [Gris90c]. The motivation for this research is a need for better toolsto aid in the
understanding of dynamic aspects of program behavior during various phases of the software life cycle,
including debugging, performance tuning, and maintenance.

This chapter describes these tasks and defines a class of programs called execution monitors that aid
human beings' understanding of program behavior. The chapter concludes with an overview of the rest of
the dissertation and its contribution to the field of execution monitoring.

1.1 Understanding program behavior

Program understanding is a very general topic. Some program understanding systems convey very specific
information about a small portion of a program, such as the workings of a single agorithm. Others
are concerned with explaining the role that a program or a collection of programs play within a larger
computational system. This dissertation addresses a common problem in between these two extremes:
understanding the workings of a single (possibly large) program.

Persons who are confronted by a need to understand a program usually have only two alternatives.
studying the source code, or running the program to see what it does. ldeally, a program would be
understandable using one or the other of these methods; in practice, reading source code is impracticaly
cumbersome for many programs, and construction of test casesto explain program behavior isoften atedious
and speculative undertaking. These difficulties motivate the devel opment of special programs that are used
to help explain the behavior of other programs.

Program understanding systems are used in a variety of applications. The most common motive for
program understanding is debugging. Programs that produce incorrect output or fail to complete their
execution due to bugs are prime candidates for tools that assist program developers and maintainers in
program understanding tasks. A debugger is a program designed specifically to help with the debugging
process. General-purpose program understanding tools are a so used to assist in debugging.

A second magjor application of program understanding systems is performance tuning or performance
debugging. A correct, working program may be of limited usefulnessif its performanceis poor. Freguently
aprogram’s authors or maintai ners can improve execution speed by using different programming techniques
or modifying the program’s agorithms and data structures. By providing an accounting of what resources
the program is using and which sections of code are primarily responsible, performance tuning systems can
direct programmers’ efforts to where they are most needed.

A third application of program understanding is software instruction and orientation. The interna
workings of a program may be of special interest to students|earning important algorithms, data structures,
or programming techniques; thissituation frequently arises when learning anew language. Personsassigned
to maintain or improve a program written by someone else similarly need to orient themselves as to its
general operation. In both of these cases the persons involved may be entirely unfamiliar with the program
source code, and can benefit from information provided by program understanding tools before consulting

source code, or without referring to it at al.

In addition to these established uses for program understanding systems, program understanding tools
can provide language implementors with valuable assistancein the task of languageimplementation tuning.
Program understanding tools that provide information about the execution of programs also directly or
indirectly provide information about the language's implementation. This information can be used to
improve performance or address problems in the implementation.

1.2 Typesof program understanding tools

Programs that provide information about other programs can be separated into two main categories based
on the kind of information they provide. Static analysistools examine the program text and, in conjunction
with knowledge of the language, provide information about a program that is true for all executions of that
program independent of itsinput [Dunn84]. Compiler code optimizers, pretty printers, and syntax-directed
editors frequently employ static analysistechniques.

In general, static information cannot explain program behavior because behavior depends on input data
in addition to the program text. For example, the number of times through aloop may depend on the size
of an input file, or the execution path through a conditional statement may depend on interactive user-input
from akeyboard or mouse.

Dynamic analysistools provideinformation about a specific program execution on a specific set of input
data [Dunn84]. Since dynamic analysis involves extracting information from a running program rather
than its source code, these tools pose implementation problems that are very different from those found in
static analysistools. Another name for a dynamic analysistool is a program execution monitor; a program
execution monitor is aprogram that monitors the execution of another program [Plat81]. Program execution
monitors complement static analysistoolsand provide execution information that static toolscannot, such as
detailsabout the program’s control flow, intermediate resultsthat are computed, or depictionsof internal data
structures as the program runs. On the other hand, static aspects of a program such as variable names often
provide context crucia to the understanding of execution behavior. Good dynamic analysistool sincorporate
staticinformationin support of dynamicinformation. Execution monitorsincludethe source-level debuggers
and profilers commonly bundled with compilers and available on many operating systems.

An execution monitor may either present information to the user as the program executes (immediate
or run-time analysis), or it may present information at some later time such as after execution completes
(post-mortemanalysis). Run-timeanalyzers provideimmediate feedback and allow user direction of thekind
and level of detail of theinformation monitored. In contrast, post-mortem analyzers may perform extensive
computations to condense the execution information and present it in a useful way. The two methods are
not mutually exclusive.

Run-time analysistoolscan further be categorized as passive or interactive. In apassive system, thetool
presents information to the user, but the user has little control over the activity. In an interactive system,
the user may have external control over what information is displayed, or even may be able to modify the
computation being observed or the data being processed.

1.3 Scope of thisresearch

Thisresearch presents aframework that facilitates the devel opment of superior execution monitors, partic-
ularly interactive run-time analysistools for very high-level sequential languages. It isnot concerned with

monitoring techniques for paralel, distributed, or real-time computing systems, although the monitoring of
such systems does require effective sequential monitoring techniques.

This dissertation discusses execution monitors within a well-defined context: the Icon programming
language. Icon is a high-level procedura language that descends primarily from SNOBOL4 and SL5. A
large array of language features, documented extensively el sewhere [Gris90c], make |con very attractivefor
avariety of general-purpose application areas, notably text processing and rapid prototyping. Some of these
features are

e afamiliar syntax reminiscent of Pascal and C,

e generators, goal-directed eval uation, and backtracking,
e arich set of built-in data structures and operations,

e advanced string scanning and text processing facilities,
e run-time type checking and coercion,

e automatic storage management, and

e invocation mechanisms that include variable number of arguments, and argument defaults for built-in
functions.

Icon does not contain the concept of a statement found in most procedural languages. Instead, constructs
such as assignments and if-then-else's that are statements in other languages are expressions that can
produce values for a surrounding expression in Icon; for this reason conventional statement-level program
monitoring is not well-defined in Icon, and statement-oriented linguistic mechanisms are inadequate in
common monitoring situations.

Similarly, the manner in which a program uses Icon’s built-in structured data types, scanning facilities,
and run-time type coercion has a fundamental effect on program execution behavior [Gris92a]. These
language features motivate an orientation in execution monitoring that is more directed towards observing
the language's built-in “primitive” operations and run-time system behavior than would be appropriate for
a lower-level conventiona procedural language; some of the techniques used for Icon are genera, while
othersare not. For example, whilethe technique of monitoring program behavior by instrumenting standard
library calsisapplicableto any language, in C or Pasca there is no incentive to monitor activity during an
addition operator to see what it does. In Icon, integer overflow during addition results in the creation of an
arbitrary precision valuethat is allocated from the heap and might go undetected by a programmer reading
the source code.

Within the context of the Icon language, this research addresses several problems that are common to
any execution monitoring system. The primary tasks of an execution monitor are to collect information
about a program’s execution and present that information to the user in an understandable way. In addition
to the inherent complexity of these tasks, the main problems posed by execution monitoring in very high
level languages are:

Volume — the large amount of data to be processed by the monitor code entails performance problems
both in the gathering of information and in the presentation of that information. Efficient gathering
of information involves selecting the relevant information from the huge pool of available program
behavior data. Efficient presentation of information includes making effective use of the visua

medium to communi cate with the user, aswell as understanding the user’s powers of perception. Even
if itis gathered and presented efficiently, the large amount of information inherent in monitoring tends
to obscure items of interest.

Intrusion — all monitoring systemsalter the execution environment of the program under study; when the
act of monitoring a program changes the behavior under observation, it is called intrusion [Aral 88,
Henr90]. Henry defines control intrusive and data intrusive methods of adding instrumentation to
a program in order to monitor its execution [Henr90]. Control intrusive instrumentation takes the
form of code (such as a procedure call to a monitor routine) embedded within the program. Data
intrusion arises in object-oriented systems in which instrumentation is added by subclassing a class
to be instrumented and overriding its access methods with additional code calls monitor code in
addition to calling the superclass method(s) to perform the normal computation. The term intrusion
has also been used to refer to the execution slowdown imposed by monitoring [Aral88]; in rea-time
and concurrent systems this can render monitoring useless. Since Icon’s application domain does not
include real-time or concurrent programs, this form of intrusion is not considered in thiswork. The
effect of monitoring on execution speed is considered only so far as to establish framework viability
on“rea” lcon programs.

Access — execution monitors often require extensive access to the variables and structuresin the program
being monitored. If the monitor and program being monitored are distinct programs, operating system
constraints may restrict this access, or create performance problems in this area, or both. From the
point of view of the execution monitor author, the access problem may also be reflected by low-level
or cumbersome nhotations used to read or write target program data. A good example of accessisthe
traversal of pointersin data structures: if it requires operating system intervention or a notation other
than that used in the target program source code, the monitor has poor access to the target program
and the task of writing monitors is made difficult. Solutions to the access problem, such as adding
monitor code directly to the program being monitored, often aggravate the intrusion problem.

These problems are universal in execution monitoring and appear repeatedly in the literature. While no
general solutionfor these problemsexists, improved monitoring techniquesmay lessen their severity or solve
them for practical purposeson rea programs. Traditionally the implementation of execution monitors has
been very difficult because the programmers implementing a new monitor necessarily spent a considerable
effort addressing these three problems. The difficulty of implementing monitorsin turn limits or effectively
prevents efforts to improve monitor technology by experimental means.

1.4 Dissertation contributions

The goa of this research is to reduce the difficulty of constructing execution monitors by developing a
practical framework in which monitor construction is relatively easy. The problems of volume, intrusion,
and access motivate the chosen solutions. The central thesis advocated in this research isthe following.

Source-language support for obtaining and presenting execution information is instrumental in
the devel opment of exploratory monitoring capabilitiesin very high-level languages.

The framework developed in this research consists of source-language support for the central act of
gathering execution information. It addressesthe problemsof volume, intrusion, and accessin the following

ways.

Volume — Built-in language features for the central act of gathering execution information provide the
performance that is necessary for effective monitors written in the source language, despite the
generally slower speed of very high-level languages. Dynamic control over theinformation flow from
the program to the monitor is essential for performance.

Intrusion — Language support that gathers execution from the run-time system eliminates the need for
code intrusion. Provision of separate memory allocation areas for the monitor and target program
avoids dataintrusion.

Access — Source language support alows the execution of the monitor and target program in a shared
interpeter and provides full source-level access of the monitor to the target program. The framework
uses a synchronous coroutine execution model within a shared address space, offering significant
advantages without restricting the kinds of monitors that the system supports.

In addition to these features that address core execution monitoring tasks, the framework provides full
separation of the program and the various monitorsthat observeit. Taking the form of dynamic loading and
avirtual monitoring interface, this separation provides the ease of use that is necessary in order to provide
exploratory programming capabilities. The separation allows multiple monitorsto observe a program at the
same time, and allows new monitors to augment or enhance the capabilities provided by existing monitors.

The intent of the framework is to provide exploratory programming capabilities not just for expert
monitor developers, but also for applications programmers who are trying to understand their programs.
Given thisframework and appropriate library support procedures, writing an execution monitor is no more
difficult than writing other applicationsthat involve communication between programs, and oftenis simpler
than writing such applications.

This research is applicable to other high-level languages. It is relevant to most functional, logic, and
object-orientedlanguages. A goodfirst test of theapplicability of the techniquespresented inthisdissertation
to another language is whether the language provides automatic storage management; if it does, the run-
time system probably supports other high-level features and makes up alarge portion of both the language
implementation and the behavior to be monitored. The results presented suggest that designers of such
languages should consider integral support for monitoring, rather than adding it on as an afterthought.

1.5 Overview of thisdissertation

The next chapter describes prior work in the areas of execution monitoring and program visualization.
Following that, the primary objectives of the framework are presented in Chapter 3. Chapter 4 and Chapter
5 present the underlying mechanism developed to support Icon execution monitoring, and the monitoring
instrumentation.

Chapter 6 through Chapter 10 give examples of fundamental monitoring techniques used by many
execution monitors, including data coll ection, presentation and user interaction techniques. These examples,
whilesimple, demonstratethat the framework makes it possibleto devel op useful monitorsin an exploratory
fashion. Chapter 11 discusses monitor communication and gives an example of a coordinator program that
allows independently-written monitors to be run simultaneously. Chapter 12 includestiming measures that
establish the practicality of the framework’s performance. Chapter 13 summarizes the work and discusses
future research areas. Appendicesincludelarger source-code examples.

CHAPTER 2
Related Wor k

This dissertation is related to existing research in two major domains: program execution monitoring,
and program visualization. The research being presented contributesto the first category, but it is designed
to enable new research in the latter category. Consequently, this chapter presents related work in both
areas, with a primary emphasis and organization revolving around the execution monitoring aspects of the
respective systems. Likethiswork, a number of earlier systems contributeto both fields; such systems have
been called graphical debuggers [Dewa86]. Existing systems are characterized in terms of three aspects
that contributeto usability:

information sources and access methods by which monitors observe program behavior,
execution models that describe the relationship between the monitor and the program being monitored, and

user-interaction features such as the information the monitor provides to the user, how information is
presented, and the extent to which the user controls and directs monitor activity.

Severa aspects of theseissues are presented first, followed by discussionsof existing systems.

2.1 Information sourcesand access methods

Severa methods are used to obtain information about program behavior during execution. Information
sources and access methods determine the quality and quantity of the monitoring that can be performed, and
arethusaprimary design factor in monitoring systems. The method used to obtain information islimited by
and often motivates the execution model adopted by a monitoring system. The most common methods are
run-time instrumentation [Lint90], manual instrumentation [Brow84, Stas90], interpreter instrumentation
[Bock86, DewaB6, Masn90], and instrumenting compilers [Henr90]. In addition to various methods of
instrumentation, some systems provide additional access to program variables and other execution informa-
tion. Thisaccess, if it ispresent, often makes it possibleto monitor behavior not explicitly addressed by the
instrumentation.

Run-time instrumentation refers to the modification of the monitored program code immediately prior
to or during execution. Maodifications often consist of overwriting an instruction of interest with a jump
instruction or operating systemtrap. In either case, control temporarily transfers to code that sendsinforma-
tion to the monitor and/or alows the monitor to query the program for information. The code is typically
modified in selective areas of interest, and execution proceeds at full speed in other areas.

Manual instrumentation is the insertion of arbitrary monitoring code by hand into the program being
monitored. Thismethod islabor intensive, and requires an instrumentation effort for each program that must
be monitored, and additional effort when an instrumented program is modified.

Interpreter instrumentation is the insertion of monitoring code into the language interpreter instead of
the program being monitored. The instrumentation can then provide information about the behavior of any
program executed by the interpeter.

Instrumenting compilersinclude preprocessors and code generators that add instrumentation to the code
as they produce output. These systems have the potential of automatically instrumenting any program
in the language that the compiler recognizes. The code they produce is usually much larger than the
non-instrumented code and is usually intended solely for use within the monitoring system.

2.2 Execution Models

Of the many models of the relationship between the monitor and the program being monitored used in
existing systems, three are primary: the one-process model [Brow84, Lond85], the two-process model
[Lint90, Sosi92], and the thread model [Aral88]. In the one-process model, the monitor consistsof alibrary
of procedures linked to the program being monitored or integrated into the run-time system. Thisisthe
simplest, highest-performance arrangement, and it has the advantage that the monitor has convenient access
to the program being monitored. The one-process modd is code intrusive, and errors in the target program
or monitor code can affect each other in critical ways. In addition, the control flow logic within the monitor
is somewhat inside-out, since the monitor is activated strictly through callbacks.

In the two-process model, the monitor is a separate process from the program being monitored. This
reduces or eliminatesthe problemsof code and dataintrusion, at the expense of greatly complicating monitor
access to the state of the program being monitored. This access problem makes monitor construction more
difficult, and frequently entails serious performance problems.

In the thread model, the monitor is a separate thread in a shared address space occupied by the program
and possibly other monitors. This provides many of the benefits as well as some of the drawbacks of both
the one-process model and the two-process model, including the one-process model’s risk that program
errors in the target program or monitor may affect each other and compromise the monitoring results. The
thread model’s potentia concurrency providesdramatically improved performance for monitoring on shared
memory multiprocessorsfor those forms of monitoring that do not precludeit, such as profilers.

2.3 User-interaction facilities

A primary distinguishing characteristic in existing systems is whether they present material as text, or
employ graphicsto present information. A second distinguishing characteristic is whether a system updates
information continuously during execution, or providesinformation during pausesin execution.

User-input facilities also vary in existing systems, from controls that can only start and stop execution
to entire languages that can be used to query about execution information during execution or while the
monitored program is stopped.

In addition to its uses in controlling the rate of execution and in query facilities, user input in some
systems alows the user to modify the program being monitored. This capability is useful in debugging
sessionsin which an error may be repaired or an aternative value may be substituted.

An important class of execution monitors are those that employ program visualization techniques to
provideinformationto the user. Program visualization refersto the use of graphicsto depict program control
and/or data at a particular instant, or to continuously update (animate) a graphic display to show dynamic
behavior as program execution commences. Examples of such tools are the MemMon system for dynamic
storage visualization [Gris89] and the Incense data structure visualization tool [Myer83].

The best-known area of program visualization is the field of agorithm animation. Some of the most
famous examples are Ronald Baecker’'s motion picture, “Sorting Out Sorting” [Baec81], Marc Brown's
research systems BALSA [Brow84] and ZEUS [Brow91], and John Stasko’s Tango [Stas90]. The original

motivation for algorithm animation was to explain an algorithm to an audience for educational purposes.
Since then it has been applied to a number of tasks including algorithm research. Within these contexts,
existing systems have been successful in producing high-quality animations of specific al gorithms.

2.4 Run-timeinstrumentation systems

Representative run-time instrumentation systems include standard source-level debuggers as well as more
genera profiling and monitoring systems that modify the code at run-time.

24.1 Dbx

Dbx isrepresentative of conventional source level debuggers, the most common form of execution monitor
[Lint90]. Source-level debuggersvary widely in their capabilities, but the features of dbx are illustrative of
this class of monitors:

e The basic interface is textual in nature. The user specifies both queries and execution controlsin a
textual command language.

e Execution proceeds, in the default case, just asif the target program were not under the control of the
debugger. Idedlly, the debugger does not perturb the execution at all. Compiling with “debugging
support” or turning off compiler optimizationsin order to debug often perturbs the execution.

e Source code can be displayed asiit is executed, in a single-step mode.

e Execution can be directed to proceed until a particular point in the source code is reached. Such a
pointis called a breakpoint.

¢ Breakpoints can be made conditional, testing a predicate (usually expressed in a subset of the source
language) in order to determine whether the debugger should be invoked. Unfortunately, conditional
breakpointsare “so slow that using this capability is often not practical” [Lint90].

e Program variables can be displayed along with their values; in the case of structures, el ements can be
displayed and traversed.

e The procedure call chain can be displayed, including parameters passed at each level.

Dbx provides interactive control over program execution at a desirable level—the source language.
However, because of language features such as loops and recursion, execution behavior is not proportional
to thesize of the program source code. The program execution space defined by so-called “ hand-simul ation”
of a running program is orders of magnitude larger than the program source code space. For this reason
source-level techniques do not scale well as program size increases. There is simply too much data to
monitor, even for common programs of modest size and execution time.

242 Dalek

Of the many source-level debugging systems, one that deserves further mention in comparison with this
dissertation is the Dalek system [OIss90, Olss91], an extension of the GDB debugger [Stal92]. Dalek
is significant in offering both a special-purpose programming language with which to specify debugging

operationsand acoarse-grained datafl ow approach for recognizing higher abstractions of execution behavior.
This combination of features provides a very powerful mechanism for characterizing program behavior of
interest. This flexibility is limited primarily by the low performance of the underlying UNIX operating
system feature that supports debugging; the ptrace interface requirestwo context switch operationsfor every
word of data obtained by the monitor from the program being debugged [ptr83].

24.3 Parasight

The Parasight system[Aral88, Aral 89] usesashared-memory thread model for execution profiling of parallel
programs written in conventional languages such as C. In Parasight the profiler runs on a separate processor
and thus has a minimal impact on the execution speed of the program being observed. The thread model
provides monitorswith complete access to program state. Parasight’s user interface includesa C interpreter.
The system provides for insertion of additional monitoring instrumentation at run-time by allowing code
patching to be applied at any source line number.

244 FIELD

The FIELD programming environment developed at Brown University includes an in-process monitoring
facility in which instrumentationisadded by code patching [Reis90a, Reis90b]. FIELD provides monitoring
in the context of a general message-based programming environment in which a central message server
forwards messages to multiple tools using a selective broadcast model. Monitoring instrumentation is
bound to application code at link time. During execution, instrumentation code sends messages to the
message server; the message server in turn forwards the messages to those tools that have specified an
interest in that type of message. Tools specify which kinds of messagesthey areinterested in when they start
executing; this configuration allows the message server to implement the selective broadcast mechanism.

Reiss notes that this general model has significant advantages in easing the integration of new toolsinto
the environment. In addition to the benefits this provides during tool development, the generality of the
model offers the advantage that execution monitoring tools coexist with other programming tools geared
towards different parts of the program development cycle, such as compilers and cross-referencing tools.
Since the message model is based solely on strings, communication of data structures is problematic and
creates serious performance problems.

The Forest system employs a generaization of FIELD’s selective broadcast paradigm [Garl90]. In
Forest, the central message server maintains dynamic lists of policies regarding which tools should receive
various events. Dispatching an event requires evaluation of the policies associated with that event. This
adds flexibility but places greater computational requirements on the message server.

2.5 Manual instrumentation systems

Manual instrumentation is frequently employed in systems for agorithm animation. Although tedious,
manual instrumentation also is employed during debugging when other debugging tools are ineffective or
unavailable.

251 BALSA

In the BALSA system an animator (often the program’s author) augments a well-understood program by
inserting calls to the animation library at significant pointsin the algorithm to convey key aspects to some

10

audience [Brow88]. This code-intrusive approach is suitable for many applications, but Brown notesthat if
the desired granularity isvery detailed it may involveline-by-line annotations. In addition, the applicability
of an algorithm animation system also islimited if the system does not provide access to program state such
as the values of variables, asin the case of BALSA.

252 Smalltalk

London and Duisberg developed a kit for algorithm animation of Smalltalk programs [Lond85]. They
emphasize detailed views of smaller program examples, for use in industrial prototyping and simul ation.

Although instrumentation is manual, in Smalltalk instrumentation can be added by subclassing existing
classes and adding monitoring code to various operations in a location that is textualy distinct from the
original program code. Monitoring instrumentation can aso be added by modifying the implementation of
various operations aong the inheritance hierarchy used by the objects being monitored.

London and Duisherg’s animation kit is quite suitable for the algorithm animations it was designed
to support, and more generally for understanding tasks that are concerned solely with correctness and not
performance. Although instrumentation need not obfuscate the program source text, the techniqueis data-
intrusive, since it significantly modifies program behavior in the memory heap. This reduces the system’s
usability in performance tuning applications, since understanding memory heap behavior is often crucia to
understanding performance.

253 Tango

The Tango algorithm animation system, developed a Brown University, emphasizes support for smooth
transitions between states in the visuaization in order to improve the quality of the animations and reduce
the difficulty with which animations are programmed [Stas90]. Tango introduces a path-transition paradigm
based on locations, images, paths, and transitions. In addition to smooth transition support, Tango also
empl oysdynamic|oading to simplify animation design and shorten thetime required to modify an animation.

Tango's goa of supporting exploratory development of algorithm animations is noteworthy. Like
BALSA, it employs manual instrumentation of the algorithms being animated; while it is easy to create
many animated views of an algorithm in order to choose one that is useful, visualizing new algorithmsand
larger programs isa major undertaking requiring an understanding of the algorithm to be animated.

2.6 Interpreter instrumentation

Interpreter instrumentation is common for high-level languages, and it is used occasionally in debuggersfor
lower-level languages. Instrumented interpreters vary widely in the range of features that are instrumented
and the nature of the monitoring facilities they provide.

26.1 SNOBOL4

The SITBOL implementation of SNOBOL 4 was extended to include an event association facility [Hans78]
by which built-in or user-defined functions were associated with significant program events. The program
eventsavailabl efor association consi sted of variabl ereferences, statement executions, programinterruptions,
function callsand returns, and run-time errors. The SNOBOL 4 event association facility isan early example
in which monitoring capabilities were implemented in the source-language, yet debugging code could be
written separately and compiled in with programs when debugging was needed.

11

26.2 PECAN

PECAN is an integrated programming environment for an extended dialect of Pascal [Reis84]. It employs
multiple views of the static aspects of the program from a single underlying abstract syntax tree. PECAN
also includes execution monitoring facilities and can display the current line being executed highlighted in
a view of the program source code. PECAN’s data visualization capabilities include graphical views of
program data structures at break points. Reiss mentions plans to combine PECAN and BAL SA to enable
program animations.

2.6.3 KAESTLE and FooScape

KAESTLE and FooScape provideavisualization system for the Lisp environment that includestool sfor both
data and control visualization and provides both static and dynamic views [Bock86]. Their implementation
is based upon the FranzL|SP tracing system that provides for calls to a monitoring system upon function
entry and exit. Thissystem does not allow monitoring of behavior internal to afunction, nor can it visualize
implicit behavior such as garbage collection. The homogeneous nature of LISP with its simpler control
structures and data types mitigates these limitations.

2.6.4 Dewlap

Dewar and Cleary developed a Prolog debugger called Dewlap (debugger with logical applications) that
featured graphical displays of the Prolog execution tree [Dewa36]. They note that the ssmplicity of Prolog
execution was obscured in earlier Prolog debuggersthat employed textual traces of execution. The debugger
iswrittenin Prolog, and includes user-definable viewsof data. The authors observed that Dewlap istoo slow
to use asa production tool given the speed of their hardware and theinterpretive Prol og implementation they
used.

265 SeePS

In SeePS, Masnavi animated the internal workings of a NeWS PostScript interpreter by generating Display
PostScript windows that reflect the state of various internal operations [Masn90]. The size and complexity
of the program being animated (an entire language interpreter with hundreds of built-in primitives) take this
project well beyond the realm of algorithm animation.

SeePS was not designed with construction of new visualizationsin mind; it was designed to animate
the workings of the language interpreter itself rather than the execution of the PostScript program being
interpreted. This goal is ambitious as it stands, and since NeWS has sophisticated event handling and
lightwei ght processes, it represents a challenge to visualization.

The initia approach in SeePS was similar to the one taken in this dissertation: NeWS source code
was augmented to include interesting events; lightweight processes written in NeWS could then receive
such events and generate visualizations for them. Masnavi cites the benefits of being able to write the
visualizations in a higher-level language and not have to recompile the interpreter in order to modify a
visualization.

InMasnavi’s case, thisapproach was abandoned becauseit prevented the use of future, improved versions
of the NeWS interpreter, and because SeePS could not be distributed in such a form. For these reasons,
Masnavi rewrote SeePS entirely in NeWS. This prevents SeePS from visualizing implicit run-time system
events; further, Masnavi notes SeePS suffers from efficiency problems.

