The Implementation of an Optimizing Compiler for Icon*

Kenneth Walker

TR 91-16

August 9, 1991

Department of Compulter Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Scicnce Foundation under Grants CCR-8901573 and DCR-
8502015,

Copyright © Kenneth William Walker 1991

This technical report has been submitted as a dissertation
to the faculty of the Department of Computer Science in
partial fulfillment of the requirements for the degree
of Doctor of Philosophy in the Graduate College of
the University of Arizona.

Chapter 1: Introduction
Motivation
Type Inferencing
Liveness Analysis
Analyzing Goal-Direct

Table of Contents

..
..
..
..

..

€d EVAlUALION voooeeiiiceiieieiiccieiie i ieenoeeeesesenonsseseesesonsussssnsnnn

Dissertation OrganiZationcccccceceeceeieseseesnnieereeruessessesssssssssessessesssesssessossossess

Chapter 2: The Translation MOl ... rcvincecrcetrnrnneie e ceseesseesaesessessesssesssssasens

Data Representation ..
Intermediate Results .
Executable Code

Calling Conventions .

..

--

..

..

Chapter 3: The Type INferencing MOGC]ccoceueeeereeeecerreeeeeeeeees s eessassesssssssensssessnes

Motivation
Abstract Interpretation

Collecting Semantics

..

..

..

Model 1; Eliminating Control FIow INfOMMAtON ..c.cccoveveereererressersnceseessseonsresesssnns

Model 2: Decoupling VAariablesccceeeiveiriinerresiosseseseesensseessssssaesseesesessnsesssesees

Model 3: A Finite TYPE SYSIEM ..ottt eeseesn s sessaessssssesseses

Chapter 4: Liveness Analysis o
Implicit Loops
Liveness Analysis
An Atribute Grammar

Primary Expressions .

f INteMEdiate VAIUES ..eeceeeiirieieecereeeseeecesseecssaseessssnnessss

..
..
..

..

\O 00 O O Wi W NN -

Wt A A b b W W WO N NN e e e
BN O U W NN WO NN = O = O

Operations with SUDEXPrESSIONScccciceeeerienenmicnsiernsiniinnsisressisnesessssssnssesssssnens 53

CONLIOL SITUCIUIEScvveeeeeeereiiesssesnonissnsssssasesssessssssssssesssssesssasssassassssassans ssnesassaness 56
Chapter 5: Overview of the COMPIIETcoiciviiiinininninniceniienrensenetesssesssesesanssnens 60
Components Of the COMPIIETcccverriecinierininnsssisrissosesnssesnsssesnsssssasasessessessosass 60
The RUN-UME SYSIEIM c.ccuicieeeeicreenceesessnesnsesssssssassessessmsssessmsnssnessessasasssassnssasssssnsss 61
The Implementation LANGUAREcccorceeerniiicriiincsinsnissssensissssssessssassessssnsasensens 63
Standard and Tailored Operation Implementationsc.ccouvesereerisesseressesssesssaens 67
Chapter 6: Organization 0f ICONCcccouiviiiinniniiisenesrestnneess e s sasasssenns 69
COMPIIET PRASES ...cuevervreeueeeeececncriricmsisrsssiisssesssassissssesssnsssssssnssssssasssesssassesssnsssanas 69
Naive OptiMIZatioNSccccovciieniiiminininiiininriicsestrsasstiasasssnssnsesassassnasssssnns 71
Code Generation for ProCedUresccvviiimiiiinniiinniniensnisssessensesniesssssssssnnese 12
Chapter 7: The Implementation of Type INfErenCingccceirereeienerinenennnnesenneninsessnns 74
The Representation of Types and SIOTEScciceerieriiiniseriiinnssssennensesnssssnssssssnsnss 74
A FUll TYPE SYSIEIM ...covvivirecneenecistsierisinsesinssssesssessesasssssssesssssssssnessssasssssasssanssssnes 76
Procedure Calls and Co-Expression ACHVALIONScccccceremrenensenisssnnaneninsssssnssssnnes 82
The Flow Graph and Type COMPULALIONS ...cccvererrrieenesressensensmsusnsnenssessasssssssesens 84
Chapter 8: COde GENETALONccuovvirureerieririeimeresnsss s sssssssesesssssestsssaestssensnssssanasssssess %0
Translating Icon EXPrESSIONSccccciuirisuierenisieniesiereinssstssssssssssensesnsssssesssssssesssnsas 94
Signal Handling .cc.cocceceeenceeiiciiinitcne ettt et sttt s saee e 100
Temporary Variable ALIOCAUONooueierererenerinrieiessnnissesesesassstsssistssessssessssssensaes 104
Chapter 9: Control FIOW OPHMHZAONS oveueemeeerenieeieiesnsreresestsssssssssesssssssssssssnsnsassssese 113
Naive COAE GENETALONcccceerereerereesecrissssessssessssasessessesssssssssssssssssssssssessossesssnsssss 113
SUCCESS CONUNUALIONS ccvvvreereriseniensiensiensssisiesseissneesssssnssrssssasessrsessesssaasssssasansarssss 114
IcoNC’s Peephole OPUMIZETccocveveccniencecnieniiiniserie s ssss e ssessesas s sssssesarsssseses 118
Chapter 10: Optimizing INVOCAUONScccoeviiveerrerininteieininscsssssesessesesresssssessesnssssenssssssne 122
INVOCALION Of PTOCEAUNESvoviuiiieirieecntcterceeeee et case e se e sresae st snesss s et sensnaaness 122

Invocation and In-lining of Built-in Operationsc.cccevevinienencninesineesinssseens 123

Heuristic for Deciding t0 IN-HNEccoviiinnniisiniciniesesesnncssesissnsnsnssssnsnssasasseses

In-lining Success CONUNUALIONSccccceeeeruereesercensesnssescansacsnseraensesaens

Parameter Passing Optimizationsccceccecenenccsenicnsssenscesaeneas

Assignment OPUMIZALONScccveereererrneerrereseenessoessesssersessesessessessesssssssessesassaessen
Chapter 11: Performance of Compiled COAEcoeeeicenmrenisterinsessesnesssnsssssassesesssessesssosses
ExXpression OpUMIZALONSccceeeeensissisescennssssesssiossesssseseesaesessassssssssssesessssssnns
Program EXeCution SPeedcocoveeerceirnsinnrnreencnnecsusneessscsesssessesssessessesssssnesasness
COAE SIZE .ottt cctsr et e st ese e se e st esassasse st ssae st ssesaessessanssarseonen

ACKNOWIEAZEIMEILS ...cviiiiiiiiiririinririeierie e seessresessas e st sse s ssesesessessssensesssassnonsessessossossessasessssnes

Appendix A — The Implementation LangUagecccveverevenrnnerernrennssessssnsesenssns
Appendix B — Correctness of the Type Inferencing Modeloovvevevreenevecrnseeensessssnns

References

..

Abstract

There are many optimizations that can be applied while translating Icon programs. These
optimizations and the analyses needed to apply them are of interest for two reasons. First, Icon’s
unique combination of characteristics requires developing new techniques for implementing
them. Second, these optimizations are useful in variety of languages and Icon can be used as a

medium for extending the state of the art.

Many of these optimizations require detailed control of the generated code. Previous produc-
tion implementations of the Icon programming language have been interpreters. The virtual
machine code of an interpreter is seldom flexible enough to accommodate these optimizations
and modifying the virtual machine to add the flexibility destroys the simplicity that justified
using an interpreter in the first place. These optimizations can only reasonably be implemented
in a compiler. In order to explore these optimizations for Icon programs, a compiler was
developed. This dissertation describes the compiler and the optimizations it employs. It also

describes a run-time system designed to support the analyses and optimizations.

Icon variables are untyped. The compiler contains a type inferencing system that determines
what values variables and expression may take on during program execution. This system is
effective in the presence of values with pointer semantics and of assignments to components of

data structures.

The compiler stores intermediate results in temporary variables rather than on a stack. A sim-
ple and efficient algorithm was developed for determining the lifetimes of intermediate results in
the presence of goal-direcied evaluation. This allows an efficient allocation of temporary vari-
ables to intermediate results.

The compiler uses information from type inferencing and liveness analysis to simplify gen-

erated code. Performance measurements on a variety of Icon programs show these optimizations

to be effective.

CHAPTER 1

Introduction

Motivation

This dissertation describes the implementation of an optimizing compiler for the Icon pro-
gramming language [1,2]. This is a practical and complete compiler for a unique and complex
programming language. This dissertation describes the theory behind several parts of the com-

piler and describes the implementation of all interesting aspects of the compiler.

The motivation for developing a compiler for the Icon programming language is to have a
vehicle for exploring optimization techniques. Some performance improvements can be
obtained by modifying the run-time system for the language, for example by implementing alter-
native data structures or storage management techniques. These improvements may apply 1o a
broad class of programs and the techniques can reasonably be implemented in an interpreter sys-
tem. However, other techniques, such as eliminating unnecessary type checking, apply to expres-
sions within specific programs. The Icon interpreter [3] is based on a virtual machine with a rela-
tively small instruction set of powerful operations. A small instruction set is eaSier to implement
and maintain than a large one, and the power of many of the individual opecrations insures that
the overhead of the decoding loop is not excessive. The disadvantage of this instruction set is
that an Icon translator that generates code for the interpreter does not have enough fliexibility to
do many of the possible program-specific optimizations. It is possible to devise a set of more
primitive virtual machine instructions that expose more opportunities for these optimizations.
Increasingly primitive instruction sets provide increasingly more opportunities for optimizations.
In the extreme, the instruction set for a computer (hardware interpreter) can be used and the
translator becomes a compiler. A compiler was chosen for this research because it is a good

vehicle for exploring program-specific optimizations and eliminates the overhead of a software

interpreter which might otherwise become excessive.

Type Inferencing

Most Icon operations require operands with specific types. The types of the actual operands
in an expression must be checked and possibly converted to the required types. However, Icon
variables are untyped; in general, this checking cannot done at translation time. The Icon inter-
preter takes the simple approach to the problem and performs all of the type checking for an
expression every time it is executed. For most programs, a type inferencing system can provide
the information needed to do much of the checking at translation time, eliminating the need for
these checks at run time. A type inferencing system determines the types that elements of a pro-
gram (variables, expression, procedures, etc) can take on at run time. The Icon compiler con-
tains an effective and practical type inferencing system, and implements code generation optimi-

zations that make use of the information produced by the type inferencing system.

Two basic approaches have been taken when developing type inferencing schemes. Schemes
based on unification [4-6] construct type signatures for procedures; schemes based on global data
flow analysis [7-10] propagate throughout a program the types variables may take on. One
strength of the unification approach is that it is effective at handling polymorphous procedures.
Such schemes have properties that make them effective in implementing flcxible compile-time
type systems. Much of the research on them focuses on this fact. The primary purpose of the
type inferencing system for the Icon compiler is to eliminate most of the run-time type checking
rather than to report on type inconsistencies at compile time, so these properties have little
impact on the choice of schemes used in the compiler. Type inferencing systems based on
unification have a significant weakness. Procedure type-signatures do not describe side effects to
global variables. Type inferencing schemes based on unification must make crude assumptions

about the types of these variables.

Schemes based on global data flow analysis handle global variables effectively. Many Icon

programs make significant use of global variables; this is a strong argument in favor of using this

kind of type inferencing scheme for Icon. These schemes do a poor job of inferring types in the
presence of polymorphous procedures. It is generally too expensive for them to compute the
result type of a call in terms of the argument types of that specific call, so result types are com-
puted based on the aggregate types from all calls. Poor type information only results if polymor-
phism is actually exploited within a program.

The primary use of polymorphous procedures is to implement abstract data types. Icon, on
the other hand, has a rich set of built-in data types. While Icon programs make heavy use of
these built-in data types and of Icon’s polymorphous built-in operations, they seldom make use
of user-written polymorphous procedures. While a type inferencing scheme based on global data
flow analysis is not effective in inferring the precise behavior of polymorphous procedures, it is
effective in utilizing the predetermined behavior of built-in polymorphous operations. These
facts combined with the observation that Icon programs often make use of global variables indi-
cate that global data flow analysis is the approach of choice for type inferencing in the Icon com-

piler.

Icon has several types of non-applicative data structures with pointer semantics. They all can
be heterogeneous and can be combined to form arbitrary graphs. An effective type inferencing
system must handle thesc data structures without losing too much information through crude
assumptions. These composite data structures typically consist of a few basic elements used
repeatedly and they logically have a recursive structure. A number of type inferencing systems
handle recursion in applicative data structures [8, 11, 12]; the system described here handles Icon
data types that have pointer semantics and handles destructive assignment to components of data
structures. Analyses have been developed to handle pointer semantics for problems such as allo-
cation optimizations and determining pointer aliasing to improve other analyses. However, most
of these analyses lose t0oo much information on heterogeneous structures of unbounded depth
(such as the mutually referencing syntax trees and symbol tables commonly found in a transla-

tor) to be effective type inferencing systems [10, 13].

Work by Chase, Wegman, and Zadeck [14] published subsequent to the original technical
report on the Icon type inferencing system [15] presents a technique similar to the one used in
this type inferencing system. They use a minimal language model to describe the use of the tech-
nique for pointer analysis. They speculate that the technique might be too slow for practical use
and propose methods of improving the technique in the context of pointer analysis. Use of the
prototype Icon type inferencing system described in the original technical report indicates that
memory usage is more of a problem than execution time. This problem is addressed in the

implementation of type inferencing in the Icon compiler.

Liveness Analysis

Type checking optimizations can be viewed as forms of argument handling optimizations.
Other argument handling optimizations are possible. For example, when it is safe to do so, it is
more efficient to pass a variable argument by reference than to copy it to a separate location and
pass a reference to that location (this particular opportunity for optimization arises because of
implementation techniques borrowed from the Icon interpreter — Icon values are larger than
pointers and Icon parameter passing is built on top of C parameter passing). Such optimizations
are not possible in a stack-based execution model; a temporary-variable model is needed and
such a model is used by the Icon compiler. Icon’s goal-directed evaluation can extend the life-
time of the intermediate values stored in temporary variables. Icon presents a unique problem in
liveness analysis, which is the static determination of the lifetime of values in a program
(10,16]. While this problem, like other liveness problems, can be solved with traditional tech-
niques, it has enough structure that it can be solved without precomputing a flow graph or using

expensive forms of data flow analysis.

The only previous implementation of Icon using a temporary-variable model is a partial
implementation by Christopher [17]. Christopher uses the fact that Icon programs contain many
instances of bounded goal-directed evaluation to deduce limits for the lifetimes of intermediate

values. However, this approach produces a very crude estimate for these lifetimes. While

overestimating the lifetime of intermediate values results in a safe allocation of temporary vari-
ables to these values, a fine-grained liveness analysis results in the use of fewer temporary vari-
ables. The Icon compiler addresses this problem of fine-grained liveness analysis in the presence

of goal-directed evaluation and addresses the problem of applying the information to temporary

variable allocation.

Analyzing Goal-Directed Evaluation

Many kinds of analyses of Icon programs must deal with Icon’s goal-directed evaluation and
its unique control structures. These analyses include type inferencing, liveness analysis, and the
control flow analyses in O'Bagy’s prototype compiler [18]. Determining possible execution
paths through an Icon program is more complicated than it is for programs written in more con-
ventional languages. The implementation of the type inferencing system and liveness analysis

here explore variations on the techniques presented by O'Bagy.

Dissertation Organization

This dissertation is logically divided into three parts. Chapters 2 through 4 present the main
ideas upon which the compiler is based, Chapters S through 10 describe the implementation of

these ideas, and Chapter 11 presents performance measurements of compiled code.

Chapter 2 describes the code generated by the compiler. It explains how Icon data values,
variables, and goal-directed evaluation are implemented, independent of the actual translation
process. Chapter 3 presents a theoretical mode! of the type inferencing system used in the com-
piler. The model includes the important ideas of the type inferencing system, while ignoring
some purely pragmatic details. Chapter 4 explains the liveness analysis problem and presents the

solution used in the compiler.

The Icon compiler is designed to be a production-quality system. The compiler system con-
sists of the compiler itself and a run-time system. The fact that these two components are not

entirely independent must be carefully considered in the design of such a production-quality

system. Chapter 5 describes the system as a whole and how the interactions between the com-

ponents are handled.

Chapter 6 presents the organization of the compiler itself. This chapter describes some parts
of the compiler in detail, but defers major topics to other chapters. Chapter 7 builds on the model
presented in Chapter 3 and describes the full type inferencing system used in the compiler and its
implementation. Chapter 8 describes the translation techniques used to produce code from
expressions that employ Icon’s goal-directed evaluation scheme and its unique control struc-
tures. It also describes the allocation of temporary variables using the information produced by

liveness analysis.

The code generator does no look-ahead and as a result it often produces code that is poor
when taken in context of subsequent code. This problem is shared with most code generators as
are some of the solutions used in this compiler. The unique code generation techniques required
by Icon's goal-directed evaluation produce unusual variations of this problem and require some
innovative solutions in addition to the standard ones. Chapter 9 describes the various techniques
employed to handle this problem. Chapter 10 describes the optimizations that can be done using

the results of type inferencing. These optimizations also make use of liveness information.

Chapter 11 demonstrates the effects of the various optimizations used in the compiler on the
performance of specific kinds of expressions. It also presents mecasurements of the performance
of compiled code for a variety of complete programs, comparing the performance to that of the
Icon interpreter. In addition, the sizes of the exccutable code for the complete programs are

presented.

The conclusions, Chapter 12, summarizc what has been done and lists some work that

remains to be explored.

CHAPTER 2

The Translation Model

A compiler translates programs written in a particular programming language into code that
can be executed by the hardware of a computer, perhaps with the aid of an operating system. The
design of a compiler involves deciding how features of the source language are represented on
the target machine. These features include data types, variables, intermediate values, operations,

and control structures.

Modem compilers seldom produce machine code directly. They translate a program into a
form closer to machine code than the source language and depend on other tools to finish the
translation. If the compiler produces an object module, it depends on a linker and a loader to
produce executable code. If the compiler produces assembly language, it also depends on an
assembler. A recent trend among compilers produced in research environments has been to pro-
duce C code [19, 20], adding a C compiler to the list of tools required to finish the translation to
machine code (21-27]. The Icon compiler takes this approach and generates C code.

There are several advantages to compiling a language into C. Low-level problems such as
register allocation and the selection and optimization of machine instructions are handled by the
C compiler. As long as these problems are outside the scope of the research addressed by the
compiler, it is both reasonable and effective to allow another compiler to deal with them. In gen-
eral, it is easier to generate code in a higher-level language, just as it is easier to program in a
higher-level language. As long as the target language lies on a ‘‘nearly direct path’’ from the
source language to machine code, this works well. C is closely matched 10 most modemn machine

architectures, so few tangential translations must be done in generating C code from Icon.

Another advantage of generating C code is that it greatly increases the portability of the com-
piler and facilitates cross-compilation. The popularity of C in rccent years has resulted in

production-quality C compilers for most systems. While the implementation of Icon in C

contains some machine and system dependencies, C's conditional compilation, macro, and file
inclusion facilities make these dependencies relatively easy to deal with when they arise. These
facts make possible the development of a highly portable Icon compiler, allowing the compiler’s

effectiveness to be tested by Icon’s large user community.

Data Representation

Because the target language is C, Icon data must be represented as C data. The careful
representation of data and variables is important to the performance of an implementation of a
high-level language such as Icon. In addition, information provided by type inferencing can be
us¢. to optimize these representations. However, such considerations are largely outside the
scope of this current research. For this reason, the representations used in code produced by this
compiler and the compiler’s run-time system are largely unchanged from those of the Icon inter-
preter system [3). The interpreter’s run-time system is written in C. Therefore borrowing its data
representations for the compiler system is simple. This choice of represcntation means that the
run-time system for the compiler could be adapted dircctly from the run-time system for the
interpreter, and it allowed the compiler dcvelopment to concentrate on parts of the system
addressed by this research. In addition, this choice of representation allows a meaningful com-

parison of the performance of compiled code to the performance of interpreted code.

An Icon value is represented by a two-word descriptor [3]. The first word, the d-word, con-
tains type information. In the case of a string value, the type is indicated by zero in a high-order
bit in the d-word, and the length of a string is stored in low-order bits of the d-word. All other
types have a one in that bit and further type information elsewhere in the d-word. The v-word of
a descriptor indicates the value. The v-word of the null value is zero, the v-word of an Icon
integer is the corresponding C integer value, and v-words of other types are pointers to data. A

descriptor is implemented with the following C structure:

struct descrip {

word dword; /* type field */
union {
word integr; /* integer value */
char =sptr; /* pointer to character string */

union block *bptr;/* pointer to a block */
dptr descptr; /* pointer to a descriptor */
} vword;

¥

word is defined to be a C integer type (one that is at Icast 32-bits long), block is a union of struc-

tures implementing various data types, and dptr is a pointer to a descrip structure.

Intermediate Results

While the representation of data in the compiler is the same as in the interpreter, the method
of storing the intermediate results of expression evaluation is not. Two basic approaches have
been used in language implementations to store intermediate results. A stack-based approach is
simple and dynamic. It requires no pre-analysis of expressions to allocatc storage for the inter-
mediate results, but the simple rigid protocol allows little room for optimization. For Icon there
is an additional problem with a stack-based approach. Goal-directed evaluation extends the life-
time of some intermediate results, requiring that the top elements of the evaluation stack be
copied at critical points in execution [3, 18]. In spite of the need for this extra copying, most pre-
vious implementations of Icon have been implemented with an evaluation stack.

An altemnative to using a stack is to pre-allocate a temporary variable for each intermediate
result. In this model, operations take explicit locations as arguments. Therefore an operation can
directly access program variables as arguments; there is no need to perform the extra operations

of pushing addresses or values on a stack. In addition, the lifetime of a temporary variable is not

-10-

determined by a rigid protocol. The compiler can assign an intermediate result to a temporary
variable over an arbitrary portion of the program, eliminating the copying needed to preserve a
value beyond the lifetime imposed by a stack-based approach. This compiler uses the
temporary-variable model because it allows more opportunities to optimize parameter handling,

a major goal of this research.

Icon’s automatic storage management dictates the use of a garbage collector in the run-time
system. When this garbage collector is invoked, it must be able to locate all values that may be
used later in the program. In the current interpreter system, intermediate values and local vari-
ables are stored on the same stack. The garbage collector sweeps this stack to locate values. In
the compiler, a different approach is taken to insure that all necessary values are locatable.
Arrays of descriptors are allocated contiguously along with a count of the number of descriptors
in the array. The arrays are chained together. An array of descriptors may be local to a C func-
tion, or it may be allocated with the malloc library function. The garbage collector locates
values by following the chain and scanning the descriptors in each array. These descriptors are

referred to as tended descriplors.