12

2.6.6 Dynascope

Dynascopeisatool for directing the execution of C language programs using event streams [Sosi92]. Event
streams are not at the source-level, but rather at the level of the machine instruction for an hypothetical
processor 1. Events are produced during the interpretation of code by a virtua machine. Dynascope
supportsexecution of mixed virtual-machineand native-code programs and only the parts of aprogram under
observation must be interpreted. In effect the monitoring instrumentation and virtual-machine interpreter
are linked into the program as an extensive addition to the run-time library.

Dynascope directors are arbitrary programs written independently from the hypothetical processor in-
terpreter; they run in a separate UNIX process connected using stream-based interprocess communication.
This hasthe distinct advantage of allowing various directorsto be attached to and detached from the system
dynamically. On the other hand, it means that access to the full program state of the executing program is
limited or non-existent.

2.7 Instrumenting compilers

Another aternative to instrumenting a program by hand or instrumenting an interpreter is to modify the
translation process to automatically instrument the generated code to include execution monitor calls.

2.7.1 Voyeur

Voyeur is a system for visualizing the execution of parallel programs [Soch89]. It is noteworthy in that
its authors designed it explicitly to simplify the task of learning how to build views in the system. Voyeur
presumes that each new parallel program may require a new visualization, and therefore the system should
be easy enough for programmers to construct new views without the aid of an animator-specidlist as is
generaly required in BALSA and ZEUS. In their section on future work the authors note that Voyeur needs
access to the program state, support for multipleviews, and easier interface construction.

2.7.2 UW lllustrating compiler

The UW illustrating compiler (UWPI) visualizes the execution of programs for a subset of Pascal [Henr90].
It isintended for an educational audience. It is not intended as a framework for exploratory visualization
development, but rather, it providesafew fixed viewsof execution. View selectionis performed automatically
by static analysis of the program, rather than being user-driven.

UWPI illustrations are driven by callsthat are automatically inserted into the code during compilation.
Since insertion is automatic, UWPI contrasts with manually code-intrusive systems such as PECAN and
BALSA. Onthe other hand, since the code after analysisincludes callsto theillustration system, UWPI can
be said to beimplicitly code intrusive. First of all, a program must be specially processed before it can be
viewed. Second, after it has been so treated, the result does not run outside the illustration environment.
Third, sinceillustrationis driven by explicit callsin the code, the system cannot illustrate implicit run-time
behavior, except that which is ascertained by the static analysis component that inserts the illustrator calls.

' This processor is not a high-level virtual machine such as those used by Smalltalk, Prolog, or Icon, but rather it is alow-level
architecture typical of current RISC chips.

13

273 SMLD

The debugger for standard ML, SMLD, is based upon extensive, automatic instrumentation of the program
code during compilation [Tolm92]. Compiler optimizationsreduce the slowdown and code size blowup im-
plied by the instrumenting compiler technique. The instrumentation supportsrelatively standard debugging
features such as setting breakpointsand i nspecting the values of variables, but not altering program execution
by modifying variables. An extension of SMLD supportsreverse execution by means of checkpointing.

2.8 Featuresin existing systemsthat facilitate monitor development

No existing system provides comprehensive support for exploratory execution monitor programming, but
if several existing techniques are combined carefully a suitable framework emerges. The key is to select
information sources and access methods, an execution model, and user interaction features that provide ease
of programming with acceptable performance. lcon’s execution monitoring framework can be viewed as
one such configuration of monitoring characteristics.

An instrumented interpreter such as SeePS, or an instrumenting compiler such as Voyeur is potentially
an ideal, fully-automated information source. An instrumented interpreter is easier to implement, but
more importantly removes the requirement that a program be recompiled in order for it to be monitored.
Instrumentation must be extensive or the monitoring capabilities provided will be limited, but extensive
instrumentation poses its own performance and intrusion problems. Programming constructs to minimize
theimpact of extensiveinstrumentation are essentia in dealing withthevolume problemin ageneral -purpose
framework.

A thread execution model such as that of Parasight provides crucial access and performance features.
Since some monitors modify the program being monitored, ease of programming implies that synchronous
execution should be the default or at least be easy to specify. Additionally, support for multiple monitors,
such as the selective broadcast model developed in FIEL D, allows monitorsto specialize on specific aspects
of program behavior and makes them easier to write. If multiple monitorsare to be easily selected and used,
the thread model must also include dynamic loading capabilities.

In the area of user-interaction facilities, an idea environment would support advanced graphics and
user-interface capabilities, including animation support such asthat provided by Tango. Thistopicisamost
unrelated to execution monitoring, but is very necessary in order to provide exploratory programming of
state-of-the-art tools. Oneobservationisthat interactiveuser-inputisexpensivein ahighly animated monitor,
and specific support in the framework can mitigate this cost by integrating the user-input stream with the
stream of information coming from the monitored program.

14

CHAPTER 3
Overview of the Framework

This chapter presents an overview of the execution monitoring framework that has been added to the
Icon programming language. The framework allows the user to execute a given Icon program under the
observation of oneor more monitoring programs, alsowritteninlcon. Since themodelsused and capabilities
of execution monitoring systems vary widely, this chapter serves to position this research with respect to
existing systems.

The overview begins with a brief inventory of the framework components, followed by an user’s-eye-
view of the system in the form of a standard execution monitoring scenario. The purpose of the scenario is
to characterize the execution monitoring process that is supported and to motivate some of the features and
limitations of the system.

Following the execution monitoring scenario, the functional characteristics of each of the primary
components of the execution monitoring framework are described. Details of the use of these components
and their implementation are presented in subsequent chapters.

3.1 Framework inventory

Icon’s execution monitoring framework consists of the following components. These additions are char-
acterized in terms of their relationship to pre-existing Icon features. Several of these components are
general -purpose language features that are useful independent of execution monitoring; such features, when
already present in other languages, may require modification if they were not designed to support execution
monitoring.

Dynamic loading — Theahility to load multipleprogramsinto a shared execution environment is provided
in order to adequately support monitor access to target program data. Prior to thiswork, Icon had no
concept of dynamic loading. Dynamic linking is not desirable in the context of execution monitoring,
since the names in the monitor are distinct from those in the target program.

Synchronous execution — The monitor and target program execute independently, but not concurrently.
Thisalowsthe monitor to control target program execution using a simple programming model. [con
aready has alanguage mechanism and data type that support synchronous execution of independent
threads of execution; the mechanism is slightly extended to support the relationship between monitor
and target program.

Run-time system instrumentation — Extensive information about execution is available to the monitor
fromlocationsinthelanguage run-time system that are coded to report significant events. Thisobviates
the need for control-intrusive techniques of obtaining information from the target program. It also
offers higher performance than target program instrumentation. The run-time system instrumentation
is an extension and generalization of an earlier special-purpose monitoring facility oriented around
dynamic memory alocation and reclamation [Gris89]. It aso supercedes the language's built-in
procedure tracing mechanism [Gris90c].

15

Event masks — Monitor control over target program execution is coupled with the concept of filtering
[Elsh89] in a language mechanism called an event mask. Event masks provide a smple, dynamic
model of execution control that adequately meets performance requirements in processing the high
volume of execution information. Events that are of no interest to the execution monitor are never
reported and do not impose unreasonable execution cost. Event masking uses a set abstraction to
describe the execution behavior that is of interest to the monitor; an existing Icon type that supports
high-performance set operationsis employed to provide event masking in a manner that is familiar to
Icon programmers.

3.2 Standard execution monitoring scenario

Understanding the framework begins with a description of the monitoring activities that it supports. This
scenario presents the rel ationship between the execution monitor and target program in its simplest form,
more sophisticated relationships between the monitor and target program are discussed later in this chapter
and in Chapter 11.

Preliminary definitions

target program (TP) —thelcon program under study, atranslated | con executable
file. Monitoring does not require that the TP be recompiled, nor that the TP'sIcon
source code be available, although some monitors make use of program text to
present information.

EEEEE execution monitor (EM) —an Icon program that collectsand presentsinformation
= from an execution of a TP,

program behavior —theresultsof executing the TP. Behavior ismeant in ageneral
/ ‘\ sense that includes program output, execution time, and the precise sequence of
@ actions that take place during execution.
N——"
user —a human user, capable of understanding the TP's execution behavior. The
user must know Icon in order to make good use of many EMs or to write a new
% EM. In general, the user need not necessarily be familiar with the TP's source
code.
N

Sour ces of relevant execution behavior

Execution monitoring begins with a user who has questions about the behavior of a TP (Figure 3.1).
Answers to important questions often may be found by following the execution as it proceeds through

source-language constructs, but in high-level languages the behavior in question often depends upon the

language semantics as implemented by the language run-time system (Figure 3.2; iconx.c denotes the

16

???

/@ /\
P O

tp.icn

~__~

~_"

Figure 3.1: Monitoring starts with a user, a program, and questions

aggregate of files that comprise the Icon language run-time system). For this reason, many forms of
execution monitoring provide useful information even if the TP's source code is not available. Figure 3.2

could befurther elaborated to include behaviora dependencieson the platform onwhichIconisimplemented
and run. Such dependencies are outside the scope of this dissertation.

k=l

=)

E}
5
<}
El
=
)

=
~_ "

ﬂ@ PENE
A

Figure 3.2: Behavior depends on the language, not just the program

Selecting or developing appropriate monitors

Rather than focusing on one monolithicEM that attemptsto accomodate all monitoring tasks, the framework
advocates development of a suite of specialized EMs that observe and present particular aspects of a TP's

behavior. The user is responsible for selecting an appropriate EM or set of EMs that address the user’s
concerns.

If no available EM can provide the needed information, the user can modify an existing EM or write a
new one. Thisend-user devel opment of execution monitorsalso isuseful when an existing EM providesthe
needed information but it is obscured by other information; existing EMs can be customized to a particular
problem.

17

Running thetarget program

The user runs the TP one or more times, monitored by a selection of EMs (Figure 3.3). Genera -purpose
EM’s provide an overall impression of program behavior.

=C
@) ~ /2)
=

/\ ~—~

Figure 3.3: EMs can answer questions about TP behavior

\“

1 W' s

“ g
=1
I=}
o
=1
X
(2]

Obtai ning more specific information frequently requiresthat the user interact with the EMsto control the
TP's execution, either to increase the amount of information presented during specific portions of execution
or to stop execution in order to examine details. In order to provide this interactive control, EMs must
present execution information as it happens during the TP's execution, rather than during a post-mortem
analysis phase.

3.3 Framework characteristics

The preceding scenario depends on support for exploratory programming in several areas: controlling a
program’s execution, obtaining execution information, and interacting with the user. In order to support
thesetasks, theframework providessynchronousshared-address multi-taskingand an event-driven execution
control model. Thesefeatures are provided by extensionsto the Icon language.

Multi-tasking

Thefirst and most basic characteristic of the framework is an execution model in which an EM isa separate
program from the TP — a multi-tasking model. In this model the EM views the TP as a separately |oaded
coroutine[Marl80]. Thecoroutinerelationshipisthe primary means by which EMs control TP executionand
coroutine transfers of control are the primary source of execution information from a TP (Figure 3.4). The
precise nature of the interaction between the EM and TP (the arrows in Figure 3.4) is a magjor contribution
of this dissertation and is discussed further in Section 3.3.2 in this chapter and in Chapter 5.

Multi-tasking is provided by a set of facilities collectively named MT Icon. MT Icon has the following
benefits in an exploratory programming environment: the EM and TP are independent programs, the EM
has full access to the TP, and the mechanism accomodates multiple EMs. These benefits are described in
more detail below.

18

transfer of control

Figure 3.4: EM and TP are separately loaded coroutines

I ndependence

Because the EM and TP are separate programs, the TP need not be modified or even recompiled in order
to be monitored by an EM; neither does an EM need modification or recompilation in order to be used on
different target programs. The separation of EMs and TPs also simplifies the writing of EMs because an
EM need not be implemented as a set of callback functions— it has its own control flow. By definition,
execution of tasks such as EMs and TPs is synchronousin MT Icon. The TP is not running when an EM
is running, and vice-versa. This synchronous execution allows EMs and TPs to be independent without
introducing the complexity inherent in concurrent programming.

Another degree of EM and TP independence is afforded by separate memory regions; EMs and TPs
allocate memory from separate heaps. For this reason memory alocation in the EM does not affect the
alocation and garbage collection patternsin the TP. Because | con is atype-safe language with run-time type
checking and no pointer data types, EMs and TPs cannot corrupt each others memory by accident; only
code that contains explicit references to another program’s variables and data can modify that program’s
behavior.

Access

An address space is a mapping from machine addresses to computer memory. Within an address space,
access to program variables and data are direct, efficient operations such as single machine instructions.
Accessing program variables and data from outsidethe address spaceis slower and requires operating system
assistance.

In MT lcon, programs such as the EM and TP reside within the same address space. This alows EMs
to treat TP data values in the same way as their own: EMs can access TP structures using regular 1con
operations, compare TP strings with their own, and so forth.

Because of the shared address space, the task switching operation needed to transfer execution between
EMsand TPsisafast, “lightweight” operation. Thisisimportant because monitoring requires an extremely
large number of task switches compared to typical multi-tasking applications.

19

Multiple monitorsand monitor coordinators

MT Icon’s dynamic loading capabilities allow simultaneous execution of not just a single EM and asingle
TP, but potentially many EMs, TPs, and other Icon programsin arbitrary configurations. Although uses for
many such configurations can be found, one configuration merits special attention when many specialized
EMs are available: the execution of multiple monitorson asingle TP (Figure 3.5).

(=) () (=
O

Figure 3.5: Multiple EMs

The difficulty posed by multiple monitors is not in loading the programs, but in coordinating and
transferring control among several EMs and providing each EM with the TP execution information it
requires. Since EMs are easier to write if they need not be aware of each other, this motivates construction
of monitor coordinators (MCs), special EMs that monitor a TP and provide monitoring services to one or
more additional EMs (Figure 3.6). EMsreceiving an MC's services need not be aware of the presence of an
MC any more than a TP need be aware of the presence of an EM.

&) (=

/

MC

@

Figure 3.6: An Execution Monitor Coordinator

Execution control

The primary task of an EM is to collect data from a TP's execution. This task poses difficult coding
problems and is frequently a performance bottleneck. The nature of the data collection facilities available

20

in amonitoring system also define and limit the kinds of monitorsthat can be implemented.

Figure 3.7 depicts the system layers present in running an Icon program under the Icon interpreter. The
TP code is executed by a virtual machine interpreter written in C, which in turn calls C language run-time
support code to perform various language operations [Gris36] .

Icon Program

Icon Virtual Machine

Runtime System (C)

Hardware

Figure 3.7: Layersin the lcon implementation

Of these layers, the TP code, the virtual machine (VM), and the run-time support code are responsible
for aspects of program behavior within the scope of this research. The VM and the run-time system have
been extensively instrumented to produce this information for EMs at the Icon level without requiring
instrumentation of the TP code.

While the behavior observable from instrumentation of the VM is specific to the Icon interpreter and
isof interest primarily to language implementors, run-time system behavior is more general and of interest
to normal Icon programmers. This dissertation is primarily concerned with monitors of run-time system
behavior. Most of this behavior takes place even in compiled versions of the TP, with the exception
of behaviora aspects such as run-time type checks that an Icon compiler can avoid when static analysis
determines that they are unnecessary.

Thisinstrumentation consistsof locationswithin the run-time system at which control can be transferred
and information reported to the EM. When execution proceeds through one of these pointsin the run-time
system, an event occurs. Many events take place during even the simplest of Icon operations. When an
EM resumes execution of the TP, it explicitly specifies what kinds of events are to be reported; other kinds
of events are not reported. The kinds of events to be reported can be changed dynamically each time the
TP's execution isresumed (Figure 3.8). The processing of an event includes atest of whether the TP should
transfer control to the EM and code to perform the transfer only if the test succeeds.

Those events at which control istransferred produce event reports. When an event is reported the TP's
execution is suspended and execution commences in the program that loaded the TP — an EM. Event
reporting supports data collection in two ways. An event report contains some information associated with
theevent itself, and in addition, when the EM gainscontrol it can interrogatethe TP svariablesand keywords
for further information. When an EM requests another event report, the EM suspends execution and the
TP's execution resumes where it | eft off.

21

event request

—
explicit
transfer
of control

_—
implicit
transfer
from
runtime
system

S

N
\\//

event report E

Figure 3.8: Event-driven control of TP

3.4 Comparison with earlier systems

Severa specific compari sonsbetween the | con monitoring framework and existing systemsare useful. Icon’s
monitoring framework integratesideasfound insevera previoussystems. Inaddition, it contributesdynamic
event masking to control the volume of information generated and adds support for user input in animated
tools. The end result is a simplicity in obtaining execution information that achieves the framework goal of
supporting exploratory programming.

MT lcon’s thread model is synchronous and differs from that of Parasight in that it is designed to
simplify the programming task required of monitor writers, rather than to take advantage of shared-memory
multiprocessor hardware. Parasight is best suited for passive profiling tasks where the target program and
monitor code can run asynchronously.

Daek [Olss90] provides a programming language with which to write customized monitors; Daek’s
language is special-purpose and must be learned while the Icon monitoring framework provides the tar-
get program’s entire source language, including sophisticated data presentation facilities. Dalek suffers
from performance problems when accessing target program state due to its two-process model. If Daek’s
implementation were modified to employ shared memory, and it were coupled with some automated i nstru-
mentation system, it could provide support similar to that provided by Icon’s monitoring framework.

FIELD supports multiple, independent tools that can simultaneously observe program behavior
[Reis90b]. Forest extendsFIEL D’s sel ective broadcast model, adding flexibility comparableto that provided
by thisframework [Garl90]. The message server employed by FIELD and Forest is geared toward building
programming environments that make use of existing tools such as compilers and editors. This mandates
a separate process model and is ill-suited to accomodating the volume of events generated by extensive
instrumentation. MT Icon does not attempt to integrate existingtools, but instead facilitatesthe devel opment
of new monitorsthat can take advantage of MT Icon’s execution model to provide better information about
target program behavior.

Novel features within Icon, the language under study, provided extra motivation for a general approach
to experimental monitor development that may not be present in other languages. On the other hand, all
programming systems can benefit from improved execution monitor support and therefore stand to gain
from new ideas that result from experimental monitor development undertaken in the context of Icon, the
exploration made possible by thisframework.

The execution monitoring framework introduced in this chapter simplifies development of execution

22

monitors in several ways, while avoiding common pitfalls associated with monitoring. EMs developed in
this system tend to be very short compared with those in other languages, because they are developed in the
source language rather than the implementation language, because they have full access to TP's program
variables, and because EMs can specialize on particular program behaviors of interest.

Shorter EMs are in turn easier to understand, to write correctly, and to enhance. Execution monitoring
may not be a simple task, but using this system, execution monitors are no more difficult to develop than
other programs with substantial inter-program communication requirements. The next two chapters present
the Icon language extensions that comprise the execution monitoring framework.

23

CHAPTER 4
A Multi-Tasking I con Interpreter

4.1 Introduction

Asmentioned in the preceding chapter, MT (Multi-Tasking) Icon isan Icon interpreter that allows multiple
I con programsto beloaded and run simultaneously within ashared addressspace. M T Iconisnot aconcurrent
programming language nor does it include special support for multiprocessor hardware. Instead, MT Icon
provides a task model that supports both cooperative and preemptive multi-tasking without mandating a
particular scheduling policy or agorithm. MT lcon's domain is that of high-level language support for
programs that benefit from or require atighter coupling than that provided by inter-process communication;
that is, programs that require extensive access to each other’s state.

MT lcon’s task model is based on Icon’s co-expression facility. This chapter starts with a summary of
co-expressions, followed by sectionsthat describe M T Icon language extensions and common applications.
In addition to its general multi-tasking execution model, MT Icon has features specific to the control and
monitoring of loaded programs by the program that |oadsthem. The following chapter describesMT lcon's
monitoring features in detail.

4.2 Co-expressions

A co-expressionin lconisafirst-classvaluethat encapsul atesthe execution state of an expression [Gris90c].
Co-expressions are the expression-level equivalent of the coroutine facility found in other languages
[Marl80]. A coroutine is a process, specified in terms of a procedure call in which the values of local
variables are retained even when control is not within that process, and in which execution upon entry
continues from the point where control last left that process. Co-expressions generalize coroutinesto allow
independent threads of control to be created for arbitrary expressions, not just procedure calls.

In addition to their role of providing coroutine semantics at a fine granularity of control, co-expressions
were developed as a control mechanism necessary to fully utilize the capabilities of Icon’s generators
[Wamp81]. In Icon, a generator is an expression whose evauation may produce more than one result.
Thisfeature is extremely useful and permeates the language, but a generator’s results are produced only at
the generator’s lexical location. Co-expressions liberate generators from their lexical site by placing the
expression in ava ue from which results can be extracted one at atime.

Creating co-expressions
A co-expression valueis created by the Icon control structure

create expr

When a create expression is executed, expr is not evaluated; instead its evaluation is encapsulated as a
first-class data object that can be assigned to a variable, passed as a parameter, and so forth. In addition to
explicitly created co-expressions, asingle co-expressioniscreated implicitly when program execution starts;
it isequivalent to the expression create main(). Program execution beginsin thisimplicit co-expression.

24

Co-expression transfers of control

Results are obtained from a co-expression by activating it using the operation
[expr] @ coexpr

Activationtransfers control from the current co-expression to the referenced co-expression; control remains
in that co-expression until it produces aresult. If the referenced co-expression is subsequently activated, its
execution continues from where it last produced a result.

If the expr is present in the activation expression, it is evaluated and its result is transmitted to the
co-expression as control is transferred. If expr isomitted, anull valueis transmitted.

When each co-expression transfers control only by activating co-express onsit hascreated or by implicitly
producing results for its parent, the control graph formed by co-expressions and their transfers of control
isatree. Explicit transfers of control by co-expression activation may result in an arbitrary control graph,
generalizing co-expressionsto full coroutine semantics.

Co-expression keywor ds

In Icon, keywords are named global objectsthat may have special semantics associated with various control
structures. Three built-in co-expression values are available to Icon programs in the form of keywords.

&main istheco-expressionfor theinvocation of the main procedurethat initiates program execution.
¤t isthe co-expression in which execution is currently taking place.

&source isthe co-expression that activated the currently executing co-expression.

These keywords and their use are further documented in [Gris90c].

4.3 MT Icon preliminary terminology

Before describing the M T Icon task model, afew definitionsare needed. These definitions pertain to regions
of memory referenced by programs during execution.

Name spaces

A name space is a mapping from a set of program source-code identifiers to a set of associated memory
locations [Abel85]. Icon programs have a global name space shared across the entire program and various
name spaces associated with procedures. Procedures each have a static name space consisting of memory
locations shared by al invocations of the procedure and local name spaces private to each individual
invocation of the procedure.

When a co-expression is created, a new local name space is alocated for the currently executing
procedure, and the current values of the local variables are copied into the new name space for subsequent
use by the co-expression.

25

Program and co-expression state

An lcon program has an associated program state consisting of the memory associated with global and
static name spaces, keywords, and dynamic memory regions. Similarly, a co-expression has an associated
co-expression state consisting of an evaluation stack that contains the memory used to implement one or
more local name spaces. Co-expressionsin an Icon program share access to the program state and can use
it to communicate.

4.4 Tasks: an extended co-expression model

The central concept in MT Iconisthetask; atask is the execution state of a program within the Icon virtua
machine [Gris86]. A singletask called theroot is created when the interpreter starts execution. Additional
tasks can be created dynamically as needed.

A task consists of a main co-expression and zero or more child co-expressions that share a program
state. At the source-languagelevd, tasks are loaded, referenced, and activated solely in terms of one of their
member co-expressions; the task itself isimplicit.

This definition of tasksis related to the concept of the same name commonly used in operating systems
and concurrent programming languages. It differs, however, in certain fundamental respects. Icon is
a sequential language; co-expressions in Icon provide a synchronous coroutine execution model, not a
concurrent execution model with implicit task switching and scheduling. Another way to view thisis that
unlike other languages such as Ada, MT Icon providesthe task mode as a mechanism for multi-tasking, but
does not predefine the policy; matters such as the scheduling algorithm used and whether multi-tasking is
co-operative or pre-emptive are programmabl e at the user level.

Another useful comparison can be made between Icon tasks and Smalltalk processes. Both provide
pseudo-concurrency within the context of a sequentia virtual machine. Since Icon tasks have their own
dynamic memory regions, their presence affects each other less than Smalltalk processes affect each other.
For example, if one task is exhibiting thrashing heap behavior in which garbage collections are frequent,
the other tasks in the system can execute at full speed during the portion of time in which they are running,
since they do not alocate memory out of the thrashing task’s (full) heap. This minimal effect of tasks on
each others’ behavior is especially important in the domain of execution monitoring.

45 Task creation

In MT Icon, atask can create other tasks. The MT Icon function
load(s, L)

loads an icode file [Gris86] specified by the file name s, creates a task for it and returns a co-expression
corresponding to the invocation of the procedure main(L) in the loaded icodefile. L defaults to the empty
list. Unlike conventional 1con command-line argument lists, the argument list passed to load() can contain
values of any type, such as procedures, lists, and tablesin the calling task.

Thetask being loaded is termed the child task, while the task calling load() is termed the parent. The
collection of al tasksforms atree of parent-child relationships.

26

4.6 Running other programs

A co-expression created by load() is activated like any other co-expression. When activated with the @
operator, the child task begins executing its main procedure. Unlessit suspends or activates &source, the
child task runs to completion, after which control isreturned to the parent. Chapter 5 presents an aternative
means of executing a child with which the parent retains control over the child asit executes.

An example

Thisdefault behavior isillustrated by the program seqgload, which loads and executes each of itsarguments
(string names of executable Icon programs) in turn. In this program the variable arguments is a list of
strings passed into the Icon program from the operating system. Each of these strings (extracted from the
list using the element-generation operator, !) is passed in turn to load(). load() reads the code for each
argument and creates atask in which to execute the loaded program; the tasks are then executed one-by-one
by the co-expression activation operator, @. Thisisordinary Icon code; there is nothing specia about this
example except the semantics of the load() function and the independent execution environment (separate
global variables, heaps, and so forth), that load() providesto each task.

seqload.icn

procedure main(arguments)
every @load(!arguments)

end

For example, if three Icon programs whose executable files are named translate, assemble, and link
are to be run in succession, the command

segload translate assemble link

executes the three programs without rel oading the interpreter for each program.

4.7 Data access

Although tasks have separate sets of global variables and keywords, they reside in the same address space
and can share data. This data access applies to al first-class data objects in Icon, such as procedures and
co-expressions. Values can be transmitted from task to task through main()’s argument list, by means of
explicit inter-task access functions, or by use of event monitoring facilities described in the next chapter.

Access through task argument lists

The following program takes its first argument to be an Icon program to load and execute as a child, sorts
its remaining arguments, and suppliesthem to the child program as its command line arguments (pop() and
sort() are Icon built-in functionsthat extract the first list element and sort elements, respectively):

procedure main(arguments)

@load(pop(arguments), sort(arguments))
end

27

Argument lists allow more sophisticated data transfers; the segload example presented earlier can be
extended to transmit arbitrary structures between programs using argument lists in the following manner.
Asin seqgload, each string naming an executable Icon program is passed into load() and the resulting task
is activated to execute the program. In thiscase, however, any result that is returned by one of the programs
isassigned to local variable L and passed to the next program in the list via the second argument to load().

segload2.icn
procedure main(arguments)
every program := larguments do
L := @load(program, L)
end

The net effect of segload2.icn issimilar to a UNIX pipe, with an important difference: Arbitrary Icon
values can be passed from program to program through theargument lists. Thiscapability ismoreinteresting
in substantial multi-passtools such as compilers, where full data structures can be passed aong from tool to
tool instead of writing out text encodings of the structuresto afile.