Executable Code

Even more important than where intermediate results are stored is how they are computed.
Some aspects of Icon expression evaluation are similar to those of many other languages, but
others aspects are not. Goal-directed evaluation with backtracking poses a particular challenge
when implementing Icon expression evaluation. The Icon interpreter is based on a virtual
machine that includes backtracking, as are Prolog interpreters based on the Warren Abstract
Machine (28]. While details differ between the Icon and Prolog virtual machines, their imple-
mentation of control backtracking is based on the same abstract data structures and state vari-
ables. Such a virtual machine contains a stack of procedure frames, but the stack is maintained

differently from that of a virtual machine that does not implement goal-directed evaluation.

-11 -

The difference manifests itself when a procedure produces a result, but has altemate results
that it can produce in the event of backtracking. When this occurs, the frame for the procedure
remains on the stack after control retumns to the caller of the procedure. This frame contains the
information needed to produce the alternate results. The left stack in the following diagram
shows that procedure f has called procedure g. The arrows on the left of the stack represent the
backtracking chain of procedures that can produce alternate results. btp points to the head of
the backtracking chain which currently starts further down in the stack. The arrows on the right

represent the call chain of procedures. fp points to the frame of the currently executing pro-

¢ ¢
Q?; g%

cedure.

btp —

f
L O

fp btp g btp Q

h |=—1p

Suppose g produces the first of several possible results. Execution retumns to f and g's frame
is added to the backtracking chain. This is represented by the middle stack in the diagram. If f
then calls h, its procedure frame is added to the top of the stack as shown in the right stack in the
diagram.

If h produces a result and is not capable of producing more, execution retums to f and the
stack again looks like the one in the middle of the diagram (the program pointer within f is dif-
ferent, of course). If h produces a result and is capable of producing more, execution retums to f,
but h’s frame remains on the stack and is added to the head backtracking chain, similar to what
was done when g produced a result. If h produces no results, backtracking occurs. h'’s frame is
removed from the stack, execution retumns to the procedure g who's frame is at the head of the

backtracking chain, and g's frame is removed from the head of the chain. The stack once again

S12-

looks like left stack in the diagram and g proceeds to produce another result.

Traditional languages such as Pascal or C present high-level virtual machines that contain no
notion of backtracking and have no need to perform low-level stack manipulations. Icon expres-
sions with goal-directed evaluation cannot be translated directly into such languages. This is the
fundamental problem that must be addressed when designing a compiler for Icon. O'Bagy
presents an elegant solution to this problem in her dissertation [18). Her solution is used by this
optimizing compiler as a basis for translating Icon expressions into C code. The rest of this sec-
tion contains a brief explanation of the variation of her approach that is used in the compiler,
while exploring useful ways of viewing the problem. O’Bagy’s dissertation describes how con-

trol structures not covered in this discussion can be implemented using her model.

Formal semantics is one tool that can be used in understanding a language [29,30]). The
added complexity caused by Icon’s goal-directed evaluation is reflected in Gudeman's descrip-
tion of Icon using denotational semantics [31). While conventional programming languages can
be described using one continuation for each expression, Icon requires two continuations. One
continuation for an expression embodics the rest of the program if the expression succeeds,

while the other embodies the rest of the program if the expression fails.

The Icon compiler uses the notion of success continuations to implement goal-directed
evaluation. However, these continuations violate some of the properties traditionally associated
with continuations. A continuation in denotational semantics and in the language Scheme
[32,33] is a function that never retumns. However, the success continuations produced by the
compiler implement backtracking by retuming. In addition, these continuations implement the
rest of the current bounded expression rather than the rest of the entire program. Note that unlike
continuations in Scheme, these continuations are created at compile time, not at run time. Some

Prolog compilers have been based on a similar continuation-passing technique (22, 34].

The C language is oriented toward an imperative style of programming. In order to produce
efficient code, the Icon compiler should not generate an excessive number of function calls.

Specifically, it should avoid creating continuations for every expression. A more operational

-13-

view of Icon’s semantics and of C's semantics can be useful in understanding how to accomplish
this. An operation in Icon can succeed or fail. In the view of denotational semantics, the question
of what will be done in each case must be answered, with the answers taking the form of func-
tions. In an operational view, the questions can take the form of where to go in each case. The
answers to these questions can be any type of transfer of control supported by the C language:
execute the next sequential instruction, execute a function, return from a function, or go to a

label.

Most operations in Icon are monogenic. That is, they produce exactly one result, like opera-
tions in conventional languages. For these operations, the compiler can generate code whose

execution simply falls through into the code that implements the subsequent operation.

Conditional operations are more interesting. These operations either produce a single value
or fail. If such an operation succeeds, execution can fall through into code implementing the sub-
sequent operation. However, if the operation fails, execution must transfer elsewhere in the pro-
gram. This is accomplished by branching to a failure label. If the code for the operation is put
in-line, this is straightforward. However, if the operation (either a built-in operation or an Icon
procedure) is implemented by a separate C function, the function must notify the caller whether

it succeeded or failed and the caller must effect the appropriate transfer of control.

By convention, C functions produced by the compiler and those implementing the run-time
routines each return a signal (this convention is violated in some special cases). A signal is an
integer (and is unrelated to Unix signals). If one of these C functions needs to retumn an Icon
value, it does so through a pointer to a result location that is passed to it as an argument. Two

standard signals are represented by the manifest constants A_Continue and A_Resume.

A retumn (either an Icon retun expression or the equivalent construct in a built-in operation)

is implemented with code similar to

-14-

*result = operation result,

return A_Continue;
Failure is implemented with the code
return A_Resume;

The code implementing the call of an operation consists of both a C call and signal-handling

code.

switch (operation(args, &result)) {
case A_Continue: break;

case A_Resume: goto failure label,

}

This code clearly can be simplified. This form is gencral enough to handle thc more complex
signal handling that can arise during code generation. Simplifying signal handling code is
described in Chapter 9.

Generators pose the real challenge in implementing Icon. A gencrator includes code that
must be executed if subsequent failurc occurs. In addition, a generator, in general, needs to
retain state information between suspending and being resumed. As mentioned above, this is
accomplished by calling a success continuation. The success continuation contains subsequent
operations. If an operation in the continuation fails, an A_Resume signal is retumned to the gen-
erator, which then executes the appropriate code. The generator retains state information in local
variables. If the generator is implemented as a C function, a pointer to the continuation is passed
to it. Therefore, a function implementing a generative operation need not know its success con-

tinuation until run time.

Consider the operation i to j. This operation can be implemented in Icon with a procedure

like

-15-

procedure To(i, j)

while | <= j do {

suspend i
i +:=1
}
fail
end

It can be implemented by an analogous C function similar to the following (for simplicity, C ints

are used here instead of Icon values).

int to(i, j, result, succ_cont)
int i, j;

int *result;

int (xsucc_cont)();

{

int signal;

while (i <= j) {
*result = i;
signal = (*succ_cont)();
if (signal = A_Resume)
return signal,
++i;
}

return A_Resume;

}

There is no explicit failure label in this code, but it is possible to view the code as if an implicit

-16 -

failure label occurs before the ++i.

The Icon expression
every write(1 to 3)

can be compiled into the following code (for simplicity, the write function has been translated
into printf and scoping issues for result have been ignored). Note that the every simply intro-

duces failure.

switch (to(1, 3, &result, sc)) { /+ standard signal-handling code */

int sc()
{
printf("%d\n", result);
return A_Resume;

}

The final aspect of Icon expression evaluation that must be dealt with is that of bounded
expressions. Once execution leaves a bounded expression, that expression cannot be resumed. At
this point, the state of the computation with respect to backtracking looks as it did when execu-
tion entered the bounded expression. This means that, in generated code, where to go on failure
(either by branching to an explicit failure label or by retumning an A_Resume signal) must be
the same. However, this failure action is only correct in the C function containing the start of the
code for the bounded expression. If a function suspended by calling a success continuation, exe-
cution is no longer in that original C function. To accommodate this restoration of failure

action, execution must return to that original function.

-17 -

This is accomplished by setting up a bounding label in the original C function and allocating
a signal that corresponds to the label. When the end of the bounded expression is reached, the
signal for the bounding label is returned. When the signal reaches the function containing the
label, it is converted into a goto. It can be determined statically which calls must convert which
signals. Note that if the bounded expression ends in the original C function, the ‘‘retumn signal’’
is already in the context of the label. In this case, it is immediately transformed into a goto by

the compiler, and there is no real signal handling.

Consider the Icon expression

move(1);

The move function suspends and the C function implementing it needs a success continuation.
In this case, move is called in a bounded context, so the success continuation must returmn execu-
tion to the function that called move. The continuation makes usc of the fact that, like the C
function for to, the one for move only intercepts A_Resume signals and passes all other sig-

nals on to its caller.

This expression can be implemented with code similar to the following. There are two possi-
ble signals that might be retumed. move itself might produce an A_Resume signal or it might
pass along the bounding signal from the success continuation. Note that for a compound expres-
sion, both the bounding label and the failure label are the same. In gencral, this is not true. In
this context, the result of move(1) is discarded. The variable trashcan receives this value; it is

never read.

-18-

switch (move(1, &trashcan, sc¢)) {
case 1:
goto L1;
case A_Resume:
goto L1;

}
L1: /= bounding label & failure label */

int sc() {

return 1; /* bound signal */

}

Calling Conventions

This discussion has touched on the subject of calling conventions for run-time routines. In
Icon, it is, in general, impossible to know until run time what an invocation is invoking. This is
handled in the compiler with a standard calling convention for the C functions implementing
operations and procedures. This calling convention allows a C function to be called without

knowing anything about the operation it implements.

A function conforming to the standard calling convention has four parameters. These param-
eters are, in order of appearance, the number of Icon arguments (a C int), a pointer to the begin-
ning of an array of descriptors holding the Icon arguments, a pointer to the descriptor used as the
Icon result location, and a success continuation to use for suspension. The function itself is
responsible for any argument conversions including dereferencing, and for argument list adjust-
ment. As explained above, the function returns an integer signal. The function is allowed to

return the signals A_Resume, A_Continue, and any signals retumed by the success

-19-

continuation. It may ignore the success continuation if it does not suspend. The function may be
passed a null continuation. This indicates that the function will not be resumed. In this case,
suspend acts like a simple return, passing back the signal A_Continue (this is not shown in the

examples). The outline of a standard-conforming function is

int function—name(nargs, args, result, succ_cont)
int nargs;

dptr args;

dptr result;

continuation succ_cont;

{

continuation is defined to be a pointer to a function taking no arguments and retuming an

integer.

Later sections of this dissertation describe the code generation process in more detail and
describe optimizations of various parts of the code including paramcter passing, continuations,

signal handling, and branching.

-20 -

CHAPTER 3

The Type Inferencing Model

Three sections of this dissertation are devoted to type inferencing: two chapters and an
appendix. This chapter develops a theoretical model of type inferencing for Icon. For simplicity,
it ignores some features of the language. This chapter presents intuitive arguments for the
correctness of the formal model. Chapter 7 describes the actual implementation of type
inferencing in the Icon compiler. The implementation handles the full Icon language and, for
pragmatic reasons, differs from the theoretical model in some details. Appendix B presents more

formal arguments for the correctness of the type inferencing system than given in this chapter.

This chapter starts with the motivation for performing type inferencing. It then describes the
concept of abstract interpretation. This concept is used as a tool in this chapter to develop a type
inferencing system from Icon’s semantics. This chapter gives an intuitive presentation of this
development process before presenting the formal models of abstract semantics for Icon. The

most abstract of the formal models is the type inferencing system.

Motivation

Variables in the Icon programming language are untyped. That is, a variable may take on
values of different types as the execution of a program proceeds. In the following example, X
contains a string after the read (if the read succeeds), but it is then assigned an integer or real,

provided the string can be converted to a numeric type.

x := read()

if numeric(x) then x +:= 4

In general, it is impossible to know the type of an operator’s operands at translation time, so

some type checking must be done at run time. This type checking may result in type

221-

conversions, run-time errors, or the selection among polymorphous operations (for example, the
selection of integer versus real addition). In the Icon interpreter system, all operators check all of

their operands at run time. This incurs significant overhead.

Much of this run-time type checking is unnecessary. An examination of typical Icon pro-
grams reveals that the types of most variables remain consistent throughout execution (except

for the initial null value) and that these types can often be determined by inspection. Consider

if x := read() then

y = x|

Clearly both operands of || are strings so no checking or conversion is needed.

The goal of a type inferencing system is to determine what types variables may take on dur-
ing the execution of a program. It associates Wil:h each variable usage a set of the possible types
of values that variable might have when execution reaches the usage. This set may be a conser-
vative estimate (overestimate) of the actual set of possible types that a variable may take on
because the actual set may not be computable, or because an analysis to compute the actual set
may be too expensive. However, a good type inferencing system operating on realistic programs
can determine the exact set of types for most operands and the majority of these sets in fact con-
tain single types, which is the information needed to generate code without type checking. The

Icon compiler has an effective type inferencing system based on data flow analysis techniques.

Abstract Interpretation

Data flow analysis can be viewed as a form of abstract interpretation [35]. This can be partic-
ularly useful for understanding type inferencing. A ‘‘concrete’’ interpreter for a language imple-
ments the standard (operational) semantics of the language, producing a sequence of states,
where a state consists of an execution point, bindings of program variables to values, and so
forth. An abstract interpreter does not implement the semantics, but rather computes information

related to the semantics. For example, an abstract interpretation may compute the sign of an

-22-

arithmetic expression rather than its value. Often it computes a ‘‘conservative’’ estimate for the
property of interest rather than computing exact information. Data flow analysis is simply a form
of abstract interpretation that is guaranteed to terminate. This chapter presents a sequence of

approximations to Icon semantics, culminating in one suitable for type inferencing.

Consider a simplified operational semantics for Icon, consisting only of program points (with
the current execution point maintained in a program counter) and variable bindings (maintained
in an environment). As an example of these semantics, consider the following program. Four
program points are annotated with numbers using comments (there are numerous intermediate

points not annotated).

procedure main()

local s, n

1

s = read()

2:

every n := 1 to 2 do {
3
write(s[n])
}

4.

end

If the program is executed with an input of abc, the following states are included in the execu-
tion sequence (only the annotated points are listed). States are expressed in the form

program point: environment.

-23-

1: [s=null, n=null]

2: [s="abc",n=null]
3. [s="abc",n=1]
3: [s="abc",n=2]
4: [s="abc",n=2]

It is customary to use the collecting semantics of a language as the first abstraction (approxi-
mation) to the standard semantics of the language. The collecting semantics of a program is
defined in Cousot and Cousot [35] (they use the term static semantics) to be an association
between program points and the sets of environments that can occur at those points during all

possible executions of the program.

Once again, consider the previous example. In general, the input to the program is unknown,
so the read function is assumed to be capable of producing any string. Representing this general

case, the set of environments (once again showing only variable bindings) that can occur at point

3is

[s=""n=1],
[s="",n=2],
[s="a",n=1],
[s="a",n=2],

[s="abcd",n=1],
[s="abcd",n=2],

A type inferencing abstraction further approximates this information, producing an associa-
tion between each variable and a type at each program point. The actual type system chosen for

this abstraction must be based on the language and the use to which the information is put. The

-24 -

type system used here is based on Icon’s run-time type system. For structure typces, the system
used retains more information than a simple use of Icon’s type system would retain; this is
explained in detail later. For atomic types, Icon’s type system is used as is. For point 3 in the

preceding example the associations between variables and types are

[s = string, N = integer]

The type inferencing system presented in this chapter is best understood as the culmination of
a sequence of abstractions to the semantics of Icon, where each abstraction discards certain
information. For example, the collecting semantics discards sequencing information among
states; in the preceding program, collecting semantics determine that, at point 3, states may
occur with n equal to 1 and with n equal to 2, but does not determine the order in which they
must occur. This sequencing information is discarded because desired type information is a static
property of the program.

The first abstraction beyond the collecting semantics discards dynamic control flow informa-
tion for goal directed evaluation. The second abstraction collects, for each variable, the value
associated with the variable in each environment. It discards information such as, ‘‘x has the
value 3 when y has the value 7, replacing it with ‘‘x may have the value 3 sometime and y may

have the value 7 sometime.’’. It effectively decouples associations between variables.

This second abstraction associates a set of values with a variable, but this sct may be any of
an infinitc number of sets and it may contain an infinite number of values. In general, this pre-
cludes either a finite computation of the sets or a finite representation of them. The third abstrac-
tion defines a type system that has a finite representation. This abstraction discards information
by increasing the set associated with a variable (that is, making the set less precise) until it
matches a type. This third model can be implemented with standard iterative data flow analysis

techniques.

This chapter assumes that an Icon program consists of a single procedure and that all invoca-

tions are to built-in functions. It also assumes that there are no co-expressions beyond the main

-25 -

co-expression. See Chapter 7 for information on how to extend the abstractions to multiple pro-

cedures and multiple co-expressions.

Collecting Semantics

The collecting semantics of an Icon program is defined in terms a flow graph of the program.
A flow graph is a directed graph used to represent the flow of control in a program. Nodes in the
graph represent the executable primitives in the program. An edge exists from node A to node B
if it is possible for execution to pass directly from the primitive represented by node A to the
primitive represented by node B. Cousot and Cousot [35) prove that the collecting semantics of a
program can be represented as the least fixed point of a set of equations defined over the edges of

the program'’s flow graph. These equations operate on sets of environments.

For an example of a flow graph, consider the Icon program

procedure main()
every write(1 to 3)

end

The diagram below on the left shows the abstract syntax tree for this procedure, including the
implicit fail at the end of the procedure. The invoke node in the syntax trec represents pro-
cedure invocation. Its first argument must evaluate to the procedure to be invoked; in this case
the first argument is the global variable write. The rest of the arguments are used as the argu-
ments to the procedure. pfail represents procedure failure (as opposed to expression failure

within a procedure). Nodes corresponding to operations that produce values are numbered for

purposes explained below.

A flow graph can be derived from the syntax tree. This is shown on the right.

-26-

(procedure main) (procedure main)

\

i)
4 C{)
5 ()
3 Q’

1 mok_e) pfail

()
3

—

every _pfail)

(o]

oy

The node labeled procedure main is the start node for the procedure; it performs any necessary
initializations to establish the execution environment for the procedure. The edge from invoke to
to is a resumption path induced by the control structure every. The path from to to pfail is the
failure path for to. It is a forward execution path rather than a resumption path because the com-
pound expression (indicated by ;) limits backtracking out of its lcft-hand sub-expression.

Chapter 7 describes how to determine the edges of the flow graph for an Icon program.

Both the standard semantics and the abstract semantics must deal with the intermediate
results of expression evaluation. A temporary-variable model is used because it is more con-
venient for this analysis than a stack model. This decision is unrclated to the use of a
temporary-variable model in the compiler. This analysis uses a trivial assignment of temporary
variables to intermediate results. Temporary variables are not reused. Each node that produces a
result is assigned some temporary variable 7; in the environment. Assuming that temporary vari-
ables are assigned to the example according to the node numbering, the t0 operation has the

effect of

-27-

r3 =rgtors

Expressions that represent alternate computations must be assigned the same temporary variable,
as in the following example for the subexpression X := ("a" | "b"). The syntax tree below on the

left and the and the fiow graph are shown on the right.

3 () 3 (o] @

The if and case control structures are handled similarly. In addition to temporary variables for

intermediate results, some generators may need additional temporary variables to hold intemal
states during suspension. It is easy to devise a scheme to allocate them where they are needed;
details are not presented here. The syntax tree is kept during abstract interpretation and used to

determine the temporary variables associated with an operation and its operands.

The equations that determine the collecting semantics of the program are derived directly
from the standard semantics of the language. The set of environments on an edge of the flow
graph is related to the sets of environments on edges coming into the node at the head of this
edge. This relationship is derived by applying the meaning of the node (in the standard seman-

tics) to each of the incoming environments.

It requires a rather complex environment to capture the full operational semantics (and col-
lecting semantics) of a language like Icon. For example, the environment needs to include a
representation of the external file system. However, later abstractions only use the fact that the
function read produces strings. This discussion assumes that it is possible to represent the file

system in the environment, but does not give a representation. Other complexities of the

228 -

environment are discussed later. For the moment, examples only show the bindings of variables

to unstructured (atomic) values.

As an example of environments associated with the edges of a flow graph, consider the
assignment at the end of the following code fragment. The comments in the if expression are

assertions that are assumed to hold at those points in the example.

if x = 7 then {

#xis7andyis 3
}

else {

(x is null and y is 1) or (x is "abc" and y is 2)

}
Xi=y+2

Because of the preceding if expression, there are two paths reaching the assignment. The
diagram below shows the flow graph and accompanying environments for the expression; the
diagram ignores the fact that the assignment expression requires sevcral primitive operations to

implement.

{(x= null,y=1], [x="abc",y = 2]} {(x=7y=3]})

{[x=3,y=1],[x=4,y=2],[x=35,y=3])

For a conditional expression, an incoming environment is propagated to the path that it

would cause exccution to take in the standard semantics. This requires distinguishing the paths

-29.

to be taken on failure (backtracking paths) from those to be taken on success. The following
diagram shows an example of this.

{[x=1,y=2],[x=1,y=1)}, [x =3, y=100]}

X<y

success failure

{(x=1,y=2),[x=3,y=100]) {((x=1,y=1]}

In general there may be several possible backtracking paths. The environments in the stan-
dard and collecting semantics need to include a stack of current backtracking points and control
flow information, and the flow graph needs instructions to maintain this stack. The existing Icon
interpreter system is an example of how this information can be maintained [3]. However, the
first abstraction to the collecting semantics eliminates the need for this information, so the infor-

mation is not presented in detail here.

Model 1: Eliminating Control Flow Information

The first abstraction involves taking the union of the environments propagated along all the
failure paths from a node in the collecting semantics and propagating that union along each of
the failure paths in the new abstraction. This abstraction eliminates the stack of backtracking

points from the environment.

A more formal definition for this model requires taking a closer look at Icon data values,
especially those values with internal structure. In order to handle Icon data objects with pointer
semantics, an environment needs more than variable bindings. This fact is important to type
inferencing. The problem is handled by including two components in the environment. The first
is the store, which maps variables to values. Variables include named variables, temporary vari-

ables, and structure variables. Named variables correspond to program identifiers. Temporary

-30-

variables hold intermediate results as discussed above. Structure variables are elements of struc-
tures such as lists. Note that the sets of named variables and temporary variables are each finite
(based on the assumption that a program consists of a single non-recursive procedure; as men-
tioned earlier, this assumption is removed in Chapter 7), but for some non-terminating programs,
the set of structure variables may be infinite. Program variables include both named variables

and structure variables but not temporary variables.

Values include atomic data values such as integers, csets, and strings. They also include
pointers that reference objects with pointer semantics. In addition to the values just described,
temporary variables may contain references to program variables. These variable references may
be used by assignments to update the store or they may be dereferenced by other operations to

obtain the values stored in the variables.

The second part of the environment is the heap. It maps pointers to the corresponding data
objects (this differs from the heap in the Icon implementation in that that heap also contains
some data objects that do not have pointer semantics). For simplicity, the only data type with
pointer semantics included in this discussion is the list. A list is a partial mapping from integers
1o variables. Representing other data types with pointer semantics is straightforward; this is dis-

cussed in Chapter 7.

The first abstraction is called Model 1. The notations envir,), store(,), and heap(, refer to the
sets of possible environments, stores, and heaps respectives in model a. For example, enviryy; is
the set of possible environments in the first abstraction. In the following set of definitions, X X Y
is the set of ordered pairs where the first value in the pair is from X and the second value is from
Y. X - Y is the set of partial functions from X to Y. The definition of the set possible environ-

ments for model 1 is
envir(y) = storeqy) X heapp

store;) = variables — values

-31-

values = integers U strings U * - * U pointers U variables
heapy;; = pointers — lists, where lists = integers — variables
For example, the expression
a := ["abc"]

creates a list of one element whose value is the string abc and assigns the list to the variable a.
Let p, be the pointer to the list and let v, be the (anonymous) variable within the list. The

resulting environment, e € enviry;;, might be
e=(s, h), where s € storepy), h € heap

s(@ =p
S(Vl) = "abc"

h(p,)=L,, whereL; € lists
Li(1)=w,
If the statement
a[1] := "xyz"

is executed, the subscripting operation dereferences a producing p,, then uses the heap to find
L,, which it applies to 1 to produce the result v;. The only change in the environment at this
point is to temporary variables that are not shown. The assignment then updates the store, pro-

ducing
e1=(s1,h)

si(a) =py
si(vy) = "xyz"

-32-

Assignment does not change the heap. On the other hand, the expression
put(a, "xyz")

adds the string xyz to the end of the list; if it is executed in the environment e, it alters the heap

along with adding a new variable to the store.

e1=(s;,)

si(@) =p1
si(v;) = "abc”

si(va) = "xyz"
h(pi1)=L2

Ly(1)=w,
L2(2)=v2

If a formal model were developed for the collecting semantics, it would have an environment
similar to the one in Model 1. However, it would need a third component with which to

represent the backtracking stack.

Model 2: Decoupling Variables

The next approximation to Icon semantics, Model 2, takes all the values that a variable might
have at a given program point and gathers them together. In general, a variable may have the
same value in many environments, so this, in some sense, reduces the amount of space required
to store the information (though the space may still be unbounded). The ‘‘cost’’ of this reduction

of storage is that any information about relationship of values between variables is lost.

Model 2 is also defined in terms of environments, stores, and heaps, although they are dif-
ferent from those of Model 1. A store in Model 2 maps sets of variables to sets of values; each
resulting set contains the values associated with the corresponding variables in environments in

Model 1. Similarly, a heap in Model 2 maps sets of pointers to sets of lists; each of these sets

-33-

contains the lists associated with the corresponding pointers in environments in Model 1. An
environment in Model 2 contains a store and a heap, but unlike in Model 1, there is only one of
these environments associated with each program point. The environment is constructed so that

it effectively *‘contains’’ the environments in the set associated with the point in Model 1.

The definition of Model 2 is
envir(y) = storepy) X heapz
storeg) = 2 verisbles _ values
heapy) = 2 pointers _ 2 lisis
In Model 1, operations produce elements from the set values. In Model 2, operations produce

subsets of this sct. It is in this model that read is taken to produce the set of all strings and that

the existence of an external file system can be ignored.

Suppose a program point is annotated with the set containing the following two environments

from Model 1.
€), €2 € enviryy

er=(s1,m)

Sl(X) =1
si(y) =p

h)=L
e2=(s2, hy)

sx) =2
s2(Y) = p1

ha(p1) =L2

-34 -

Under Model 2 the program point is annotated with the single environment & € envirpz), where
&=@h)

8({x))=(1,2}
{yh = (p1)
§([X»Y])= [1-2vp1]

b((p1)) = (L1, L2)

Note that a store in Model 2 is distributive over union. That is,

(X VY) =8X) Ui(Y)

so listing the result of §({x, y}) is redundant. A heap in Model 2 also is distributive over union.

In going to Model 2 information is lost. In the last example, the fact that x = 1 is paired with

p1 =L and x = 2 is paired with p, =L, is not represented in Model 2.

Just as read is extended to produce a set of values, so are all other operations. These
“‘extended’’ operations are then used 10 set up the equations whose solution formally defines
Model 2. This extension is straightforward. For example, the result of applying a unary operator
to a set is the set obtained by applying the operator to each of the elements in the operand. The
result of applying a binary operator to two sets is the set obtained by applying the operator to all
pairs of elements from the two operands. Operations with more operands are treated similarly.

For example

{1,3,5)+{2,4)={1+2,1+4,3+2,3+4,5+2,5+4}
={3,5,5,7,7,9)
={3,5.7.9}

The loss of information mentioned above affects the calculation of environments in Model 2. Sup-

pose the addition in the last example is from

-35.

Z:=X+Yy
and that Model 1 has the following three environments at the point before the calculation

[x=1,y=2,2=0]
[x=3,y=2,2=0]
[x=5,y=4,2=0]

After the calculation the three environments will be

[x=1,y=2,2=13]
[x=3,y=2,2=5]
[x=5,y=4,2=9]

If these latter three environments are translated into an environment of Model 2, the result is
[x={1,3,5},y={2,4},2=(3,5,9}]

However, when doing the computation using the semantics of + in Model 2, the value for z is (3,
5, 7, 9}. The solution to the equations in Model 2 overestimates (that is, gives a conservative
estimate for) the values obtained by computing a solution using Model 1 and translating it into

the domain of Model 2.

Consider the following code with respect to the semantics of assignment in Model 2.

(Assume that the code is executed once, so only one list is created.)

x = [10, 20]
i = if read() then 1 else 2
x[i] := 30

After the first two assignments, the store maps X to a set containing one pointer and maps i to a
set containing 1 and 2. The third assignment is not as straightforward. Its left operand evaluates

to two variables; the most that can be said about one of these variables after the assignment is

=36 -

that it might have been assigned 30. If (s, h) is the environment after the third assignment then

s({x}) = (p1}
s({ip)=1(1,2)
s({v1}) = (10, 30)
s({v2}) = {20, 30}

h({p1}) = (L1}

Li(D)=v,

Li(2)=v;
Clearly all assignments could be treated as weak updates [14], where a weak update is an update
that may or may not take place. However, this would involve discarding too much information;
assignments would only add to the values associated with variables and not replace the values.
Therefore assignments where the left hand side evaluates to a set containing a single variable are

treated as special cases. These are implemented as strong updates.

Model 3: A Finite Type System

The environments in Model 2 can contain infinite amounts of information, as in the program

X =1

repeat x +:= 1

where the set of values associated with x in the loop consists of all the counting numbers,
Because equations in Model 2 can involve arbitrary arithmetic, no algorithm can find the least

fixed point of an arbitrary set of these equations.

The final step is to impose a finitely representable type system on values. A type is a (possi-
bly infinite) set of values. The type system presented here includes three classifications of basic
types. The first classification consists of the Icon types without pointer semantics: integers,
strings, csets, etc. The second classification groups pointers together according to the lexical

point of their creation. This is similar to the method used to handle recursive data structures in

-37-

Jones and Muchnick [11]. Consider the code
every insert(x, [1 to 5))

If this code is executed once, five lists are created, but they are all created at the same point in
the program, so they all belong to the same type. The intuition behind this choice of types is that
structures created at the same point in a program are likely to have components of the same type,

while structures created at different points in a program may have components of different types.

The third classification of basic types handles variable references. Each named variable and
temporary variable is given a type to itself. Therefore, if @ is a named variable, {a} is a type.
Structure variables are grouped into types according to the program point where the pointer to
the structure is created. This is not necessarily the point where the variable is created; in the fol-

lowing code, a pointer to a list is created at one program point, but variables are added to the list

at different points

X =]
push(x, 1)
push(x ,2)

References to these variables are grouped into a type associated with the program point for [],

not the point for the corresponding push.

If a program contains k non-structure variables and there are n locations where pointers can
be created, then the basic types for the program are integer, string, ..., Py, ..., Py, Vy, ..., Vo, (01},
... {vk} where P, is the pointer type created at location i, V; is the variable type associated with
P, and v; is a named variable or a temporary variable. Because programs are lexically finite they
each have a finite number of basic types. The set of all types for a program is the smallest set

that is closed under union and contains the empty set along with the basic types:

types = { (]}, integers, strings,..., (integers U strings),..., (integers w strings v -+ v {w]}))

-138-

Model 3 replaces the arbitrary sets of values of Model 2 by types. This replacement reduces
the precision of the information, but allows for a finite representation and allows the information

to be computed in finite time.

In Model 3, both the store and the heap map types to types. This store is referred to as the
type store. The domain of type store is variable types, that is, those types whose only values are
variable references. Similarly, the domain of the heap is pointer types. Its range is the set types
containing only structure variables. A set of values from Model 2 is converted to a type in Model

3 by mapping that set to the smallest type containing it. For example, the set

{1,4,5,"23","0"}
is mapped to
integer U string

The definition of enviry is
envirpy) = storegs) X heaps
store(s) = variable—types — types
heap(3) = poiner—types — structure—variable—types
types ¢ 2 values
variable—types C types
structure—variable—types ¢ variable—types
pointer—types < types

There is exactly one variable type for each pointer type in this model. The heap simply con-

sists of this one-to-one mapping; the heap is of the form

-39.

hP)=V;

This mapping is invariant over a given program. Therefore, the type equations for a program can

be defined over storeyy) rather than envirgs) with the heap embedded within the type equations.

Suppose an environment from Model 2 is
e envirm
e=(s,h)

s((ah) = {p1, p2}
s((vi)) =(1,2)
s((va}) ={1)

s(fva)) = {12.03)

h({p:}) = (L1, L2}
h({p2)) = (L3}

Lih)=wv,

L,(1)=w
L@2)=v;

La(l)=v;

Suppose the pointers p; and p, are both created at program point 1. Then the associated pointer

type is Py and the associated variable type is V;. The corresponding environment in Model 3 is
ée envir[3]
e=@h)

8(fa)) =p,
§(V,) = integer U real

hP) =V,

-40 -

The collecting semantics of a program establishes a set of (possibly) recursive equations
between the sets of environments on the edges of the program’s flow graph. The collecting
semantics of the program is the least fixed point of these equations in which the set on the edge
entering the start state contains all possible initial environments. Similarly, type inferencing
establishes a set of recursive equations between the type stores on the edges of the flow graph.
The least fixed point of these type inferencing equations is computable using iterative methods.
This is discussed in Chapter 7. The fact that these equations have solutions is due to the fact that
the equations in the collecting semantics have a solution and the fact the each abstraction main-

tains the ‘‘structure’’ of the problem, simply discarding some details.

Chapter 7 also extends type inferencing to handle the entire Icon language. Chapter 10 uses

the information from type inferencing to optimize the generated code.

-41 -

CHAPTER 4

Liveness Analysis of Intermediate Values

The maintenance of intermediate values during expression evaluation in the Icon program-
ming language is more complicated than it is for conventional languages such as C and Pascal.

O’Bagy explains this in her dissertation [18]:

‘‘Generators prolong the lifetime of temporary values. For example, in

i = find(s1,s2)

the operands of the comparison operation cannot be discarded when find pro-
duces its result. If find is resumed, the comparison is performed again with sub-
sequent results from find(s1,s2), and the left operand must still be available."’

In some implementation models, it is equally important that the operands of find still be avail-
able if that function is resumed (this depends on whether the operand locations are used during

resumption or whether all needed values are saved in the local state of the function).

As noted in Chapter 2, a stack-based model handles the lifetime problem dynamically. How-
ever, a temporary-variable model like the one used in this compiler requires knowledge at
compile-time of the lifetime of intermediate values. In a straightforward implementation of con-
ventional languages, liveness analysis of intermediate values is trivial: an intermediate value is
computed in one place in the generated code, is used in one place, and is live in the contiguous
region between the computation and the use. In such languages, determining the lifetime of
intermediate values only becomes complicated when certain optimizations are performed, such
as code motion and common subexpression elimination across basic blocks [10, 16]. This is not
true in Icon. In the presence of goal-directed evaluation, the lifetime of an intermediate value can

extend beyond the point of use. Even in a straightforward implementation, liveness analysis is

-42.-

not trivial.

In its most general form, needed in the presence of the optimizations mentioned above, live-
ness analysis requires iterative methods. However, goal-directed evaluation imposes enough
structure on the liveness problem that, at least in the absence of optimizations, iterative methods
are not needed to solve it. This chapter presents a simple and accurate method for computing
liveness information for intermediate values in Icon. The analysis is formalized in an attribute

grammar.

Implicit Loops

Goal-directed evaluation extends the lifetime of intermediate values by creating implicit
loops within an expression. In O'Bagy’s example, the start of the loop is the generator find and
the end of the loop is the comparison that may fail. An intermediate value may be used within
such a loop, but if its value is computed before the loop is entered, it is not recomputed on each

itcration and the temporary variable must not be reused until the loop is exited.

The following fragment of C code contains a loop and is therefore analogous to code gen-
erated for goal-directed evaluation. It is used to demonstrate the liveness information needed by
a temporary variable allocator. In the example, v] through v4 represent intermediate values that

must be assigned to program variables.

vl = t1();

while (—v1) {
v2 = 12(),
v3 = vl + v2;
f3(v3);
}
v4 = 8;

Separate variables must be allocated for vl and v2 because they are both needed for the addition.

-43 .-

Here, x is chosen for v/ and y is chosen for v2.

x = f1();

while (——x) {
y = 2();
v3=X+Y;
f3(v3);
}

v4 = 8;

x cannot be used to hold v3, because X is nceded in subscquent iterations of the loop. Its lifetime
must extend through the end of the loop. y, on the other hand, can be used because it is recom-

puted in subsequent iterations. Either variable may be used (o hold v4.

x = f1();

while (——x) {
y = f2();
y=X+Y,
f3(y):
}

x = 8;

Before temporary variables can be allocated, the exient of the loops created by goal-directed

evaluation must be estimated. Supposc O’Bagy's cxampic

i = find(s1, s2)

appears in the following context

_44 -

procedure p(s1, s2, i)
if i = find(s1, s2) then return i + *s1
tail

end

The simplest and most pessimistic analysis assumes that a loop can appear anywhere within the
procedure, requiring the conclusion that an intermediate value in the expression may live to the
end of the procedure. Christopher’s simplc analysis |17] notices that the expression appears
within the control clause of an if expression. This is a bounded context; implicit loops cannot
extend beyond the end of the control clausc. His allocation scheme reuses, in subsequent expres-
sions, temporary variables used in this control clause. Howevcr, it does not determine when tem-

porary variables can be reused within the control clause itsclf.

The analysis presented here locates the operalions within the expression that can fail and
those that can generate results. It uses this information to accurately determine the loops within

the expression and the intermediate values whosc lifctimes arc extended by those loops.

Liveness Analysis

It is instructive to look at a specific cxample where intermediate values must be retained
beyond (in a lexical sense) the point of their use. The following expression employs goal-
directed evaluation to conditionally writc scnicnces in the data structure x to an output file. Sup-
pose f is either a file or null. If f is a file, the sentences are written to it; if f is null, the sentences

are not written.
every write(\M, !x, ".")

In order to avoid the complications of control struciures at this point in the discussion, the fol-

lowing equivalent expression is used in thc analysis:

-45 -

write(M, x, ".") & &fail

This expression can be converted into a scquence of primitive operations producing intermediate
values (vI, v2, ...). This is shown in diagram. For convcnicnce, the operations are expressed in

Icon, except that the assignments do not dcrefcrence their right-hand operands.

(

vl = write,
v2:=1,
vi=\v2

vS = 1v4

V6 :=".",

v7 = vi(v3,vSv6h),
v8 = &fail

)

T

Whether or not the program variables and constanis arc actually placed in temporary variables
depends on the machine model, implementation conventions, and what optimizations are per-
formed. Clearly a temporary variablc is not nceded (or &fail. However, temporary variables are
needed if the subexpressions are morc complex; intermediate values are shown for all subexpres-

sions for explanatory purposcs.

When &fail is executed, the ! operation is resumed. This creates an implicit loop from the !
to &fail, as shown by the arrow in the above diagram. ‘The question is: What intermediate values
must be retained up to &fail? A more instructive way to phrasc the question is: After &fail is exe-
cuted, what intermediate values could be rcuscd without being recomputed? From the sequence
of primitive operations, it is clear that the rcuscd valucs include v/ and v3, and, if the element
generation operator, !, references its argument aficr resumption, then the reused values include
w4. v2 is not used within the loop, v5 and v6 arc rccompulted within the loop, and v7 and v8 are
not used. The lines in the diagram to the lefi of the code indicate the lifctime of the intermediate
values. The dotted portion of each line represents the region of the lifetime beyond what would

exist in the absence of backtracking.

- 46 -

Liveness information could be computed by making the implicit loops explicit then perform-
ing a standard liveness analysis in the form of a global data flow analysis. That is unnecessarily
expensive. There is enough structure in this particular liveness problem that it can be solved dur-

ing the simple analysis required to locate the implicit loops causcd by goal-directed evaluation.

Several concepts are needed to describc analyses involving execution order within Icon
expressions. Forward execution order is the order in which operations would be executed at run
time in the absence of goal-directed evaluation and cxplicit loops. Goal-directed evaluation
involves both failure and the resumption of suspended gencrators. The control clause of an if-
then-else expression may fail, but insicad of rcsuming a suspending generator, it causes the
else clause to be executed. This failure results in forward cxecution order. Forward execution
order imposes a partial ordering on operations. It produces no ordering between the then and the
else clauses of an if expression. Backtracking order is the reverse of forward execution order.
This is due to the LIFO resumption of suspended gencrators. The backward fiow of control
caused by looping control structures docs not contribulc (o this liveness analysis (intermediate
results used within a looping control structurc ar¢ also computed within the loop), but is dealt
with in later chapters. The every control structurc is gencrally viewed as a looping control struc-
ture. However, it simply introduces failurc. Looping only occurs when it is used with a genera-

tive control clause, in which case the looping is treated the same as goal-directed evaluation.

A notation that emphasizes intermediatc values, subexpressions, and execution order is help-
ful for understanding how liveness is computcd. Both postfix notation and syntax trees are inade-
quate. A postfix notation is good for showing cxccution order, but tends to obscure subexpres-
sions. The syntax tree of an expression shows subcxpressions, but execution order must be
expressed in terms of a tree walk. In both representations, intcrmediate values are implicit. For
this discussion, an intermediate representation is uscd. A subcxpression is represented as a list of
explicit intermediate values followed by the opcration that uscs them, all enclosed in ovals.
Below each intermediate value is the subexpression that computes it. This representation is

referred to as a postfix tree. The postfix trec for the cxample above is:

-47-

v7 v8 &)
vo invoke Cafail)

vl v3

C write) v2 \ v4 !

<
(2}

In this notation, the forward execution order of operations (which includes constants and refer-
ences to program variables) is lefi-to-right and the backtracking order is right-to-lefi. In this

example, the backtracking order is &fail, invoke, “.", I, x, \, f, and write.

As explained above, the use of an intermediate valuc must appear in an implicit loop for the
value to have an extended lifetime. Two events arc needed 1o create such a loop. First, an opera-
tion must fail, initiating backtracking. Sccond, an opcration must be resumed, causing execution
to proceed forward again. This analysis computcs the maximum lifetime of intermediate values
in the expression, so it only needs to compute the rightmost opcration (within a bounded expres-
sion) that can fail. This represents the end of the farthest reaching loop. Once execution proceeds

beyond this point, no intermediate value can be reused.

The intermediate values of a subexpression are used at the cnd of the subexpression. For
example, invoke uses the intermediate values v/, v3, v5, and v6; the following figure shows

these intermediate results and the operation in isolation.

< v3 Vs v6 invoke

In order for these uses to be in a loop, backiracking must be initiated from outside; that is,

beyond the subexpression (in the example, only &fail and & arc beyond the subexpression).

.48 -

In addition, for an intermediate value to have an cxtended lifetime, the beginning of the loop
must start after the intermediate value is computed. Two conditions may create the beginning of
a loop. First, the operation itself may be resumed. In this case, execution continues forward
within the operation. It may reuse any of its opcrands and none of them are recomputed. The
operation does not have to actually gencrate more results. For example, reversible swap (the
operator <->) can be resumed to reusc both of its opcrands, but it does not generate another
result. Whether an operation actually rcuses its operands on resumption depends on its imple-
mentation. In the Icon compiler, operations implemented with a C function using the standard
calling conventions always use copies of opcrands on resumption, but implementations tailored
10 a particular use often reference operand locations on rcsumption. Liveness analysis is
presented here as if all operations rcusc their operands on resumption. In the actual implementa-
tion, liveness analysis computes a separatc lifclime for values used internally by operations and
the code generator decides whether this lifctime applics to operands. This intemnal lifetime may
also be used when allocating tended descriplors for variables declared local to the in-line code
for an operation. The behavior of the temporary-variable model presented in this dissertation
can be compared with one developed by Nilscn and Mantinck [36]; it also relies on the liveness

analysis described in this chapter.

The second way to create the beginning of a loop is for a subexpression to generate results.
Execution continues forward again and any intcnnediate values to the left of the generative
subexpression may be reused without being recomputed. Remember, backtracking is initiated
from outside the expression. Suppose an cxpression that can fail is associated with v6, in the pre-
vious figure. This creates a loop with the gencrator associated with v5. However, this particular
loop does not include invoke and does not contribule to the reusc of vI or v3.