I nter-task accessfunctions

Severa of Icon’s built-in functions are enhanced under MT Icon to provide inter-task access to program
data. For example, the variable() function in MT Icon takes a co-expression value as an optiona second
argument denoting the task from which to fetch the named variable. When called with this second argument,
variable() is useful for assigning to or simply reading values from another task’s variables. In thismodified
version of the segload example, the parent task initializes each child task’s Parent global variable (if there
is one) to refer to the parent’s &main co-expression. A child task can then use this variable to determine
whether it is being run stand-alone or under a parent task. Inter-program access through the variable()
function aso isuseful in inspecting val ues, especialy at intermediate points during the monitored execution
of a TP as described in the next chapter.

segload3.icn
procedure main(arguments)
every arg := larguments do {
Task :=load(arg)
variable(" Parent" , Task) := &main
@Task
}

end

In addition to MT’s extensions of existing functions, several new functions have been added. These
facilitiesare useful in execution monitoring and are used in examplesin Chapters 6 through 11. Some of the
inter-task access functions used in examples are listed in Figure 4.1. In these functions parameter C refers
to a co-expression that may be from a task other than the one being executed. Functionsthat generate can
produce more than one result from a given call.

There are other inter-task access functions; [Jeff90] serves as areference for MT Icon programming.

28

globalnames(C) generatesthe names of C’s globa variables.

keyword(s, C) produces keyword s in C.

localnames(C) generates the names of C’slocal variables.

paramnames(C) generatesthe namesof C’'s parameters.

staticnames(C) generatesthe names of C’s static variables.

structure(C) generates the Icon valuesin C’s block region (heap). These values are
of varioustypes such as listsand tables.

Figure4.1: MT Icon inter-program access functions

29

CHAPTERS
Execution Monitoringin MT lcon

MT Icon allowsthe execution of multiplelcon programsinamost any configuration, includingexecution
monitoring. As motivated in Chapter 3, MT Icon characterizes monitoring as aspecial case of multi-tasking
execution in which the nature and extent of inter-program communication warrants additional |anguage
support. This chapter describes additional MT Icon facilities specifically added to support monitoring.
After some relevant definitions, a description of the programming interface and underlying interpreter
instrumentation are given. Additional programmer’s reference materia is available for these facilities
[Gris92c].

5.1 Terminology

The terminology used in discussing execution monitoring relates to events and the linguistic features
associated with them. These terms are used throughout the rest of the dissertation.

Events

The primary linguistic concept added in order to support execution monitoring is an event. An event isthe
smallest unit of execution behavior that is observable by a monitor. In practice, an event isthe execution of
a section of instrumentation code that is capable of transfering control to the monitor.

This definition limits events to those aspects of program behavior that are instrumented in the language
run-time system or the program itself. The event model isonly asuseful or genera asistheinstrumentation
that extracts program information. |If instrumentation does not exist for an aspect of program behavior
of interest, it often is possible to monitor the desired behavior by means of other events. In the present
implementation, for example, no instrumentation existsfor fileinput and output. If an EM wishesto monitor
1/0 behavior, it can monitor function and operator events and act on those functionsand operatorsthat relate
to input and output. A similar example involving the monitoring of Icon’s built-in string scanning functions
is presented in Chapter 9.

The MT Icon definition of event also differs from that of many monitoring systems, in which the term
event refers to the basic unit of information received by the monitor [Bate89]. The distinctionisthat in the
MT Icon definition, events occur whether they are monitored or not, and each event may or may not be
observed by any particular monitor. Thisdefinitionisuseful inthe MT Icon environment, inwhich EMs are
not coupled with the instrumentation and multiple EMs can observe a TP's execution.

Event codes and values

From the monitor’s perspective an event has two components: an event code and an event value. The code
is generally a one-character string describing what type of event has taken place. For example, the event
code C denotes a procedure call event. Event codes all have associated symbolic constants used in program
source code. For example the mnemonic for aprocedurecall eventisE_Pcall. These constantsare available
to programmers as part of a standard event monitoring library described bel ow.

30

The event value is an Icon value associated with the event. The nature of an event value depends on
the corresponding event code. For example, the event value for a procedure call event is an Icon value
designating the procedure being called, the event valuefor alist creation eventisthelist that was crested, the
event value for a source location change event is the new source location, and so forth. Event values can be
arbitrary Icon structures with pointer semantics; the EM accesses them just like any other source-language
value.

Event reporting and masking

The number of events that occurs during a program execution is extremely large — large enough to create
serious performance problems in an interactive system. Most EMs function effectively on asmall fraction
of the available events; the events that an EM uses are said to be reported to the EM. An event report results
in atransfer of control from the TP to the EM. Efficient support for the selection of appropriate events to
report and the minimization of the number of event reports are primary concerns.

MT lcon supportsdynamic event masking based on event codes, adynamic variation of thefilter concept
found in most event-based monitoring systems [Bate89, Elsh89]. Event masking allows the monitor to
specify what events are to be reported and to change the specification at run-time. When the program being
monitored starts execution, the monitor selects a subset of possible event codes from which to receive its
first report. The program executes until an event occurs with a selected code, at which time the event is
reported. After the monitor has finished processing the report, it transfers control back to the program, again
specifying an event mask. Dynamic event masking enabl es the monitor to change the event mask in between
event reports.

The use of one-character strings as event codes has a more practical value than its mnemonic merit: It
allows sets of codes to be efficiently and easily manipulated at the Icon level by the cset (character set) data
type. Csets are represented internally by bit vectors, so acset membership test is very efficient compared to
Icon’s more generic set data type, whose membership test is a hash table lookup.

When an event report transfers control from TP to EM, the two components of the event are suppliedin
the Icon keywords &eventcode and &eventvalue respectively '. The monitor then can act upon the event
based on its code, display or manipulate its value, etc.

5.2 Obtaining events

A standard library is available for use by EMsin order to provide a means of obtaining events. The library
is described more completely in [Gris92c]. Programs wishing to use the standard library include a link
declaration such as link evinit.

Setting up an event stream

An EM first sets up a source of events; the act of monitoring then consists of a loop that requests and
processes events from the TP. Execution monitoring isinitialized by the procedure Evinit(x). If x isastring,
it isused as an icode file name in a call to the MT Icon function load(). If x isalist, itsfirst argument is

'Those not familiar with Icon may view these keywords as special global variables that are given their values by the Icon
interpreter rather than by explicit user assignment. Keywords may be associated with a particular control structure (asin this case),
and they may also be subject to constraints not imposed on regular global variables, such asthe constraint that &subject, the string
scanning subject, must always be a string.

31

taken as theicode file name and the rest of thelist is passed into the loaded function as the arguments to its
main procedure.
Thetypical EM, and all of the EMs presented as examplesin this dissertation, follow the general outline:

link evinit

procedure main(arguments)
Evinit(arguments) | stop("' can't initialize monitor")
... initialization code, open the EM window
... event processing loop (described below)
EvTerm()

end

Thistemplate is generally omitted from program examples for the sake of brevity.

EvGet()

Eventsare requested by an EM using thefunction EvGet(mask). EvGet() activatesthe co-expression value
of the keyword &eventsource to obtain an event. The TP executes until an event report takes place; the
resulting code and value are assigned to the keywords &eventcode and &eventvalue. EvGet() fails when
execution terminatesin TP. The mask parameter isa cset used for event selection.

Selection of virtual machineinstruction subsets

Requesting an event report for the execution of the next virtual machine instruction is performed through
the usual EvGet() cset using the mask E_Opcode. VM instructions occur extremely frequently; dozens of
them can occur as a result of the execution of a single line of source code. Consequently, performance is
severely affected by the selection of all VM instruction events; the extent of thisimpact on performance is
presented in Chapter 12.

However, a particular VM instruction or small subset of instructionsmay be of interest to amonitor. In
that case, the EM need not receive reports for al instructions. The function opmask(cs, P) alows EM to
select asubset of virtual machineinstructionsgiven by cs in P’'stask. Subsequent callsto EvGet() inwhich
E_Opcode is selected reports events only for the VM instructionsdesignated by cs.

5.3 Instrumentation in thelcon interpreter

This section describes the instrumentation used by MT Icon to produce events a various points in the
run-time system. Significant pointsin interpreter execution where transfer of control might be warranted
are explicitly coded into the run-time system with tests that result in transfer of control to an EM when they
succeed. When execution reaches one of these points, an event occurs. Events affect the execution time of
the TP; execution is either slowed by atest and branch instruction (if the event is not of interest to the EM)
or stopped while the event is reported to the EM and it processes information. Minimizing the slowdown
incurred dueto the presence of monitoring instrumentation has been afocus of the implementation; inherent
costs and framework performance are presented in Chapter 12.

There are several major classes of eventsthat have been instrumented in the MT Icon intepreter. Most
of these events correspond to explicit elements within the source code; others designate actions performed
implicitly by the run-time system that the programmer may be unaware of. A third class of event that has
been instrumented supports user interaction with the EM rather than TP behavior.

32

Explicit source-related execution eventsinclude:

e Program location changes in terms of line numbers and columns.

e Procedure activity including calls, returns, failures, suspensions, and resumptions. In addition to
these explicit forms of procedure activity, events occur for implicit removals of procedure frames.

¢ Built-in functions and oper ations including structure accesses and assignments. Like procedures,
events are produced for function and operator calls, returns, suspensions, resumptions, and removals.

e String-scanning activity including scanning environment creation, entry, change in position, and
exit.

Implicit run-time system events include:

e Memory allocations from the heap string and block regions, including size and type information.
Thisinstrumentation is based on earlier instrumentation added to Icon for amemory monitoring and
visualization system [Gris89].

e Garbage collectionsincluding the storageregion being collected (Icon has separate regionsfor strings
and data structures), the memory layout after compaction, and the compl etion of garbage collection.

e Type conversions performed on parameters to functions and operators. Information is available for
conversions attempted, failed, succeeded, and found to be unnecessary.

e Virtual machine instructions executed by the Icon virtual machine [Gris86]. The program can
receive events for al virtual machine instructions, or an arbitrary subset.

e Clock ticksfor the passage of CPU time.

Most EMs, except completely passive visualizations and profiling tools, provide the user with some
degree of control over the monitoring activity and must take user interaction into account. For example,
the amount of detail or the rate at which the monitor information is updated may be variables under user
control. Since an EM’s user input occurs only as often as the user presses keys or moves the mouse, user
interactionistypically far lessfrequent than eventsin TP. Evenif no user input occurs, polling for user input
may impose a significant overhead on the EM because it adds code to the central event processing loop.

In order to avoid this overhead, the event monitoring instrumentation includes support for reporting user
activity in the EM window as part of the TP's event stream. Monitor interaction events are requested by
the event code E_MXevent. An example of the use of monitor interaction events is presented further in
this chapter in the section entitled “Handling user input”. A complete list of event codes is presented in
Appendix C in order to indicate the extent of the instrumentation.

5.4 Artificial events

As described above, the MT Icon co-expression model allows interprogram communication via explicit
Cco-expression activation or implicit event reporting within the run-time system. Artificial events are events
produced by explicit Icon code; they can be viewed at the language level as co-expression activations
that follow the same protocol as implicit events, assigning to the keyword variables &eventcode and
&eventvalue in the co-expression being activated.

33

There are two general categories of artificial events, virtual events meant to be indistinguishable from
implicit events and pseudo events that convey control messages to an EM. Virtual events are generally used
either to produce event reports from manualy instrumented locations in the source program, to simulate
event reports, or to passon area event from the primary EM that received it to one or more secondary EMs.
Pseudo events, on the other hand, are used for more genera inter-tool communications during the course of
monitoring, independent of the TP's execution behavior.

Virtual eventsusing event()

The MT Icon function event(code, value, recipient) sends a virtual event report to the co-expression
recipient, which defaultsto the &main co-expression in the parent of the current task, the same destination
to which implicit events are reported.

There are times when a primary EM wants to pass on its eventsto a secondary EM. An example would
be an event transducer that sitsin between the EM and TP, and uses its own logic to determine which events
are reported to EM with more precision than is provided by the masking mechanism. A transducer might
just as easily report extra events with additional information it computes, in addition to those received from
TR A more substantial application of virtual eventsis a monitor coordinator, an EM that coordinates and
produces events for other monitors. Such atool is presented in Chapter 11.

Pseudo eventsfor tool communication

EMs generally have an event-processing loop as their centra control flow mechanism. The logica way to
communicate with such atool isto send it an event. In order to distinguish a message from aregular event
report, the event code must be distinguishable. In the monitoring framework this is achieved ssimply by
using an event code other than a one-letter string, such as an integer. Since not all EMs handle such events,
they are not delivered to an EM unlessit passes a second argument to EvGet(), such as EvGet(mask, 1).

Theframework definesaminimal set of standard pseudo events, which well-behaved EMs should handle
correctly; these pseudo eventsare described in Chapter 11. Beyond thisminimal set, pseudo eventsallow the
execution monitor writer to explore communication between EMs as another facility to ease programming
tasks within the monitoring framework.

5.5 Monitoring Techniques

The next few chapters demonstrate the potential of M T Icon’s execution monitoring facilities with examples
of avariety of monitoring techniques. The examples are actua program fragments (rather than pseudocode)
that show how to program various forms of monitoringin MT Icon. The purpose of this demonstrationisto
present MT Icon as a practical languagein which to devel op exploratory monitors. The examplesall follow
a common outline and use a common set of facilities, which are described bel ow.

Anatomy of an execution monitor

The execution monitoring interface presented in this chapter uses aform of event-driven programming: the
central control flow of EM is aloop that executes the TP for some amount of time, and then returns control
to EM with information in the form of an event report. The central loop of an EM typically lookslike:

34

while EvGet(eventmask) do
case &eventcode of {
a case clause for each code in the event mask

}

Event-driven programming ismore commonly found in programsthat empl oy agraphical user-interface,
where user activity dominates control flow. Because monitoring employs a programming paradigm that has
been heavily studied, many coding techniques developed for graphical user interface programming, such
as the use of callbacks [Clar85], are applicable to monitors. Several of the example EMs in subsequent
chapters use a callback model to take advantage of a higher-level monitoring abstraction available by means
of alibrary procedure.

Handling user input

An EM that handles user input could do so by polling the window system after each event in the main loop:

while EvGet(eventmask) do {
case &eventcode of {
a case clause for each code in the event mask

}

poll the window system for user input

}

If the events being requested from the TP are relatively infrequent, this causes no great problem. However,
the more frequent the event reports are, the more overhead is incurred by this approach relative to the
executionin TP, In typical EMs polling for user events may slow execution from imperceptibly to as much
as 15%. Chapter 13 providesfigures on the relative frequency of varioustypes of events.

Since the slowdown isa function of the frequency of the event reports and not just the cost of the polling
operation itself, techniques such as maintai ning a counter and only polling every n event reportsstill impose
a significant overhead. In addition such techniques reduce the responsiveness of the tool to user input and
therefore reduce the user’s control over execution.

Monitor interaction events, presented earlier in this chapter, address this performance issue by allowing
user input to be supplied via the standard event stream produced by EvGet(). Since the E_MXevent event
normally occurs far less frequently than other events, it makes sense to place it last in the case expression
that is used to select actions based on the event code. Using this feature the main loop becomes:

while EvGet() do
case &eventcode of {
other cases update image to reflect the event
E_MXevent: {
process user event

¥
¥

EvGet() reports pending user activity immediately when it is available; the control over execution it
providesis comparableto polling for user input on each event.

35

Querying thetarget program for more information

After each event report, EMs can use MT Icon’s inter-task data access functionsto query TP for additional
information, such as the values of program variables and keywords. The access functions can be used in
severa ways, such as

¢ applying a predicate to each event report to make monitoring more specific,

¢ sampling execution behavior not reported by events by polling the TP for information unrelated to the
event reports [Ogle90], or

o to present detailed information to the user, such as the contents of variables.

Visualization techniques

Program visualization employs the high-bandwidth processing capabilities of the human visual system in
order to mitigatethe volume probleminherent in execution monitoring. Because of theamount of information
most EMs need to present, support for development of new visualization techniquesis essential to support
the claim that EMs devel oped in an exploratory manner can be useful and practical.

The fundamental issues in visualization are concerned primarily with effective use of the screen, max-
imizing the amount of information displayed, its understandability, and the rate at which it is updated.
Thorough treatment of these topicsis beyond the scope of this dissertation; they are briefly mentioned here
because they motivate many of the examplesto follow.

Mapping to a geometry —Visualizationsmap theinformationto be presented onto ageometry for presenta-
tiononthescreen. In program visualizationthisoften isdifficult becausetheinformation described has
no natural geometry. Theartificial geometry that is constructed may be unintuitive or even misleading
totheviewer. In order to avoid this, many EMs employ familiar visual metaphors.

Space limitations — Screen space limits the amount of detail that can be portrayed. If severa views are
presented simultaneously, screen space in any one view may be limited to afew squareinches. Given
limited space, scaling and miniaturization areimportant, but careful graphic designisjust asimportant.

Animation — Smooth transitions between the states presented by the visual display are important for user
orientation. Animation implies real-time updates as the program is executing. The performance of
the underlying window system software limitsthe kind and quality of the viewsthat can be animated.

There are trade-offs inherent in these issues. For example, the more complex the geometric mapping or
scaling/miniaturization technique, the less satisfactory the animation may be.

5.6 Icon graphicscapabilities

Icon is best known as a string and list processing language, but it also includes graphics facilities [Jeff91,
Jeff93]. Visuaizationtoolswrittenincon present their output using thetypewindow. Thissection describes
aspects of lcon’s window system facilities that are used in subsequent chapters. It presents only a small
subset; see the reference manual [Jeff93] for a complete description of Icon’s graphicsfacilities.
Windowsallow both text and graphicinput/output to be freely mixed. While on-screen, windowsmay be
moved, resized, and iconified by the user or the Icon program. Window exposure (also known as “redraw”

36

or “paint”) events are handled automatically and do not have to be handled by the programmer; the window
contents are retained until the window closes. If the keyword &window has awindow value, it serves as a
default window for all graphic functions. The remaining examples in this chapter assume &window is the
window of interest.

Icon’s window interface uses a raster graphics model based on that of Xlib, the X Window System C
languageinterface [Gett88]. Inthismode, awindow isatwo-dimensional array of points, also called picture
elements (pixel s) in the x- and y-coordinates starting from the pixel (0,0) in the upper-left corner and moving
positive to the right and down the window. Severa functions take pixel coordinates and draw geometric
figures on the window. Pixels are drawn with awindow’s current foreground color.

Some useful functionsare givenin Figure 5.1; other graphicsfunctions are described asthey are used in
examples.

XClearArea() clears arectangular area

XDrawArc() drawsan arc

XDrawPoint() draws a point

XDrawLine() drawsaline

XDrawRectangle() drawsarectangle

XDrawsString() draws astring

XEvent() returns the next user event

XFg() setsthe color used in subseguent drawing
XFillArc() draws afilled arc

XFillRectangle() draws afilled rectangle

XGotoRC() moves text cursor position

XPending() returns alist with user events awaiting processing

Figure 5.1: Some useful Icon graphics functions

Many visualizationtools make extensive use of color in graphics operationsto encode information about
related datatypesor program operations. Such tools could change the output drawing color by repeated calls
to XFg(), but it is much faster to ask the window system to set up several window values that draw with
different colors. Thecall XBind(&window, " fg=" || s) creates awindow value that draws on the window
using foreground color s. All graphics functions may be prefixed with such a window argument w to draw
with a non-default color, for example

w_red := XBind(&window, " fg=red")
XDrawPoint(w_red, X, y)

draws ared point at (X, y).
When an encoding of colorsisused in a visualization tool, atableis typically used to store a mapping
from a source domain such as string type names to window bindingswith various colors.

5.7 Someuseful library procedures

As mentioned in Section 5.3.1, severa library procedures are useful in EMs. This section presents those
library procedures that are used in the examples in the rest of this dissertation; the rest are described in the
evinit library reference [Gris92c].

37

L ocation decoding and encoding procedures are useful in processing location change event values, but
they are also useful in other monitors in which two-dimensional screen coordinates must be manipul ated.
Besides program text line and columns, the technique can variously be applied to individual pixels, to screen
line and columns, or to screen grid locations in other application-specific units.

In addition, various EMs use utility procedures. Figure 5.2 liststhe library procedures that are used in
this dissertation.

location() encodes a two-dimensional location in an integer
vertical() returns the y/line/row component of alocation
horizontal() returns the x/column component of alocation
prog_len() returns the number of linesin the source code for TP
procedure_name() returnsthe name of a procedure

XColumns() returns the window width in text columns
XHeight() returns the window height in pixels

XRows() returns the window height in text rows

XWidth() returns the window width in pixels

Figure5.2: Library procedures used in this dissertation

38

CHAPTER 6
Following the L ocus of Execution

Perhaps the most basic monitoring act is following along in the source code as execution progresses.
L ocusof executioninformationisused in varioustool ssuch as source-codeviewersand profilers. Frequently,
locationinformationisused in combinationwith other executioninformation to informthe user of the specific
source code line and column responsible for some behavior of interest.

This chapter presents simple example EMs that monitor location information and present it graphically.
Thefirst set of tool sshowsrecent line number changes. Thesetoolsare primarily useful indetectingirregular
control flow patternsthat merit investigation, and in detecting major phasesin program execution. Following
theline number activity monitors, agraphical location profiler that displays cumulativelocation information
is presented. Profilers are primarily useful in performance tuning.

The examplesin thisand the next several chapters are intended to demonstrate the broad capabilities of
the monitoring framework. Actual source codeis giveninorder to demonstrate useful techniquesand affirm
the claim that the framework supports an exploratory programming style. While the examples are often
suggestive of monitors which are useful in their own right, they are necessarily kept simple for exposition.
The devel opment of more sophisticated monitorsis an open-ended research domain for future work that this
framework was designed to facilitate.

6.1 Location events

An event report with the code E_Loc occurs whenever the source line or column changes. Tracking the
execution locus minimally involves selecting this event code in the event mask that is passed to EvGet()
along with any othersthat may be of interest.

The value associated with a change in location is a 32-bit integer encoding of the line and column
numbers. The line number is given in the least-significant 16 bits, and the column number in the most-
significant 16-bits.

6.2 A smpleline-number monitor

The code segment that follows outlines a simple line-number monitor that presents the sequence of source-
code lines on a strip chart. The y coordinate is used to denote the line number; successive line numbers
are plotted adjacently along the x axis. Line numbers are scaled to fit the avail able screen space. A sample
screenimageisshownin Figure6.1. Thetool isanimated, showingthelast nline number changes, wherenis
the width of the monitor window. As the animation progresses, ordinary sequential execution of successive
expressions appears in the window as a downward-sloping line. Periodic repetitions of patterns in the
window indicate the execution of loops.

The EM starts by initializing the event monitoring system and opening a window on which to display
itsoutput. Local variablesx and y refer to screen coordinates; scale is used to adjust the y coordinateto fit
within the bounds of the window. Real numbers are used in the scaling arithmetic in order to use all of the
available window space.

39

Figure6.1: A simple line-number monitor

&window := open(" LineMon" , " x" , " height=250" , " width=250") |
stop(" can’t open window")

scale := real(XHeight()) / prog-len()

x:=0

The program’s main loop reads a location event with a call to EvGet(), computes and scales the line
number to the window height, and plots it in the window with a call to XDrawPoint(). After the point is
plotted, x is advanced to plot the next line number in the next pixel column to the right. When the plot
reaches the right edge of the window, the EM wraps around to the left edge. Because pixel columns are
reused, a rectangle one pixel wide is erased at each iteration (XClearArea()'s height argument defaults to
the entire window).

while EvGet(E_Loc) do {
y := vertical(&eventvalue) * scale
XDrawPoint(x, y)
X = (x + 1) % XWidth() # advance x, wrapping from right to left
XClearArea(x, 0, 1) # clear pixel column for subsequent plot

}

Variations on the line number monitor are presented in Figure 6.2 and Figure 6.3. Figure 6.2 draws a
segment between the current source line and the preceding source line at each step. The effect emphasizes
large jJumps in program location that otherwise might not be noticed due to extremely short visitsto certain
locations. This phenomenon occurs more frequently in procedures that generate multiple results from a
single expression than it does in ordinary procedural code. Figure 6.3 plots al the lines that execute in a
single CPU clock tick (a hardware-dependent vaue; typically 4-20 milliseconds) in a single column. This
view compresses much more location information onto a single screen, but loses the ordering between
specific location events within a clock tick.

6.3 A location profile scatter plot

Another | ocation-monitoring example, presented bel ow, renders a continuously updated animated scatterpl ot
of program activity by source program lineand column number. A sample screenimageispresentedin Figure

40

[,u”..[

atand

'

Figure 6.2: Monitoring adjacent pairs of lines

Figure 6.3: Mapping CPU clock ticksto pixel columns

6.4. The tool’s animation does not employ motion, but rather changes in color as execution commences.
The colors are rendered as grayscales for publication.

This EM maps source code columns and lines onto the x- and y- dimensions, one line or column per
pixel. This mapping may be useful or already familiar to the user because it is a miniaturized view of the
program text itself. Each source location at which the TP executesis highlighted, with the number of times
that location has been executed given by a color progression on a logarithmic scale, from gray and blue
through green and yellow and on to orange and red for locationsthat have executed many times.

The EM startswith standard initialization code and then creates alist of bindingswith the various colors.
A table, counts, maintains the number of times execution has occurred at each location.

41

Figure 6.4: A location profile scatterplot

&window := open(" locus" , " x" , " bg=white" , " width=80", " height=500") |
stop(" can’t open window")
Color :=[]
every put(Color,
XBind(&window, " fg=" ||(" gray" |" blue" |" green" |" yellow" |" orange" |" red")))
counts := table(0)

With initialization completed, the main loop requests a location event, decodesits line and column, and
increments the execution count for the location, stored in the table as counts[&eventvalue]. A pointisthen
drawn in the window with a color encoding the log of the location’s execution count. If the window height
is not large enough to map the source file lines onto pixels, abar is drawn at the bottom of the window to
indicateit has been clipped. A more sophisticated version of this program scal es the mapping from lines to
pixes.

while EvGet(E_Loc) do {

y := vertical(&eventvalue)

X := horizontal(&eventvalue)

counts[&eventvalue] +:= 1

value := integer(log(counts[&eventvalue], 6)) + 1

if Context := Color[value] then
XDrawPoint(Context, x — 1,y — 1)

if y > XHeight() then
XFillRectangle(0, XHeight() — 4, 80, 4)

}

42

CHAPTER 7
Monitoring Procedureand Generator Activity

Procedure activity is a major aspect of control flow, and it is especialy significant in Icon because
procedures can generate more than one result. This chapter describes the monitoring of procedure activity
in detail. The techniques presented are important because they aso apply to the monitoring of Icon’s built-
in functions and operators as well as string scanning environments. The examples given are intended to
illustrate the framework’s capabilitiesand are by no means the best or only way in which procedure activity
may be portrayed.