A resumable operation and generative subcxpressions arc all resumption points within an
expression. A simple rule can be used to determine which intcrmediate values of an expression
have extended lifetimes: If the expression can be resumed, the intcrmediate values with extended

lifetimes consist of those to the lcft of the rightmost resumption point of the expression. This

.49 .

rule refers to the ‘‘top level’’ intermediate valucs. The rule must be applied recursively to

subexpressions to determine the lifetime of lower level intermediate values.

It sometimes may be necessary to make conscrvative cstimates of what can fail and of
resumption points (for liveness analysis, it is conscrvative to overestimate what can fail or be
resumed). For example, invocation may or may not be resumable, depending on what is being
invoked and, in general, it cannot be known unlil run time what is being invoked (for the pur-
poses of this example analysis, it is assumed that the variable write is not changed anywhere in

the program).

In the example, the rightmost operation that can lail is &fail. Resumption points arc ! and the

subexpressions corresponding to the intermediate values vS and v7.

Once the resumption points have been identificd, the rule for determining extended lifetimes
can be applied. If there are no resumption poinis in an expression, no intermediate values in that
expression can be reused. Applying this rule to the postfix tree above yiclds v/, v3, and v4 as the

intermediate values that have extended lilclimes.

Similar techniques can be used for liveness analysis ol Prolog programs, where goal-directed
evaluation also creates implicit loops. Onc difference is that a Prolog clause is a lincar sequence
of calls. It does not need to be *‘linearized'” by construction a postfix tree. Another difference is
that all intermediate values in Prolog programs arc stored in explicit variables. A Prolog variable
has a lifetime that extends to the right of its last usc if an implicit loops starts after the variable's

first use and ends after the variable's last usc.

An Attribute Grammar

To cast this approach as an attribute grammar, an cxpression should be thought of in terms of
an abstract syntax tree. The transformation from a postfix trec to a syntax tree is trivial. It is

accomplished by deleting the explicit intermedialc values. A syntax trec for the example is:

- 50-

Quite > O O CD

Several interpretations can be given to a node in a syntax tree. A node can be viewed as

representing either an operation, an entirc subcxpression, or an intermediate value.

This analysis associates four attributes with cach node (this ignores attributes needed to han-
dle break expressions). The goal of the analysis is to produce the lifetime attribute. The other
three attributes are used to propagatc information nceded to compute the lifetime.

e resumer is either the rightmost operation (represented as a nodc) that can initiate backtrack-

ing into the subexpression or it is null if the subexpression cannot be resumed.

o failer is related to resumer. It is the rightmost opcration that can initiate backtracking that
can continue past the subexpression. It is the same as resumer, unless the subexpression

itself contains the rightmost operation that can [ail.

.S1 -

e gen is a boolean attribute. It is truc if the subexpression can generate multiple results if

resumed.

o lifetime is the operation beyond which the intcnmediatc valuc is no longer needed. It is either
the parent node, the resumer of the parcnt node, or null. The lifetime is the parent node if
the value is never reused after exccution leaves the parent operation. The lifetime is the
resumer of the parent if the parent opcration or a generative sibling to the right can be
resumed. A lifetime of null is used to indicatc that the intermediate value is never used. For

example, the value of the control clausc of an if cxpression is never used.

Attribute computations are associated with productions in thc grammar. The attribute com-
putations for failer and gen are always for the non-terminal on the left-hand side of the produc-
tion. These values are then used at the parcnt production; they are cffectively passed up the syn-
tax tree. The computations for resumer and lifetime arc always for the attributes of non-
terminals on the right-hand side of the production. resumer is then used at the productions
defining these non-terminals; it is cffectively passed down the syntax tree. lifetime is usually

saved just for the code generator, but it is somctimes used by child nodes.

Primary Expressions

Variables, literals, and keywords arc primary cxpressions. They have no subexpressions, so
their productions contain no computations for resumer or lifetime. The attribute computations
for a literal follow. A literal itself cannot fail, so backiracking only passes beyond it if the back-

tracking was initiated before (1o the right of) it. A litcral cannot generate multiple results.

expr ::= literal {
expr.failer := expr.resumer
expr.gen := false

}

Another example of a primary expression is the keyword &fail. Execution cannot continue
past &fail, so it must be the rightmost operation within its bounded expression that can fail. A

pre-existing attribute, node, is assumed to cxist for cvery symbol in the grammar. It is the node
in the syntax tree that corresponds to the symbol.

expr = &fail {
expr.failer := expr.node

expr.gen := false

}

Operations with Subexpressions

Addition provides an example of the attributc computations involving subexpressions. The

following diagram shows how resumer, failer, and gen information would be passed through
the postfix tree.

failer resumer
- Cv] v2

gen

-
- - -
- - - -
-

-~

¢

\ ,/ resumer
~(expri)=------ CexproH—

resumer failer

This information would then be used to compute litetime information for v/ and v2. The next

figure shows how the attribute information is actually passed through the syntax tree.

-983-

’(L4 s ~
! >
gen .- failer s~ resumer s gen

The lifetime attributes are computed for the roots of the subtrees for expry and exprz.

The details of the attribute computations depend, in part, on the characteristics of the indivi-
dual operation. Addition does not fail, so the rightmost resumer, if there is one, of exprz is the
rightmost resumer of the entire expression. The rightmost resumer of expry is the rightmost
operation that can initiate backtracking that continues past exprz. Addition does not suspend, so
the lifetime of the value produced by exprz only cxicnds through the operation (that is, it always
is recomputed in the presence of goal-dirccied cvaluation). If exprz is a gencrator, then the
result of expry must be retained for as long as exprz might be resumed. Otherwise, it need only
be retained until the addition is performed. expry is the first thing exccuted in the expression, so
its failer is the failer for the entire expression. The expression is a generator if cither expry or
expr; is a generator (note that the operation | is logical or, not Icon’s alternation control struc-

ture):

expr :i= expr + exprz {
expra.resumer := expr.resumer
expr.lifetime := expr.node

expri.resumer := expr.failer

.54 -

if expra.gen & (expr.resumer # null) then

expry.lifetime := expr.resumer

else

expri.lifetime := expr.node
expr.failer := expn.failer
expr.gen := (expri.gen | exprz.gen)

}

/expr provides an example of an opcration thal can fail. If there is no rightmost resumer of
the entire expression, it is the rightmost resumer of the operand. The lifetime of the operand is
simply the operation, by the same argument uscd for exprz of addition. The computation of
failer is also analogous to that of addition. The cxpression is a generator if the operand is a gen-

erator.

expr = /expr {
if expr.resumer = null then

expri.resumer = expr.node

else

expri.resumer := expr.resumer
expry.lifetime := expr.node
expr.failer := expr;.failer
expr.gen := expri.gen

}

lexpr differs from /expr in that it can generale multiple results. If it can be resumed, the

result of the operand must be retained through the rightmost resumer:

-55-

expr = lexpn {

if expr.resumer = null then { '
expri.resumer := expr.node
expry .lifetime := expr.node
}

else {
expry.resumer = expr.resumer
expry lifetime := expr.resumer
}

expr.failer ;= expri.failer

expr.gen := true

}

Control Structures

Other operations follow the general paticm of the oncs presented above. Control structures,
on the other hand, require unique attributc computations. In particular, several control structures
bound subexpressions, limiting backtracking. For cxample, not bounds its argument and dis-
cards the value. If it has no resumcr, then it is the rightmost opcration that can 'fail. The expres-

sion is not a generator:

expr = not expr {
expri.resumer := null

expry.lifetime = null

- 56 -

if expr.resumer = null then

expr.failer := expr.node
else
expr.failer ;= expr.resumer

expr.gen .= false

}

expry; exprz bounds expry and discards the result. Because the result of exprz is the result of
the entire expression, the code generator makes their result locations synonymous. This is
reflected in the lifetime computations. Indecd, all the attributes of exprz and those of the expres-

sion as a whole are the same:

expr = expry ; exprz {
expry.resumer := null
expry.lifetime := null
expra.resumer = expr.resumer
exprz.lifetime := expr.litetime
expr.failer := expra.failer
expr.gen := exprz.gen

}

A reasonable implementation of alternation places the result of each subexpression into the
same location: the location associated with the expression as a whole. This is reflected in the
lifetime computations. The resumer of the entirc cxpression is also the resumer of each subex-
pression. Backtracking out of the entirc cxpression occurs when backtracking out of exprs

occurs. This expression is a generator:

-57-

expr = expry | exprz {

it

expra.resumer:= expr.resumer

expra.lifetime := expr.lifetime

expri.resumer := expr.resumer
expry.lifetime := expr.lifetime
expr.failer := expra.failer
expr.gen := true

}

The first operand of an if expression is bounded and its result is discarded. The other two
operands are treated similar to those of altermation. Because there are two independent execu-
tion paths, the rightmost resumer may not be well-defincd. However, it is always conservative to
treat the resumer as if it is farther right than it rcally is; this just means that an intermediate value
is kept around longer than needed. If there is no resumer beyond the if expression, but at least
one of the branches can fail, the failure is treated as if it came from the end of the if expression
(represented by the node for the expression). Because backtracking out of an if expression is rare,
this inaccuracy is of little practical consequence. The if cxpression is a generator if either branch

is a generator:

expr ::= if expry then expr; else expra {
expra.resumer = expr.resumer
expra.lifetime := expr.lifetime
expra.resumer = expr.resumer
exprz.litetime := expr.lifetime
expri.resumer := null

expry.lifetime := null

.58 -

if expr.resumer = null & (expry.failer # null | expra.failer # null) then
expr.failer := expr.node

else
expr.failer = expr.resumer

expr.gen := (expra.gen | expra.gen)

}

The do clause of every is bounded and its result discarded. The control clause is always
resumed at the end of the loop and can never be resumed by anything else. The value of the con-

trol clause is discarded. Ignoring break cxpressions, the loop always fails:

expr ;= every expr; do expra {
expra.resumer := null
exprz.lifetime := null
expri.resumer := expr.node
expry.lifetime := null
expr.failer := expr.node
expr.gen := false

}

Handling break expressions requires some stack-like attributes. Thesc are similar to the ones
used in the control flow analyses described in O'Bagy's dissertation [18] and the ones used to

construct flow graphs in the original technical rcport on type inferencing.

The auributes presented here can be computed with onc walk of the syntax tree. At a node,
subtrees are processed in reverse execution order: first the resumer and lifetime attributes of a
subtree are computed, then the subtree is walked. Next the failer and gen attributes for the node

itself are computed, and the walk moves back up to the parent node.

-59.

CHAPTER §

Overview of the Compiler

Components of the Compiler

The Icon compiler is divided into two componcnts: a run-time system and the compiler itself.
This organization is illustrated below. In thc diagram, labcicd boxes represent programs, other

text (some of it delimited by braces) represents files, and arrows represent data flow.

grritin.h
oasgn.rtt ‘ C . Torrs
fstructs.rtt [~ Lt Source p - &,m ier |~ g?ézd —= | Maintenance
' [Files P Program
[
rmemmgt.c
i
-------- ndb ------------- nh---=--~-cccccecce---nta ---

{ /

C
‘ . prog.c -
prog.icn —e={iconc |+ —=iCompiler / {—eprog
prog.h} linker

The run-time system appears above the dotied line and the compiler itself appears below the
line. The programs shown with the run-time sysiem are executed once when the run-time system
is installed or updated. They build a data basc, rt.db, and an object-code library, rt.a, for use by
the compiler. The general definition of the term “*data base ™ is used here: a collection of related

data. rt.db is stored as a text file. It is accessed and manipulaied in intemnal tables by the

- 60) -

programs rtt and iconc. The it program is specific to the Icon compiler system and is described
below. The C compiler and the library maintcnance program are those native to the system on
which the Icon compiler is being used. The format of the object-code library is dictated by the
linker used with the C compiler. The file rt.h contains C definitions shared by the routines in the

run-time system and code generated by thc compilcr.

The diagram of the compiler itself reflects the fact that the Icon compiler uses a C compiler
and linker as a back end. However, iconc automatically invokes these programs, so the Icon pro-

grammer sees a single tool that takes Icon source as input and produces an executable file.

The Run-time System

As with the run-time system for the interpreler, the run-time system for the compiler imple-
ments Icon’s operations. However, the compilcr has nceds beyond those of the interpreter. In the
interpreter’s run-time system, all operations arc implemented as C functions conforming to cer-
tain conventions. The interpreter uses the samc implementation of an operation for all uses of the
operation. While this approach results in acceptable performance for many Icon programs, the
purpose of an optimizing compiler is to obtain betier performance. A major goal in the develop-
ment of iconc is to use information from type inferencing to tailor the parameter passing and
parameter type conversions of an operation Lo particular uses of the operation and to place code
in line where appropriate. The compiler nceds a mechanism to support this tailored operation
invocation. In addition, the compiler nceds information about the properties of operations for use

in performing type inferencing and other analyscs.

In addition to supporting the analyscs and optimizations of iconc, therc are several other

major goals in the design of the compiler’s run-time system. These include

-61-

e Specification of all information about an operation in one place.
e Use of one coding to produce both general and tailored implementation of an operation.

e Use of the pre-existing run-time sysicm as a basis for the new one.

Most of the design goals for the run-time sysicm would best be served by a special-purpose
language in which to implement the run-time system. Such a language would allow the proper-
ties of an operation needed by various analyscs to be cither explicitly coded or easily inferred
from parts of the code used to producc an implementation of the operation. The language would
also allow easy recognition and manipulation of parts of the codc that need to be tailored to indi-
vidual uses of an operation. In addition, the language would provide support for features of Icon

such as its data types and goal-directed evaluation.

While a special-purpose language is consistcnt with most design goals, it is not consistent
with using the interpreter’s run-timc system writien in C as a basis for that of the compiler. A
special-purpose language also has thc problem that it requires a large effort to implement. These
conflicting goals are resolved with a language that is a compromise between an ideal special-
purposc implementation language and C. The corc of the language is C, but the language con-
tains special features for specifying thosc aspects of a run-lime operation that must be dealt with
by the compiler. This language is called thc implementation language for the Icon compiler’s
run-time system. Because thc implementation language is designed around C, much of the
detailed code for implementing an operation can bc borrowed from the interpreter system with
only minor changes. The important faccts of the implementation language arc discussed here. A
full description of the language can be found in the reference manual for the language [37]. The

core material from this reference manual is includcd as Appendix A of this dissertation.

-62 -

The Implementation Language

The implementation language is used to describe the operators, keywords, and built-in func-
tions of Icon. In addition to these operations, thc run-time system contains routines to support
other features of Icon such as general invocation, co-cxpression activation, and storage manage-

ment. These other routines are written in C.

The program rtt takes as input files containing opcrations coded in the implementation
language and translates the operations into purc C. rtt also builds the data base, rt.db, with infor-
mation about the operations. In addition 10 operations writicn in the implementation language,
rtt input may contain C functions. Thesc C functions can usc scveral of the extensions available
to the detailed C code in the operations. These extensions arce translated into ordinary C code.
While not critical to the goals of the run-time system design, the ability to use these extensions

in otherwise ordinary C functions is very convenicnt.

The definition of an operation is composcd of three layers. The outer layer brackets the code
for the operation. It consists of a header at the beginning of the code and the reserved word end
at the end of the code. The header may be preceded by an optional description of the operation in
the form of a string literal; this description is uscd only for documentation. The second layer
consists of type checking and type conversion code. Type checking code may be nested. The
inner layer is the detailed C code, abstract typc computations, and code to handle run-time
errors. An abstract type computation describes the possible side-effects and result types of the
operation in a form that type inferencing can usc. This featurc is nceded because it is sometimes
impractically difficult to deduce this information (rom the C code. The code to handle run-time
errors is exposed; that is, it is not buricd within the detailed C code. Because of this, type
inferencing can easily determine conditions under which an operation terminates without either
producing a value or failing. (A further rcason (or cxposing this code is explained in the imple-

mentation language reference manual in the scction on scoping.)

An operation header starts with one of the three rescrved words operator, function, or key-

word. The header contains a description of the opcration’s result sequence, that is, how many

=63 -

results it can produce. This includes both the minimum and maximum number of results, with *
indicating an unbounded number. In addition, it indicatcs, by a trailing +, when an operation can
be resumed to perform a side-effect after it has produced its last result. This information is
somewhat more detailed than can easily bc infcrred by looking at the returns, suspends, and
fails in the detailed C code. The information is put in the data base for use by the analysis phases

of iconc.

An operation header also includes an identificr. This provides the name for built-in functions
and keywords. For all types of operations, rit uscs the identificr to construct the names of the C
functions that implement the operations. Thc hcaders for operators also include an operator
symbol. The parser for iconc is not required to usc this symbol for the syntax of the operation,
but for most operations it does so; list creation, [...], is an cxample of an exception. The headers
for built-in functions and operators include a paramcter list. The list provides names for the
parameters and indicates whether dercferenced and/or undereferenced versions of the
corresponding argument are needed by the operation. It also indicates whether the operation

takes a variable number of arguments.

The following are five examples of operation headers.
function{0,1+} move(i)
function{*} bal(c1,c2,c3,s.,i.,j)
operator{1} [...] llist(elems[n])
operator{0,1} / nuli(underet x —> dx)
keyword(3} regions

move is a function that takes one argumcnt. It may produce zero or one result and may be
resumed to produce a side effect after its last result. bal is a function that takes six arguments. It

produces an arbitrary number of results. The list-creation operator is given the symbol [...]

I (V: S

(which may be used for string invocation, if string invocation is enabled) and is given the name
llist. It takes an arbitrary number of arguments with elems being the array of arguments and n
being the number of arguments. List creation always produces one result. The / operator is given
the name null. It takes one argument, but both undercfcrenced and dereferenced versions are
needed by the operation. It produces either zero or onc result. ®ions is a keyword that pro-
duces three results.

Type checking and type conversion constructs consist of an if-then construct, an if-then-else
construct, a type_case construct that sclects code to execute based on the type of an argument,
and a len_case construct that selects code to cxccute based on the number of arguments in the
variable part of a variable-length argument list. The conditions in the if-then and if-then-else
constructs are composed of operations that check the types of arguments or attempt to convert
arguments to specific types.

A type check starts with ‘is:’. This is followed by the name of a type and an argument in

parentheses. For example, the then clausc of the following if is exccuted if x is a list.
if is:list(x) then ...

A type conversion is similar to a type check, bul starts with ‘cnv:’. For example, the following
code attempts to convert S to a string. If the conversion succeeds, the then clause of the if is

executed.
if cnv:string(s) then ...

There are forms of conversion that convert a null value into a specified default value, forms that
put a converted value in a location other than the paramcter, and forms that convert Icon values
into certain types of C values. The later typc of conversion is convenient because the detailed
code is expressed in C. In addition, exposing conversions back and forth between Icon and C
values leaves open the possibility of futurc optimizations to climinate unnecessary conversions

to Icon values. The control clausc of an if may also usc limited forms of expressions involving

- 68 -

boolean operators. The full syntax and semantics of conversions are described in the implemen-

tation language reference manual.

Detailed code is expressed in a slightly extended version of C and is introduced by one of

two constructs. The first is
inline { extended C }

This indicates that it is reasonable for the Icon compiler to put the detailed code in line. The

second construct is
body { extended C }

This indicates that the detailed codec is too large to be put in line and should only appear as part
of a C function in the run-time library. Thc person who codes the operation is free to decide
which pieces of detailed code are suitable to in-lining and which are not. The decision is easily

changed, so an operation can be finc tuned after vicwing the code produced by the compiler.

One extension to C is the ability to declarc variables that are tended with respect to garbage
collection. Another extension is the ability 1o usc somec constructs of the implementation
language, such as type conversions, within the C codc. An important extension is the inclusion
of return, suspend, and fail statements that arc analogous to their Icon counterparts. This exten-
sion, combined with the operation headers, makes thc coding of run-time routines independent
of the C calling conventions used in the compiler system. The return and suspend statements
have forms that convert C values to Icon valucs, providing inverses to conversions in the type

checking code of the implementation languagc.

This mechanism is more than is necessary for thosc kcywords that are simple constants. For
keywords that are string, cset, integer, or rcal constants there is a special form of definition. The
Icon compiler treats keywords coded with these definitions as manifest constants. When future
versions of the Icon compiler implement constant folding, that optimization will be automati-

cally applied 1o these keywords.

- 66 -

Standard and Tailored Operation Implementations

For every operation that it translates, except kcywords, rit creates a C function conforming to
the standard calling conventions of the compiler system. With the help of the C compiler and
library maintenance routine, rtt puts an object modulc for that function in the compiler system’s
run-time library. This function is suitable for invocation through a procedure block. It is used

with unoptimized invocations.

rtt creates an entry in the data base for cvery opcration it translates, including keywords.
This entry contains the code for the operation. The code is stored in the data base in a form that
is easier to parse and process than the original source, and the body statements are replaced by
calls to C functions. These C functions are in the run-time library and implement the code from
the body statement. The calling conventions for these functions are tailored to the needs of the

code and do not, in general, conform to the standard calling conventions of thec compiler system.

When the compiler can determine that a particular opcration is being invoked, it locates the
operation in the data base and applies information from type inferencing to simplify or eliminate
the code in the operation that performs type checking and conversions on arguments. These
simplifications will eliminate detailed codc that will never be cxecuted in this invocation of the
operation. The compiler can attempt the simplification because the type checking code is in the
data base in a form that is easily dcalt with. If cnough simplification is possible, a tailored ver-
sion of the operation is generated in linc. This tailored version includes the simplified type
checking code, if there is any left. For dctailcd codc that has not been eliminated by the
simplification, the tailored version also includes the C code from inline statements and includes
calls to the functions that implement the code in body statcments. The process of producing

tailored versions of built-in operations is described in morc detail in a later chapter.

Ideally, when unique types can be inferred for the operands of an operation, the compiler
should either producc a small piece of type-specilic in-linc C code or produce a call to a type-
specific C function implementing the operation. It is possible to codc operations in the imple-

mentation language such that the compiler can do this. In addition, this is the natural way to

- 67 -

code most operations. For the few exceptions, therc arc reasonable compromises between ideal
generated code and elegant coding in the implementation language. This demonstrates that the

design and implementation of the run-time system and its communication with the compiler is

successful.

- 68 -

CHAPTER 6

Organization of lconc

The Icon compiler, iconc, takes as input the source code for an Icon program and, with the
help of a C compiler and linker, produces an cxecutable file. The source code may be contained
in several files, but iconc does not support separatec compilation. It processes an entire program
at once. This requirement simplifies several of the analyscs, while allowing them to compute
more accurate information. Without the entire program being available, the effects of procedures
in other files is unknown. In fact, it is not possiblc to distinguish built-in functions from missing
procedures. Type inferencing would be particularly weakened. It would have to assume that any
call to an undeclared variable could have any sidc cffect on global variables (including pro-

cedure variables) and on any data structure rcachablc through global variables or parameters.