In order to model the semantics of generators, most EMs maintain trees of suspended procedure acti-
vations that may be resumed. After presenting techniques to maintain these trees, the chapter describes an
EM that draws an animated scatterplot of the number of results that each procedure produces; it quickly
shows which procedures are generators, and shows when the number of results a procedure is producing
changes significantly. Knowing which procedures are generators can be important for students and pro-
gram maintainers that are unfamiliar with a program. For programmers that are familiar with the target
program, knowing the number of results being produced per call to agiven procedure can be valuable during
debugging; it can confirm expected behavior and/or point out anomalies.

The chapter concludes with an EM that gives an abstract view of the actual tree of active and suspended
procedures; it is useful for understanding the path that control flow took to get to the current place of
execution. This EM is generalized to include string scanning operations in Chapter 9, and source code for
aversion that also alows monitoring of built-in functions and operators is presented in Appendix A as an
example of amore sophisticated monitor.

As mentioned in Chapter 5, events take place at procedure calls, suspensions, resumptions, returns,
failures, and implicit removals. The constant ProcMask contains a cset for al the event codes related to
procedures; similar constants FncMask, OperMask, and ScanMask are used for other types of expression
activity.

7.1 Activation Trees

The event value for calls and resumptions gives the procedure being activated, but other procedure events
such as suspension and return give the Icon value being produced. In order to track the currently active
procedure, the monitor must maintain amodel of the program’s procedure activation tree (Figure 7.1).

The procedure evaltree() described in this section maintains a simple model of procedure activation
trees using records for tree nodes. Each record corresponds to an activation of a procedure. The record
contains the procedure, the parent activation record from which the procedure was called, and a list of any
children (including suspended ones) that this activation of the procedure has called:

record activation(value, parent, children)

When used in an EM, the record type may have additional fields to maintain other information about the
procedure activation, such as the number of results it has produced. Figure 7.2 shows the Icon structures

43

[—®

)

@

Figure 7.1: An activation tree

formed by evaltree() to modd the activationtreein Figure 7.1. The source code for evaltree() is presented
in Appendix A.

evaltree() maintains the complete activation tree as well as the current activation with the following
monitor-event loop. It is called with an event mask parameter and two procedure parameters. The event
mask parameter gives all the events needed by the EM. The procedure parameters consist of a callback
procedure used to inform the monitor of changesin the tree, and arecord constructor for a record type that
has at least the fields declared above. The callback procedure is called with the activation record being
entered as well as the activation record being exited.

procedure evaltree(mask, callback, activation_record)
... compute codes for each branch of the case clause from mask
while EvGet(mask) do
case &eventcode of {
... clauses maintain the activation tree and call client callback procedure

}

end

In order to operate properly with any combination of procedure, function, operator, and scanning
environment events, evaltree() examines its event mask and builds up lists of codes related to each of
the six tree-modifying events. It stores these lists in the globa variables CallCodes, SuspendCodes,
ResumeCodes, ReturnCodes, FailCodes, and RemoveCodes. Inaddition, evaltree() createsadummy
root activation on which to build the activation tree.

The branches of evaltree()'s case clause perform the actual tree manipulations and then call the client
callback procedure, supplying it with both the activation being entered and the activation being exited. For
each call event, anew nodeis created and inserted as the right-most child of the current node. The new node
becomes the currently executing node.

value main

parent

children
value p
parent —
children
value q
parent —
children
value r value S value t
parent — 7 parent — parent —
children children children
value q
parent —
children

Figure 7.2: An Icon representation of an activation tree

ICallCodes: {
entered := activation_record()
entered.node := &eventvalue
entered.parent := current
entered.children :=[]
put(current.children, entered)
current := entered
callback(current, current.parent)

}

Return and fail events result in the inverse of a cal event: The current node is removed from the
activation tree, and the parent of the current node becomes active. When an Icon return expression is

executed, the instrumentation produces removal events for all descendants of the returning node preceding
the resulting return event.

ReturnCodes | !FailCodes: {

exited := pull(current.parent.children)
current := current.parent
callback(current, exited)

}

45

Suspend and resume eventsdo not changethestructure of thetree. For suspend events, the parent becomes
the current (active) node; for resume events the right-most suspended child is resumed and becomes the
current node. After the current nodeis updated, the client callback procedureiscalled.

ISuspendCodes: {
current := current.parent
callback(current, current.children[—1])
}

IResumeCodes: {
current := current.children[—1]
callback(current, current.parent)

}

Removal events denote the implicit exit of a node in the activation tree as a result of control flow.
Typically a removal event precedes the current node's return or failure and denotes the destruction of the
current node'sright-most child. If the current node has no children, removal indicatesan implicit destruction
of the current node, indicating that it will not be used in the surrounding expression eval uation context.

IRemoveCodes: {

if exited := pull(current.children) then {
while put(current.children, pop(child.children))
callback(current, exited)
}

else {
exited := pull(current.parent,children)
current := current.parent
callback(current, exited)

¥
¥

The default clause in this case expression simply calsthe client callback procedure. The activation tree
is not modified. This clauseis useful because execution monitors that use evaltree() may be interested in
other types of events besides those that involve the activation tree.

default: callback(current, current)

7.2 An animated call-result scatter plot

Toillustratethe use of evaltree(), thefollowing example plotsthe number of times each procedure has been
called along the x axis, while the number of resultsit has produced is plotted along the y axis. Points are
moved whenever either acall or aresumptionoccurs. If the user pressesamouse button on one of the plotted
points, the names of any procedures plotted at that point are listed. An example screen image from this
programis given in Figure 7.3; the name GenMoves in the lower right corner isthe name of the procedure
plotted at the last location on which the mouse was clicked. The image does not convey the nature of the
animation, in which plotted points start in the upper |eft corner and migrate down and to theright at varying
speeds and directions.

46

Lenioye

Figure 7.3: A scatterplot with motion

A call-result scatterplot serves severa purposes. It serves as a basic procedure call profiler, reveaing
which procedures are used the most and are therefore most important in overall performance. Since this
information is presented while the program is executing, it provides quicker feedback than profilers that
present information only after execution has run to completion. Feedback during execution also shows
tempora changes associated with major phases in the program. These uses are language-independent. The
call-result scatterplot also serves two language-specific purposes: It shows the user which procedures are
generators, and how many results the procedures are producing per call.

When a procedure consistently produces no results, it moves horizontally along the top edge. On the
other hand, if a procedure generates results, it moves verticaly straight down. If a procedure consistently
returns with one result, it moves diagonally down and across. The slope of alinefrom the originto a given
procedure’s point on this graph gives the average number of results that procedure has produced per cal.
If the motion of a point plotted for a procedure changes its direction substantially it may indicate unusual
behavior that isworth further examination.

Two global tables, calls and results, store the dimensions' counts for each TP procedure. The global
tableloc2procs maintainsa set of procedures plotted at each point on the graph; loc2procs iskeyed by the
integer-encoded | ocations introduced in the preceding chapter and is discussed in more detail later.

global loc2procs, # table of sets of procedures at a given location
calls, # table of call counts
results # table of result counts

Procedure main() performs initiaization and calls evaltree(), which in turn obtains events, builds the
activationtree, and callsscat_callback() for each event report. main() passesscat_callback() to evaltree()
as a parameter, in addition to the event mask to use and the record type to use for activations. The event
mask includes procedure events sel ected by the symbol ProcMask and monitor interaction events, indicated
by the symbol E_MXevent. Monitor interaction events, described in Chapter 5, provide a convenient means
of incorporating user input such as mouse clicks and button presses into EMs without a need for separately
polling the EM window for activity.

47

... from procedure main()

&window := open(" scat”" ," x" ," width=150" ," height=180") |
stop(" can’t open window")

calls := table(0)

results := table(0)

loc2procs := table()

evaltree(ProcMask ++ E_MXevent, scat_callback, activation)

scat_callback() updates the plotted location of a procedure whenever it is called or produces a resullt,
calling plot() to increase the appropriate procedure’s x- or y-coordinate, respectively. If the event isacall,
the point corresponding to parameter new (the activation being entered) is updated, whileif the event is a
suspend or areturn, the point corresponding to parameter old (the activation being exited) is updated.

If the event indicates user activity, a code indicating the user input is supplied in &eventvalue, and the
keywords &x and &y are updated to indicate the mouse location. If the user presses the escape character
"\e", monitoring is terminated; if the user presses a mouse button, write_names() is called to write the
names of procedures plotted where the mouse indicates.

procedure scat_callback(new, old)
case &eventcode of {

E_Pcall: plot(new.node, 1, 0)
E_Psusp | E_Pret: plot(old.node, 0, 1)
E_MXevent: {

case &eventvalue of {
"\e": stop(" execution halted")
&lpress: repeat {
write_names()
if XEvent() === &lrelease then break

¥
¥
¥
¥

end

The procedure plot() takes a procedure and updatesthe tablesto reflect its new position. If the procedure
is the only occupant of the screen coordinate it is leaving, the point is erased there; similarly if the new
position is not aready occupied, a point is drawn. “Points’ are plotted two pixels wide and two pixels
high because individual pixels provide poor visibility on some displays. An even larger size might improve
visibility further at a cost of screen space. plot() uses alogarithmic scale in order to keep the screen size
required by this application reasonable for large programs. A logarithmic scale is chosen over alinear scale
because any linear scale would either plot the most important often-called procedures off the edge of the
chart or else plot al the less frequently called functions together in one corner of the chart. The scaling
process uses the distance of the point from the origin in order to preserve the ratio of calsto resultsin the
scaled point; thisis discussed in more detail bel ow.

48

procedure plot(who, iscall, isrslt)
loc := scaled_location(calls[who], results[who])
if *delete(\loc2procs[loc], who) = 0 then
XClearArea(horizontal(loc) * 2, vertical(loc) * 2, 2, 2)
calls[who] +:=iscall
results[who] +:= isrslt
loc := scaled_location(calls[who], results[who])
/loc2procslloc] := set()
if *insert(loc2procslloc], who) = 1 then
XFillRectangle(horizontal(loc) * 2, vertical(loc) * 2, 2, 2)
end

scaled_location(x, y) scales its arguments and produces an integer encoding of the point (x, Y)
with the x-coordinate in the most significant 16 bits and the y-coordinate in the least-significant 16 bits.
scaled_location() aso computes the distance from the origin for a point using the Pythagorean theorem; it
is used during scaling.

procedure scaled_location(x, y)

length :=sqrt(x * 2 +y " 2)

return location(scale(y, length), scale(x, length))
end

The procedure scale(coord, len) applies a logarithmic scaling factor to a coordinate. If logarithmic
scales were applied separately to the x- and y- coordinates, the proportions of cals to results would not
be preserved and the resulting points would be plotted artificially close to the central diagonal of slope 1.
Instead, the logarithmic scale is applied to the distance from the origin. The coordinateis multiplied by the
ratio of the scaled length to the original length. When both coordinates are so scaled, the scaled point forms
asimilar triangle to the original unscaled point; the slope of calls to resultsis preserved from the unscaled
point.

procedure scale(coord, length)
if length < 1 then return O # avoid divide by 0 error
return integer(coord * log(length, 1.25) / length)

end

Procedure write_names() printsthe names of all procedures plotted near amouseclick. It buildsalist L
of the names of all proceduresin theloc2procs tablelocated within one pixel of the current mouse | ocation.
When write_names() has built the list of procedures, it erases the last name list, and writes the new list of
names in the lower |eft corner of the window.

procedure write_names()
static maxrows, maxcolumns
&x [:=2
&y =2
build a list of names of procedures
L:=1]

49

everyi:=—-1to1ldo
everyj:=—-1to1ldo{
loc := location(&y + j, &x + i)
every put(L, procedure_name(!\loc2procs[loc]))
}
compute the geometry needed to erase last name list
if max := *L[1] then {
every max <:=*IL
maxcolumns <:= max
}
maxrows <:=*L
&col := XColumns() — maxcolumns
&row := XRows() — maxrows — 1
XClearArea(&x, &y)
if *L > O then
everyi:=1to*L do {
XGotoRC(XRows() — *L + i, XColumns() — max)
writes(&window, L[i])
)
e := XEvent()
end

The scat program could be generalized in several ways, for instance, it is trivial to extend scat to
accomodate Icon’s built-in function and operator repertoire. If thisinformation were cross-referenced with
static knowledge of which functionsand operators were generators, scat could show whether they are being
used generatively, or only used to obtain single results as in conventional programming. Another useful
way to extend scat would be to allow the user to specify lines (slopes) to indicate a procedure’s expected
result/call ratio; if the number of resultsweretoo low or too high, the user might want to stop execution and
inspect the situation in closer detail.

7.3 Algae

A program named Algaeillustrates one approach to displaying procedure and generation activity in a more
connected fashion. Algae displaysan animated representation of the activation tree for procedures, built-in
functions, and/or string scanning environments as the TP executes, and serves as a basis for other more
sophisticated EMs that are presented in later chapters.

Algaee is designed to use little screen space and does not require rearrangement of nodes as the tree
changes, like conventional approaches to tree layout do. This attempt to save screen space and animation
time produces an approximation of the activation tree that sacrifices the details of parent-child relationships
inthetree. The Algae metaphor ismeant to complement more conventional layouts, not to replacethem. The
idea behind Algaeis to present enough of the expression activity so that common goal-directed evaluation
patternsin TP are identified and strange behavior can be noticed as an unfamiliar pattern in the animation.

50

Figure7.4: Algae

Algae geometry

The Algae window uses a simple two-dimensional grid of cells; the vertical dimension depicts expression
nesting depth, such as calls and returns from procedures. The horizontal dimension depicts generator
suspension width, such as procedure, function/operator, and scanning environment suspension. Whenever
a computation is suspended, new computations at the same level start in the next cell column to the right,
indicatingthe possibility of backtrackinginto the suspended computation. A sampleimage of Algaeisshown
in Figure 7.4. The target program being monitored is a recursive descent parser. Magenta (depicted as dark
gray) cdlls represent suspended Icon procedures for the nonterminals of a parse that is being attempted. A
yellow (light gray) cell in the bottom-right is the currently active procedure. Light blue (medium gray)
is used to fill in cells when they are vacated; coloring these cells provides a “high water mark” for the
computation up to any given point and gives it an overall characteristic shape.

In order to support the two-dimensional geometry, Algae’s activation tree records havefields for therow
and the column of the cell assigned for each activation:

record algae_activation(value, parent, children, row, column, color)

Since screen space is limited, each activation is depicted as a small hexagon in the window, color-coded
by the kind of activation (procedure, function, operator, or string scanning environment). The size of
the hexagons is scalable. Given this geometry it would be easier to plot Algae using rectangular points.
Hexagons are used primarily for their visual effect — they provide a smoother animation as the tree grows
and shrinks. Position changesin Algae are often diagonal, and in a square mapping, these changes appear to
be a farther distance than horizontal or vertical position changes. A collection of Icon procedures totalling
roughly 160 lines were written to manipulate hexagons; they are omitted here for the sake of brevity. In the
code below, the procedure spot() fills a hexagon at a given location with a particular color.

Because screen space is limited and the activation tree is constantly changing, Algae does not lay out
the tree in away that spreads out nodes throughout the available screen space. Instead, Algae lays out tree

51

nodes from the leftmost edge of the window, being careful to maintain the correct depth and breadth of the
tree, and making sure that no two nodes occupy the same cell. When anew nodeis created, it isaassigned
acell with arow given by its level; the column is computed by inspecting the existing tree and finding the
first position to theright of both the parent node and any nodes at the new node’s level.

Since expression trees grow and shrink along their rightmost edge, the tree search to assign a column
is a pre-order depth-first right-to-left search. An important special case is if the node's parent already has
a child, in which case the newly-created node can immediately be assigned a column adjacent to its older
sibling; this case is handled directly in algae_callback() for efficiency and often allows the tree search to
be avoided entirely.

The code to compute the columnis:

procedure computeCol(parent)
node := parent
while node.row > 1 do node := \node.parent # find root
if node === parent then return parent.column
if col := subcompute(node, parent.row + 1) then
return max(col, parent.column)
else
return parent.column
end
procedure subcompute(node, row)
check this level for correct depth
if \node.row = row then return node.column + 1
search children from right to left
return subcompute(node.children[*node.children to 1 by —1], row)
end

Using evaltree() to incrementally updatethe display

Algae makes extensive use of colors to indicate the kind of activation, such as whether it is a procedure,
function, or string scanning environment. In main(), several bindings are created with different foreground
colors, as described in Chapter 5. The colors used are arbitrary and the user can determine the contents of
the node by clicking on it if the color isnot familiar.

After initialization, Algae calls evaltree() and passesit areference to the procedure algae_callback().
The event mask used is variable and depends on command-line arguments. The body of algae_callback()
performs the incremental animation of the tree. Each event that modifies the activation tree entails the
updating of two display cells: acell that isentered isdrawn in yellow to mark it as the active cell, and a cell
that isexited iseither drawn in the color associated with the activation (if it is suspended) or in abackground
gray color (if the associated activation has returned or failed and no longer exists).

case &eventcode of {
ICallCodes: {
new.column := (old.children[—2].column + 1 | computeCol(old))
new.row := old.row + 1
new.color := Color[&eventcode]
spot(\old.color, old.row, old.column)

52

}

IRetCodes | IFailCodes: spot(background, old.row, old.column)
ISuspCodes | 'ResumCodes: spot(old.color, old.row, old.column)
IRemCodes: {

spot(black, old.row, old.column)

XFlush(black)

delay(100)

spot(background, old.row, old.column)

}

E_MXevent: user_event(&eventvalue, new)

}

spot(yellow, new.row, new.column)

Algaecontrols

User control of Algae consists of marking specific hexagons (using the | eft mouse button) or entire rows and
columns (using the middle button) to pause execution. Pressing the right button atop an hexagon marked
active or suspended prints the name of the associated procedure or function, or the subject of the associated
string scanning environment. Theinput handling isperformed by do_event() inresponseto an E_MXevent.

Each call to algae_callback() checks to see whether the cell being entered is one selected by the user
to pause execution, and if it is, the callback procedure loops reading user events until the user indicates that
execution should continue. algae_callback() concludes with the code for thistest:

loc := location(new.row, new.column)
if \step | (new.column >=\maxcolumn) |
(new.row >=\maxrow) | \ hotspots[loc] then {
step := &null
XWindowLabel(" Algae stopped: (s)tep (c)ont ()clear ")
while e := XEvent() do
if user_event(e, new) then break
XWindowLabel(" Algae")

}

The procedure user_event() returns if execution should proceed, but fails if execution is still paused
and another user event should be obtained. The code for user_event() is somewhat lengthy and isincluded
in the complete text of Algaein Appendix A.

The techniques presented here apply not only to Icon’s built-in functions, operators, and scanning
environments — the evaltree() procedure can accomodate al of these kinds of events simultaneously and
maintain one large expression activation tree. Some differences between the different kinds of activations
exist; an obviousoneisthat function and operator events are so frequent that monitoringtheminan EM like
Algae vastly reduces the tool’s effectiveness in monitoring the less-frequent procedure activity. 1t would be
useful to explore variants of evaltree() that allow certain subtreesto be ignored, or do not plot activity at all
unless interesting behavior such as generation or backtracking takes place.

53

CHAPTER 8
Monitoring Memory Usage

Memory usage is an important aspect of program behavior that is not directly evident from source
code examination. The execution monitoring instrumentation produces events on every memory alocation
with an event code that indicates the type allocated and a corresponding event value giving the size of the
alocationin bytes. In addition, events occur at garbage collections, including the types and sizes of objects
that survivereclamation. Allocation events are selected with the evinit symbol AllocMask.

This chapter presentsa variety of EMsthat portray aspects of memory usage. First, EMs are given that
plot each individual allocation in relation to other recent allocations; they are useful in observing localized
program behavior such as alocations of unusual size or changes in the mgjor phases of execution. Later
in the chapter, EMs that portray cumulative memory usage behavior are discussed; they provide a useful
profiling service and a general understanding of the TP's use of memory. These simple examplesillustrate
only afew of many visual metaphorsthat have been developed for memory usage, ranging from literal views
of the heap to completely abstract animations whose patternsreflect a program’s memory allocations. Some
of the other toolsthat portray memory activity are described in a separate document [Gris92b].

8.1 Allocation by type

Many visual metaphors can be used to depict allocation types or sizes, or both. Two allocation monitors
are presented in this section. The first emphasizes frequencies and patterns of types in alocated memory,
while the second emphasi zes all ocation size information. These examples a so exhibit a clean separation of
the data collection and graphics rendering tasks, enabling the visual metaphorsto be used in other tools that
monitor types of events other than memory allocations.

811 Pinwhee

The pinwheel metaphor presents a sequence of values, in this case the event codes associated with all ocation
event reports, encoded as colors or textures drawn in sectors around a circle. The n sectors of the circle
represent ahistory of thelast n allocation eventsin the TP's execution. A screen image from aprogram using
this metaphor to present memory allocation patternsis givenin Figure 8.1. In thisexample, event codes for
Icon’s alocated types are mapped onto colors. The view is updated on each allocation; the animation rate
gives an indication of the frequency with which memory allocations occur.

Pinwheel and many other visual metaphors have been encapsulated in procedures for use by execution
monitors. By using a common set of conventions, the metaphors can be applied interchangeably and to
different types of data. The procedure pinwheel(), called with no arguments, starts with local variable
declarations and then initializes severa variables that scale the mapping.

54

Figure 8.1: Pinwheel

procedure pinwheel()
local clear, xorg, yorg, radius, radians
local angle, arc, sector_units, fullcircle, blank, max, xratio, yratio

max := real((XWidth() < XHeight()) | XWidth())
xratio := XWidth() / max

yratio := XHeight() / max

fullcircle := 360 * 64

angle :=0 # initial degrees x 64
radians :=0

sector_units := fullcircle / Sectors # amount to advance
blank := 2 * sector_units # amount to blank

xorg := XWidth() / 2

yorg := XHeight() / 2

radius :=max /2

while NextEvent() do {
XFillArc(Background, 0, 0, XWidth(), XHeight(), angle + sector_units, blank)
XFillArc(Binding, 0, 0, XWidth(), XHeight(), angle, sector_units)
XDrawLine(Background, xorg, yorg, xratio * radius * cos(radians) +

xorg, yratio * radius * sin(radians) + yorg)

angle +:= sector_units
angle %:= fullcircle
radians := —dtor(angle / 64)

}

end

Pinwheel’smain loop reads a monitoring event, drawsafilled arcin abinding that usesacol or associated
with the event, and erases the next slice of the pinwheel to mark the edge of motion. The local variable
angle, the front edge of the pinwheel motion, is advanced at each iteration. The procedure NextEvent()
encapsul ates the task of reading a program event and selecting an appropriate color (or texture) to portray it

55

so that the type of data being processed and the color used to draw the pinwheel are independent of the task
of drawing the pinwheel itself. NextEvent() assigns the global variable Binding a window vaue with an
appropriate foreground color for usein drawing the sector.

8.1.2 Nova

The nova metaphor is another example of aradial mapping of a sequence of event reports. Each allocation
event report is plotted as a line segment from the center of the window in polar coordinates, with a radius
given by the size of the allocation (&eventvalue), at aregular angular offset from the preceding value. Like
pinwheel, the graphicis drawn in acolor that indicates the alocation type, based on the event code, and the
display isanimated at the rate at which memory alocationstake place. An example screen image from nova
isshownin Figure 8.2.

Figure8.2: Nova

Like pinwheel, nova begins with an initialization section, followed by aloop that reads an event (again
using NextEvent()) and draws aline at the appropriate angle and of the appropriate length.

procedure nova()
local clear, xorg, yorg, radius, radians
local angle, arc, sector_units, fullcircle, erase, oldvalue
initial gclear := 1
erase := list(Sectors)
fullcircle := 360 * 64
angle :=0 # initial degrees * 64
radians :=0
sector_units := fullcircle / Sectors # amount to advance
xorg := XWidth() / 2
yorg := XHeight() / 2
radius := ((XHeight() < XWidth()) | XHeight()) / 2.0
while NextEvent() do {
put(erase, Value)
oldvalue := get(erase)

56

XDrawLine(Background, xorg, yorg, \oldvalue * cos(radians) + xorg,
oldvalue * sin(radians) + yorg)

XDrawLine(Binding, xorg, yorg, Value * cos(radians) +
xorg, Value * sin(radians) + yorg)

angle +:= sector_units

angle %:= fullcircle

radians := —dtor(angle / 64)

}

end

The following example demonstrates how memory allocation monitors may be of practical use. A
poetry-scrambling program submitted by a user produced the visual signature given in Figure 8.3 when run
under a tool using the nova metaphor (the wedge shaped gap in Figure 8.3 is present simply because the
nova's sweep has not completed its first revolution). The program builds up very long lists by repeated
concatenation, resulting in the frequent very large allocations shown in the figure. After changing two
lines of code to replace alist concatenation with callsto Icon’s put() function, the visual signature became
“normal” and program execution speed doubled (Figure 8.4).

Figure 8.3: Frequent large all ocations suggest a problem

8.2 Cumulativeallocation by type

Visualizingindividual allocation eventsisuseful for understandinglocal phenomena, but an overall summary
of memory allocation is aso useful in understanding program behavior. The following code segment totals
the amount of memory alocated in the program by data type, building a table of sums that is keyed by the
allocation event codesfor each type. The sumsare cumulative, that is, garbage collections are not taken into
consideration.

t := table(0)

while EvGet(AllocMask) do
t[&eventcode] +:= &eventvalue

57

Figure 8.4: Thetarget program runs twice as fast after a two-line change

8.21 Animating abar graph

Thefollowing procedure renders alist of non-negative numbersin awindow as abar graph. Each bar inthe
graphisgiven astring name in alist called labels whose indices match those of the list of numbers.

procedure bar_graph(L, labels, scale)
local height, x, v, i
XClearArea()
height := XHeight()
bar_width := real(XWidth()) / *L
XWindowLabel(" Bar Graph, scale " || left(scale, 6))
every i:=1to*Ldo {
X := (i — 1) * bar_width
y := L[i] * scale
XFillRectangle(x, height — y + 1, bar_width — 2, y)
XDrawsString(x, 15, labels][i])
}

end

If bar_graph is caled frequently, such as every time an event occurs in an execution monitoring
setting, the frequent window updates create a distracting amount of screen flicker. In such an animation, an
incremental approach is more appropriate.

The following program updates a bar graph incrementally. The bar graph presents cumulative memory
alocation by type. An example screen image from this animated bar chart is givenin Figure 8.5.

The cumulative allocations are stored in list bars, in the order they appear on the screen. A parald list
of labelsfor each bar is maintained in labels; it isbuilt from atable evs that maps event codesto their string
names. The table is constructed by the standard evinit library procedure evsyms(). The mapping from
event codes to screen position is maintained by the table typecode2bar. The animated bar graph scales
itself as cumulative allocationsincrease.