Compiler Phases

lconc is organized into a number of phases. Thesc are illustrated in the diagram on the fol-
lowing page.
The initialization phase includes reading a data base of information about run-time routines

into internal tables. This information is used in many of the othcr phases.

The source analysis phase consists of a lexical analyzer and parser. These are adapted from
those used in the interpreter system. The parser gencrates abstract syntax trees and symbol tables
for all procedures before subsequent phascs arc invoked. The symbol resolution phase deter-
mines the scope of variables that arc not declared in the proccdures where they are used. This
resolution can only be done completely aftcr all source filcs for the program are read. If a vari-
able does not have a local declaration, the compiler checks to see whether the variable is
declared global (possibly as a procedure or record constructor) in one of the source files. If not,

the compiler checks to see whether the variable name matches that of a built-in function. If the

-69 -

name is still not resolved, it is considered to be a local variablec.

external files lcon compiler internal data

initialization |
I

-

I
@ | source analysis

| !

| symbol resolution
| ‘ | internal links
| |

naive optimization

| 1 symbol tables
and annotated

| type inferencing syntax trees

| |
output:
C main function

globals
constants

—

output:
C functions for fragmentary
each procedure C code

!

output:
record constructors ———p data flow

<«4——) data flow and update
l» ! msp control flow

invoke C compiler

70 -

Naive Optimizations

Naive optimizations involve invocation and assignment. These optimizations are done
before type inferencing to aid that analysis. Certain ‘‘debugging features’ of Icon such as the
variable function interfere with these optimizations. By dcfault, these features are disabled. If
the user of iconc requests the debugging featurcs, these optimizations are bypassed. While these
optimizations are being done, information is gathered about whether procedures suspend, retum,

or fail. This information is used in several places in the compiler.

The invocation optimization replaces general invocation by a direct form of invocation to a
procedure, a built-in function, or a record constructor. This optimization involves modifying
nodes in the syntax tree. It only applies to invocations where the expression being invoked is a
global variable initialized to a value in onc of the three classes of procedure values. First, the
Icon program is analyzed to determine which variablcs of this type appear only as the immediate
operands of invocations. No such variable is ever assigned to, so it retains its initial value
throughout the program (2 more exact analysis could bc done to determine the variables that are
not assigned to, but this would seldom yicld better results in real Icon programs because these
programs seldom do anything with procedure valucs other that invoke them). This means that all
invocations of these variables can be replaced by dircct invocations. In addition, the variables

themselves can be discarded as they are no longer refcrenced.

The invocation optimization improves the specd of type inferencing in two ways, although it
does nothing to improve the accuracy of the information produced. Performing type inferencing
on direct invocations is faster than performing it on general invocations. In addition, type

inferencing has fewer variables to handlc, which also speeds it up.

The invocation optimization does improve code generated by the compiler. In theory, the
optimization could be done better after type infcrencing using the information from that analysis,
but in practice this would seldom producc betier results. On most real Icon programs, this

optimization using the naive analysis replaces all genceral invocations with direct ones.

-71-

As noted in Chapter 3, it is important for type inferencing to distinguish strong updates from
weak updates. The data base contains a gencral description of assignment, but it would be
difficult for a type inferencing system to use the description in recognizing that a simple assign-
ment or an augmented assignment to a named variablc is a strong update. It is much easier to
change general assignments where the left hand side is a named variable to a special assignment
and have type inferencing know that the special assignment is a strong update. Special-casing
assignment to named variables is also important for codc generation. General optimizations to
run-time routines are not adequate to producc thc desired code for these assignments. The

optimizations to assignment are described in Chapter 10.

The details of type inferencing is described in other chapters. Producing code for the C main
function, global variables, constants, and rccord constructors is straightforward. C code is writ-
ten to two files for organizational purposcs; it allows definitions and code to be written in paral-

lel.

Code Generation for Procedures

Producing code for procedures involves scveral sub-phases. The sub-phases are liveness
analysis, basic code generation, fix-up and peephole optimization, and output. During this phase

of code generation, procedures are processed onc at at timc.

These sub-phases are described in later chapters. The code fix-up phase and peephole optimi-
zation are performed during the same pass over the intemal representation of the C code. Some
clean-up from peephole optimization is performed when the code is written. The logical organi-
zation of the compiler places the fix-up phasc as a pass in codc generation with peephole optimi-
zation being a separate phase. The organization of this dissertation reflects the logical organiza-

tion of the compiler rather than its physical organization.

The physical organization of this phase is shown in thc following diagram.

-72-

external files

prog.h

prog.c

livenaess analysis

—

code generation for
a procedure

T

fix-up and peephole
optimization

T

output

<73 -

internal data

symbol tables
and annotated
syntax trees

fragmentary
C code

CHAPTER 7

The Implementation of Type Inferencing

Chapter 3 develops a theoretical type inferencing model for Icon, called Model 3. The pur-
pose of that chapter is to explain the relationship hetween type inferencing and the semantics of
Icon; for simplicity, some features of thc language along with certain questions of practical
importance are ignored in that chapter. This chapter describes the implementation of the type
inferencing system used in the Icon compiler. The implementation is based on Model 3. This
chapter describes solutions to those issucs that must be addressed in developing a complete prac-

tical type inferencing system from Modecl 3. The issucs include:

e the representation of types and stores

the development of a type system for the full Icon language

the handing of procedure calls and co-expression activation

the determination of edges in the flow graph

the computation of a fixed point for type information

In addition, performance of the abstract interpretation must be considered. This includes both

speed and memory usagc.

The Representation of Types and Stores

A type consists of a set of basic types (tcchnically, it is a union of basic types, but the consti-
tuents of the basic types are not explicitly representcd). The operations needed for these sets are:
add a basic type to a set, form the union of two scis, form the intersection of two sets, test for
membership in a set, and gencrate members of a subrange of basic types (for example, generate
all members that are list types). A bit vector is used for the set representation, with a basic type

represented by an integer index into the vector. The required opcrations are simple and efficient

.74 -

to implement using this representation. Unlcss the scts arc large and sparse, this representation
is also space efficient. While the scts of types arc oficn sparse, for typical programs, they are not
large.

A store is implemented as an array of pointers (o types. A mapping is established from vari-
able references to indexes in the store. In the type inferencing model, Model 3, presented in
Chapter 3, there is one kind of store that contains all variables. In the actual implementation,
temporary variables need not be kept in this store. The purpose of this store is to propagate a
change to a variable to the program points affccted by the change. A temporary variable is set in
one place in the program and used in onc placc: there is nothing to determine dynamically. It is
both effective and efficient to store the type of a tcmporary variable in the corresponding node of

the syntax tree.

Another level of abstraction can be devcloped that requires much less memory than Model 3,
but it must be modified to produce good results. This abstraction abandons the practice of a store
for every edge in the flow graph. Instcad it has a single storc that is a merger of all the stores in
Model 3 (the type associated with a variable in @ merged store is the union of the types obtained
for that variable from each storc being merged). For variables that are truly of one type
throughout execution, this abstraction works well. Named variables do not have this property.
They have an initial null value and usually arc assigncd a value of another type during execution.
Because assignments to named variables arc treated as strong updates, Model 3 can often deduce

that a variable does not contain the null type at specific points in the flow graph.

For structure variables this further abstraction docs work well in practice. These variables are
initialized to the empty type (that is, no instanccs of thesc variables exist at the start of program
execution), so the problem of the initial null typc docs not occur. Sometimes instances of these
variables are created with the null type and later changed. However, the fact that assignments to
these variables must be treated as weak updatcs mcans that type inferencing must assume that
these variables can always retain their carlicr lype aficr an assignment. Propagating type infor-

mation about structurc variables through the syntax trec docs not help much in these

circumstances. While it is possible to construct cxample programs where Model 3 works better
for structure variables than this further abstraction, cxperiments with prototype type inferencing

systems indicate that the original system seldom gives better information for real programs [15].

Type inferencing in the compiler is implecmented with two kinds of stores: local stores that
are associated with edges in the flow graph and contain named variables (both local and global
variables) and a global store that contains structurc variables (in the implementation, the global

store is actually broken up by structure-variablc typc into several arrays).

A Full Type System

Model 3 from Chapter 3 includes no structurc type other than lists, nor does it consider how
to handle types for procedure and co-expression valucs to allow effective type inferencing in

their presence. This section develops a complcic and cffective type system for Icon.

Most of the structure types of Icon are assigned scveral subtypes in the type inferencing sys-
tem. As explained for lists in Chapter 3, these subtypes are associated with the program points
where values of the type are crecated. The cxception to this approach is records. One type is
created per record declaration. While it is possiblc to assign a subtype to each use of a record
constructor, in practicc a given kind of rccord usually is used consistently with respect to the
types of its fields throughout a program. The cxira subtypes would require more storage while

seldom improving the resulting type information.

For efficiency, the size of the bit vectors representing types and the size of the stores need to
remain fixed during abstract interpretation. This mcans that all subtypes must be determined as
part of the initialization of the type inferencing sysiem. In order to avoid excessive storage
usage, it is important to avoid creating many subtypcs for program points where structures are
not created. The invocation optimization describcd in Chapter 6 helps determine where struc-
tures can and cannot be created by determining for most invocations what operation is used. The
type inferencing system determines what structures an operation can create by examining the

abstract type computations associatcd with the operation in the data basc. A new clause in an

-76 -

abstract type computation indicates that a structurc can be created. The following example is the
abstract type computation from the built-in function list. It indicates the the function creates and
retums a new list with elements whose type is thc same as that of the parameter X (the second

parameter).

abstract {
return new list(type(x))

}

This is the clause as written by the programmer developing the run-time library; it is translated

into an internal form for storage in the data basc.

Invocation optimizations may not identify thc operation associated with some invocations.
The initialization phase of type inferencing skips these invocations. Type inferencing may later
discover that one of these invocations can crcalc a structure. Each structure type is given one
subtype that is used for all of these later discoverics. While it is possible for there to be several
of these creation points representing logically distinct subtypcs, this seldom occurs in practice. If

it does happen, type inferencing produces a corrcct, but less precise, result.

The type system contains represcntations for all run-time values that must be modeled in the
abstract interpretation. Thesc run-time values can be divided into three categories, each of

which is a superset of the previous catcgory:

o the first-class Icon valucs
e the intermediate values of expression cvaluation

o the values used intemally by Icon operations

Just as these categories appear in different places during the execution of an Icon program, the
corresponding types appear in diffcrent places during abstract intcrpretation. If certain types can-
not appear as the result of a particular typc computation, it is not necessary to have elements in the

bit vector produced by the computation to represent those types. It is particularly important to

.77 -

minimize the memory used for stores associatcd with edges of the flow graph (this is discussed
more in the last section of this chapter). These stores contain only the types of the smallest set

listed above: the first-class values.

Types (or subtypes) are allocated bit vector indexes. The first-class types may appear as the
result of any of the three classes of computation. They are allocated indexes at the front of the bit
vectors. If they are the only types that can result from an abstract computation, the bit vector for

the result has no elements beyond that of the last first-class types. The first-Class types are:

e null

e string

e cset

e integer

e real

o file

e list subtypes

e setsubtypes

e table subtypes
e record subtypes
e procedure subtypes

e Co-expression subtypes

The list subtypes are allocated with

e one for the argument to the main proccdure
e one for each easily recognized creation point

o one representing all other lists

The set subtypes are allocated with

-8 -

e one foreach easily recognized creation point

e oOne representing all other sets
The table subtypes are allocated with

o one foreach easily recognized crcation point

e one representing all other tables

The record subtypes are allocated with onc for cach rccord declaration. The procedure subtypes

are allocated with

e one foreach procedurc
e one foreach record constructor
e one foreach built-in function

e one representing operators available for string invocation

Note that procedure subtypes arc allocated after most procedure and function values have been
eliminated by invocation optimizations (thc procedures and functions are still there, they are just
not Icon values). Therefore, few of these subtypes arc actually allocated. The co-expression sub-

types are allocated with

e one for the main co-expression

o one for each create expression

The bit vectors used to hold the intermediatc results of performing abstract interpretation on
expressions must be able to represent the basic types plus the variable reference types. Variable
reference types are allocated bit vector indexes following those of the basic types. The bit vec-
tors for intermediate results are just long cnough to contain these two classifications of types.

The variable reference typcs are

=79 -

e integer keyword variable types

e &pos

e &subject

e substring trapped variable types

e table-element trapped variable types
e list-element reference types

o table assigned-value reference types
o field reference types

e global variable reference types

o local variable reference types

&random and &trace behave the same way from the perspective of the type inferencing sys-
tem, so they are grouped under one type as intcger keyword variables. The fact that &pos can
cause assignment to fail is reflccted in the type inferencing system, so it is given a separate type.

&subject is the only string keyword variable so it is in a type by itself.

Substring trapped variables and table-clement trapped variables are ‘*hidden’’ structures in
the implementation of Icon. They appear as intermediatc results, but are only indirectly observ-
able in the semantics of Icon. In order to reflect these semantics in the type inferencing system,
there are substring trapped variable types and table-cicment trapped variable types. These are
structure types similar to sets, but are variablc reference types rather than first-class types. The

substring trapped variable types are allocated with

e one for each easily recognized crcation point

e one representing all other substring trapped variables

The table-element trapped variable types arc allocatcd with

-80-

e one for each easily recognized crcation point

e one representing all other table-clement trapped variables

List elements, table assigned-values, and record ficlds are all variables that can appear as the
intermediate results of expression evaluation. The type system has corresponding variable refer-
ence types to represent them. The list-element reference types are allocated with one for each
list types. The table assigned-value reference types are allocated with one for each table type.

The field reference types are allocated with onc for cach record field declaration.

Identifiers are variables and are reflected in the type system. The global variable reference

types are allocated with

e one foreach global variable (except those climinated by invocation optimizations).

e one foreach static variable

The local variable reference types arc allocated with one for each local variable, but the bit vector
indexes and store indexes are reused between procedures. The next section describes why this

reuse is possible.

Icon’s operators use a number of internal values that never ‘‘escape’’ as intermediate results.
Some of these internal values are reflected in the type system in order to describe the semantics
of the operations in the abstract interpretation. The full set of types that can be used to express
these semantics are presented in the syntax of the abstract type computations of the run-time
implementation language; sec Appendix A. In addition to the types of intermediate results, these

types include

-81-

e set-clement reference types

e table key reference types

e table default value reference types

e references to the fields within substring trapped variables that reference variables

e references to fields within table-element trapped variables that reference tables

These types are allocated bit vector indexes at the end of the type system. The only bit vectors
large enough to contain them are the temporary bit vectors used during interpretation of the

abstract type computations of built-in operations.

Set elements, table keys, and table default values do not appear as variable references in the
results of expression evaluation. However, it is nccessary to refer to them in order to describe the
effects of certain Icon operations. For this rcason, they are included in the type system. The set-
element reference types are allocated with onc for cach set type. The table key reference types
are allocated with one for each table type. The table default value reference types are allocated

with one for each table type.

Substring trapped variable types contain references to the variable types being trapped and
table-element trapped variable types contain references to the table types containing the element
being trapped. These references arc fields within these trapped variable types. There is one field

reference type for each trapped variable typc.

Procedure Calls and Co-Expression Activations

A type inferencing system for the full Icon language must handle procedures and co-
expressions. As noted above, each procedurc and cach create expression is given its own type.
This allows the type inferencing system to accuratcly determine which procedures are invoked

and what co-expressions might be activated by a particular expression.

The standard semantics for procedures and co-cxpressions can be implemented using stacks

of procedure activation frames, with one stack per co-expression. The first frame, on every stack

except that of the main co-expression, is a copy of the frame for the procedure that created the
co-expression. The local variables in this framc are used for evaluating the code of the co-
expression. The type inferencing system uses a trivial abstraction of these procedure frame
stacks, while capturing the possible transfers of control induced by procedure calls and co-

expression activations.

The type inferencing system, in effect, uses an environment that has one frame per procedure,
where that frame is a summary of all framcs for thc procedure that could occur in a correspond-
ing environment of an implementation of the standard semantics. The frame is simply a portion
of the store that contains local variables. Because no other procedure can alter a local variable, it
is unnecessary to pass the types of local variables into procedure calls. If the called procedure
returns control via a return, suspend, or fail, thc types are unchanged, so they can be passed
directly across the call. This allows the type inferencing system to keep only the local variables
of a procedure in the stores on the edges of the flow graph for the procedure, rather than keeping
the local variables of all procedures. Global variablcs must be passed into and out of procedure
calls. Because static variables may be altered in rccursive calls, they must also be passed into

and out of procedure calls.

A flow graph for an entire program is constructed from the flow graphs for its individual pro-
cedures and co-expressions. An edge is added from every invocation of a procedure to the head
of that procedure and edges are added from cvery return, suspend, and fail back to the invoca-
tion. In addition, edges must be added from an invocation of a procedure to all the suspends in
the procedure to represent resumption. When it is not possible to predetermine which procedure
is being invoked, edges are effectively added from the invocation to all procedures whose invo-
cation cannot be ruled out based on the naive invocation optimizations. Edges are effectively
added between all co-expressions and all activations, and between all activations. Information is
propagated along an edge when type inferencing deduces that the corresponding procedure call
or co-expression activation might actually occur. The representation of edges in the flow graph is

discussed below.

-83-

Type inferencing must reflect the initializations performed when a procedure is invoked.
Local variables are initialized to the null value. On the first call to the procedure, static variables
are also initialized to the null value. The initialization code for the standard semantics is similar

to

initialize locals
if (first_call) {
initialize statics
user initialization code

}

In type inferencing, the variables are initialized to the null fype and the condition on the if is
ignored. Type inferencing simply knows that the first-call code is executed sometimes and not
others, Before entering the main procedure, global variables are set to the null type and all static
variables are set to the empty type. In some sense, the empty type represents an impossible exe-
cution path. Type inferencing sees paths in the flow graph from the start of the program to the
body of a procedure that never pass through the initialization code. However, static variables
have an empty type along this path and no operation on them is valid. Invalid operations contri-

bute nothing 1o type information.

The Flow Graph and Type Computations

In order to determine the types of variables at the points where they are used, type inferenc-
ing must compute the contents of the stores along edges in the flow graph. Permanently allocat-

ing the store on each edge can use a large amount of memory. The usage is
M=E*(G+S+L)*T/8

where

-84 -

M = total memory, expressed in bytes, used by stores

E = the number of edges in the program flow graph

G = the number of global variables in the program

S = the number of static variables in the program

L = the maximum number of local variables in any procedure

T = the number of types in the type system

Large programs with many structurc creation points can produce thousands of edges, dozens of

variables, and hundreds of types, requiring megabytes of memory to represent the stores.

The code generation phasc of the compiler just needs the (possibly dereferenced) types of
operands, not the stores. If dereferenced types are kept at the expressions where they are needed,

it is not necessary to keep a store with each edge of the flow graph.

Consider a section of straight-line code with no backtracking. Abstract interpretation can be
performed on the graph starting with the initial store at the initial node and proceeding in execu-
tion order. At each node, the store on the edge entering the node is used to dereference variables
and to compute the next store if there are side cffects. Once the computations at a node are done,
the store on the edge entering the node is no longer needed. If updates are done carefully, they
can be done in-place, so that the same memory can be used for both the store entering a node and

the one leaving it.

In the case of branching control paths (as in a case expression), abstract interpretation must
proceed along one path at a time. The storc at the start the branching of paths must be saved for
use with each path. However, it need only be saved until the last path is interpreted. At that
point, the memory for the store can be reuscd. When paths join, the stores along each path must
be merged. The merging can be done as each path is completed; the store from the path can then
be reused in interpreting other paths. When all paths have been interpreted, the merged store

becomes the current store for the node at the join point.

-85 -

The start of a loop is a point where control paths join. Unlike abstract interpretation for the
joining of simple branching paths, abstract interpretation for the joining of back edges is not just
a matter of interpreting all paths leading to the join point before proceeding. The edge leaving
the start of the loop is itself on a path leading to the start of the loop. Circular dependencies
among stores are handled by repeatedly performing the abstract interpretation until a fixed point
is reached. In this type inferencing system, abstract interpretation is performed in iterations, with
each node in the flow graph visited once per iteration. The nodes are visited in execution order.
For back edges, the store from the previous iteration is used in the interpretation. The stores on
these edges must be kept throughout the interpretation. These stores are initialized to map all
variables to the empty type. This represents the fact that the abstract interpretation has not yet

proven that execution can reach the corresponding edge.

The type inferencing system never explicitly represents the edges of the flow graph in a data
structure. Icon is a structured programming language. Many edges are implicit in a tree walk per-
formed in forward execution order — the order in which type inferencing is performed. The
location of back edges must be predetermined in order to allocate stores for them, but the edges

themselves are effectively recomputed as part of the abstract interpretation.

There are two kinds of back edges. The back edges caused by looping control structures can
be trivially deduced from the syntax tree. A storc for such an edge is kept in the node for the
control structure. Other back edges are induced by goal-directed evaluation. These edges are
determined with the same techniques used in livencss analysis. A store for such an edge is kept
in the node of the suspending operation that forms the start of the loop. Because the node can be
the start of several nested loops, this store is actually the merged store for the stores that theoreti-

cally exist on each back edge.

At any point in abstract interpretation, three stores are of interest. The current store is the
store entering the node on which abstract interpretation is currently being performed. It is
created by merging the stores on the incoming edges. The success store is the storc representing

the state of computations when the operation succeeds. It is usually created by modifying the

- 86 -

current store. The failure store is the store representing the state of computations when the

operation fails.

In the presence of a suspended operation, the failure store is the store kept at the node for that
operation. A new failure store is establishcd whenever a resumable operation is encountered.
This works because abstract interpretation is performed in forward execution order and resump-
tion is LIFO. Control structures, such as if-then-else, with branching and joining paths of exe-
cution, cause difficulties because there may be more than one possible suspended operation
when execution leaves the control structure. This results in more than one failure store during
abstract interpretation. Rather than keeping multiple failure stores when such a control structure
has operations that suspend on multiple paths, type inferencing pretends that the control struc-
ture ends with an operation that does nothing other than suspend and then fail. It allocates a store
for this operation in the node for the control structure. When later operations that fail are
encountered, this store is updated. The failure of this imaginary operation is the only failure
seen by paths created by the control structurc and the information needed to update the failure
stores for these paths is that in the store for this imaginary operation. This works because the

imaginary operation just passes along failurc without modifying the store.

In the case where a control structure transforms failure into forward execution, as in the first
subexpression of a compound expression, the failure store is allocated (with empty types) when
the control structure is encountered and deallocated when it is no longer needed. If no failure
can occur, no failure store need be allocated. The lack of possible failure is noted while the loca-
tion of back edges is being computed during the initialization of type inferencing. Because a
failure store may be updated at several operations that can fail, these are weak updates. Typi-

cally, a failure store is updated by merging the current store into it.

The interprocedural flow graph described earlier in this chapter has edges between invoca-
tions and returns, suspends, and fails. Type inferencing does not maintain separate stores for
these theoretical edges. Instead it maintains threc stores per procedure that arec mergers of stores

on several edges. One store is the merger of all stores entcring the procedure because of

-87-

invocation; this store contains parameter types in addition to the types of global and static vari-
ables. Another store is the merger of all stores entering the procedure because of resumption.
The third store is the merger of all stores leaving the procedure because of returns, suspends,
and fails. There is also a result type associated with the procedure. It is updated when abstract

interpretation encounters returns and suspends.

Two stores are associated with each co-expression. One is the merger of all stores entering
the co-expression and the other is the merger of all stores leaving the co-expression. Execution
can not only leave through an activation operator, it can also re-enter through the activation.
The store entering the activation is a merger of the stores entering all co-expressions in which
the activation can occur. Because a procedure containing an activation may be called from
several co-expressions, it is necessary to keep track of those co-expressions. A set of co-
expressions is associated with each procedure for this purpose. Each co-expression also contains
a type for the values transmitted to it. The result type of an activation includes the result types
for all co-expressions that might be activated and the types of all values that can be transmitted

to a co-expression that the activation might be executed in.

When type inferencing encounters the invocation of a built-in operation, it performs abstract
interpretation on the representation of the operation in the data base. It interprets the type-
checking code to see what paths might be taken through the operation. The interpretation uses
the abstract type computations and ignores the dctailed C code when determining the side effects
and result type of the operation. Because the code at this level of detail contains no loops, it is
not necessary to save stores internal to operations. An operation is re-interpreted at each invoca-
tion. This allows type inferencing to produce good results for polymorphous operations. At this
level, the code for an operation is simple enough that the cost of re-interpretation is not prohibi-
tive. All side effects within these operations are treated as weak updates; the only strong updates
recognized by type inferencing are the optimized assignments to named variables (see Chapter
6).

-88 -

The abstract semantics of control structures are hard-coded within the type inferencing sys-
tem. The system combines all the elements described in this chapter to perform the abstract
interpretation. A global flag is set any time an update changes type information that is used in
the next iteration of abstract interpretation. The flag is cleared between iterations. If the flag is

not set during an iteration, a fixed point has been reached and the interpretation halts.

-89 -

CHAPTER 8

Code Generation

This chapter describes the code gencration process. The examples of generated code
presented here are produced by the compiler, but some cosmetic changes have been made to

enhance readability.

Code generation is done on one procedure at a time. An Icon procedure is, in general,
translated into several C functions. There is always an outer function for the procedure. This is
the function that is seen as implementing the procedure. In addition to the outer function, there
may be several functions for success continuations that are used to implement generative expres-

sions.

The outer function of a procedure must have features that support the semantics of an Icon
call, just as a function implementing a run-time operation does. In general, a procedure must
have a procedure block at run time. This procedure block references the outer function. All func-
tions referenced through a procedure block must conform to the compiler system’s standard cal-
ling conventions. However, invocation optimizations usually eliminate the need for procedure
variables and their associated procedure blocks. When this happens, the calling conventions for

the outer function can be tailored to the needs of the procedure.

As explained in Chapter 2, the standard calling convention requires four parameters: the
number of arguments, a pointer to the beginning of an array of descriptors holding the argu-
ments, a pointer to a result location, and a success continuation to use for suspension. The func-
tion itself is responsible for dereferencing and argument list adjustment. In a tailored calling con-
vention for an outer function of a procedure, any dercferencing and argument list adjustment is
done at the call site. This includes creating an Icon list for the end of a variable-sized argument
list. The compiler produces code to do this that is optimized to the particular call. An example of

an optimization is eliminating dereferencing when type inferencing determines that an argument

-90 -

cannot be a variable reference.

The number of arguments is never needed in these tailored calling conventions because the
number is fixed for the procedure. Arguments are still passed via a pointer to an array of descrip-
tors, but if there are no arguments, no pointer is needed. If the procedure retums no value, no

result location is needed. If the procedure does not suspend, no success continuation is needed.

In addition to providing a calling interface for the rest of the program, the outer function
must provide local variables for use by the code generated for the procedure. These variables,
along with several other items, are located in a procedure frame. An Icon procedure frame is
implemented as a C structure embedded within the frame of its outer C function (that is, as a
local struct definition). Code within the outer function can access the procedure frame directly.
However, continuations must use a pointer to the frame. A global C variable, pfp, points to the
frame of the currently executing procedure. For efficiency, continuations load this pointer into a

local register variable. The frame for a main procedure might have the following declaration.

struct PFO0_main {
struct p_frame =old_pfp;
dptr old_argp;
dptr rslt;
continuation succ_cont;
struct {
struct tend_desc *previous;
int num;
struct descrip d[5);
} tend;
b

with the definition

-91-

struct PFO0_main frame;

in the procedure’s outer function. A procedure frame always contains the following five items: a
pointer to the frame of the caller, a pointer to the argument list of the caller, a pointer to the
result location of this call, a pointer to the success continuation of this call, and an array of
tended descriptors for this procedure. It may also contain C integer variables, C double variables,
and string and cset buffers for use in converting values. If debugging is enabled, additional infor-
mation is stored in the frame. The structure p_frame is a generic procedure frame containing a
single tended descriptor. It is used to define the pointer old_pfp because the caller can be any
procedure.

The argument pointer, result location, and success continuation of the call must be available
to the success continuations of the procedure. A global C variable, argp, points the argument list
for the current call. This current argument list pointer could have been put in the procedure
frame, but it is desirable to have quick access to it. Quick access to the result location and the
success continuation of the call is less important, so they are accessed indirectly through the pro-

cedure frame.

The array of descriptors is linked onto the chain used by the garbage collector to locate
tended descriptors. These descriptors are used for Icon variables local to the procedurc and for
temporary variables that hold intermediate results. If the function is responsible for dereferenc-
ing and argument list adjustment (that is, if it does not have a tailored calling convention), the

modified argument list is constructed in a section of these descriptors.

The final thing provided by the outer function is a control environment in which code genera-
tion starts. In particular, it provides the bounding environment for the body of the procedure and
the implicit failure at the end of the procedure. The following C function is the tailored outer
function for a procedure named p. The procedure has arguments and retums a result. However,

it does not suspend, so it needs no success continuation.

-92.

static int PO1_p(args, rsit)
dptr args;
dptr rslt;
{
struct PFO1_p frame;
register int signal,

int i;

frame.old_pfp = pfp;

pfp = (struct p_frame #*)&frame;
frame.old_argp = argp;
frame.rsit = rsit;

frame.succ_cont = NULL;

for (i = 0; i < 3; ++i)
frame.tend.d[i}.dword = D_Null;

argp = args;

frame.tend.num = 3;

frame.tend.previous = tend;

tend = (struct tend_desc *)&frame.tend,

translation of the body of procedure p

L10: /* bound */

.93

L4: /* proc fail */
tend = frame.tend.previous;
pfp = frame.old_pfp;
argp = frame.old_argp;
return A_Resume;

L8: /* proc return =/
tend = frame.tend.previous;
pfp = frame.old_pfp;
argp = frame.old_argp;

return A_Continue;

}

The initialization code reflects the fact that this function has three tended descriptors to use for
local variables and intermediate results. L10 is both the bounding label and the failure label for
the body of the procedure. Code to handle procedure failure and return (except for setting the
result value) is at the end of the outer function. As with bounding labcls, the labels for these
pieces of code have associated signals. If a procedure fail or return occurs in a success continua-
tion, the continuation returns the corresponding signal which is propagated to the outer function
where it is converted into a goto. The code for procedure failure is located after the body of the

procedure, automatically implementing the implicit failure at the end of the procedure.

Translating Icon Expressions

Icon’s goal-directed evaluation makes the implementation of control flow an important issue
during code generation. Code for an expression is generated while walking the expression’s syn-
tax tree in forward execution order. During code generation therc is always a current failure
action. This action is either ‘‘branch to a label’” or ‘‘return a signal’’. When the translation of a
procedure starts, the failure action is to branch to the bounding label of the procedure body. The

action is changed when generators are encountcred or while control structures that use failure are

-94-

being translated.

The allocation of temporary variables to intermediate results is discussed in more detail later.
However, some aspects of it will be addressed before presenting examples of generated code.
The result location of a subexpression may be determined when the parent operation is encoun-
tered on the way down the syntax tree. This is usually a temporary variable, but does not have to
be. If no location has been assigned by the time the code generator needs to use it, a temporary

variable is allocated for it. This temporary variable is used in the code for the parent operation.

The code generation process is illustrated below with examples that use a number of control

structures and operations. Code generation for other features of the language is similar.

Consider the process of translating the following Icon expression:
return if a = (1 | 2) then "yes" else "no"

When this expression is encountered, there is some current failure action, perhaps a branch to a
bounding label. The return expression produces no value, so whether a result location has been
assigned to it is of no consequence. If the argument of a return fails, the procedure fails. To
handle this possibility, the current failure action is set to branch to the labcel for procedure failure
before translating the argument (in this example, that action is not used). The code for the argu-
ment is then generated with its result location set to the result location of the procedurc itself.
Finally the result location is dereferenced and control is transferred to the procedure retum label.
The dereferencing function, deref, takes two arguments: a pointer to a source descriptor and a

pointer to a destination descriptor.

code for the if expression
deref(rsit, rslt);

goto L7 /+ proc return #/;

The control clause of the if expression must be bounded. The code implementing the then

clause must be generated following the bounding label for the control clause. A label must also

.95 -

be set up for the else clause with a branch to this label used as the failure action for the control
clause. Note that the result location of each branch is the result location of the if expression
which is in turn the result location of the procedure. Because neither branch of the if expression

contains operations that suspend, the two control paths can be brought together with branch to a
label.

code for control clause
L4: /+ bound */

rsit->vword.sptr = "yes";

rsit->dword = 3;

goto L6 /* end if */;
LS5: /» else »/

rsit->vword.sptr = "no";

rsit->dword = 2;

L6: /* end if */

Using a branch and a label to bring together the two control paths of the if expression is an
optimization. If the then or the else clauses contain operations that suspend, the general con-
tinuation model must be used. In this model, the code following the if expression is put in a suc-
cess continuation, which is then called at the end of both the code for the then clause and the

code for the else clause.

Next consider the translation of the control clause. The numeric comparison operator takes
two operands. In this translation, the standard calling conventions are used for the library routine
implementing the operator. Therefore, the operands must be in an array of descriptors. This
array is allocated as a sub-array of the tended descriptors for the procedure. In this example,
tended location O is occupied by the local variable, @. Tended locations 1 and 2 are free to be
allocated as the arguments to the comparison operator. The code for the first operand simply

builds a variable reference.

-96 -

frame.tend.d[1].dword = D_Var;

frame.tend.d[1].vword.descptr = &frame.tend.d[0] /+ a */,

However, the second operand is altemation. This is a generator and requires a success continua-
tion. In this example, the continuation is given the name P02_main (the Icon expression is part
of the main procedure). The continuation contains the invocation of the run-time function
implementing the comparison operator and the end of the bounded expression for the control
clause of the if. The function O00_numeq implements the comparison operator. The if expres-
sion discards the operator's result. This is accomplished by using the variable trashcan as the
result location for the call. The compiler knows that this operation does not suspend, so it passes
a null continuation to the function. The end of the bounded expression consists of a transfer of

control to the bounding label. This is accomplished by retumning a signal. The continuation is

static int P0O2_main()

{
register struct PFO0_main *rpfp;

rpfp = (struct PFOO_main *)pfp;
switch (O0o_numeq(2, &(rpfp—>tend.d[1]), &trashcan, (continuation)NULL))
{

case A_Continue:
break;
case A_Resume:

return A_Resume;

}

return 4; /* bound */

}

Each altemative of the altemation must compute the value of its subcxpression and call the

-97.

success continuation. The failure action for the first altemnative is to branch to the second altema-
tive. The failure action of the second altenative is the failure action of the entire altcrnation
expression. In this example, the failure action is to branch to the else label of the if expression.
In each alterative, a bounding signal from the continuation must be converted into a branch to

the bounding label. Note that this bounding signal indicates that the control expression suc-
ceeded.

frame.tend.d[2]).dword = D_lInteger;
frame.tend.d[2].vword.integr = 1;
switch (P02_main()) {
case A_Resume:
goto L2 /+ alt */,
case 4 /+ bound */:
goto L4 /* bound */,
}
L2: /+ alt */
frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 2;
switch (P02_main()) {
case A_Resume:
goto LS /* else #/;
case 4 /+ bound #/:

goto L4 /+ bound #/;

The code for the entire return expression is obtained by putting together all the pieces. The

result is the following code (the code for PO2_main is not repeatcd).

-08 -

frame.tend.d[1].dword = D_Var;
frame.tend.d[1].vword.descptr = &frame.tend.d[0] /= a »/;
frame.tend.d[2].dword = D_lInteger;
frame.tend.d[2).vword.integr = 1;
switch (P02_main()) {
case A_Resume:
goto L2 /* alt #/;
case 4 /+* bound »/:
goto L4 /* bound */;
}
L2: /= alt #/
frame.tend.d[2].dword = D_lInteger;
frame.tend.d[2].vword.integr = 2;
switch (P02_main()) {
case A_Resume:
goto L5 /x else #/;
case 4 /+ bound +/:
goto L4 /> bound */;
}
L4: /* bound */
rsit->vword.sptr = "yes",
rsit->dword = 3;
goto L6 /* end if »/;
L5: /» else */
rsit—->vword.sptr = “no";

rsit—>dword = 2;

-99.

"L6: /1« end if */
deref(rsit, rsit);

goto L7 /* proc return */;

Signal Handling

In order to produce signal handling code, the code generator must know what signals may be
retumed from a call. These signals may be either directly produced by the operation (or pro-
cedure) being called or they may originate from a success continuation. Note that either the
operation or the continuation may be missing from a call, but not both. The signals produced
directly by an operation are A_Resume, A_Continue, and A_FallThru (this last signal is only
used intemally within in-line code).

The signals produced by a success continuation belong to one of three categories:
A_Resume, signals corresponding to labels within the procedure the continuation belongs to,
and signals corresponding to labels in procedures farther down in the call chain. The last
category only occurs when the procedure suspends. The success continuation for the procedure
call may retumn a signal belonging to the calling procedure. This is demonstrated in the following
example (the generated code has been ‘‘cleaned-up’’ a little to make it easier to follow). The

Icon program being translated is

procedure main()

write(p())
end

procedure p()
suspend 1 to 10

end

- 100 -

The generative procedure p is called in a bounded context. The code generated for the call is

switch (P01_p(&frame.tend.d[0], PO5_main)) {
case 7 /* bound #/:
goto L7 /+ bound #/,
case A_Resume:
goto L7 /* bound */;

}
L7: /+ bound */

This call uses the following success continuation. The continuation writes the result of the call to

p then signals the end of the bounded expression.

static int PO5_main()

{
register struct PFOO_main *mpfp;

mfp = (struct PFO0_main *)pfp;
FOc_write(1, &rpfp—>tend.d[0], &trashcan, (continuation)NULL);
return 7; /* bound */

}

The to operator in procedure p needs a success continuation that implements procedure suspen-
sion. Suspension is implemented by switching to the old procedure frame pointer and old argu-
ment pointer, then calling the success continuation for the call to p. The success continuation is
accessed with the expression *rpfp->succ_cont. In this example, the continuation will only be
the function PO5_main. The suspend must check the signal returned by the procedure call's
success continuation. However, the code generator does not try to determine exactly what sig-

nals might be retumned by a continuation belonging to another procedure. Such a continuation

- 101 -

may retum an A_Resume signal or a signal belonging to some procedure farther down in the

call chain. In this example, bounding signal 7 will be returned and it belongs to main.

If the call’s success continuation returns A_Resume, the procedure frame pointer and argu-
ment pointer must be restored, and the current failure action must be executed. In this case, that
action is to retum an A_Resume signal to the to operator. If the call’s success continuation
retuns any other signal, that signal must be propagated back through the procedure call. The

following function is the success continuation for the to operator.

static int PO3_p()
{
register int signal;

register struct PFO1_p *rpfp;

pfp = (struct PFO1_p *)pfp;
deref(rpfp—>rsit, rpfp—>rsit);
pfp = rpfp—>old_pfp;
argp = rpfp—>old_argp;
signal = (*rpfp—>succ_cont)();
if (signal = A_Resume) {
return signal;
}
pfp = (struct p_frame *)rpfp;
argp = NULL;
return A_Resume;

}

The following code implements the call to the to operator. The signal handling code associated

with the call must pass along any signal from the procedure call's success continuation. These

-102 -

signals are recognized by the fact that the procedure frame for the calling procedure is still in
effect. At this point, the signal is propagated out of the procedure p. Because the procedure
frame is about to be removed from the C stack, the descriptors it contains must be removed from

the tended list.

frame.tend.d[0].dword = D_Integer;
frame.tend.d[0].vword.integr = 1;
frame.tend.d[1].dword = D_Integer;
frame.tend.d[1].vword.integr = 10;
signal = OOk_to(2, &frame.tend.d[0], rslt, PO3_p);
it (pfp != (struct p_frame *)&frame) {

tend = frame.tend.previous;

return signal;

}
switch (signal) {

case A_Resume:

goto L2 /* bound */;

}
L2: /* bound */

So far, this discussion has not addressed the question of how the code generator determines
what signals might be returned from a call. Because code is generated in execution order, a call
involving a success continuation is generated before the code in the continuation is generated.
This makes it difficult to know what signals might originate from the success continuation. This
problem exists for direct calls to a success continuation and for calls to an operation that uses a

success continuation.

The problem is solved by doing code generation in two parts. The first part produces incom-

plete signal handling code. At this time, code to handle the signals produced directly by an

- 103 -

operation is generated. The second part of code generation is a fix-up pass that completes the

signal handling code by determining what signals might be produced by success continuations.

The code generator constructs a call graph of the continuations for a procedure. Some of
these calls are indirect calls to a continuation through an operation. However, the only effect of
an operation on signals returned by a continuation is to intercept A_Resume signals. All other
signals are just passed along. This is true even if the operation is a procedure. This call graph of
continuations does not contain the procedure call graph nor does it contain continuations from

other procedures.

Forward execution order imposes a partial order on continuations. A continuation only calls
continuations strictly greater in forward execution order than itself. Therefore the continuation

call graph is a DAG.

The fix-up pass is done with a bottom-up walk of the continuation call DAG. This pass
determines what signals are retuned by each continuation in the DAG. While processing a con-
tinuation, the fix-up pass examines each continuation call in that continuation. At the point it
processes a call, it has determined what signals might be retuned by the called continuation. It
uses this information to complete the signal handling code associated with the call and to deter-
mine what signals might be passed along to continuations higher up the DAG. If a continuation
contains code for a suspend, the fix-up pass notes that the continuation may return a foreign
signal belonging 1o another procedure call. As explained above, foreign signals are handled by
special code that checks the procedure frame pointer.

Temporary Variable Allocation

The code generator uses the liveness information for an intermediate value when allocating a
temporary variable to hold the value. As explained in Chapter 4, this information consists of the
furthest program point, represented as a node in the syntax tree, through which the intermediate
value must be retained. When a temporary variable is allocated to a value, that variable is placed

on a deallocation list associated with the node beyond which its value is not needed. When the

104 -

code generator passes a node, all the temporary variables on the node’s deallocation list are deal-

located.

The code generator maintains a status array for temporary variables while it is processing a
procedure. The array contains one element per temporary variable. This array is expandable,
allowing a procedure to use an arbitrary number of temporary variables. In a simple allocation
scheme, the status of a temporary variable is either free or in-use. The entry for a temporary vari-
able is initially marked free, it is marked in-use when the variable is allocated, and it is marked

free again when the variable is deallocated.

The simple scheme works well when temporary variables are allocated independently. It does
not work well when arrays of contiguous temporary variables are allocated. This occurs when
temporary variables are allocated to the arguments of a procedure invocation or any invocation
conforming to the standard calling conventions; under these circumstances, the argument list is
implemented as an array. All of the contiguous temporary variables must be reserved before the
first one is used, even though many operations may be performed before the last one is needed.
Rather than mark a temporary variable in-use before it actually is, the compiler uses the program
point where the temporary variable will be used to mark the temporary variable’s entry in the
status array as reserved. A contiguous array of temporary variables are marked reserved at the
same time, with each having a different reservation point. A reserved temporary variable may be
allocated to other intermediate values as long as it will be deallocated before the reservation
point. In this scheme, an entry in a deallocation list must include the previous status of the tem-

porary variable as it might be a reserved status.

The compiler allocates a contiguous subarray of temporary variables for the arguments of an
invocation when it encounters the invocation on the way down the syntax tree during its tree
walk. It uses a first-fit algorithm to find a large enough subarray that does not have a conflicting

allocation. Consider the problem of allocating temporary variables to the expression

-105 -

f1(12(f3(x, 140))). y)

where t1 can fail and f4 is a generator. The syntax tree for this expression is shown below. Note
that invocation nodes show the operation as part of the node label and not as the first operand to
general invocation. This reflects the direct invocation optimization that is usually performed on
invocations. Each node in the graph is given a numeric label. These labels increase in value in

forward execution order.

The following figure shows the operations in forward execution order with lines on the left
side of the diagram showing the lifetime of intermediate values. This represents the output of
the liveness analysis phase of the compiler. Because f4 can be resumed by f1, the value of the
expression x has a lifetime that extends to the invocation of f1. The extended portion of the life-

time is indicated with a dotted line.

- 106 -

X

f4()
,l: £3()

f2()

y
f1()

The following series of diagrams illustrate the process of allocating intermediate values.
Each diagram includes an annotated syntax tree and a status array for temporary variables. An
arrow in the tree shows the current location of the tree walk. A deallocation list is located near
the upper right of each node. An element in the list consists of a temporary variable number and
the status with which to restore the variable’s entry in the status array. If a temporary variable
has been allocated to an intermediate value, the variable’s number appears near the lower right

of the corresponding node.