58

Table Slots Set String List Lelem Twthbl Selem Fecord

Figure 8.5: An animated bar graph

&window := open(" barmem" ," x") | stop(" can’t open window")
height := XHeight()

evs = evsyms()

typecode2bar := table()

bars :=[]
labels ;=]
scale :=4.0

The main loop requests an allocation event and calls procedure bar() to update the size of the bar that
correspondsto the event. A new bar is created when atype's first allocation takes place. No screen spaceis
devoted to typesfor which no alocation occurs. As each bar’s label is obtained from the event names table
evs, theevent’'s E_ prefix is stripped by the string subscript [3:0].

while EvGet(AllocMask) do {
if /levent2bar[&eventcode] := *put(bars,0) then
put(labels, evs[&eventcode][3:0] | " ?")
extent := (bars[event2bar[&eventcode]] +:= &eventvalue) * scale
if extent > height — 20 then
bar_graph(bars, labels, scale /:= 2)
else
bar(extent, event2bar[&eventcode])

}
The procedure bar() simply fillsin arectangle for the added space.

59

procedure bar(extent, i)

X := (i — 1) * bar_width

y := height — extent + 1

XFillRectangle(x, y, bar_width — 2, &eventvalue * scale + 1)
end

8.2.2 Piecharts

Thefollowing procedure draws a pie chart from a table shares in which each portion of the pie representsa
key and their relative sizeis the key’s table value. A parallel table colors of window bindings contains the
color, grayscale, or texturethat is used to distinguish each of the parts.

procedure draw_pie(shares, colors, sum, X, y, width, height)

local start, fraction, k, path

start :=0

fraction := 360 * 64.0 / sum

every k := key(shares) do {
path := fraction * shares[k]
XFillArc(colors[K], x, y, width, height, start, path)
start +:= path

}

end

Unless the update rate is high, a visualization tool using this procedure can be animated by brute-force
by redrawing the entireimage each time rather than incrementally. If the update rateis high, the chart might
only be redrawn when a constituent’s size changes by a significant amount, such as more than one percent
of thetotal. A sample screen image from such a program is givenin Figure 8.6.

8.3 Running allocation by type

In order to take garbage collections into account, the program must select E_Collect and E_EndCollect
events. The E_Collect event is produced prior to a garbage collection. The E_EndCollect event occurs
after a garbage collection, and if it is selected, the monitoring instrumentation also produces (re)allocation
eventsin between the E_Collect and E_EndCaollect for the objects that survived the collection.

codes := AllocMask ++ E_Collect ++ E_EndCollect
t := table(0)
while EvGet(codes) do
if &eventcode === E_Collect then t := table(0)
else t[{&eventcode] +:= &eventvalue

A more complex example of monitoring alocation by type is the following strip chart. It uses the
approach as the preceding example, but portrays a continuous animation in a window. In the following
example, they axisis used to show the proportions of memory used by all types. An example screen image
from thisprogramisgivenin Figure 8.7.

The program monitors all memory alocation and garbage collection information, maintains a table of
running sums of memory by type, and draws each vertical lineinthe graph as aset of segmentsthat are color

60

Figure 8.6: A piechart

coded by type and whose length corresponds to the proportion of memory used by that type. An external
library procedure, typebind(), islinked and used to provide the color encoding. typebind() returns atable
whose keys are type alocation event codes and whose values are window bindings with foregrounds set to
various colors; thetableisstored in global variable Colors. Since colorsvary from deviceto device, severa
palettes are available from typebind(), depending on the output device to be used. The global variable
tallies refers to a table of sums of alocations keyed by type. Global variable heapsize stores the total

amount of available memory. The event processing loop in procedure main() calls redraw() to update the
window on each allocation and clears the window on garbage collection.

61

L

Figure 8.7: A memory allocation strip chart

tallies := table(0.0)
heapsize :=0
every heapsize +:= keyword(" regions" , Monitored)
&window := open(" MemoryType" , " x")
Colors := typebind(&window, AllocMask)
mask := AllocMask ++ E_Collect
while EvGet(mask) do
case &eventcode of {
E_Collect: {
XClearArea()
tallies := table(0.0)
}
default: {
tallies[&eventcode] +:= &eventvalue
redraw()
}
}

The procedure redraw() updates the display when needed. Real arithmetic is used to minimize numeric
errors in the mapping.

62

procedure redraw()
static x
initial x := 0
start := 0
every k := key(t) do {
segment := XHeight() * real(tallies[k]) / heapsize)
XFillRectangle(Colors[k], x, start, 1, segment)
start +:= segment
}
X =X+ 1 % XWidth()
XClearArea(x + 1, 0, 1)
end

It ispossibleto substantially improveonthistrivial example; redundant callsand type conversionscan be
avoided, and many variations on the mapping from the problem space onto theimage geometry are possible.
In particular it may be worth avoiding screen updates when the change to be reported is very small.

8.4 Survival ratesacross collections

If a garbage collection reclaims only asmall amount of storage, the TP may quickly run out of free memory
and collect again. Asthe frequency of collectionsrises, overall system performance declines rapidly. This
information can be obtained by selecting E_Collect and E_EndCollect events and reading TP's &storage

keyword.

while EvGet(E_Collect) do {

L:=]

every put(L, keyword(" storage" , Monitored))

EvGet(E_EndCollect)

L2 =]

every put(L2, keyword(" storage” , Monitored))

write(" reclaimed " ,integer(real(L[2] — L2[2]) / L[2] * 100),
" percent of the string region")

write(" reclaimed " ,integer(real(L[3] — L2[3]) / L[3] * 100),
" percent of the block region")

}

63

CHAPTER 9
Monitoring String Scanning

As a descendant of SNOBOL4, Icon has a natural orientation towards text processing and includes a
control structure devoted to that task. This chapter presents a brief overview of lcon's string scanning
facilities and then gives example execution monitors that portray the target program’s use of this control
structure. The examples are themselves relatively simple, but demonstrate the framework’s capabilitiesin
thisareaand are suggestiveof more advanced possibilitiesto be explored in thisdomain using theframework.
Techniquesfor monitoring string scanning can be built by extending thetechniques presented for monitoring
procedure and operator activity in Chapter 7.

9.1 Overview of string scanning

Icon’s string scanning facility provides high-level text processing capabilities that free the programmer to
think in terms of patterns in the text instead of character-by-character handling of indices and subscripts.
String scanning operations work within the context of a string being scanned, the subject, and a current
position of interest within that subject. Together, the subject and position form a scanning environment
(Figure9.1).

subject "the yellow brick road"

¢

position

Figure9.1: A string scanning environment

The Icon expression
S ? expr

evaluates expr in ascanning environment that consistsof subject s and an initial position of 1 (the beginning
of the string). Scanning environmentsremain in effect inside any procedure calls within expr. Scanning en-
vironmentsmay be nested; the outer scanning environment is saved and restored when theinner environment
isentered and exited.

Operations on scanning environments include absolute and relative movement of the position as well
as various forms of string and character set matching and searching. Relatively sophisticated parsing is
performed by using these operators in conjunction with goal-directed evaluation and backtracking. In
particular, the functionsthat change position within an environment, move() and tab(), undo their effects if
they are resumed by backtracking.

64

9.2 String scanning events

Since a TP may suspend from and later resume a scanning environment, string scanning instrumentation
includesaset of eventsfor environment creation, suspension, resumption, failure, and removal, analogousto
theeventsthat occur asaresult of procedure activity. Monitoring string scanning may entail the maintenance
of a scanning environment tree using code similar to the procedure activity tree presented in Chapter 7.

In addition to these events, string scanning position changes result in the occurrence of E_Spos events.
If the scanning position is restored by move() or tab() during backtracking, a second E_Spos event occurs.

Scanning environment activity including position change events can be selected by an EM using the
library symbol ScanMask as the argument to EvGet(). In additionto ScanMask events, a string scanning
monitor may be interested in calls to the built-in string-scanning functions that comprise Icon’s pattern
matching primitives, such as find() and upto().

9.3 Absolute and relative position changes

This section gives two simple EMs that present position change information with different emphases: (1) a
view that portrays absolute position, and (2) a view that emphasizes rel ative position changes.

Visualizing absolute positions within the subj ect

String scanning operations move the position of interest within the subject forward or backward. Moving
the position forward is common; moving the position backward is less common and usualy is triggered by
backtracking during goal-directed evaluation. It is useful to be able to observe when the position moves
forward or backward and how large the changesin position are relaive to the size of the string.

The following program displays an animated strip chart with subject lengths and position change
information. For each position change event, the length of the subject is drawn down from the top and
filled with two or three colors. ared segment indicates the current position or the number of characters
aready processed, while a white segment indicates the remainder of the string not yet processed. If
backtracking has occurred, a gray segment in between the red and the white indicates the furthest forward
that the scanning position has reached or the extent of the backtracking. A sample screen imageisgivenin
Figure9.2.

The program starts with standard initialization code, including the creation of window bindings for
drawing segments in red and gray. The width of each bar is determined by variable barwidth, and the
number of pixelsdrawn per character in the various segmentsis specified in the variable scale.

The program’s main loop requests position change events, and plots a segment on the window for each
change. XDrawRectangle() draws a black outline to indicate the size of the scanned subject; calls to
XFillRectangle() plot thered and gray segments. A variable max holdsthe furthest position reached during
scanning of aparticular subject string; thegray segment isonly drawnif backtracking has moved the position
backwards into parts of the subject that have already been scanned.

65

! TR

Figure 9.2: Absolutestring position

while EvGet(E_Spos) do {

s := keyword(" subject” , Monitored)

position := &eventvalue

if s == s_old then max <:= position

else max:=1

if *s > 0 then {
XDrawRectangle(x, 0, barwidth, scale * *s)
XFillRectangle(red, x, 0, barwidth, scale * (position — 1))
if max > position then

XFillRectangle(gray, x, scale * (position — 1),
barwidth, scale * (max — position))

}

X := (X + barwidth + 1) % XWidth()
XClearArea((x + barwidth + 6) % XWidth(), 0, barwidth + 6)
sold:=s

}

Thissimple EM does not scaleits output to fit the window; in the event a very long subject is scanned,
output is clipped to window boundaries. An additional limitation is that backtracking information is not
saved and restored for nested scanning environments.

Visualizing relative position changes

By tracking relative position changes, backward motion is highlighted and large position changes are
emphasized. The following EM plots relative position change as distance from the middle of the window,
with forward position change going below the midpoint and backward position change going up from the
midpoint. A sample screen imageis shownin Figure 9.3.

After initiaization, the main loop reads E_Spos events and uses the keyword() function to obtain the
corresponding subject. If the subject is unchanged sincethelast event, the rel ative position change is noted.
Like the previous example, this tool would provide more accurate information if it saved and restored the
subject for nested scanning environments. The next section provides a method for doing so.

66

Figure 9.3: Relative string position

barwidth := 3
&window := open(" pos" , " x") | stop(" can’t open window")
x:=0

while EvGet(E_Spos) do {
s := keyword(" subject”" , Monitored)
p := &eventvalue
XFillRectangle(x, XHeight() / 2, barwidth, 1)
if s === s_old then
if p > p-old then
XFillRectangle(x, XHeight() / 2, barwidth, p — p_old)
else if p_old > p then
XFillRectangle(x, XHeight() / 2 — (p-old — p), barwidth, p_old — p)
X 1= (X + barwidth + 1) % XWidth()
XClearArea((x + barwidth + 6) % XWidth(), 0, barwidth + 6)

s.oold :=s
pold:=p
}

9.4 Scanning operations and the environment tree

Since scanning environments may be nested in much the same way as procedures, functions, and operators,
it makes sense to use a tool similar to the Algae tool presented in Chapter 7 to portray nested scanning
environments. Oneway to make use of such atool isto display scanning activity such as callsand results of
string scanning functions and operators as graphi cal mani pul ationsinside the hexagon allocated by Algaeto
the active scanning environment.

A modified version of Algae that displays string functions and operators encoded as colorsis shownin
Figure 9.4. The program uses the pinwhed metaphor from Chapter 8 to animate the sequence of operations
independently within each scanning environment. Around the pinwheels' outsideborders, circles are drawn
inred, white, and gray segmentsto show current position and positional backtracking, similar to the absolute
string positions example given earlier. The border around the pinwheel in the second column of Figure 9.4
isamost entirely dark (the grayscale depiction of red), indicating that the scanning positionis amost to the
end of the string, while the border around the pinwhed in the fourth column is only dlightly dark above the

67

three 0’ clock position, showing that the scanning positionisstill near the front of the scanned string.

Figure 9.4: Scanning environment trees and operations

In order to add this kind of detailed information about string scanning environments, extra fields are
added to Algae's activation record type for the current scanning position, the farthest scanning position
reached in the scanning environment, and the environment’s pinwheel angle (expressed in units of 1/64th of
adegree).

record activation(node, parent, children, row, column, color, pos, maxpos, angle)

Updating position in the current scanning environment

Position change events are added to the event mask passed to evaltree(). The case expression of the callback
procedure for E_Spos events updates the current scanning environments position fields, and draws red and
gray arcs around the outside of the hexagon to show position information. Global variables HexWidth and
HexHeight are used to determine the region inside the hexagon that is available for drawing.

Notethat acallback static variable, scanenv, isused rather than the current activation (new), which can
be aprocedure, function, or operator called within the current scanning environment. scanenv ismaintained
by code added to the case expression branches of Algae's evaltree() callback procedure, described bel ow.

68

case &eventvalue of {
... other Algae case branches as given in Chapter 7
E_Spos: {
scanenv.pos := &eventvalue
scanenv.maxpos <:= &eventvalue
unit := fullcircle / *scanenv.node
XDrawArc(red, hexcolumn_x(scanenv.col) + 5,
hexrow_y(scanenv.row, scanenv.col) + 5,
HexWidth — 10, HexHeight — 10, 0, (&eventvalue — 1) * unit)
if scanenv.maxpos > scanenv.pos then
XDrawArc(gray, hexcolumn_x(scanenv.col) + 5,
hexrow_y(scanenv.row, scanenv.col) + 5,
HexWidth — 10, HexHeight — 10,
(&eventvalue — 1) * unit, (Scanenv.maxpos — scanenv.pos) * unit)
XDrawArc(wwhite, hexcolumn_x(scanenv.col) + 5,
hexrow_y(scanenv.row, scanenv.col) + 5,
HexWidth — 10, HexHeight — 10,
(scanenv.maxpos — 1) * unit, fullcircle — (scanenv.maxpos — 1) * unit)

¥
¥

Drawing pinwheel sectorsfor string scanning functions

Theglobal table of colorsisextended to map important string scanning functionsonto window bindingswith
foreground colors that indicate which function is being performed. Activity that involves these functions
is captured by adding code to the callback procedure’s case expressions. The code for suspension eventsis
shown here; similar code is added to the other cases.

ISuspCodes: {
pinwheel(scanenv, \ Colors[new.node])
... rest of code for suspension events

}
Maintaining pinwheelsfor nested scanning environments

The added fields of an activation record are initialized whenever a new scanning environment event is
received. The modified code looks like:

ICallCodes: {
... code as given in Chapter 7
if &eventcode === E_Snew then {

New.pos := new.maxpos =1
new.angle :=0

¥
¥

69

The pinwheel drawing procedure from Chapter 8 is revised to take an activation record and a window
binding with aforeground color to encode the string operation being performed, and draw a single sector in
that foreground each timeiit is called.

procedure pinwheel(arecord, win)
static full_circle, sector_units
initial {
full circle := 360 * 64
sector_units := full_circle / 16 # 16 sectors in the circle
)
radians := —dtor(arecord.angle / 64)
X := hexcolumn_x(arecord.col) + 6
y := hexrow_y(arecord.row, arecord.col) + 6
width := HexWidth — 12
height := HexHeight — 12
center_x :=x + width / 2
center.y :=y + height / 2
XFillArc(arecord.color, X, y, width, height, arecord.angle + sector_units, blank)
XFillArc(win, x, y, width, height, arecord.angle, sector_units)
XDrawLine(arecord.color, center x, center.y,
radius * cos(radians) + center_x, radius * sin(radians) + center.y)
arecord.angle +:= sector_units
arecord.angle %:= full_circle
end

9.5 Conclusions

String scanning is an important feature in Icon. In order to monitor it correctly, an EM must not only handle
position changes, but a so handle nested and suspended scanning environments. The extra attention required
to monitor scanning correctly parallelsthe effort required to implement scanning correctly in the language.

Although string scanning isimportant, most programs use string scanning in extremely simpleways. Al-
though detailed viewswill alwaysbe useful in debugging situations, in more general program-understanding
efforts the information provided by literal text-oriented views of string scanning may be less useful than
might be expected. A better approach may be to view string scanning within a larger context of program
operation, such as the modified Algae example. It is not clear how to best monitor and visualize string
scanning; thisis still an open areafor research.

70

CHAPTER 10
Monitoring Data Structuresand Variable Usage

Previous chapters have demonstrated techniquesfor monitoring various aspects of program control and
memory usage. Although some aspects of TP data usage are observable by means of memory allocation and
garbage collection events, key aspects of program behavior are often characterized in terms of operationson
program data, such as manipulations of program data structures or variable references.

This chapter presents techniques for monitoring data from both program-wide and narrower, variable-
oriented viewpoints. Example EMs include list access monitors that show usage of Icon’s built-inlist data
type on aprogram-wide scal e, and variable reference monitorsthat show activity withinindividual procedure
activations. There are many other waysto present data structure activity and thisis an open area of research.
The examplesin this chapter illustrate the capabilities and possible uses of the framework in this domain.

10.1 List Accesses

On aprogram-wide scale, atool that visualizeslist activity isrepresentative of techniquesneeded to monitor
Icon’s list, table, record, and set data types. Icon’s list data type is used for a variety of purposes. Some
programs use afew largelists, while other programs may use hundreds or thousandsof small lists. Listscan
change in size dynamically using both queue and stack operations, and they can a so be accessed randomly
similar to arrays in other languages.

Thefollowing EM portraysan overall view of list behaviorinaTP. TP slistsare presented as a sequence
of vertical bars, with each bar’s length proportional to the size of the corresponding list. Vertical segments
of the bars are color-coded by the types of the lists’ elements. If all of alist's elements are of the same type,
this forms a solid bar of that type's color; if alist is heterogeneous, its appearance is “ candy-striped” with
the various colors of itselements' types. The horizontal position of alist’sbar on the display is given by the
list's serid number. A serial number is an integer associated with each list when it is created. Using serial
numbers to determine screen position orders the lists from left to right by time of creation.

Queue, stack, and array-style random accesses are portrayed by changing the size of the bar (in the case
of queue and stack accesses) or briefly painting a segment of the bar black and then redrawing it (in the case
of random accesses). An example image from this program is given in Figure 10.1. Empty columnsin this
view indicate serial numbers at which no list has yet been created (on the far right) or liststhat are empty or
have been garbage collected (in the middle of thefigure).

One of the key features of thisprogram is a high degree of scalability necessary in order to accomodate
programswith very large numbersof listsand yet present as much detail as screen spaceallows. In particular,
if the number of listsis too large to fit in the window, the window is split into two rows and the number
of vertica pixels per element is halved; this generalizes to n rows of as few as one vertica pixel per list
element. Figure 10.2 depicts a view in which the number of lists has caused a split into two rows. Figure
10.3 depicts a scaled image for a larger number (around 400) of lists requiring eight rows. Spaces in the
figures again generally indicate empty or garbage-collected lists.

This scalability is achieved by maintaining a number of interdependent variables to describe the screen
geometry. The window is divided into a matrix of size rows by cols corresponding to individual lists; each

71

rreyT -

Figure 10.1: A list access monitor

Figure 10.2: A moderate number of lists

element of the matrix isin turn divided into vertical segments of height elem_height.

global
rows, # number of rows of entire lists
cols, # number of lists displayed per row
elem_height # height of an individual list element

In addition to this basic screen geometry, a count of the number of listsin TP iskept in number_active,
and the mapping from lists to window (row,column) coordinates is maintained in table list_locations. The
mapping from liststo window coordinates uses list serial numbers as keys, rather than list valuesthemselves.
If the EM retained references to the TP lists instead of their serial numbers, none of the TP lists could be
reclaimed by garbage collection.

Procedure redraw() draws an entire picture of al thelistsin the program. It usesthe MT Icon function
structure() to generate al the allocated structures in the program, and assigns each list a row and column.

72

Figure 10.3: A large number of lists

Each element of each list isthen drawn by XFillRectangle() in acolor determined by the element’s type by
acall to objcolor().

procedure redraw()
XClearArea()
column_width := XWidth() / cols
row_height := XHeight() / rows
every i :=1torows — 1 do XDrawLine(0, i * row_height, XWidth(), i * row_height)
number_active := 0
list_locations := table()
every type(L := structure(Monitored)) == " list" do { # for every list in the heap...
number_active +:= 1
row := 1 + number_active / cols
col := number_active % cols
list locations[serial(L)] := location(row, col)
every index := 1 to *L do
XFillRectangle(objcolor(L[index]), col * column_width, (row — 1) * row_height +
(index — 1) * elem_height + 1, column_width, elem_height)

end

73

Procedure redraw() is called whenever the scaling must be changed. The view it establishes can be
updated incrementally for ordinary list construction and access by drawing one or more individual list
elements with procedure plot(). plot() drawsarectangle, first with ablack rectangleto highlight the access,
and then with arectangle of a specified color.

procedure plot(w, row, col, index, del)
/del := 40
x := col * column_width
y := (row — 1) * row_height + (index — 1) * elem_height + 1
if del > O then {
XFillRectangle(vblack, x, y, column_width, elem_height)
XFlush(vblack)
delay(del)
}
XFillRectangle(w, x, y, column_width, elem_height)
end

The main loop fetches list events and updates by calling plot(). redraw() is called when the screen
becomesfull or the window size changes. One significant detail of list access monitoringisthat alist access
resultsintwo events, onewiththelist itself for an event value, and asecond event with an integer event value
that givesthe index accessed withinthe list. EM saves the list value in the first event and uses it when the
second is reported. Since the events come in pairs, TP does not do anything in between the two events, but
after the second event, EM must use and then destroy its reference to the list or it might spuriously prevent
thelist from being garbage collected.

while EvGet(ListMask) do
case &eventcode of {
E_Lref : L := &eventvalue
E_Lsub: {
index := &eventvalue
if index < O then
index +:=*L+1
loc := list_locations[serial(L)]
plot(objcolor(L[index]), vertical(loc), horizontal(loc), index)
L := &null
}

... other events handled similarly

}

Althoughthisexample uses some sophisticationto scalewell tolarger numbersof lists, it can beenhanced
in various ways. For example, relaxing the direct mapping from serial number to screen location would
allow screen-space to be reclaimed whenever alist was garbage collected. Another improvement would be
to portray list operationsin avisualy distinct way instead of simply maintaining an accurate representation
of thelists' contents.

74

10.2 Monitoring variablereferences

Monitoring structure accesses with techniques such as those described in the previous section is useful,
but in many EMs, notably debuggers, data monitoring is driven from the variables used in the program.
We consider two examples of variable monitoring, one that visualizes all variables and one that identifies
references to specific variables of interest.

10.2.1 Assignment events

Oneof themost common monitoring techni quesisthe observation of assignments, wheretheuser isinformed
or monitoring code is executed whenever an assignment to a particular variable or set of variablesis made.
The instrumentation reports an E_Assign event on each assignment. E_Assign has a string event value
equivalent to calling name(v) on the assigned variable, suffixed by a scope code. The scope codes are

Code Scope
R global
" static
" local
" parameter

Statics, locals, and parameters are followed by the name of the procedure in which they are defined.
For example, alocal variablei in procedure main() would produce an E_Assign event vaue " i-main" .
Variabl e references to structure elements have no scope code.

For assignmentsto named variablesand keywords, the name and scope are sufficient to perform reference
detection; the name and scope may be augmented by procedure activity informationin order to providefiner
detail for local (and especialy recursive local) variables. For assignments to structure elements, the event
value cannot produce the name. A given structure element might be assigned by means of any of severa
variablesthat reference the structure. For thisreason, reference detection techniquesare different for named
variables and for structure-element variables.

10.2.2 Monitoring variables by name

Figure 10.4 shows a window image of atool that displaysthe names and types of variables associated with
procedure activations; the names are written in multiple columns in the case of a procedure with a larger
number of variables. Asitsappearance indicates, thetool is an enlarged version of the Algae program from
Chapter 7. The names of procedure parameters and local variables are displayed within each activation,
drawninacolor that indicatesthe type of thevariable. Colorsare updated after each assignment. One useful
extension to thistool isto show the values of integers. Thisisuseful because integers are common, because
they do not require much space, and because they are not heap-all ocated and therefore do not appear in other
data-oriented monitors.

The required modifications to Algae source code are omitted here for the sake of brevity; they are
comparable to the extensions for string scanning given in the preceding chapter. The technique used isthe
monitoring of assignment events, considering only those events whose scope code indicates either a local
variable or parameter assignment.

The use of source-text names creates serious spatial problems. Another reasonable way to extend this
EM would beto modify it to use smaller rectanglesfor each variable and omit the names. Specific variables

75

atg)
e dump
ompiledFat,

Figure 10.4: Monitoring variablesin active procedures

names could be shown when the user clicks the mouse atop a particular variable.

10.2.3 Monitoringindividual variables

A named variableisidentified by itsnameand scope, or by itsinstantiating procedure activationif recursively
created local variables are considered distinct. For such variables, reference detection isimplemented using
the E_Assign event values and some additional logic. Two examplesbelow illustrate caseswhere (1) the EM
acts on any assignment to a variable defined within a given procedure, and (2) the EM acts on assignments
only within a specific activation record.

In the non-recursive case, variables can be identified by their name and scope. A collection of variable
names of interest might be stored in an Icon set (“trapped_variables” in the code below). Variable traps
requireselection of assignment eventsand maintenance of current procedureinformation using theevaltree()
procedure as described in Chapter 7 on following procedure activity. The correct invocation of evaltree()
is:

76

evaltree(ProcMask ++ E_Assign, trap_callback, activation_record)
Procedure trap_callback() detects variable references with a set membership test.

procedure trap_callback(current_proc)
if &eventcode === E_Assign then
if member(trapped_variables, &eventvalue) then {
perform trap

}

end

In some EM’s, the handling of recursive procedure calls requires a more sophisticated form of variable
trapping in which each individua loca variable within each procedure activation record is treated as a
distinct entity and can be trapped separately. Thisis relevant in recursive procedure calls. This form of
trapping can be implemented by adding a field to the structure maintained for activation records:

record trapped_activation(p, parent, children, trapped_variables)

The variable reference detection is performed using this record type in an evaltree() invocation of the
form:

evaltree(ProcMask ++ E_Assign, trap_callback, activation_record)
and replacing theline
if member(trapped_variables, &eventvalue) then {
in trap_callback() with theline
if member(new.trapped_variables, &eventvalue) then {

10.24 Detecting structurevariablereferences

Icon structures have pointer semantics. Consequently, if two variables refer to the same structure, atrap on
the name of an element of one of the variables will not catch an assignment using the other variable name.
In the code

L1 := list(2)
L2:=L1
L2[1] := "foo"

atrap on variable L1[1] will not catch the assignment even though assignment is made to it. In order to trap
structure el ements, the information provided in assignment events need to be mapped downto the underlying
structure.

Unfortunately, name(v) for a structure variable produces only a type code letter and a string image
of the subscripting element. Without resorting to data intrusive techniques such as altering the internal
representation of Icon structures, monitors cannot tell from an assignment to an element which structurethe
dement isin. Instead monitors use the framework’s extensive access to the program state.

77

Given the information E_Assign events provide about structure assignments, one way to trap structure
elements isto check if a structure assignment might be a variable trap, and then compare all structures that
might have been changed, after the assignment has been performed. In general, non-intrusive techniques
for monitoring assignment are inefficient: this particular approach imposes a cost on structure variable
assignment proportional to the number of trapped structure variables of the same type and index; if alarge
number of variables are to betrapped, dataintrusivetechniquesmay be needed for performance reasons. An
appropriate trapped variabl e technique has been developed for SNOBOL4 [Hans7§].

For every trapped structure variable, a triple consisting of the structure, the index or key, and the old
valueis maintained.

record trapped_structvar(struct, index, value)

These records are stored in a table, indexed by the string name that is reported by E_Assign when the
variableisassigned.

Structure variable traps use not only E_Assign events, but also the E_Value events that are produced
followingtheassignment. If the structureindexed by the key doesnot still equal the old value, theassignment
has taken place. Thistechniqueisnot capable of detecting assignments of the same value replacing itself in
structures. The codeis

codes := E_Assign ++ E_Value
while EvGet(codes) do
case &eventcode of {
E_Assign : {
if match("T[" | "L[" | "R.", &eventvalue) then
struct_asgn := trapped_structs| &eventvalue]
else struct_asgn := &null
}
E_Value : {
every tv := I\struct_asgn do
if tv.struct [tv.index] ~=== tv.value then {
the trapped structure element has been assigned

¥
¥
¥

This technique works directly for tables and lists. It aso works for record fields as long as the field is
translated into its corresponding index for insertion into the trapped_structvar record.

78

CHAPTER 11
Monitor Coordination and Communication

Asillustrated in the preceding chapters, MT Icon and its execution monitoring interface make it easy to
develop new EMs. In thismodel, monitors are free to specializein particul ar aspects of program execution,
and the user selects the aspects to monitor in a given execution. When multiple EMs come into play, the
sdlection of which EMs to use, the execution of those EMs, and their communication interface are the
responsibility of a program called a monitor coordinator (MC).

This chapter presents monitor coordination as another domain within the scope of the exploratory
program devel opment features provided by the execution monitoring framework. After agenera discussion
of monitor coordinators, an example monitor coordinator is presented that implementsageneralization of the
selective broadcast communication paradigm advocated by Reiss [Reis90a]. Other paradigms of monitor
coordination are possible within the framework. In addition, other generalizations of selective broadcast
proposed in the literature may prove complementary to the one presented in this chapter [Garl90].

11.1 Some monitoring configurations

MT lcon execution events are always reported to the parent program that loaded the TP being monitored.
This means that the normal event reporting mechanism handles simple relationships such as monitoring a
monitor or monitoring multiple TPs (Figure 11.1).

- €VENt request

— = event report

Figure 11.1: Monitoring a monitor; monitoring multiple TPs

On the other hand, the parental event report relationship means that if more than one EM is to monitor
a TP, the TP's parent must provide other EMs with artificial copies of the TP events; MT Icon’s event()
function providesthis service. Figure 11.2 depicts a parent EM that forwards TP eventsto an assisting EM.
Monitor coordinators are specialized EMs whose primary function is to forward events to other client
EMs. A monitor coordinator isan event monitoring kernel that integrates and coordinates the operation of

79

= event request
= — = event report
\ =P griificial event

Figure 11.2: Forwarding eventsto an assistant

multiple stand-alone tools. By analogy to operating systems, the aternative to a kernel design would be a
monoalithic program execution monitor that integrates all operationsinto a single program.

Figure 11.3 depicts some rel ationshipsamong MCs. Figure 11.3(a) is similar to Figure 11.2 and shows
that a MC is just an execution monitor that forwards events. Figure 11.3(b) shows the main purpose for
MCs, the execution of multiple EM’s on asingle TP. Figure 11.3(c) showsaMC monitoringaMC.

MC configurations and logic generally are limited to and revolve around parent-child relationships. For
example, itisimpossibleto monitor eventsin a TP loaded and being monitored by another EM or MC unless
that parent is configured to forward such events.

Iy

—- cvENt
request

— = event
report

- g artificial
event

(@) (b) (©

Figure 11.3: Monitor coordinators

Since event reports also transfer control, MCs aso are schedulers for EMs, relinquishing the CPU to
them by forwarding eventsto them. In the simplest case the MC forwards an event and waitsfor the EM to
request another event before continuing; this scheduling is aform of cooperative multi-tasking. If theMCis
the parent that loaded the EM in question, it can request event reports (such as clock ticks) from the EM in
order to preempt its execution. Since MCs are special-purpose EMs, devel opment of efficient MC designs
falls within the scope of exploratory programming support provided by MT Icon.

80

11.2 Advantages and disadvantages of the M C approach
The three primary advantages of monitor coordinators are:

Modularity WithaMC, monitorscan be devel oped independently of one another and of the MC itself; they
can run as stand-alone monitors, directly loading and executing the program to be monitored. This
allowsmonitorsto be debugged separately and puts*“fire-walls’ between monitorswhen they monitor
the same program at the same time.

Specialization Support for multiple monitors allows EMs to be written to observe very specific program
behavior and still be used in a more general setting. This in turn reduces the burden of generality
placed on EM authors. Speciaization also simplifies the task of presenting information, since each
EM usesits own window and the user decides how much attention and screen space to devote to each
EM.

Extensibility Extensibility refers to the ease with which new tools are added to the visualization environ-
ment. Adding a new tool to run under a MC does not require recompiling or even relinking the MC
or any of the other visualizationtools.

Monitor coordinators do have disadvantages. The implementation of MCs poses serious performance
problems that require careful consideration. Although unsuitable for exploratory monitor devel opment and
experimental work, asinglemonolithic EM providesbetter performance than aMC that |loads multiple EMs.

The primary problem with MCs is the number of context switches among tasks; on some architectures,
notably RISC architectures such asthe Sun SPARC, switching between coroutinesisan expensive operation.
Minimizing the number of switches required must be agoal of most MC designs.

11.3 Eve, an execution monitor coor dinator

Eve is an example of a MC that allows the user to execute one or more EMs selected from a list and
forwards TP events to those EMs that the user selects. The communication provided by Eve represents a
generalization of the selective broadcast communications paradigm, because EMs may change the set of
events at any time during execution; in Reiss's FIELD system, tools can specify the set of events they are
interested in only when they are started. Unlike Forest’s generalization of selective broadcast in which
dynamic control is achieved by placing a greater computational load on the coordinating message server,
Eve maintains an extremey simple message dispatch mechanism and passes policy changes on to the TP by
recomputing the TP's event mask whenever needed. By suppressing events as early as possible, the higher
performance required for execution monitoring is attained. This technique of continually minimizing the
set of events reported by the TP could be used in conjunction with a Forest-style policy mechanism in the
monitor coordinator if that were desired.

Eveis acooperative multi-tasking scheduler. Figure 11.4 shows an image of Eve's control window. On
the left-hand side are buttons that pause and terminate TP execution and a slider that controls execution
speed. The main area of the window consists of a configurablelist of EMs, and for each EM a set of buttons
alow the tool to be controlled during TP execution. In the figure, two EMs are loaded and enabled. The
source code for Eveis presented in Appendix B.

81

Jusr/icon/ibindcolors.. ..
Jusriojeffery/toolsfalgae, ...
Juzriciefferystoolas/mempie, .., ..

Jusrscjefferystools/piano -PRB0, ver
Ts 131 Jusrscjefferystools/gnames -P 0,696, ...
Jusr/cjefferystools/lstyle -P GB0,E9E,

sloul
fast

Figure 11.4: Eve's control window

11.4 Writing EMstorun under Eve

Eve supplies eventsto client EMs using the standard EvGet() interface [Gris90b]. This section describes a
few differences between the stand-alone interface and the Eve environment. Note that programs written for
the Eve environment run without change or recompilation as stand-alone tools.

Client environment

After each EM is loaded, Eve initiaizes it with references to its event source (the Eve program itself)
and the TP. The former is necessary so that EMs yield control to Eve to obtain each event. The latter is
provided so that the state of the TP may be examined or modified directly by all EMs. These references
in the form of co-expression values are assigned to the keyword &eventsource and the global variable
Monitored, respectively; the global variable Monitored is declared in each EM when it links to the evinit
event monitoring library.

Since under Eve &eventsource isnhot the TR, EMs should aways use Monitored to inspect program
state. For example, to inspect the name of the current source file in the executing program an EM should
call keyword(" file" , Monitored) rather than keyword(" file" , &eventsource).

Aside from the fact that &eventsource is not Monitored under Eve, from a programmer’s standpoint,
Eve's operation is implicit. Just as monitoring does not inherently affect TP behavior (other than slowing
execution), withinthe variousEMs Eve's presence normally isnot visible; the EM can call EvGet() asusual.

General-purposeartificial events

Eve sends certain artificial events when directed by the user (in the Eve control window). Theseincludethe
disable and enable events discussed above, E_Disable and E_Enable. A tool can pass a second parameter
to EvGet() in order to receive these pseudo-events, for example EvGet(mask, 1). When an E_Disable
event isreceived, atool is requested to disableitself. Toolsthat do not maintain any state between events
can simply shut off their event stream by calling EvGet(’’, 1):

case &eventcode of {
... more frequent events come first
E_Disable: while EvGet('’, 1) ~=== E_Enable

}

82

Toolsthat require eventsin order to maintain internal consistency might at least skip their window output
operations while they are disabled. An E_Enable event informs the tool that it should resume operation,
updating its display first if necessary.

Monitor communication example

In addition to the use of artificial eventsfor communication between Eve and other EMs, artificial eventscan
be used by EMsto communicate with each other, using Eve as an intermediary. For example, aline-number
monitor such as the one shown in Figure 6.1 ismore useful if the user can inquire about a section of interest
in the line-number graph and see the corresponding source text. This functionality can be built into the
line-number monitor, but since many visualization tools can make use of such aservice, it makes more sense
to construct an EM to display source lines, and use virtual events to communicate requests for source code
display from other EMs.

Communication using Eve starts with the definition of an artificial event code for use by the communi-
cating EMs. Some of these codes such as E_Disable are defined in the standard library, but in general EMs
can use any artificial event codes that they agree upon. In this case, an event code, E_ALoc, is defined for
artificial location display events. Communicating EMs al so agree on the type and meaning of the associated
event value. In this case the associated event value is an integer encoding of a source line and column
number, similar to that produced by E_Loc events.

The source-code display EM is similar to other EMs, except that it is not interested in TP events, but
only in E_ALoc events. Itsmain loopis

while EvGet(’’, 1) do
if &eventcode === E_ALoc then {
process requests for source code display

}

Any EM that wishes to request source location display services sends an E_ALoc event to Eve. Eve
then broadcasts this event to those tools that requested artificial event reports. The codeto send alocation
request event to Eve from withinan EM is

loc := location(line, column)
event(E_ALoc, loc, &eventsource)

11.5 Evein operation

This section describes the primary techniques employed in Eve to obtain good performance. The key ideas
areto filter events at the source and to precompute the set of EMs to which each event code is distributed.

Different EMs require different kinds of events. After obtaining a list of client EMs to execute, Eve
loads each client. It then activates each EM for the first time; when the EM completes its initialization, it
calls EvGet(), passing Eve an event mask.

11.5.1 Computation of the minimal event set

Each time an EM requests its next event report from Eve, it transmits a cset event mask indicating what
eventsitisinterested in. Eve could simply request all events from the TP, and forward event reports to each

83

EM based on its current mask. The interpreter run-time system is instrumented with so many events that
this brute-force approach istoo slow in practice. In order to minimize the cost of monitoring, Eve asks the
TPfor theleast set of events required to satisfy the EMs.

From the event masks of al EMs, Eve computes the union and uses this cset to specify eventsfrom the
TP. The code for thisunion calculation is

unioncset ="’
every monitor ;= Iclients do
if monitor.enabled === E_Enable then

unioncset ++:= monitor.mask

Although every EM can potentially change its event mask every time it requests an event, constant
recomputation of the union mask would be unacceptably expensive. Fortunately, most tools call EvGet()
with the same event mask cset over and over again. Eve does not recompute the union event mask unlessan
EM'’s event mask changes from the EM’s preceding event request.

115.2 Theevent codetable

The minimal event set described above gresatly reduces the number of events actually reported from the TP,
When an event report is received from the TP, Eve dispatches the report to those EMs that requested events
of that type. The larger the number of EMs running, and the more specialized the EMs are, the smaller the
percentage of EMs that typically are interested in any given event.

Eve could simply test the event code with each EM’s cset mask with a call any(mask, &eventcode).
Thistest isfast, but performing the test for each EM isinefficient when the number of EMsislarge and the
percentage of EMs interested in most eventsis small. Instead, the list of EMs interested in each event code
is precomputed as the union mask isconstructed. These listsare stored in atableindexed by the event code.
Then, after each event is received, a single table lookup suffices to supply the list of interested EMs. For
each enabled monitor, the code for union mask computation is augmented with:

every ¢ := Imonitor.mask do {
/EventCodeTable[c] :=]
put(EventCodeTable[c], monitor)

}

11.5.3 Event handling

Eve requests three types of events whether or not any client EM has requested them: E _Tick, E_MXevent,
and E_Error. Eve uses these events to provide basic services while execution is taking place; since these
events occur relatively infrequently they do not impose a great deal of overhead.

E_Tick events alow Eve to maintain a simple execution clock on the control panel. E_MXevent events
allow Eve to receive user input (such as a change in the slider that controls the rate of execution) in its
control panel. E_Error events alow Eveto handle run-time errors in the TP and notify the user when they
occur, alowing errors to be converted to expression failure at the user’s discretion.

84

11.5.4 Eve'smain loop

Eve's main loop activates the TP to obtain an event report, and then dispatches the report to each EM whose
mask includesthe event code. Since thisloop is centra to the performance of the overal system, itiscoded
carefully. Event dispatching to client EMs costs one table lookup plus a number of operations performed
for each EM that isinterested in the event — EMs for whom an event is of no interest do not add processing
timefor that event. The code for Eve'smain loopis:

while EvGet(unioncset) do {
#
Call Eve’s own handler for this event, if there is one.
#
(\ EveHandlers[&eventcode]) ()
#
Forward the event to those EM’s that want it.
#
every monitor := !EventCodeTable[&eventcode] do
if C := event(, , monitor.prog) then {
if C ~===monitor.mask then {
while type(C) ~=="cset" do {
#
The EM has raised a signal; pass it on, then
return to the client to get his next event request.
#
broadcast(C, monitor)
if not (C := event(, , monitor.prog)) then {
unschedule(monitor)

break next
}
}
if monitor.mask ~===:=C then
computeUnionMask()
}
}
else

unschedule(monitor)
if the slider is not zero, insert delay time

11.6 Interactiveerror conversion

Normally execution terminateswhen arun-time error occurs. 1con supportsafeature called error conversion
that allows errors to be converted into expression failure. Error conversion can be turned on and off by the
source program by assigning an integer to the keyword &error. &error indicates the number of errors to
convert to failure before terminating the program; on each error the value of &error is decremented and if it
reaches zero the program terminates. A program can effectively specify that al errors should be converted

85

by setting &error to asmall negative integer. The mechanismislimitedin that it does not allow the user or
the program to inspect the situation and determine whether error conversion isappropriate: error conversion
iseither onor it is off.

Eve catches run-time errors in the TP and allows the user to decide whether to terminate execution, or
convert the error into expression failure and continue execution (Figure 11.5).

[Run-time ervar

Run-time error 102

File deadman.icn; line 2
numeric expected
offending value: "hello”
Convert to failure?

Figure 11.5: Eve'sinteractive error converter

An E_Error event occurs upon arun-timeerror. A monitor that requests E_Error eventsis given control
before the error is resolved. Eve requests these events, presents the user with the error, and asks for an
appropriate action. The code in Eve that doesinteractive error conversionis:

procedure eveError()
win := open("Run-time error " || &eventvalue, "x")
write(win, " Run-time error " , &eventvalue)
write(win, " File " , keyword(" file" , Monitored), " ; line " , keyword(" line" , Monitored))
write(win, keyword(" errortext” , Monitored))
writes(win, " Convert to failure? ")

if read(win)=="y" then
keyword(" error" , Monitored) := 1
close(win)
end

86

CHAPTER 12
Perfor mance

In the absence of specialized hardware support, monitoring imposes significant performance overhead
on TP execution. In practice, the user of the system usually is unable to observe execution behavior in any
detail at the rate at which it is generated by the monitoring system, and must frequently stop or slow down
execution in order to inspect details. Similarly, the more sophisticated the execution monitor’s analysis of
execution behavior, the more overall execution speed directly relates to time spent in the monitor. In light
of these facts, performance considerations for the monitoring framework are not asimportant as the quality
and utility of the information provided by EMs.

Nevertheless, many of the systems discussed in Chapter 2 are reported to experience performance
problems, especidly tied to the rate at which information is extracted from the target program. Execution
monitoring is useful only if the performance of the implementation is fast enough so that the system can
be applied successfully to medium and large programs and solve real-world problems. Empiricaly, the
framework devel oped for monitoring Icon programs meets this criterion.

The purpose of this chapter is to measure the performance overhead associated with monitoringin MT
Icon. Since the genera execution model may be relevant to the monitoring of other high-level languages,
costs are provided for separable components such as the implementation of multi-tasking and theinterpreter
instrumentation. The evaluationis concerned primarily with time measures, rather than space requirements,
space has not been an issuein practice.

The performance results provided in this chapter start with baseline measurements of the cost of multi-
tasking support and instrumentation, followed by measurements of the rel ative costs of monitoring different
types of language events. The chapter concludes with a note on the effect of CPU type upon the cost of
monitoring, and a discussion of the costsincurred by monitor coordinators.

12.1 Costs of multi-tasking and of inter preter instrumentation

Thereference point for measurements presented in this chapter isthe Version 8.10 | con interpreter, which can
be conditionally compiled with no tasking or monitoring support, with multi-tasking, or with multi-tasking
and monitoring support.

The first cost to be considered is that of the multi-tasking implementation employed by MT Icon.
The implementation is optimized for detailed monitoring in which many event reports take place and task
switching istherefore extremely frequent. In order to minimizethe cost of the task switch, an extramemory
reference isimposed when accessing task-specific global variablesin the run-time system. The overhead on
these extramemory references isinsignificant compared with overall interpreter execution costs.

Timingsfor the lcon benchmark suite[Gris90a] run on a Sun Sparcstation |PX under the lcon interpreter
compiled without and then with multi-tasking support are shown in the two leftmost columns of Figure 12.1
(the remaining columns are discussed below). Generaly the benchmarks’ execution differences under Icon
and MT lcon are small enough to fall within the margins of error in the measurements due to variationsin
machine |oad.

In addition to multi-tasking, execution monitoring depends on the presence of instrumentation added

87

TP | Icon | MT Icon | MT lcon withevents | ... withVM
concord | 5.5 5.7 8.9 10.2
deadl | 6.6 6.6 8.0 9.1
ipxref | 1.3 14 21 22
queens | 8.1 8.2 12.4 13.2
rsg| 82 8.1 115 12.8

Figure 12.1: MT Icon benchmark timings (seconds)

in-line to the interpreter and run-time system code under conditional compilation. When compiled with
instrumentation, the interpreter performs teststo determine whether to report each event, even if monitoring
is not being performed. The column of Figure 12.1 labeled “MT Icon with events’ gives Icon benchmark
suite timings using an interpreter built with monitoring instrumentation. Since instrumentation of virtual
machineinstructionsimposesasignificant cost all by itself, thefiguresin the rightmost column show timings
with virtual machine instructionsincluded. Generaly, the presence of pervasive instrumentation increases
execution time thirty to fifty percent even when it is not used.

This measure is independent of the co-expression model and the use of independently written and
translated |con programs as monitors; it would be incurred dueto the presence of the instrumentation even if
entire execution monitoring system including visualizationswere tightly integrated into the Icon interpeter
itself.

12.2 Relative costs of monitoring different language features

Some classes of events are much more costly to monitor than others. Thisis roughly proportiona to the
frequency with which an event occurs. For example, garbage collection events occur very seldomly, so it
costs very little to monitor garbage collection events. Line number changes are far more frequent; virtual
machine instructions are the most common of al. The classes of events covered are memory allocations,
assignments, type conversions, structure accesses, procedure activity, built-in function activity, operator
activity, string scanning activity, program source code location changes, and virtual machine instruction
execution.

Figure 12.2 gives benchmark suite event counts in the leftmost column, followed by percentages for
each of the major categories of events, and Figure 12.3 gives execution times for monitorsthat request those
events but do no computation of their own. The timings are generally proportional to the amount of work
actually performed by the computation, and not adirect function of any particular class of events. Generally,
however, the more events monitored the greater the slowdown imposed by monitoring. Comparison of
Figures 12.1 and 12.3 shows that on a Sparc, monitoring typically imposes an overhead of one order of
magnitude for infrequent event categories, or two orders of magnitude for virtual machine instructions,
compared with execution under the standard Icon interpreter. Computations performed by the EM or EMs
asthey process events further slow TP execution.

With the exception of garbage collections, there are 1.18 events per virtual machine instruction on
average, typically ranging from one (the virtual machine instruction event itself) to around twelve. The
number of eventsthat occur per virtual machineinstructionisnot strictly bounded, since agarbage collection
can result in a number of events proportional to the number of data objects that survive collection in the
block region.

88

total # | dloc | assign | conv | struct | proc | func op | scan | loc | VM ingtr

concord | 3782971 | 1.7 49 | 205 02| 02| 91| 88| 18| 82 44.6
dedl | 1963019 | 3.2 57| 265 14| 11| 21128 0| 79 34.7
ipxref | 1044476 | 0.6 17| 211 34| 05| 13] 189 0| 87 438
queens | 6835489 | 0.1 40 | 299 43| 02 0| 180 0| 80 35.3
rsg | 5367792 | 09 27| 40 3.7 0| 37135 0| 100 61.5

Figure 12.2: Total event counts and percent of eventsin each category

aloc | assign | conv | struct | proc | func op | scan loc | VM instr
concord | 33.2 724 | 2253 | 146 | 145 | 107.1 | 107.8 | 34.7 | 114.7 386.2
dedl | 522 | 4781533 | 179|163 | 216 | 80.6| 10.0| 718 184.1
ipxref 45 81| 634 | 124 | 42 65| 56.1| 26| 414 102.6
queens | 19.2 | 108.7 | 584.8 | 101.4 | 21.5 | 16.1 | 362.4 | 16.0 | 208.7 534.8
rsg | 29.8 598 | 747 | 719|160 | 729 | 2051 | 155 | 2145 761.7

Figure 12.3: Execution times for no-op monitors by category (seconds)

For each virtual machineinstructioninthe TR, an EM potentially receives several event reportsresulting
in arbitrarily lengthy computations on its part. Since event reporting is built around the Icon co-expression
context switch, the CPU-dependent speed of the context switch operation compared with normal program
activitiesisimportant in determining the cost of using amulti-tasking model of execution monitoringinstead
of aone-process model. Figure 12.4. compares timings of ordinary operations, context switches, and event
reporting on the Sun Sparcstation IPX and an Intel 486 processor. The figures are the average from one
million executions of each operation. The first three columns give timings for the null operation, integer
addition, and procedure call. The fourth column timesthe Icon co-expression context switch, whilethe fifth
column times the event reporting mechanism including its context switch.

Thefirst and third rows report timings taken using Icon’s built-in timing mechanism, while the second
and fourth rows give times observed by the UNIX shell time command. Althoughthe Sparcstation performs
amost twice as fast as the 1486 on normal computations, its advantage is greatly reduced for execution
monitoring because itscontext switchisvery slow — the context switch executes asoftware trap that flushes
register windows to memory. When this system time is taken into account (adding the two figures given
in each column of the second and fourth rows) the 1486 outperforms the Sparc by a factor of 4 for the
co-expression context switch, and by roughly 50 per cent on the event reporting mechanism. Of course,
the Sparc’'s performance advantage on the rest of the TP and EM execution translates into faster execution
overall.

12.3 Limitationsof graphicshardware and software

Experience has shown that in many program visualization applications, the window system softwareis not
ableto perform window output at therate at which it is produced by an EM; thisis observed when monitors
written using asynchronous window system calls complete execution noticeably before animation stops in
the monitor window. For such applications, writing EMs in Icon instead of alower-level language does not

89

CPU no-op i+ p(x) @x | event()...EvGet()

Sparc (&time) 104 38.8 33.6 975 2778
Sparc (u+stime) | 10.2+0.1 | 39.4+0.4 | 33.6+0.2 | 79.5+93.5 222.0+113.0
i486/33 (&time) 19.5 63.8 585 78.0 363.7
i486/33 (u+stime) | 11.7+0.2 | 38.2+0.2 | 34.9+0.1 | 46.5+0.1 235.2+1.6

Figure 12.4: Costs of various operations (microseconds, average)

cost as much in terms of performance as might be expected. In contrast, MT Icon isleast suitable for EMs
with complex graphics requiring significant numeric computation, because such applications’ performance
islesslikely to be limited by window system capabilities and because I con is not oriented towards numeric
applications.

12.4 Cost incurred by monitor coordinators

Although MC's offer great flexibility, the use of a MC to execute multiple EMs instead of writing asingle
monolithic EM imposes additional overhead, primarily increasing the number of task switchesrequired. The
MC Eve can be used to illustrate this cost.

Intheworst case, all EMs request areport for every event. Under Eve, if there are N toolsthen there are
2* N + 2 task switches per event report. A monolithic EM would incur only two switches per event report,
from TPto EM, and from EM to TP. Eve thereforeimposes 2 * N additional switchesin the worst case.

In the best case, the event masks are disjoint and only one EM isinterested in any event to be reported.
In this case Eveincurs four task switches per event report —twice as many as in the monolithic case. Since
userstypically employ multiple EMsto provideinformation about a variety of aspectsof program behavior,
the expected normal case is closer to this best case behavior than the worst case in which the EMs are all
observing the same events.

90

CHAPTER 13
Conclusions and Future Work

MT lcon and itsinstrumentation provideaframework inwhich it is possibleto take a program monitoring
ideafrom conception to implementationin ashort period of time. Theprimary contributionin thisframework
isthe exploitation of coroutines and dynamic |loading to provide EMs with program state information at the
source level instead of at the machine level.

13.1 Successes of the framewor k

The framework demonstrates the viability of:
e exploratory development of execution monitors, given suitable language support,
e asynchronoustask model for the monitoring of programs written in high-level languages,

¢ gpplication of monitors devel oped under the framework to obtain useful performance tuning informa-
tion.