The status array is shown with four elements. The elements are initialized to F which indi-
cates that the temporary variables are free. A reserved temporary variable is indicated by placing
the node number of the reservation point in the corresponding element. When a temporary vari-

able is actually in use, the corresponding element is set to /.

Temporary variables are reserved while walking down the syntax tree. The tree illustrated
below on the left shows the state of allocation after temporary variables have been allocated for
the operands of f1. Two contiguous variables are needed. All variables are free, so the first-fit
algorithm allocates variables O and 1. The status array is updated to indicate that these variables
are reserved for nodes 4 and 5 respectively, and the nodes are annotated with these variable
numbers. The lifetime information in the previous figure indicates that these variables should be

deallocated after f1 is executed, so the deallocation array for node 6 is updated.

The next step is the allocation of a temporary variable to the operand of f2. The intermediate

value has a lifetime extending from node 3 to node 4. This conflicts with the allocation of

-107 -

variable 0, but not the allocation of variable 1. Therefore, variable 1 is allocated to node 3 and

the deallocation list for node 4 is updated. This is illustrated in the tree on the right:

0123 0123

The final allocation requires a contiguous pair of variables for nodes / and 2. The value from
node 7 has a lifetime that extends to node 6, and the value from node 2 has a lifetime that
extends to node 3. The current allocations for variables 0 and 1 conflict with the lifetime of the

intermediate value of node I, so the variables 2 and 3 are used in this allocation. This is illus-

trated in the tree:

- 108 -

0123

The remaining actions of the allocator in this example mark temporary variables in-use when
the code generator uses them and restore previous allocated statuses when temporary variables
are deallocated. This is done in the six steps illustrated in the following diagram. The annota-
tions on the graph do not change. Only the node of interest is shown for each step. These steps

are performed in node-number order.

-109 -

0 @ @

[4fs]r]2] [«[afr]r] [«fr]r]F]

0123 0123 0123

1 {1:5} t {) 1 {0:F, 1:F, 2:F)
! 0 5 1 6

[r]s[rfF] nnnG BEEA

012 3 012 3 012 3

In general, the tree walk will altenate up and down the syntax tree. For example, if node 5

had children, the allocation status after the deallocation associated with node 4,

[r]s[r]F

0123

is used to allocate temporary variables to those children. If this requires more than four tem-

porary variables, the status array is extended with elements initialized to F.

This allocation algorithm is not guaranteed to produce an allocation that uses a minimal

number of temporary variables. Indeed, a smaller allocation for the previous example is illus-

trated in the tree:

-110-

While the non-optimality of this algorithm is unlikely to have a measurable effect on the per-
formance of any practical program, the problem of finding an efficient optimal solution is of
theoretical interest. Classical results in the area of register allocation do not apply. It is possible
to allocate a minimum number of registers from expression trees for conventional languages in
polynomial time [16]. The algorithm to do this depends on the fact that registers (temporary
variables) are dead as soon as the value they contain is used. This is not true for Icon temporary

variables.

The result of Prabhala and Sethi stating that register allocation is NP-complete even in the
presence of an infinite supply of registers also does not apply [38]. Their complexity result
derives from performing register allocation in the presence of common subexpression elimina-
tion (that is, from performing register allocation on expression DAGS rather than trees) on a 2-
address-instruction machine with optimality measured as the minimum number of instructions
needed to implement the program. Goal-directed evaluation imposes more structure on lifetimes
than common subexpression elimination, the machine model used here is the C language, and

optimality is being measure as the minimum number of temporary variables needed.

-111 -

The Icon temporary variable allocation problem is different from the Prolog variable alloca-
tion problem. Prolog uses explicit variables whose lifetimes can have arbitrary overiaps even in
the absence of goal-directed evaluation. The Prolog allocation problem is equivalent to the clas-

sical graph coloring problem which is NP-complete [16, 39].

If the allocation of a subarray of temporary variables is delayed until the first one is actually
needed in the generated code, an optimum allocation results for the preceding example. It is not
obvious whether this is true for the general case of expression trees employing goal-directed

evaluation. This problem is left for future work.

In addition to holding intermediate values, temporary variables are used as local tended vari-
ables within in-line code. This affects the pattern of allocations, but not the underlying allocation

technique.

-112 -

CHAPTER 9

Control Flow Optimizations

Naive Code Generation

Naive code generation does not consider the effects and needs of the immediately surround-
ing program. The result is often a poor use of the target language. Even sophisticated code gen-
eration schemes that consider the effects of relatively large pieces of the program still produce
poor code at the boundaries between the pieces. This problem is typically solved by adding a
peephole optimizer 10 the compiler to improve the generated code [16,40-42]. A peephole
optimizer looks at several instructions that are adjacent (in terms of execution) and tries to
replace the instructions by better, usually fewer, instructions. It typically analyzes a variety of

properties of the instructions such as addressing modes and control flow.

The Icon compiler has a peephole optimizer that works on the intemnal form of the generated
C code and deals only with control flow. The previous examples of generated code contain a
number of instances of code where control flow can be handled much better. For example, it is
possible to entirely eliminate the following code fragment generated for the example explaining

procedure suspension.

switch (signal) {
case A_Resume:
goto L2 /* bound */,

)
L2: /= bound */

This code is produced because the code generator does not take into account the fact that the

bounding label happens to immediately follow the test.

-113 -

Success Continuations

For the C code in the preceding example, it is quite possible that a C compiler would produce
machine code that its own peephole optimizer could eliminate. However, it is unlikely that a C
compiler would optimize naively generated success continuations. An earlier example of code

generation produced the continuation:

static int P02_main()

{
register struct PFO0_main *mpfp;

mfp = (struct PFO0_main #)pfp;
switch (O0o_numeq(2, &(rpfp—>tend.d[1]). &trashcan, (continuation)NULL))
{

case A_Continue:
break;
case A_Resume:

return A_Resume;

}

return 4; /+ bound */

}

If the statement
return 4; /+ bound */

is brought into the switch statement, replacing the break, then P02_main consists of a simple

operation call (a C call with associated associated signal handling code). This operation call is

114 -

switch (O0o_numeq(2, &(rpfp—>tend.d[1]), &trashcan, (continuation)NULL))
{
case A_Continue:
return 4; /* bound «/
case A_Resume:

return A_Resume;

P02_main is called directly in two places in the following code.

frame.tend.d[2].dword = D_|Integer;
frame.tend.d[2].vword.integr = 1;
switch (P02_main()) {
case A_Resume:
goto L2 /* alt */;
case 4 /+ bound #/:
goto L4 /+ bound #/;
}
L2: /= alt */
frame.tend.d[2].dword = D_lInteger;
frame.tend.d[2]).vword.integr = 2;
switch (P02_main()) {
case A_Resume:
goto L5 /* else #/;
case 4 /+ bound */:
goto L4 /+ bound =/,

}
L4: /* bound »/

-115-

A direct call to a trivial function can reasonably be replaced by the body of that function.
When this is done for a continuation, it is necessary to compose the signal handling code of the
body of a continuation with that of the call. This is accomplished by replacing each return state-
ment in the body with the action in the call corresponding to the signal retumed. The following

table illustrates the signal handling composition for the first call in the code. The resulting code
checks the signal from O00_numeq and performs the final action.

signal from O0o_numeq | signal from PO2_main | final action

A_Continue 4 goto L4,

A_Resume A_Resume goto L2;

The result of in-lining P02_main is

frame.tend.d[2].dword = D_lInteger;

frame.tend.d[2].vword.integr = 1;

switch (O0o_numeq(2, &frame.tend.d[1], &trashcan, (continuation)NULL))
{
case A_Continue:
goto L4 /* bound */,
case A_Resume:
goto L2 /= alt */;
}
L2: /x alt */
frame.tend.d[2].dword = D_lInteger;

frame.tend.d[2].vword.integr = 2;

-116 -

switch (O0o_numeq(2, &frame.tend.d[1], &trashcan, (continuation)NULL))
{
case A_Continue:
goto L4 /* bound */;
case A_Resume:
goto LS /* else */;

}
L4: /* bound */

With a little more manipulation, the switch statements can be converted into if statements

and the label L2 can be eliminated:

frame.tend.d[2].dword = D_Integer;

frame.tend.d[2).vword.integr = 1;

if (O0o_numeq(2, &frame.tend.d[1], &trashcan, (continuation)NULL) ==
A_Continue) goto L4 /* bound */;

frame.tend.d[2].dword = D_Integer;

frame.tend.d[2].vword.integr = 2;

if (O0o_numeq(2, &frame.tend.d[1], &trashcan, (continuation)NULL) ==
A_Resume) goto L5 /* else */;

L4: /* bound #/

The Icon compiler’s peephole optimizer recognizes two kinds of trivial continuations. The
kind illustrated in the previous example consists of a single call with associated signal handling,
The other kind simply consists of a single retum-signal statement. As in the above example, con-
tinuations do not usually meet this definition of triviality until control flow optimizations are
performed on them. For this reason, the Icon compiler's peephole optimizer must perform some

optimizations that could otherwise be left to the C compiler.

-117 -

Iconc’s Peephole Optimizer

The peephole optimizer performs the following optimizations:

e elimination of unreachable code

e climination of gotos immediately preceding their destinations

e collapse of branch chains

e deletion of unused labels

e collapse of trivial call chains (that is, in-lining trivial continuations)
e deletion of unused continuations

o simplification of signal checking

Unreachable code follows a goto or a return, and it continues to the first referenced label or
to the end of the function. This optimization may eliminate code that returns signals, thereby
reducing the number of signals that must be handled by a continuation call. This provides
another reason for performing this traditional optimization in the Icon compiler rather than let-
ting the C compiler do it. This code is eliminated when the fix-up pass for signal handling is
being performed. gotos immediately preceding their labels also are eliminated at this time.

Unused labels usually are eliminated when the code is written out, but they may be deleted as

part of a segment of unreachable code. Unused continuations are simply not written out.

A branch chain is formed when the destination of a goto is another goto or a return. A
break in a switch statement is treated as a goto. There may be several gotos in a chain. Each
goto is replaced by the goto or return at the end of the chain. This may leave some labels
unreferenced and may leave some of the intermediate gotos unreachable. Branch chains are col-
lapsed during the fix-up pass.

Inter-function optimization is not traditionally considered a peephole optimization. This is
because human beings seldom write trivial functions and most code generators do not produce

continuations. The Icon compiler, however, uses calls to success continuations as freely as it

-118 -

uses gotos. Therefore collapsing trivial call chains is as important as collapsing branch chains.

There are two kinds of calls to trivial continuations: direct calls and indirect calls through an
operation. A direct call always can be replaced by the body of the continuation using signal han-
dling code that is a composition of that in the continuation and that of the call. If the continua-
tion consists of just a return statement, this means that the call is replaced by the action associ-
ated with the returned signal: either another return statement or a goto statement. For continua-
tions consisting of a call, the composition is more complicated, as demonstrated by the example

given earlier in this chapter.

In the case of an indirect call through an operation, the continuation cannot be placed in line.
However, there is an optimization that can be applied. Under some circumstances, the compiler
produces a continuation that simply calls another continuation. For example, this occurs when

compiling the Icon expression
every write(!x | "end")

The compiler allocates a continuation for the alternation, then compiles the expression !x. The
element generation operator suspends, so the compiler allocates a continuation for it and code
generation proceeds in this continuation. However, the end of the first alternative has been
reached so the only code for this continuation is a call to the continuation for the alternation.
The continuation for the alternation contains the code for the invocation of write and for the end

of the every control structure. The code for the first altemative is

frame.tend.d[2].dword = D_Var;

frame.tend.d[2].vword.descptr = &frame.tend.d[0] /* x =*/;

- 119 -

switch (OOe_bang(1, &frame.tend.d[2], &frame.tend.d[1], P02_main)) {
case A_Resume:

goto L1 /+ alt #+/;

}
L1: /= alt »/

The code for the two continuations are

static int P02_main()

{
switch (P03_main()) {

case A_Resume:

return A_Resume;

static int PO3_main()

{
register struct PFOO_main +mpfp;

pfp = (struct PFOO_main *)pfp;
FOc_write(1, &rpfp—>tend.d[1], &trashcan, (continuation)NULL);

return A_Resume;

}

The call to OOe_bang can be optimized by passing the continuation P03_main in place of
P02_main.

The optimizations that collapse trivial call chains are performed during the fix-up pass for

signal handling.

-120 -

The final peephole optimization involves simplifying the signal handling code associated
with a call. In general, signals are handled with a switch statement containing a case clause for
each signal. The C compiler does not know that these signals are the only values that are ever
tested by the switch statement, nor is the C compiler likely to notice that some cases simply pass
along to the next function down in the call chain the signal that was received. The Icon compiler
can use this information to optimize the signal handling beyond the level to which the C com-
piler is able to optimize it. The optimizer may replace the general form of the switch statement
with a switch statement utilizing a default clause or with an if statement. In some cases, the
optimizer completely eliminates signal checking. This optimization is done when the code is

written.

-121-

CHAPTER 10

Optimizing Invocations

Several optimizations apply to the invocation of procedures and built-in operations. These
include optimizations resulting from the application of information from type inferencing,
optimizations resulting from the application of lifetime information to passing parameters and
returning results, and optimizations involving the generation of in-line code. There are interac- _

tions between the optimizations in these three categories.

A primary motivation in developing the Icon compiler was to explore the optimizations that
are possible using information from type inferencing. These optimizations involve eliminating
type checking and type conversions where type inferencing indicates that they are not needed.
Dereferencing is not normally viewed as a type conversion, because variable references are not
first-class values in Icon. However, variable references occur as intermediate values and do
appear in the type system used by the Icon compiler. Therefore, from the perspective of the com-

piler, dereferencing is a type conversion.

When a procedure or built-in operation is implemented as a C function conforming to the
standard calling conventions of the compiler system, that function is responsible for performing
any type checking and type conversions needed by the procedure or operation. For this reason,

the checking and conversions can only be eliminated from tailored implementations.

Invocation of Procedures

As explained earlier, a procedure has one implementation: either a standard implementation
or a tailored implementation. If the compiler decides to produce a tailored implementation, the
caller of the procedure is responsible for dereferencing. When type inferencing determines that
an operand is not a variable reference, no dereferencing code is generated. Suppose p is a pro-

cedure that takes one argument and always fails. If PO1_p is the tailored C function

-122 -

implementing p, then it takes one argument: a pointer to a descriptor containing the dereferenced

Icon argument. Without using type information, the call p(3) translates into

frame.tend.d[0].dword = D_Integer;
frame.tend.d[0].vword.integr = 3;
deref(&frame.tend.d[0], &frame.tend.d[0]);
PO1_p(&frame.tend.d[0]);

With the use of type information, the call to deref is eliminated:

frame.tend.d[0].dword = D_lInteger;
frame.tend.d[0].vword.integr = 3;
PO1_p(&frame.tend.d[0]);

Invocation and In-lining of Built-in Operations

Icon’s built-in operations present more opportunities for these optimizations than procedures,
because they can contain type checking and conversions beyond dereferencing. Built-in opera-
tions are treated differently than procedures. Except for keywords, there is always a C function
in the run-time library that implements the operation using the standard calling conventions. In
addition, the compiler can create several tailored in-line versions of an operation from the infor-

madon in the data base.

It is important to keep in mind that there are two levels of in-lining. An in-line version of an
operation always involves the type checking and conversions of the operation (although they
may be optimized away during the tailoring process). However, detailed code is placed in-line
only if it is specified with an inline statement in the run-time system. If the detailed code is
specified with a body statement, the ‘‘in-line’” code is a function call to a routine in the run-time
library. The difference can be seen by comparing the code produced by compiling the expression

“x to that produced by compiling the expression /x. The definition in the run-time

-123 -

implementation language of cset complement is

operator{1} =~ compl(x)
if lenv:tmp_cset(x) then
runerr(104, x)
abstract {
return cset

}
body {

end

The conversion to tmp_cset is a conversion to a cset that does not use space in the block region.
Instead the cset is constructed in a temporary local buffer. The data base entry for the operation
indicates that the argument must be dereferenced. The entry has a C translation of the type
conversion code with a call to the support routine, cnv_tcset, to do the actual conversion.
cnv_tcset takes three arguments: a buffer, a source descriptor, and a destination descriptor. The
entry in the data base has a call to the function O160_compl in place of the body statement.
This function takes as arguments the argument and the result location of the operation. The code

generator ignores the abstract clause. The in-line code for "X is

frame.tend.d[3].dword = D_Var;
frame.tend.d[3].vword.descptr = &frame.tend.d[0] /* x */;

deref(&frame.tend.d[3], &frame.tend.d[3]);

-124-

if (cnv_tcset(&(frame.cbuf[0]), &(frame.tend.d[3]). &(frame.tend.d[3])))
goto L1 /* then: compl #/;
err_msg(104, &(frame.tend.d[3]));
L1: /* then: compl */
0160_compl(&(frame.tend.d[3]) , &frame.tend.d[2]);

The following is the definition of the ‘/* operator. Note that both undereferenced and derefer-

enced versions of the argument are used.

operator{0,1} / null(underef x — dx)
abstract {
return type(x)
}
if is:null(dx) then
inline {
return x;
}
else
inline {

fail;

end

In this operation, all detailed code is specified with inline statements. The generated code for /x
follows. Note that the order of the then and else clauses is reversed to simplify the test. L3 is
the failure label of the expression. The return is implemented as an assignment to the result

location, frame.tend.d[2], with execution falling off the end of the in-line code.

-125 -

frame.tend.d[3].dword = D_Var;
frame.tend.d[3].vword.descptr = &frame.tend.d[0] /* x */;
deref(&frame.tend.d[3], &frame.tend.d[4));
if (frame.tend.d[4).dword == D_Null)
goto L2 /+ then: null +/;
goto L3 /* bound */;
L2: /* then: null */
frame.tend.d[2] = frame.tend.d[3];

If type inferencing determines a unique type for x in each of these expressions, the type
checking is eliminated from the code. Suppose type inferencing determines that x can only be of

type cset in the expression

If parameter passing and assignment optimizations (these are explained below) are combined

with the elimination of type checking, the resulting code is
0160_compl(&(frame.tend.d[0] /* x */), &frame.tend.d[1] /* a */);

The form of this translated code meets the goals of the compiler design for the invocation of a
complicated operation: a simple call to a type-specific C function with minimum parameter pass-
ing.

The implementation language for run-time operations requires that type conversions be
specified in the control clause of an if statement. However, some conversions, such as convert-
ing a string to a cset, are guaranteed to succeed. If the code generator recognizes one of these
conversions, it eliminates the if statement. The only code generated is the conversion and the
code to be executed when the conversion succeeds. Suppose type inferencing determines that x

in the preceding example can only be a string. Then the generated code for the example is

- 126 -

frame.tend.d[2] = frame.tend.d[0] /* x */,
cnv_tcset(&(frame.cbuf[0]), &(frame.tend.d[2]), &(frame.tend.d[2]));
0160_compl(&(frame.tend.d[2]) , &frame.tend.d[1] /* a */);

Heuristic for Deciding to In-line

The in-line code for the operators shown so far in the section is relatively small. However,
the untailored in-line code for operations like the element generation operator, !, is large. If
tailoring the code does not produce a large reduction in size, it is better to generate a call to the C
function in the run-time library that uses the standard calling conventions. A heuristic is needed

for deciding when to use in-line code and when to call the standard C function.

A simple heuristic is to use in-line code only when all type checking and conversions can be
eliminated. However, this precludes the generation of in-lining code in some important situa-
tions. The operator / is used to direct control flow. It should always be used with an operand
whose type can vary at run time, and the generated code should always be in-lined. Consider the

Icon expression
if /x then x = ""

The compiler applies parameter-passing optimizations to the sub-expressionllx. It also elim-
inates the return value of the operator, because the value is discarded. An implementation con-
vention for operations allows the compiler to discard the expression that computes the return
value. The convention requires that a return expression of an operation not contain user-visible
side effects (storage allocation is an exception to the rule; it is visible, but the language makes no
guarantees as to when it will occur). The code for /x is reduced to a simple type check. The code

generated for the if expression is

-127 -

if ((frame.tend.d[0] /* x */).dword == D_Null)
goto L2 /* bound #/;
goto L3 /* bound */;
L2: /= bound */
frame.tend.d[0] /= x */.vword.sptr = ™,
frame.tend.d[0] /* x */.dword = O;
L3: /* bound */

To accommodate expressions like those in the preceding example, the heuristic used in the
compiler is to produce tailored in-line code when that code contains no more than one type
check. Only conversions retaining their if statements are counted as a type checks. This simple
heuristic produces reasonable code. Future work includes examining more sophisticated heuris-

tics.