MT lcon’s execution monitoring interface has proven simple enough to be programmed even by novice
Icon programmers. In one semester, studentswith no prior Icon programming experience were able to the
framework in a university course to construct sophisticated program visualization tools. Expert users can
construct experimental EMsin hoursinstead of days.

Exploratory monitor programming is of limited usefulness if it does not scale up to accomodate the
development of larger full-featured monitoring services. MT Icon alows the execution of multiple EMs
on asingle TP using a monitor coordinator as an attractive alternative to monolithic all-encompassing tools
such as traditional debuggers and profilers. Performance degrades gracefully as tools are added.

Dynamic loading and synchronous, shared-address space tasks have proven to be a robust modd in
which TP and EMs can co-exist. Task switching between TPs and EMs provides acceptable performance
while minimizing the impact of monitoring upon the behavior of the TP,

Theimplementation of dynamicloading and multi-taskingin M T I.con buildsupon | con’simplementation
of co-expressions. The execution monitoring framework is therefore portable to most of the platforms that
Icon runs on with the exception of personal computers with small memory sizes. The system has been run
onavariety of UNIX platformsaswell as OS2 2.0. Many of the more powerful EMs make extensive use of
Icon’s graphics facilities; use of graphicsis a greater portability limitation than MT Icon and the execution
monitoring interface.

The execution monitoring framework has been used to implement avariety of profiling tools for tuning
performance, such astoolsthat count the number timesagiven lineor given procedure has been executed. Of
particular interest are language-specific tools that profile behavior that is not related directly to the program
source code, but rather takes place in the run-time system, such as garbage collection or type-conversion.
Such costs may not be readily apparent to a programmer writing or reading the code.

One such profiler simply indicates in a small window whenever a garbage collection takes place. For
normal programs this monitor imposeslittle overhead and is unobtrusive, while programsthat are exhibiting

91

thrashing heap behavior flash repeatedly, drawing attention to the problem. Upon observing such behavior,
the user may be able to adjust heap size parameters so that thrashing does not occur in future executions.

A more sophisticated profiler cross-references type-conversion information with program source loca-
tionsand appliessimple heuristicsto sel ect locationswhere frequent conversionsare likely to be unnecessary
or redundant. The user then can manually inspect the locations found to determine whether a simple modi-
fication can eliminate the conversions. The redundant conversions profiler has resulted in speedups of 0-15
percent on real programs, with useful results on programs written both by novice and expert users.

In additionto profiling tools, program tuning often resultsfrom the observation of behavior presented by
more general EMs. For example, inefficient structure manipulations can frequently beinferred by observing
alocation patterns or structure access activity, asin the novatool examplein Chapter 8.

Success in target program tuning suggests the related issue of language implementation tuning. MT
Icon’s execution monitoring framework was not built with the objective of providing information for
improving the implementation. Nevertheless, prior research in the monitoring and visualization of memory
usage led to improved alocation heuristics[Gris89], and observation of EMs under MT | con also suggested
improvements to the implementation. For example, monitoring of list-creation eventsled to achangein list
concatenation with theresult that it is faster and allocates | ess space than before.

Instrumentation also can find problems in the implementation. Modifications to the implementation
during the construction of the Icon compiler a one point introduced a bug into the implementation of the
built-in string anadysis function many(). The bug alowed many() to produce string indices beyond the
bounds of the subject string. The bug was observed in astring scanning EM, where position events appeared
past the end of the subject string.

13.2 Limitationsof the framework

Although the framework addresses the construction of monitorsfor abroad spectrum of program behavior,
thetechniquesit usesare of limited applicability to other languages, and the ability to monitor implementation
behavior does not extend into the realm of observing activity during garbage collection. In addition, there
areinherent limitationsin the use of non-intrusive monitoring techniques: some kinds of debugging require
intrusion into the target program, and the framework is not oriented towards intrusive techniques.

The approach to execution monitoring presented here is not applicable to programming languages and
systemsin which the implementor of the execution monitoring facilitiesdoes not “own” the implementation
of the language. Beyond access to source code, instrumentation of a language run-time system generally
requires intimate knowledge of the implementation and represents a major investment of effort. Because
instrumentation is spread throughout the code, it poses added maintenance problems in the implementation
and must be added to the primary sourceif itisto remain functional in future language updates and versions.

Thetechnique of capturing program behavior via run-time system instrumentation is not appropriate for
low-level compiled languages, where instrumentationis more appropriately embedded in generated codevia
a preprocessor or compiler modifications. Instrumentation of an interpreter is generally simpler and easier
than modifying a compiler code generator.

MT lcon's dynamically loaded coroutines do not have ready equivaentsin most other languages and
would have to be added, as they were to Icon, before the exploratory execution monitor development
provided by MT Icon can be redlized. The implementation of a portable dynamic loading mechanism was
much simpler for an interpreter than would be the case for a compiled language. In some cases, notably
Small Talk, the language has the requisite features but the implementation may require added features such
as separatel y-collected heap spaces before EMs can execute without interfering with TP behavior.

92

Another limitation of the framework is in the area of garbage collection monitoring. The MemMon
systemisableto providevery detailed information about | con’s marking and compaction algorithmsthrough
afile-based event stream [Gris89]. This information has proven useful in practice, but there is no way to
safely report events during a garbage collectionin MT Icon. An event report causes transfer of control and
execution in an EM. During a garbage collection, TP data may not bein avalid format and if an EM were
free to inspect it, system failure would resuilt.

Thisis oneinherent penalty in the one-process and thread models in which EMs directly access TP data
through pointers. Since this limits the monitoring of implementation behavior, rather than TP behavior,
it is not an unacceptable loss. If the garbage collection agorithm is under study, a two-process model or
file-based monitoring system should be employed rather than the MT Icon task modd.

13.3 Enhancementsand futuredirections

The execution monitoring framework for 1con was motivated by a desire to explore new types of execution
monitors, particularly program visualization tools. The framework isan enabling technology and its success
should result in the development of various experimental monitoring tools. In addition, some general
problems in execution monitoring have been observed that further work may mitigate or solve. A third
future direction isthe application of conceptsfrom thiswork to the monitoring of other languages. A fourth
future direction consists of further tuning the framework and integrating it with Icon compiler technol ogy.

Updatevariation in smultaneous animations

Asdetailed in the chapter on system performance, some events occur very frequently compared with others.
Since graphic output is often a bottleneck in the present system, animations based on frequent events such
as location changes reduce or preclude the effectiveness of animations based on less frequent events.

Mitigatingtheeffects of thisproblemisan open areafor research. Clearly, thefaster the overall execution
is, the faster the slowest animation in a group runs, but then faster animations’ motion will be too fast to be
useful. One possible way for monitors of frequent kinds of events to coexist with monitors of infrequent
eventsisif the monitorsof frequent events sampletheir eventsat some rate determined by the lessfrequently
updated monitors. For EMs that do not maintain a model of TP state this may work; for EMs such as Algae
that do maintain amodel, it will not. The best such EMs can hopeto do isimplement areduced output mode
in order to improve slower EMS’ animation rates by improving overall execution speed.

Concurrency among monitors

Our monitoring framework isinteractive and allowsfull debugging unlike most event-based monitoring and
debugging systems. This degree of interaction means that by design, the TP cannot continue its execution
concurrently whilean EM is processing an event and/or user input.

On the other hand, EMs are typically independent of one another and if MT Icon were extended to
allow true concurrency on multiprocessor hardware, all the EMs interested in any given event could run
concurrently. As more and better EMs are devel oped, the growing motivation to run more EMs more of the
time will create an interest in shared-memory multiprocessors.

93

I ntegrating monitor s into coordinator s

Our framework alows EMs to be compiled and executed separately, or in conjunction with one another
usingan MC. Under an MC, alarge number of task switchesmay take place with each event. Althoughthis
has not been prohibitive in practice, the possibility of merging commonly used EM functionality directly
into the MC and avoiding the task switching overhead is attractive. For example, the interactive run-time
error conversion and elapsed CPU time features of Eve werefirst implemented as stand-alone EMs and later
added to Eve.

Less commonly-used EMs can remain stand-alone and be loaded separately. The ability to add EM
functionality intoan MC isa so attractivein light of Icon compiler technology discussed bel ow, inwhichthe
MC performance may be substantially increased. Merging functionality could be accomplished relatively
easily for EMs that use callbacks. EMsthat utilize their own flow of control to change states from event to
event would require more effort to integrate.

Integrating thelcon interpreter and compiler

TheMT Iconfacilitiesarespecifictothelconinterpreter and are not supported by thelcon compiler [Walk91].
On the other hand, the Icon compiler offers significant performance improvements over the interpreter. The
two systems share the same run-time code and data representation, and there is no fundamental reason
why an EM cannot be compiled by the Icon compiler and linked with interpreter code so that it is able
to load and execute interpreted Icon programs. Since the vast majority of time spent in most monitoring
situations is spent in the EM, the ability to execute EMs at compiled speeds would dramatically improve
monitoring performance. Thisimprovement could apply to monitor coordinators such as Eve without losing
the flexibility of the current system, in which dynamically-loaded EMs can be selected from amenu and run
together under an MC.

M or e execution monitors

The purpose of the research presented in this dissertation was to facilitate the devel opment of new EMs.
The collection of EMs implemented so far in testing the framework isin no way exhaustive. Now that
the framework is implemented and has been proven useful, more EMs should be developed. As of yet
relatively few EMs provide user-control over the details of the information presented. Existing EMs are
oriented towards general program understanding (and particul arly visualization) tasks. The devel opment of
exploratory execution monitors using this framework still has large unexplored potential. EMs that provide
more specific debugging facilities have yet to be written, and have obvious utility. In addition, EMs have
applicationareasin specia contextsthat have not been treated, such asthe education of novice programmers.

Moretypes of events, finer selection controls

The event monitoring instrumentation in the present system is extensive, but in alanguage with as much
built-in behavior as Icon, it will amost always be possible to add more types of events. For example, no
instrumentationis currently available to monitor certain control structures such as aternation and limitation,
to monitor the dynamic hash table activity used in Icon’s built-in set and table data types, or to monitor I/O
such as file and window activity.

The existing system has certain events that would benefit from further subdivision into different event
codes. Conversion events might usefully be coded by destination type the way alocation events are,
for example. There are other events for which finer selections than the event mask mechanism may be

94

appropriate, similar to the selection of virtual machine instructions of interest via opmask(). Generally
these are just performance enhancements, and the current system performs satisfactorily. Nevertheless,
events for which this finer selection might be useful include location events and operator and function
events.

Language support for trapped variables

The non-intrusive techniques for the monitoring of individual variables that are presented in Chapter 10 do
not scale well when large numbers of variables need to be monitored. For such applications, data intrusive
language support for trapped variables would provide a better alternative.

There are two primary operations on variables that are of interest: assignments and dereferencing
operations. A variable trap mechanism might insert alayer of indirection into atrapped variable reference;
the intermediate block inserted between the variable descriptor and its value would cause a side-effect such
as an event to occur when the variable was assigned or dereferenced. Trapped variables are data intrusive,
but not problematically so, since theintermediate block might be allocated in the EM rather than the TR,

The concept of a trapped variable is old [Gris72], and underlies such mechanisms as the SNOBOL4
variable association facility [Hans78]. Adding trapped variable support to Icon is non-trivial but not
impractical. Since the technigueis complementary to the approaches presented in this dissertation, adding
it would improve the overall capabilities of the framework.

Preemptive scheduling monitor coordinators

No event mask is used when Eve sends an event report to an EM; the EM runs until it requests its next
event. Under some circumstances an MC may want to regain control from an EM that consumes excessive
resources by monitoring the EM, requesting event reportsfor clock ticks, for example. Thiswould enable a
MC to give priority to some EMs over others, or ensure that all EMs receive regular CPU time in order to
handle user interaction promptly.

13.4 Final thoughts

Itisillustrative of the neglect of execution monitoringin the literature that no major programming language
has been designed with explicit linguistic support (as opposed to library packages and other extra-linguistic
forms of support) for monitoring; such support has at best come after the fact and is more often entirely
missing. Without such support, theliteratureisfilled with articles on how toimplement crude forms of mon-
itoring using low-level techniques and nonportable operating system and machine architecture capahilities
and articles that present high-level abstractions of monitoring with no demonstration of their application to
practical problems.

MT lcon represents a successful grafting of support for execution monitoring onto an existing language.
Being an afterthought, its design and implementation are naturally somewhat constrained. The question
arises. In anew high-level language language, if linguistic support for execution monitoring is an explicit
design goal, what language features should be present? MT Icon suggests some of them (dynamic loading,
synchronoustasks), but it may be possibleto conceive of better servicesthan MT Icon provides, and a better
execution model with which to perform monitoring.

95

Appendix A: Algae

Thisappendix presentsthelcon source codefor Algae, the example execution monitor introduced in Chapter
7 and enhanced in Chapters 9 and 10.

B R
#

File: algae.icn

#

Subject: Program to show expression evaluation as “algae”
#

Author: Clinton Jeffery
#

Date: 5/1/92

#

B R
#

Press ESC or g to quit

Left mouse assigns specific (row,column) break " points"

Middle mouse assigns absolute depth and width break lines
z Right button erases assigned break " points"

When paused due to a break, you can:
#

c to continue

s to single step

C to clear one point and continue

z " " to clear everything and continue

$include " evheader.icn"

link evinit

link evutils

link options

link optwindw

link hexlib

link evaltree

global scale, # cell (hexagon or square) size
step, # single step mode
numrows, # number of cell rows
numcols, # number of cell columns
spot, # cell—fill procedure (hex or square)
mouse, # cell-mouse—locator procedure
Visualization, # the window
wHexOutline, # binding for drawing cell outlines
depthbound, # call-depth on which to break
breadthbound, # suspension—width on which to break
hotspots # table of individual cells on which to break

record algae_activation(node, row, column, parent, children, color)

#
main() — program entry point. The main loop is in evaltree().
#

procedure main(av)
local codes, algaeoptions
#
pull off algae options (don’t consume child’s options in this call
to options()).
#

algaeoptions =[]

96

while av[1][1]==" -" do {
put(algaeoptions, pop(av))
if algaeoptions[—1] ==" —f" then put(algaeoptions, pop(av))

Evlnit(av) | stop(" Can’t Evinit" ,av[1])
codes := algae_init(algaeoptions)
evaltree(codes, algae_callback, algae_activation)
XAttrib("" windowlabel=Algae: finished")
EvTerm(&window)

end

#

algae_init() — initialization and command—line processing.

This procedure supplies default behavior and handles options.
#

procedure algae_init(algaeoptions)
local t, position, geo, codes, i, cb, coord, e, s, X, y, m, row, column
t := options(algaeoptions,
winoptions() || " P:S:—geo:—square!—func!—scan!—op!—noproc!")
A" L"]:=" Algae"
/t[" BII] :: n Cyanll
scale :=\t[" S"]| 12
if \t[" square"] then {
spot := square_spot
mouse := square_mouse

else {
scale /:=4
spot := hex_spot
mouse := hex_-mouse

codes := cset(E_MXevent)
if /t[" noproc" | then codes ++:= ProcMask
if \t[" scan"] then codes ++:= ScanMask
if \t[" func"] then codes ++:= FncMask
if \t[" op"] then codes ++:= OperMask
hotspots := table()
&window := Visualization := optwindow(t) | stop(" no window")
numrows := (XHeight() / (scale * 4))
numcols := (XWidth() / (scale * 4))
wHexOutline := Color(" white") ~# used by the hexagon library
if t[" square"] then starthex(Color(" black'))
return codes
end

#
algae_callback() — evaltree callback procedure for algae.
Called for each event, it updates the screen to correspond
zto the change in the activation tree.
procedure algae_callback(new, old)

local coord, e

initial {

old.row := old.parent.row := 0; old.column := old.parent.column := 1

case &eventcode of {
ICallCodes: {
new.column := (old.children[—2].column + 1 | computeCol(old)) | stop(" eh?")
new.row := old.row + 1
new.color := Color(&eventcode)
spot(\old.color, old.row, old.column)

IReturnCodes |

97

IFailCodes: spot(Color(" light blue"), old.row, old.column)
ISuspendCodes |
IResumeCodes: spot(old.color, old.row, old.column)
IRemoveCodes:
spot(Color(" black™), old.row, old.column)
XFlush(Color(* black™))
delay(100)
spot(Color(" light blue™), old.row, old.column)

E_MXevent: dolevent(&eventvalue, new)

spot(Color(" yellow"), new.row, new.column)
coord := location(new.column, new.row)
if \step | (\breadthbound <= new.column) | (\depthbound <= new.row) |
\ hotspots[coord] then {
step := &null
XAttrib(" windowlabel=Algae stopped: (s)tep (c)ont ()clear ")
while e := XEvent() do
if dolevent(e, new) then break
XAttrib(" windowlabel=Algae")
if \ hotspots[coord] then spot(Color(" light blue"), new.row, new.column)

end

#

procedures for the " —square" option, display Algae using squares
Instead of hexagons.

#

Draw a square at (row, column)
procedure square_spot(w, row, column)

XFillRectangle(w, (column — 1) * scale, (row — 1) * scale, scale, scale)
end

encode a location value (base 1) for a given x and y pixel
procedure square_mouse(y, X)

return location(x / scale + 1, y / scale + 1)
end

#
clearspot() removes a " breakpoint” at (x,y)
#

procedure clearspot(spot)
local s2, x2, y2
hotspots[spot] := &null
y := vertical(spot)
X := horizontal(spot)
every s2 := \'hotspots do {
X2 := horizontal(s2)
y2 :=vertical(s2)

spot(Visualization, y, x)
end

#
setspot() sets a breakpoint at (x,y) and marks it orange
#

procedure setspot(loc)
hotspots[loc] := loc
y := vertical(loc)
X := horizontal(loc)
spot(Color(" orange"), y, X)

98

end

#
dolevent() processes a single user input event.
#

procedure dolevent(e, new)
local m, xbound, ybound, row, column, X, y, s

case e of {
q |
"\e": stop(" Program execution terminated by user request")
"s"i g # execute a single step
step:=1
return

'} : # clear a single break point
clearspot(location(new.column, new.row))
return

IIC

if \depthbound then {
every y := 1 to numcols do {
if not who_is_at(depthbound, y, new) then
spot(Visualization, depthbound, y)

space character: clear all break points

}
if \breadthbound then {
every x := 1 to numrows do {
if not who_is_at(x, breadthbound, new) then
spot(Visualization, x, breadthbound)

every s := \!hotspots do {
X := horizontal(s)
y = vertical(s)
spot(Visualization, y, X)

hotspots := table()
depthbound := breadthbound := &null
return

&mpress | &mdrag: { # middle button: set bound box break lines
if m := mouse(&y, &x) then {
row := vertical(m)
column := horizontal(m)
if \depthbound then { # erase previous bounding box, if any
every spot(Visualization, depthbound, 1 to breadthbound)
every spot(Visualization, 1 to depthbound, breadthbound)

depthbound := row
breadthbound := column
#

draw new bounding box
#
every x := 1 to breadthbound do {
if not who_is_at(depthbound, x, new) then
spot(Color(" orange"), depthbound, x)

every y := 1 to depthbound — 1 do {

if not who_is_at(y, breadthbound, new) then
spot(Color(" orange"), y, breadthbound)

99

}
&lpress | &ldrag: { # left button: toggle single cell breakpoint
if m := mouse(&y, &x) then {
xbound := horizontal(m)
ybound := vertical(m)

if hotspots[m] === m then
clearspot(m)
else
setspot(m)
&rpress | &rdrag: { # right button: report node at mouse location

if m := mouse(&y, &x) then {
column := horizontal(m)
row := vertical(m)
if p := who_is_at(row, column, new) then
XAttrib(" windowlabel=Algae " || image(p.node))

}
}

end

#
who_is_at() — find the activation tree node at a given (row, column) location
#

procedure who_is_at(row, col, node)
while node.row > 1 & \node.parent do
node := node.parent
OIreturn sub_who(row, col, node) # search children
en

#
sub_who() — recursive search for the tree node at (row, column)
#

procedure sub_who(row, column, p)
local k
if p.column === column & p.row === row then return p
else {
every k :=Ip.children do
) if g := sub_who(row, column, k) then return g

end

#
computeCol() — determine the correct column for a new child of a node.
#

procedure computeCol(parent)
local col, x, node
node := parent

while \node.row > 1 do # find root
node := \node.parent
if node === parent then return parent.column

if col := subcompute(node, parent.row + 1) then {
return max(col, parent.column)

else return parent.column
end

#
subcompute() — recursive search for the leftmost tree node at depth row
#

procedure subcompute(node, row)
check this level for correct depth

100

if \node.row = row then return node.column + 1

search children from right to left

return subcompute(node.children[*node.children to 1 by —1], row)
end

#
Color(s) — return a binding of &window with foreground color s;
allocate at most one binding per color.
#
procedure Color(s)
static t, magenta
initial {
magenta := XBind(&window, " fg=magenta") | stop("' no magenta")
t :=table()
M[E Fcall] := XBind(&window, " fg=red") | stop(" no red")
I[E_Ocall] := XBind(&window, " fg=chocolate") | stop(" no chocolate")
H[E_Snew] := XBind(&window, " fg=purple") | stop(" no purple")

if *s > 1 then

/ t[s] := XBind(&window, " fg=" || s) | stop(" no " ,image(s))
else
/ t[s] := magenta
return t[s]
end

procedure max(x,y)
if X < y then return y else return x

end

101

B R
#

Name: evaltree.icn

#

Title: Maintain activation tree
#

Author: Clinton Jeffery
#

Date: July 28, 1992

#

B R R R B B T B B B R B B T R R R R
#

Usage: evaltree(cset, procedure, record constructor)

#

Requires: MT Icon and event monitoring.
the record type must have fields node, parent, children
#

B R
#

$include " evheader.icn"

global CallCodes,
SuspendCodes,
ResumeCodes,
ReturnCodes,
FailCodes,
RemoveCodes

procedure evaltree(mask, callback, activation_record)
local c, current

CallCodes := string(mask ** cset(E_Pcall || E_Fcall || E_Ocall || E_Snew))
SuspendCodes := string(mask ** cset(E_Psusp || E_Fsusp || E_Osusp || E_Ssusp))
ResumeCodes := string(mask ** cset(E_Presum || E_Fresum || E_Oresum || E_Sresum))
ReturnCodes := string(mask ** cset(E_Pret || E_Fret || E_Oret))

FailCodes := string(mask ** cset(E_Pfail || E_Ffail || E_Ofail || E_Sfail))

RemoveCodes := string(mask ** cset(E_Prem || E_Frem || E_Orem || E_Srem))

current := activation_record()
current.parent := activation_record()
current.children :=]
current.parent.children :=[]

while EvGet(mask) do {
case &eventcode of {
ICallCodes: {

¢ := activation_record()
c.node := &eventvalue
c.parent := current
c.children :=[]
put(current.children, c)
current :=c
callback(current, current.parent)

IReturnCodes | !FailCodes: {
p := pull(current.parent.children)
current := current.parent
callback(current, p)

ISuspendCodes: {
current := current.parent
callback(current, current.children[—1])

IResumeCodes: {

102

current := current.children[—1]
callback(current, current.parent)

IRemoveCodes: {
if child := pull(current.children) then {
while put(current.children, pop(child.children))
callback(current, child)

else {
if current === current.parent.children[—1] then {
p := pull(current.parent.children)
current := current.parent
callback(current, p)
next

else stop(" evaltree: unknown removal")
default: {

callback(current, current)

end

103

Appendix B: Eve

This appendix presents the |con source code for Eve, the example monitor coordinator presented in Chapter
11.

HHHHHEHHE R I R
zFiIe: eve.icn

z Subject: Program to control multiple execution monitors

zAuthor: Clinton Jeffery

z Date: November 17, 1992
z###
zVersion: 3.2
%###

An execution monitor coordinator

#

$include " evheader.icn"
link evutils

link options

link optwindw

link vidgets

link vbuttons

link vslider

link vstyle

link vtext

link vtools

link vstopsgn

global
cmd, # target program file name
clients, # list of client objects
unioncset, # union of client’s csets
root, # root of the widget tree
msg, # main message widget
enabled, # list of checkbox widgets
stopSign, # state of the stop sign widget
stopstate, # state of the stop sign widget
EventCodeTable, # table of EM’s to call for each event
loaded, # list of checkbox widgets
delayval, # amount of slowdown to insert per event
verbose, # switch to make Eve explain itself
candidates, # list of potential EM’s to run
ticksum, # number of clock ticks elapsed in TP
EveHandlers, # Eve’s procedures for each event
EveBroadcastQueue # queue used for EM — EM communication

#

main() — initializes TP, EM’s, Eve’s own tables, then enters the main loop
#

procedure main(av)

local optable, all, i, aborter, monitor,

arglist, C, eveoptions

optable := initialize TP (av)

104

if \verbose then write(" Eve: Monitoring ", cmd, " (", image(&eventsource), ")")

all := optable[" all"]
initializeEMs(optable)

initializeEve()
if \verbose then write(" Eve: executing monitored program™)

mainLoop()
end

#
mainLoop() — Eve’s main loop
#

procedure mainLoop()
while EvGet(unioncset) do {
#
Call Eve’s own handler for this event, if there is one.
#

(\ EveHandlers[&eventcode]) ()
#

Forward the event to those EM’s that want it.
#
every monitor := !EventCodeTable[&eventcode] do
if C := event(, , monitor.prog) then {
if C ~=== monitor.mask then {
while type(C) ~==" cset" do {
#

The EM has raised a signal; pass it on, then
z return to the client to get his next event request.
broadcast(C, monitor)
if not (C := event(, , monitor.prog)) then {
unschedule(monitor)
break next

computeUnionMask()

else
unschedule(monitor)
delay(6 < delayval)

set_Vstrset_coupler(stopstate, , " done")
stopsigndone(stopSign)
drawtime()
eveQuit()
end

#

initializeTP() — initialize the target program
#

procedure initialize TP (av)

local optable
EvGlobals()

delayval :=0
*av>0 | stop(" usage: eve [-f eveconfig] [-s] [-all] icon—command—line™)
#

pull off eve options (don’t consume child’s options in this call
to options()).
#

105

eveoptions =]

while av[1][1]=="-" do
put(eveoptions, pop(av))
if eveoptions[—1] ==" —f" then put(eveoptions, pop(av))

optable := options(eveoptions, * P:V!—geo:f:s—all!")
/optable[" P"]:="0,0"

/optable['’ f] := getenv(" HOME") || " /.eve"
/optable[" L] :="" Eve"

/optable[" T"] :=" *helvetica—bold—r—*——17*"
/optable[" H"] := 100

/optable[" W"] := 100

verbose := optable[" V"]

cmd := pop(av) | stop(" Eve: Icon program command—line argument is missing!")
&eventsource := load(cmd, av) | stop(" can't load " , image(cmd))
return optable

end

#
intializeEMs — initialize the execution monitors

procedure initializeEMs(optable)
local all, i, titles, title, wantheight, maxwidth
all := optable[" all"]
candidates := getClientList(optable[" f*], all)
titles := getTitles()
&window := optwindow(optable) | stop(" no &window")
maxwidth := calcWidth(titles)
wantheight := XAttrib(" fheight") * (*candidates + 1) + XAttrib(" ascent™)
wantheight <:= 80
XAttrib(" width="_|| (maxwidth + 101 + XTextWidth(" loadiconifyenable") + 16))
XAttrib(" height=""|| wantheight)
wantheight <:= 240
build buttons and sliders on Eve’s window
root := Vroot_frame(&window)
attachClientControls(titles,maxwidth)
VResize(root)
allow user to select EMs
while(pop(XPending()))
until stopstate.value ~===
run()
if wantheight ~= XAttrib(" height") then XAttrib(" height=" ||wantheight)
attachSlider()
while(pop(XPending()))
clients ;=]
every i := 1 to * candidates do
if \all | \loaded][i].callback.value then {
arglist := titledparse(candidates]i])
put(clients, client(pop(arglist), arglist, i))

startup” do

the first time through we activate the clients with no useful value
if \verbose then write(" Eve: initializing ", *clients, " clients")
every i := 1 to *clients do
clients[i].mask := @ clients][i].prog
end

#
initializeEve() — initialize Eve's own state variables
#

procedure initializeEve()

ticksum :=0
EveHandlers := table()

106

EveHandlers[E_Tick] := eveTick
EveHandlers[E_MXevent] := eveEvent
EveHandlers[E_Error] := eveError
OIcomputeUnionMask()
en

#
calcWidth() — compute the width needed for Eve window, in pixels
#

procedure calcWidth(titles)
local maxwidth
maxwidth := 0
every maxwidth <:= XTextWidth(!titles)
maxwidth <:= XTextWidth(" Executing program " || cmd) + 4
maxwidth +:= XTextWidth(" ..")
return maxwidth
end

#
getTitles() — from a list of candidates, build a list of titles
#

procedure getTitles()
local titles, i
titles := list(*candidates)
every i := 1 to *candidates do
if candidates[i][1] =="\"" then
candidates[i] ? {
move(l)
titles[i] := tab(find(" \" "))

else
titles][i] := candidates]i]
return titles
end

#

attachClientControls() — attach controls for each possible EM,
as well as Eve’s stopsign and exit button

#

procedure attachClientControls(titles,maxwidth)
local fheight, y, dotwidth
fheight := XAttrib(" fheight™)
descent := XAttrib(" descent")
dotwidth := XTextWidth(" .")
loaded := list(*candidates)
enabled := list(*candidates)
every i := 1 to *candidates do {
y =i * fheight + descent
title := left(titles[i], maxwidth / dotwidth, " .")
while XTextWidth(title) > maxwidth do title := left(title, *title — 1)
Vmessage(root, 101, y, &window, title)
loaded[i] :=
FixedCheckbox(all, root, 101 + maxwidth, y,
&window, loadedChange, i, fheight)
FixedCheckbox(&null, root, 101 + maxwidth + XTextWidth(" load") + 8,
y, &window, iconicChange, i, fheight)
enabled[i] :=
FixedCheckbox(all, root, 101 + maxwidth + XTextWidth(" loadiconify") + 16,
) y, &window, enableChange, i, fheight)

stopstate := Vstrset_coupler(if /all then " startup” else " running" ,,,.,,

[startup™ ," running" ," stopped" ," done")

107

stopSign := stopsign(&window, stopstate)
aborter := stopsign(&window, Vstrset_coupler(" abort" ,,,,,,[" abort™]))

insert(Vrecset, " stopsign_rec")
Vinsert(root, stopSign, 10, 0, 80, 80)
msg := Vmessage(root, 101 0, &Wmdow ' Select client monitors™)
Vinsert(root, Vline(&window, 101, fheight,
101 + XTextwidth(" Select client monitors™), fheight))
Vmessage(root, 101 + maxwidth, 0, &window, ' Ioad
Vmessage(root, 101 + maxwidth + XTextW|dth(load") + 8, 0, &Wmdow "iconify")
Vmessage(root, 101 + maxwidth + XTextWidth(" Ioad|c0n|fy)+16,0
&window, " enable"
OIVlnsert(root aborter, 0, 80, 100, 70)
en

#
attachSlider() — attach slider for execution speed control
#

procedure attachSlider()
VRemove(root, msg)
Vmessage(root, 101, 0, &window, " Executing program " || cmd)
Vvert slider(root, 45, 180, &window, speed, , XHeight() — 190, 10, 0, 100, 0)
Vmessage(root, 20, 175, &window, " slow")
Vmessage(root, 20, XHe|ght() — 20, &window, " fast")
VResize(root)
end

#
speed() — set the speed from the slider value. A vidget callback.
#

procedure speed(foo, newdelay)
delayval := integer(newdelay " 1.5)
end

#
run() — vidget event handler; yields control after every event by suspending

procedure run(e, X, Yy)
local return_value

if \e then {
if return_value := VEvent(root, e, X, y) then suspend return_value
else suspend

repeat {
e := XEvent()
if return_value := VEvent(root, e, &x, &y) then
suspend return_value
else suspend

end

#

titledparse() — parse command lines with an optional string title
at the front. The syntax of .eve file lines is

[title"] cmd [options]

#

procedure t|tledparse(s)
if s[l] =="\"" then

move(l
tab(find(" \" ")
move(1)
tab(many(’ "))

108

return parse(tab(0))

else return parse(s)
end

#

Trivial command line (string) argument ——> list conversion.
#

procedure parse(s)

local I, s2
I:=1]
s?
while s2 := tab(upto(’ ")) do { put(l, s2) ; tab(many(")) }
if *(s2 := tab(0))>0 then put(l, s2)
return |
end

#
unschedule(EM) — remove EM from those that are receiving events.
#
procedure unschedule(EM)
local newclients, monitor
newclients : =]
every monitor := Iclients do {
if monitor ~=== EM then put(newclients, monitor)
else write(" unscheduled " , image(EM.name))

clients := newclients
computeUnionMask()

end

#

computeUnionMask() — determine the set of events required by the
union of all EM’s —— including Eve's tick, error and user input needs
#

procedure computeUnionMask()
static tickset
local monitor, ¢
initial tickset := cset(E_Tick || E_MXevent || E_Error)

EventCodeTable := table()
EventCodeTable[" noop" | :=
EventCodeTable[E_Tick] :=[]
EventCodeTable[E_MXevent] :=]
EventCodeTable[E_Error] :=]
unioncset := tickset
every monitor := Iclients do
if monitor.enabled === E_Enable then {
unioncset ++:= monitor.mask
every ¢ := Imonitor.mask do
if c ~=== E_MXevent then {
/EventCodeTable[c] :=[]
put(EventCodeTable[c], monitor)

if \verbose then write(" Eve: union mask " , image(unioncset))
end

getClientList(s) — read the .eve file and return a list containing
its contents.

HHHH

109

procedure getClientList(s, all)
local fin, line, candidates
candidates :=
if \s then fin := open(s) | stop(cantopen , S)
else if not (fin := open(getenv(" HOME") || "'/.eve")) then {
fin := &input
write(" Enter a list of client command lines. A blank line terminates")

}
while *(line := read(fin))>0 do
put(candidates, line)
if fin ~=== &input then close(fin)
return candidates
end

#

During execution, Eve’s knowledge about EMs is stored in a list of
records of type ' "Client_rec” .

#

record client_rec(name, args, eveRow, prog, state, mask, enabled)

#
client() — create and initialize a client_rec.
#

procedure client(args|])
local self
self := client_rec ! args
if /self.name then stop(" empty client?")
self. prog := load(self. name, self.args) | stop(" can'tload " , image(self. name))
vanable(&eventsource self prog) := ¤t | stop(" no EventSource’>)
variable(" Momtored self prog) := &eventsource | stop("' no Monitored?")
[self.state := Runnmg
/self.mask :=
/self.enabled := E_Enable
return self
end

#

eveEvent() — event handler for E_MXevent user input event.

If the user pressed the stop sign, the stop sign changes into a green light;
wait until the user presses the green light before continuing.

#

procedure eveEvent()
run(&eventvalue, &x, &y)

while stopstate.value === " stopped" do
run()
&eventcode := " noop"
end

#
eveTick() — event handler for E_Tick clock tick event.
#

procedure eveTick()
drawtime(ticksum +:= &eventvalue)
end

#
eveError() — event handler for E_Error TP run—time error event.
#

procedure eveError()
local w
if keyword(" error" , &eventsource) = 0 then
#

this error would be fatal, handle it

110

#
if w := open(" Run—time error" , " x",
" font=*helvetica—bold—r—* L _24*" " lines=10") then {
write(w, "' Run—time error' |mage(&eventvalue))
Wr|te(w "File ", keyword(flle , &eventsource),
line ", keyword(line" &eventsource))
Wr|te(w keyword(errortext" , &eventsource))

write(w, ' Joffending value: " |mage(keyword(errorvalue" , &eventsource)))
writes(w, " Convert to failure? ")
if XEvent(w)===("y" |" Y") then
variable(" &error , &eventsource) =1
}
end
#

drawtime() — write the current elapsed TP clock time
#

procedure drawtime(val)
/val := ticksum
XGotoXY(18, 82)
writes(&window, " T: "', val)
end

#
loadedChange() — vidget callback for the " loaded" buttons
#

procedure loadedChange(i, val)
local arglist
if stopstate.value === " running" then {
if /val then {
trying to turn off a load while running? Sorry...
loaded]i].callback.V.toggle(loaded[i].callback, i, 1)

else {
arglist := t|tledparse(candidates[i])
write(" arglist:
every write(larglist)
put(clients, client(pop(arglist), arglist, i))
enabled[i].callback.V.toggle(enabled[i].callback, i, val)
if /enabled][i].callback.value then enabled[i].D.draw_otf(enabled]i])
else enabled[i].D.draw_on(enabled][i])
write(image(enabled[i].callback.value), " ," , clients[*clients].enabled)
clients[*clients].mask := @ clients[*clients].prog
computeUnionMask()

else {

enabled[i].callback.V.toggle(enabled[i].callback, i, val)

if /enabled[i].callback.value then enabled[i].D.draw_otf(enabled]i])
else enabled[i].D.draw_on(enabled]i])

end

#
enableChange() — vidget callback for the " enable" buttons.
z Update Eve’s state, and inform client of disable/enable.
procedure enableChange(i, val)

local C, monitor

if stopstate. value ~=="running" then fail

val := if val === &null then E_Disable else E_Enable

every monitor := Iclients do {

if monitor.eveRow === i then {

111

monitor.enabled := val
(C := event(val, , monitor.prog)) | (write(" failing") & fail)
if monitor.mask ~===:= C then

computeUnionMask()

1

end

#
iconicChange() — vidget callback for the " icon" buttons.
#

procedure iconicChange(i, val)
local cl, v, v2
val := if val === &null then " window" else " icon"
every cl := Iclients do
if cl.eveRow === i then {
if not (v := variable(" Visualization" , cl.prog)) then
write(" Visualization: failed")

if find(" window" ,image(v)) then XAttrib(v," iconic=" || val)
else if type(v) ==" list” then
every v2 ;= lv do XAttrib(v2," iconic=" || val)
else write(" Visualization: ", type(variable(" Visualization" , cl.prog))|" failed")
end
#

eveQuit() — TP execution completion handler
#

procedure eveQuit()
local c
if \verbose then write(" Eve: Monitored program has terminated execution™)
every c := (Iclients).prog do
cofail(c)
GetEvents(root)
end

#
broadcast() — sent event to interested EMs
#

procedure broadcast(x, except)
/EveBroadcastQueue =[]
put(EveBroadcastQueue, X)
put(EveBroadcastQueue, except)
dﬂush_broadcast_queue()
en

#
flush events produced during EM — EM communcation.
This code appears similar to Eve’s main loop.
#
procedure flush_broadcast_queue()
local ¢, C, x, except, monitor
while *EveBroadcastQueue > 0 do {
x := pop(EveBroadcastQueue)
except := pop(EveBroadcastQueue) | stop(" malformed broadcast queue™)
if x===""quit" then eveQuit()
every monitor := (except ~=== Iclients) do
if C := event(, , monitor.prog) then {
if C ~=== monitor.mask then {
Whi!&? type(C) ~=="cset" do {

The EM has raised a signal.
Pass it on to all the others except the client.

112

#
put(EveBroadcastQueue, C)
put(EveBroadcastQueue, monitor)
if not (C := event(, , monitor.prog)) then {
unschedule(monitor)
if \verbose then

write(" Eve warning: broadcast of " ,
image(&eventcode), " aborted")

reak next

computeUnionMask()

else {

unschedule(monitor)
if \verbose then

write(" Eve warning: broadcast of ", image(&eventcode), " aborted")
break

1

end

113

Appendex C: Event Codes

Thefollowinglist of event codesisprovided in order to give ageneral indication of the extent of instrumen-
tation discussed in Chapter 5. More information on these codes is presented in [Gris92c].

Classes of events

AllocMask Memory allocation events
AssignMask Assignment events

TypeMask Eventsrelated to |con datatypes
ConvMask Type conversion events

ListMask List operation events
RecordMask Record operation events
ScanMask String scanning events

SetMask Set operation events

TableMask Table operation events
StructMask Structure operation events (lists, records, sets, and tables)
ProcMask Procedure activity events
FncMask (Built-in) Function activity events
OperMask Operator activity events

Individual events

E_Lrgint Large integer alocation
E_Real Real dlocation

E_Cset Cset dlocation

E_File Filealocation
E_Record Record alocation
E_Tvsubs Substring trapped variable alocation
E_External External allocation
E_List List allocation

E_Lelem List element alocation
E_Table Table allocation
E_Telem Table element alocation
E_Tvtbl Table-element trapped variable allocation
E_Set Set alocation

E_Selem Set element allocation
E_Slots Hash header alocation
E_Coexpr Co-expression allocation
E_Refresh Refresh allocation
E_Alien Alienalocation

E_Free Free region

E_String String allocation
E_Lrgint Large integer alocation
E_Real Real number alocation

114

E_Cset
E_File
E_Record
E_Tvsubs
E_External
E_List
E_Lelem
E_Table
E_Telem
E_Tvtbl
E_Set
E_Selem
E_Slots
E_Coexpr
E_Refresh
E_Alien
E_Free
E_String
E_Integer
E_Null
E_Proc
E_Kywdint
E_Kywdpos
E_Kywdsubj
E_Pid
E_Sym
E_Tick
E_Loc
E_Opcode
E_Aconv
E_Tconv
E_Nconv
E_Sconv
E_Fconv
E_Lsub
E_Rsub
E_Snew
E_Sfall
E_Ssusp
E_Sresum
E_Srem
E_Spos
E_Assign
E_Intcall
E_Intret

Cset dlocation

Filealocation

Record alocation

Substring trapped variable alocation
Externa allocation

List allocation

List element alocation
Tableadlocation

Table element alocation

Table element trapped variable allocation

Set allocation

Set element alocation

Hash header allocation
Co-expression alocation
Refresh alocation
Allienalien allocation

Free region

String allocation

Integer value pseudo-event
Null value value pseudo-event
Procedure val ue pseudo-event
Integer keyword value pseudo-event
Position value pseudo-event
Subject value pseudo-event
Symbol name

Symbol table entry

Clock tick

L ocation change
Virtual-machineinstruction
Conversion attempt
Conversion target

Conversion not needed
Conversion success
Conversion failure

List subscript

Record subscript

Scanning environment creation
Scanning failure

Scanning suspension
Scanning resumption
Scanning environment removal
Scanning position
Assignment

interpreter call

interpreter return

115

E_Stack
E_Ecall
E_Efail
E_Eret
E_Bsusp
E_Esusp
E_Lsusp
E_Eresum
E_Erem
E_Coact
E_Coret
E_Cofail
E_Pcall
E_Pfail
E_Pret
E_Psusp
E_Presum
E_Prem
E_Fcall
E_Ffalil
E_Fret
E_Fsusp
E_Fresum
E_Frem
E_Ocall
E_Ofall
E_Oret
E_Osusp
E_Oresum
E_Orem
E_Collect
E_EndCollect
E_TenureString
E_TenureBlock
E_Error
E_Exit
E_MXevent
E_Comment

stack depth

Call of operation

Failure from expression
Return from expression
Suspension from operation
Suspension from aternation
Suspension from limitation
Resumption of expression
Removal of a suspended generator
Co-expression activation
Co-expression return
Co-expression failure
Procedure call
Procedurefailure

Procedure return

Procedure suspension
Procedure resumption
Suspended procedure removal
Function call

Function failure

Function return

Function suspension
Function resumption
Function suspension removal
Operator call

Operator failure

Operator return

Operator suspension
Operator resumption
Operator suspension removal
Garbage collection

End of garbage collection
Tenure astring region
Tenure ablock region
Run-time error

Program exit

monitor input event
Comment

116

ACKNOWLEDGMENTS

I would like to thank my advisor, Raph E. Griswold, my mentor, supporter, critic, purveyor of harsh
reality, and role model. Histireless efforts and exemplary research style have left an indelible imprint on
my work and on my method of working.

My other major committee members, Rick Snodgrass and Mary Bailey, provided extensive and indis-
pensibleinput on both the form and content of this dissertation; | am very greatful to them for their detailed
readings and comments.

| would aso liketo thank the other original inventors of Icon for creating alanguage after my own heart;
I wish | had been there. You all know who you are: |et me buy you dinner sometime.

Some of the example execution monitors in this dissertation were written by Ralph E. Griswold and
Gregg Townsend. Valuable experience with this framework and related tools was gained at the expense of
numerous computer scientists; particular thanks go to Steve Wampler, Darren Merrill, Mary Cameron, Jon
Lipp, Nick Kline, Song Liang, and Kevin Devries.

Thanks are deserved by my supportive family and most excellent counselors, Vic Thomas and Ken
Walker. Onelast appreciative note isdeserved by Norm Hutchinson, who taught me more about hacking (in
the honorabl e sense of the word) than | care to recall.

Thiswork was supported in part by the National Science Foundation under Grant CCR-8713690 and a
grant from the AT& T Research Foundation.

117

[Abel85]

[Aralgg]

[Aral89]

[Baec8l]

[Bates9]

[Bock86]

[Brow84]

[Brow88]

[Brow91]

[Clar85]

[Dewas6]

[Dunn84]

[Elsh8g]

[Garl90]

REFERENCES

Abelson, H. and Sussman, G. J. Structure and Interpretation of Computer Programs. MIT
Press, Cambridge, Massachusetts, 1985.

Aral, Z. and Gertner, I. Non-intrusive and Interactive Profiling in Parasight. In Proceedings
of the ACM/SI GPLAN PPEALS 1988, pages 21-30, September 1988.

Ard, Z. and Gertner, I. High-level Debugging in Parasight. In Proceedings of the ACM SIG-
PLAN/SIGOPSWorkshop on Parallel and Distributed Debugging (publishedin ACM S GPLAN
Notices), volume 24, pages 151-162, January 1989.

Baecker, R. and Sherman, D. Sorting Out Sorting. In (Shown at SGGRAPH '81 in Dallas,
TX), volume 16mm color sound film, 30min., 1981.

Bates, P Debugging Heterogeneous Distributed Systems Using Event-Based Models of Be-
havior. In Proceedings of the ACM S GPLAN/S GOPSWbrkshop on Parallel and Distributed
Debugging (published in ACM SIGPLAN Notices), volume 24, pages 11-22, January 1989.

Bocker, H.-D., Fischer, G., and Nieper, H. The Enhancement of Understanding through Visual
Representations. In CHI ’ 86 Proceedings, pages 44-50, June 1986.

Brown, M. H. and Sedgewick, R. A System for Algorithm Animation. Computer Graphics,
18(3):177-186, July 1984.

Brown, M. H. Algorithm Animation. ACM distinguished dissertation series. MIT Press,
1988.

Brown, M. H. and Hershberger, J. Color and Sound in Algorithm Animation. Technical
Report 76a, Digital Systems Research Center, August 1991.

Clark, D. D. The structuring of systems using upcalls. In Proceedings of the Tenth ACM
Symposium on Operating System Principles, pages 171-180, December 1985.

Dewar, A.andCleary, J. Graphica Display of Complex I nformation WithinaProlog Debugger.
Inter national Jour nal of Man-Machine Sudies, 25:503-521, 1986.

Dunn, R. Software Defect Removal. McGraw Hill Book Company, New York, 1984.

Elshoff, I. J. P A Distributed Debugger for Amoeba. In Proceedings of the ACM SG-
PLAN/SIGOPSWorkshop on Parallel and Distributed Debugging (publishedin ACM S GPLAN
Notices), volume 24, pages 1-10, January 1989.

Garlan, D. and llias, E. Low-cost, Adaptable Tool Integration Policies for Integrated Envi-
ronments. In Proceedings of the Fourth ACM SIGSOFT Symposium on Software Devel opment
Environments, pages 1-10, December 1990.

118

[Gett8s]

[Gris72]

[Gris86]

[Gris9]

[Gris90d]

[Gris90b]

[Gris90c]

[Gris92d]
[Gris92b)]

[Gris92c]

[Hans7§]

[Henr90]

[Jeff90]

[Jeff91]

[Jeff93]

[LintoO]

[Lond85]

Gettys, J., Newman, R., and Scheifler, R. W. Xlib - C LanguageInterface X Version 11 Release
2 edition. Software Distribution Center, M.I.T., Cambridge, MA, 1988.

Griswold, R.E. Themacroimplementationof SNOBOL4; a case study of machine-independent
software development. W. H. Freeman, San Fransisco, 1972.

Griswold, R. E. and Griswold, M. T. The Implementation of the Icon Programming Language.
Princeton University Press, Princeton, New Jersey, 1986.

Griswold, R. E. and Townsend, G. M. The Visuaization of Dynamic Memory Management in
the Icon Programming Language. Technical Report 89-30, Department of Computer Science,
University of Arizona, December 1989.

Griswold, R. E. Benchmarking Version 8 of Icon. Technical Report IPD115b, Department of
Computer Science, University of Arizona, March 1990.

Griswold, R. E. Processing Icon Event Streams. Technical Report IPD152, Department of
Computer Science, University of Arizona, December 1990.

Griswold, R. E. and Griswold, M. T. The Icon Programming Language, second edition.
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

Griswold, R. E. Data Representation: A Case Study. Thelcon Analyst, 11, April 1992.

Griswold, R. E. Viewsof Storage Allocationin Icon. Technical Report IPD197, Department
of Computer Science, University of Arizona, June 1992.

Griswold, R. E. and Jeffery, C. L. Writing Execution Monitorsfor Icon Programs. Technical
Report 1PD192, Department of Computer Science, University of Arizona, July 1992.

Hanson, D. R. Event Associations in SNOBOL4 for Program Debugging. Software —
Practice and Experience, 8:115-129, 1978.

Henry, R. R., Whaley, K., and Forstall, B. TheUniversity of Washington Illustrating Compiler.
In Proc. ACM SIGPLAN' 90, pages 223-233, White Plains, NY, June 1990.

Jeffery, C. L. TheMT Icon Interpreter. Technical Report IPD169c, Department of Computer
Science, University of Arizona, July 1990.

Jeffery, C. L. and Griswold, R. E. X-lcon: An Icon Windows Interface. In Proceedings of
the Fifth International Conference on Symbolic and Logical Computing, pages 19-38, 1991.

Jeffery, C. L. and Townsend, G. M. X-lcon: An Experimental Icon WindowsInterface Version
8.10. Technical Report 93-09, Department of Computer Science, University of Arizona, April
1993.

Linton, M. A. The Evolution of Dbx. In Proceedings of the Summer 1990 USENIX Confer-
ence, pages 211-220, June 1990.

London, R. and Duisberg, R. Animating Programs Using Smalltalk. |EEE Computer, pages
61-71, Aug 1985.

119

[Marl80]

[Masn90]

[Myer83]

[Ogle90]

[Olss90]

[Olss91]

[Plat81]

[ptr83]

[Reis84]

[Reis904]

[Reis90b]

[Soch89)]

[Sosi92]

[Stal92]

[Stas90]

Marlin, C. Coroutines(Lecture Notesin Computer Science95). Spriner-Verlag, Berlin, 1980.

Masnavi, S. Automatic Visualization of the Dynamic Behavior of Programs by Animation of
theLanguage Interpreter. Proceedings of the 1990 | EEE Wor kshop on Visual Languages, pages
16-21, 1990.

Myers, B.A. Incense: aSystemfor DisplayingDataStructures. Computer Graphics, 17:115—
125, July 1983.

Ogle, D. M., Schwan, K., and Snodgrass, R. The Dynamic Monitoring of Distributed and
Parallel Systems. Technica Report GIT-ICS-90/23, School of Information and Computer
Science, Georgialnstitute of Technology, December 1990.

Olsson, R. A., Crawford, R. H., and Ho, W. W. Daek: A GNU, Improved Programmable
Debugger. pages 221-231, June 1990.

Olsson, R. A., Crawford, R. H., and Ho, W. W. A Dataflow Approach to Event-based Debug-
ging. Software— Practice and Experience, 21(2):209-229, February 1991.

Plattner, B. and Nievergelt, . Monitoring Program Execution: A Survey. |EEE Computer,
pages 76-93, November 1981.

Ptrace(2) — process trace. In UNIX Programmer’s Manual Reference Guide. 4.2 Berkeley
Software Distribution, February 1983.

Reiss, S. P Graphica program devel opment with the pecan devel opment systems. In Hender-
son, P, editor, Proceedings of the ACM SIGSOFT/SI GPLAN Software Engineering Symposium
on Practical Software Development Environments, volume 19, pages 3041, Pittsburgh, Penn-
sylvania, May 1984.

Reiss, S. P Connecting Tools Using Message Passing in the FIELD Environment. |EEE
Software, pages 57-66, July 1990.

Reiss, S. P Interacting with the FIELD environment. Software — Practice and Experience,
20:89-115, June 1990.

Socha, D., Bailey, M. L., and Notkin, D. Voyeur: Graphical Views of Parallel Programs. In
Proceedings of the ACM SIGPLAN/SIGOPSWorkshop on Parallel and Distributed Debugging
(publishedin ACM S GPLAN Notices), volume 24, pages 206-215, January 1989.

Sosic, R. Dynascope: A Tool for Program Directing. In Proceedings of the ACM SIGPLAN
'92 Conference on Programming Language Design and Implementation, volume 27, pages
12-21, San Fransisco, Cdlifornia, June 1992.

Stallman, R. M. GDB, the GNU Symbolic Debugger (Version4.4). GNU Project, Cambridge,
Massachusetts, 1992.

Stasko, J. T. Tango: A Framework and System for Algorithm Animation. Computer, pages
27-39, September 1990.

120

[Tolm92] Tolmach, A. P. Debugging Standard ML. Technical Report CS-TR-378-92, Department of
Computer Science, Princeton University, October 1992.

[Walk91] Walker, K. W. The Implementation of an Optimizing Compiler for Icon. Technical Report
91-16, Department of Computer Science, University of Arizona, August 1991.

[Wamp8l1] Wampler, S. B. The Control Mechanisms for Generators in Icon. Technical Report 81-18,
Department of Computer Science, University of Arizona, December 1981.

121