In-lining Success Continuations

Suspension in in-line code provides further opportunity for optimization. In general, suspen-
sion is implemented as a call to a success continuation. However, if there is only one call to the
continuation, it is better not to put the code in a continuation. The code should be generated at

the site of the suspension. Consider the expression
every p(1 to 10)

The implementation of the to operator is

-128 -

operator{*} ... to(from, to)
/x
* arguments must be integers.
*/
if lenv:C_integer(from) then
runerr(101, from)
if lcnv:C_integer(to) then

runerr(101, to)

abstract {

return integer

}

inline {
for (; from <= to; ++from) {
suspend C_integer from;
}
fail;
}

end

The arguments are known 10 be integers, so the tailored version consists of just the code in the
inline statement. The for statement is converted to gotos and conditional gotos, so the control
flow optimizer can handle it (this conversion is done by rtt before putting the code in the data
base). The suspend is translated into code to set the result value and a failure label used for the
code of the rest of the bounded expression. This code is generated before the label and consists
of a call to the procedure p and the failure introduced by the every expression. The generated
code follows. The failure for the every expression is translated into goto L4, where L4 is the

failure label introduced by the suspend. The control flow optimizer removes both the goto and

-129 -

the label. They are retained here to elucidate the code generation process.

frame.tend.d[1].dword = D_Integer;
frame.tend.d[1].vword.integr = 1;
frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 10;

L1: /= within: to */
if (/(frame.tend.d[1].vword.integr <= frame.tend.d[2].vword.integr))
goto L2 /* bound */;
frame.tend.d[0]).vword.integr = frame.tend.d[1].vword.integr;
frame.tend.d[0].dword = D_Integer;
PO1_p(&frame.tend.d[0]);
goto L4 /* end suspend: to */;
L4: /* end suspend: to */
++frame.tend.d[1].vword.integr,;
goto L1 /* within: to #/;
L2: /+ bound */

This is an example of a generator within an every expression being converted into an in-line
loop. Except for the fact that descriptors are being used instead of C integers, this is nearly as

good as the C code

for (i = 1; i <= 10; ++i)

p(i):;

-130 -

Parameter Passing Optimizations

As mentioned above, parameter-passing optimizations are used to improved the generated
code. These optimizations involve eliminating unneeded argument computations and eliminating
unnecessary copying. These optimizations are applied to tailored in-line code. They must take
into account how a parameter is used and whether the corresponding argument value has an

extended lifetime,

In some situations, a parameter is not used in the tailored code. There are two common cir-
cumstances in which this happens. One is for the first operand of conjunction. The other occurs
with a polymorphous operation that has a type-specific optional parameter. If a different type is
being operated on, the optional parameter is not referenced in the tailored code. If a tailored
operation has an unreferenced parameter and the invocation has a corresponding argument
expression, the compiler notes that the expression result is discarded. Earlier in this chapter there
are examples of optimizations possible when expression results are discarded. If the correspond-
ing argument is missing, the compiler refrains from supplying a null value for it. Consider the

invocation
insert(x, 3)

insert takes three arguments. If x is a table, the third argument is used as the entry value and
must be supplied in the generated code. In the following generated code, the default value for the
third argument is computed into frame.tend.d[2].dword:

frame.tend.d[1]).dword = D_lInteger;

frame.tend.d[1].vword.integr = 3;

frame.tend.d[2].dword = D_Null;

frame.tend.d[3] = frame.tend.d[0] /* x */;
F100_insert(&(frame.tend.d[2]), &(frame.tend.d[1]), &(frame.tend.d[3]),

&trashcan);

-131 -

Because F100_insert uses a tailored calling convention, its arguments can be in a different
order from those of the Icon function. It appears that the argument expression X is computed in
the wrong place in the execution order. However, this is not true; the expression is not computed
at all. If it were, the result would be a variable reference. Instead, the assignment of the value in
X to the temporary variable is a form of optimized dereferencing. Therefore, it must be done as

part of the operation, not as part of the argument computations. This is explained below.

If the value of x in this expression is a set instead of a table, the entry value is not used. This
is illustrated by the following code. Note that a different C function is called for a set than for a

table; this is because a different body statement is selected.

frame.tend.d[1].dword = D_lInteger;

frame.tend.d[1]).vword.integr = 3;

frame.tend.d[2]) = frame.tend.d[0] /* x */;
Fio1_insert(&(frame.tend.d[1]) , &(frame.tend.d[2]) , &trashcan);

In general, an operation must copy its argument to a new descriptor before using it. This is
because an operation is allowed to modify the argument. Modification of the original argument
location is not safe in the presence of goal-directed evaluation. The operation could be re-
executed without recomputing the argument. Therefore, the original value must be available.

This is demonstrated with the following expression.
every p(0 to (1 to 3))

This is a double loop. The outer to expression is the inner loop, while the inner to expression is
the outer loop. to modifies its first argument while counting. However, the first argument to the
outer to has an extended lifetime due to the fact that the second argument is a generator. There-
fore, this t0 operator must make a copy of its first argument. The generated code for this every

expression is

-132-

frame.tend.d[2].dword = D_lInteger;
frame.tend.d[2].vword.integr = O;
frame.tend.d[4].dword = D_Integer;
frame.tend.d[4].vword.integr = 1;
frame.tend.d[5].dword = D_lInteger;

frame.tend.d[5].vword.integr = 3;

L1: /* within: to */
if (\(frame.tend.d[4].vword.integr <= frame.tend.d[5].vword.integr))
goto L2 /* bound */;
frame.tend.d[3].vword.integr = frame.tend.d[4].vword.integr;

frame.tend.d[3].dword = D_Integer;

frame.tend.d[6] = frame.tend.d[2];
L3: /+ within: to */

if ((frame.tend.d[6).vword.integr <= frame.tend.d[3].vword.integr))
goto L4 /* end suspend: to */,

frame.tend.d[1).vword.integr = frame.tend.d[6].vword.integr;

frame.tend.d[1].dword = D_lInteger;

PO1_p(&frame.tend.d[1]);

++frame.tend.d[6].vword.integr;

goto L3 /* within: to */;

L4: /* end suspend: to */
++frame.tend.d[4).vword.integr;
goto L1 /* within: to #/;

L2: /* bound */

The first argument to the outer to is copied with the statement

-133 -

frame.tend.d[6] = frame.tend.d[2);

The copying of the other arguments has been eliminated because of two observations: the second
argument of to is never modified and the first argument of the inner to (outer loop) is never
reused without being recomputed. This second fact is determined while the lifetime information
is being calculated. There is no generator occurring between the computation of the argument
and the execution of the operator. Even if there were, it would only necessitate copying if the

generator could be resumed after the operator started executing.

As noted above, another set of optimizations involves deferencing named variables. If an
operation needs only the dereferenced value of an argument and type inferencing determines that
the argument is a specific named variable (recall that each named variable is given a distinct
variable reference type), the code generator does not need to generate code to compute the vari-
able reference, because it knows what it is. That is, it does not need the value of the argument. If

the argument is a simple identifier, no code at all is generated for the argument.

As shown in the code presented above for
insert(x, 3)
dereferencing can be implemented as simple assignment rather than a call to the deref function:
frame.tend.d[3] = frame.tend.d[0] /* x #/;

In fact, unless centain conditions interfere, the variable can be used directly as the argument
descriptor and no copying is needed. This is reflected in the code generated in a previous exam-

ple:
if /x then ...

X is used directly in the in-line code for /:

134 -

if ((frame.tend.d[0] /* x =/).dword == D_Null)
goto L2 /* bound #/,

This optimization cannot be performed if the operation modifies the argument, nor can it be per-
formed if the variable's value might change while the operation is executing. Performing the
optimization in the presence of the second condition would violate the semantics of argument
dereferencing. The compiler does two simple tests to determine if the second condition might be
true. If the operation has a side effect, the compiler assumes that the side-effect might involve
the named variable. Side effects are explicitly coded in the abstract type computations of the
operation. The second test is to see if the argument has an extended lifetime. The compiler
assumes that the variable might be changed by another operation during the extended lifetime

(that is, while the operation is suspended).

Assignment Optimizations

The final set of invocation optimizations involves assignments to named variables. These
includes simple assignment and augmented assignments. Optimizing these assignments is
important and optimizations are possible beyond those that can easily be done working from the
definition in the data base; assignments to named variables are treated as special cases. The
optimizations are divided into the cases where the right-hand-side might produce a variable

reference and those where it produces a simple Icon value.

There are two cases when the right-hand-side of the assignment evaluates to a variable refer-
ence. If the right-hand-side is a named variable, a dereferencing optimization can be used. Con-

sider
s = s1

This Icon expression is translated into

-135-

frame.tend.d[0] /+ s */ = frame.tend.d[1] /* s1 */;

This is the ideal translation of this expression. For other situations, the deref function must be

used. For example the expression
s ==
is translated into

if (O0f2_random(&(frame.tend.d[0] /* x */), &frame.tend.d[2]) == A_Resume)
goto L1 /* bound »/;
deref(&frame.tend.d[2], &frame.tend.d[1] /* s */);

When the right-hand-side computes to a simple Icon value, the named variable on the left-
hand-side can often be used directly as the result location of the operation. This occurs in the

earlier example

which translates into

0160_compl(&(frame.tend.d[0] /* x */), &frame.tend.d[1] /* a */);

This optimization is safe as long as setting the result location is the last thing the operation
does. If the operation uses the result location as a work area and the variable were used as the
result location, the operation might see the premature change to the variable. In this case, a
separate result location must be allocated and the Icon assignment implemented as a C assign-

ment. String concatenation is an example of an operation that uses its result location as a work

area. The expression

s =81|s

-136 -

1s translated into

if (StrLoc(frame.tend.d[1] /* s1 #/) + StrLen(frame.tend.d[1] /* s1 #/)
== strfree)
goto L1 /* within: cater */;
StrLoc(frame.tend.d[2]) = alcstr(StrLoc(frame.tend.d[1] /* s1 */),
StrLen(frame.tend.d[1] /* s1 #/)),
StrLen(frame.tend.d[2]) = StrLen(frame.tend.d[1] /* s1 */);
goto L2 /x within: cater */;
L1: /* within: cater */
frame.tend.d[2] = frame.tend.d[1] /* s1 */,
L2: /* within: cater */
alcstr(StrLoc(frame.tend.d[0] /* s */), StrLen(frame.tend.d[0] /* s */));
StrLen(frame.tend.d[2]) = StrLen(frame.tend.d[1] /* s1 */) +
StrLen(frame.tend.d[0] /* s */);

frame.tend.d[0] /* s */ = frame.tend.d[2];

frame.tend.d[2] is the result location. If frame.tend.d[0] (the variable S) were used instead, the

code would be wrong.

There are still some optimizations falling under the category covered by this chapter to be

explored as future work. For example, as shown earlier,

is translated into

-137 -

frame.tend.d[2] = frame.tend.d[0] /* x */;
cnv_tcset(&(frame.cbuf{0]), &(frame.tend.d[2]), &(frame.tend.d[2]));
O160_compl(&(frame.tend.d[2]) , &frame.tend.d[1] /* a */);

when X is a string. The assignment to frame.tend.d[2] can be combined with the conversion to

produce the code

cnv_tcset(&(frame.cbuf[0]), &(frame.tend.d[0] /* x =*/), &(frame.tend.d[2]));
0160_compl(&(frame.tend.d[2]) , &frame.tend.d[1] /* a */);

There is, of course, always room for improvement in code generation for specific cases. How-
ever, the optimizations in this chapter combine to produce good code for most expressions. This

is reflected in the performance data presented in the Chapter 11.

-138 -

CHAPTER 11

Performance of Compiled Code

The performance of compiled code is affected by the various optimizations performed by the
compiler. This chapter demonstrates the effects of these optimizations on the execution speed of
Icon expressions. It also presents speed improvements and memory usage for compiled code
versus interpreted code for a set of complete Icon programs. All timing results used in this

chapter were obtained on a Sun 4/490 and are the average of the results from three runs.

Expression Optimizations

The effects of four categories of optimization are demonstrated. These are assignment optim-
izations, invocation optimizations, control flow optimizations, and optimizations using informa-
tion from type inferencing. Expression timings for the first three categories were made using
techniques described in the August 1990 issue of The Icon Analyst [43]. The following program

skeleton is used to construct the programs to perform these timings.

procedure main()

local x, start, overhead, iters
iters := 1000000

start := &time
every 1 to iters do {

}

overhead := &time - start

-139-

x:=0
start := &time
every 1 to iters do {

expression to be timed (may use x)

}

write(&time - start — overhead)

end

The timings are performed both with and without the desired optimizations, and the results are
compared by computing the ratio of the time without optimization to the time with optimization.
The assignment optimizations are described in Chapter 10. The effect of the assignment

optimizations on the expression

x = &null

is measured using the program outlined above. The analysis that produces the assignment
optimization is disabled by enabling debugging features in the generated code. The only other
effect this has on the assignment expression is to insert code to update the line number of the
expression being executed. In this test, the line number code is removed before the C code is
compiled, insuring that the assignment optimization is the only thing measured. The timing

results for this test produce

Assignment Test

Time in Milliseconds Averaged over Three Runs

Unoptimized Optimized Ratio
1122 478 2.3

The tests were performed with type inferencing enabled. Therefore, even the ‘‘unoptimized’’

version of the assignment has the standard operation optimizations applied to it. This test

- 140 -

demonstrates the importance of performing the special-case assignment optimizations.

The next category of optimization measured is invocation optimization. This results in the
direct invocation of the C functions implementing operations, or in some cases results in the

operations being generated in line. The execution time for the expression
tab(0)

is measured with and without invocation optimizations. As with the assignment optimizations,
these optimizations are disabled by enabling debugging features. Once again the line number
code is removed before the C code is compiled. These optimizations interact with the optimiza-
tions that use information from type inferencing. The measurements are made with type
inferencing disabled. Therefore, no type checking simplifications are performed. Without the
invocation optimizations, the generated code consists of an indirect invocation through the glo-
bal variable tab. With the invocation optimizations, the generated code consists of type
checking/conversion code for the argument to tab and a call to the function implementing the

body statement of tab. The timing results for tab(0) produce

Invocation Test

Time in Milliseconds Averaged over Three Runs

Unoptimized Optimized Ratio

8394 4321 1.9

The third category of optimization is control flow optimization. As explained in Chapter 9,
these optimizations only perform improvements that a C compiler will not perform when the
code contains trivial call chains. One situation that produces trivial call chains is nested altema-

tion. The execution time for the expression

every x ;= ixor(x, 1|23 |4]5)

-141 -

is measured with and without control flow optimizations. The timing results for this every loop

produce

Control Flow Test

Time in Milliseconds Averaged over Three Runs

Unoptimized Optimized Ratio
6384 4184 1.5

The final category of optimization results from type inferencing. The speed improvements
result from generating operations in line, eliminating type checking, and generating success con-
tinuations in line. Use of the to operation is a good example of where these optimizations can be
applied. This is demonstrated by measuring the speed of an every loop using the to operation.

The program that performs the measurement is

procedure main()

local x, start

start = &time
every x := 1 to 5000000
write(&time - start)

end
The timing results for this program produce

Type Inference Test

Time in Milliseconds Averaged over Three Runs

Unoptimized Optimized Ratio
9233 2721 33

-142 -

Another approach to determining the effectiveness of type inferencing is to measure how
small a set it deduces for the possible types of operands to operations. This indicates whether
future work should concentrate on improving type inferencing itself or simply concentrate on
using type information more effectively in code generation. A simple measure is used here: the
percentage of operands for which type inferencing deduces a unique Icon type. Measurements
are made for operands of all operators, except optimized assignment, and for operands of all
built-in functions appearing in optimized invocations. For the most part, these are the operations
where the code generator can use type information. Measurements were made for a set of 14 pro-
grams (described below). Unique operand types within each program range from 63 percent to
100 percent of all operands, with an overall figure for the tests suite of 80 percent (this is a
straight unweighted figure obtained by considering all operands in the test suite without regard
to what program they belong to); even a perfect type inferencing system will not deduce unique
types for 100 percent of all operands, because not all operands have unique types. This suggests
that an improved type inferencing system may benefit some programs, but will have only a small
overall impact. Future work should give priority to making better use of the type information

rather than to increasing the accuracy of type inferencing.

Program Execution Speed

It has been demonstrated that the compiler optimizations are effective at improving the kinds
of expressions they are directed toward. The question remains: How fast is compiled code (with
and without optimizations) for complete programs as compared to interpreted code for the same
programs? For some expressions, optimizations may interact to create significant cumulative
speed improvements. For example, the fully optimized code for the every loop in the previous
example is 30 times faster than the interpreted code; the improvement of 3.3 from type inferenc-
ing contributes one factor in the total improvement. Other expressions may spend so much time
in the run-time system (which is unaffected by compiler optimizations) that no measurable

improvements are produced.

-143 -

A set of 14 programs was selected mostly from contributions to the Icon program library [44)
for testing the performance of the compiler. These programs were selected to represent a variety

of applications and programming styles (an additional requirement is that they run long enough

to obtain good timing results).

The following table shows the speed improvements for the compiled code as compared to
interpreted code. The compiler and interpreter used for the measurements both implement Ver-
sion 8 of Icon. The execution time used to compute the speed improvements is the cpu time
measured using the Bourne shell’s time command. The first column in the table shows the exe-
cution time under the interpreter. The second column is for compiled code with debugging
features enabled and optimizations disabled. This code is still better than what would be
obtained by just removing the interpreter loop, because intelligent code generation is performed,
especially for bounded expressions, and keywords are generated in line. The third column is for

code with debugging features disabled and full optimization enabled.

Execution Time In Seconds Averaged Over Three Runs

Compiler Compiler
Program Interpreter Unoptimized Optimized
cksol 499 33.5 (1.48) 225 (2.21)
concord 31.1 18.5 (1.68) 9.8 (3.17)
iidecode 60.3 34.0 (1.77) 129 (4.67)
iiencode 50.4 34.4 (1.46) 10.5 (4.80)
impress 44.6 248 (1.79) 14.0 (3.18)
list 43.1 245 (1.75) 13.6 (3.16)
memfiltr 60.8 34.3 (1.77) 15.3 (397)
mf 30.1 18.7 (1.60) 147 (2.04)

-144 -

pssplit 64.0 39.0 (1.64) 26.6 (2.40)

roffcmds 32.9 18.1 (1.81) 120 (2.74)
sentence 34.3 239 (1.43) 16.2 (2.11)
spandex 36.8 23.3 (1.57) 14.7 (2.50)
textent 36.2 18.4 (1.96) 9.9 (3.65)
wrapper 27.3 159 (1.71) 9.4 (2.90)

The numbers in parentheses are speed-up factors obtained by dividing the interpreter execu-

tion time by the execution time of compiled code.

Code Size

One advantage the compiler has over the interpreter is that, unless a program is compiled
with full string invocation enabled, the executable code for a program need not include the full

run-time system. For systems with limited memory, this can be a significant advantage.

The sizes of executable code presented here are obtained from file sizes. All executable files
have had debugging information stripped from them. The size of the executable code in the
interpreter system is taken to be the size of the interpreter (278,528 bytes) plus the size of the
icode for the program being measured (under Unix systems, the size of the executable header,
12,800 bytes for the Sun 4, is subtracted from the size of the icode file, because it is not present

during interpretation). Measurements for the 14 test programs are:

Program Sizes in Bytes
Program Interpreter Compiler Ratio
cksol 282,153 81,920 0.29
concord 284,416 90,112 0.31

- 145 -

iidecode 285,525 98,304 0.34

iiencode 283,567 81,920 0.28
impress 295,656 114,688 0.38
list 287,376 98,304 0.34
memfiltr 296,082 114,688 0.38
mf 282,739 81,920 0.28
pssplit 279,709 73,728 0.26
roffcmds 280,797 81,920 0.29
sentence 283,249 81,920 0.28
spandex 281,843 81,920 0.29
textent 280,397 73,728 0.26
wrapper 279,780 73,728 0.26

Other factors create differences in memory usage between the interpreter and compiled code.
For example, the interpreter allocates a stack for expression evaluation. On the Sun 4, this stack
is 40,000 bytes. The compiler, on the other hand, allocates work areas on a per-procedure basis

and only allocates the maximum needed at any execution point within the procedure.

- 146 -

CHAPTER 12

Conclusions

Summary

The underlying ideas used in type inferencing, liveness analysis, and temporary variable allo-
cation were explored using prototype systems before work was started on the compiler described
in this dissertation. The fundamental reasons for creating the compiler were to prove that these
ideas could be incorporated into a complete and practical compiler for Icon, to explore optimiza-
tions that are possible using the information from type inferencing, and to determine how well
those optimizations perform. The goal of proving the usefulness of ideas continues a long tradi-

tion in the Icon language project and in the SNOBOL language project before it.

The prototype type inferencing system demonstrates that a naive implementation uses too
much memory; implementation techniques were developed for the compiler to greatly reduce
this memory usage. As the design and implementation of the compiler progressed, other prob-
lems presented themselves, both large and small, and solutions were developed to solve them.
These problems include how to elegantly produce code either with or without type checking,
how to generate good code for simple assignments (a very important kind of expression in most
Icon programs), how to generate code that uses the continuation-passing techniques chosen for
the compilation model, and how to perform peephole optimizations in the presence of success

continuations.

This dissertation describes the problems addressed by the Icon compiler and why they are
important to the compiler, along with innovative solutions. It presents a complete set of tech-
niques used to implement the optimizing compiler. Performance measurements demonstrate the
improvements brought about by the various optimizations. They also demonstrate that, for most

programs, compiled code runs much faster than interpreted code. Previous work has shown that

2147 -

simply eliminating the interpreter loop is not enough to produce large performance improve-
ments [18]. Therefore, the measurements show that the set of techniques, in addition to being

complete, is also effective.

Future Work

The Icon compiler builds upon and adds to a large body of work done previously by the Icon
project. There are many problems and ideas relating to the implementation of Icon that remain
to be explored in the future. Several are presented in earlier chapters. Others are described in the

following list.

e The quality of type inferencing can be improved. For example, if
x|y

is successfully executed, both x and y must contain lists. The current version of type
inferencing in the compiler does not use this information; it updates the store based on
result types and side effects, but not based on the argument types that must exist for suc-
cessful execution without run-time error termination. Another improvement is to extend
the type system to include constants and thereby perform constant propagation automati-
cally as part of type inferencing. The type system can also be extended to distinguish
between values created in allocated storage and those that are constant and do not reside
in allocated storage. A descriptor that never contains values from allocated storage does

not need to be reachable by garbage collection.

e In spite of large improvements in the storage requirements of type inferencing over the
prototype system, this analysis requires large amounts of memory for some programs. A
suggestion by John Kececioglu [45] is to explore the use of applicative data structures

that share structure with their predecessors.

- 148 -

Type inferencing provides information about values that do not need run-time type infor-
mation associated with them. In the case of integers and reals, this information along
with information from the data base about run-time operations can be used to perform
computations on pure C values and to demote Icon descriptor variables to simple C
integer and double variables. The current compiler makes little use of these opportuni-
ties for optimization. Numerous other optimizations using the information from type
inferencing are possible beyond what is currently being done. One of them is to choose

the representation of a data structure based on how the data structure is used.

Translating constant expressions involving integer and real values into the corresponding
C expressions would allow the C compiler to perform constant folding on them. For
other Icon types, constant folding must be performed by the Icon compiler. This is partic-

ularly important for csets, but is not presently being done.

O’Bagy’s prototype compiler performs two kinds of control flow optimizations. It elim-
inates unnecessary bounding and demotes generators that can not be resumed. The code
generation techniques used in this compiler combined with the peephole optimizer
automatically eliminate unnecessary bounding. The peephole optimizer also automati-
cally demotes generators that are placed in-line. Enhancements to the peephole optim-

izer could effect the demotion of generators that are not placed in-line.

The compiler uses a simple heuristic to decide when to use the in-line version of an
operation and when to call the function implementing the operation using the standard

calling conventions. More sophisticated heuristics should be explored.

Temporary variables can retain pointers into allocated storage beyond the time that those
pointers are needed. This reduces the effectiveness of garbage collection. Because gar-
bage collection does not know which temporary variables are active and which are not, it
retains all values pointed to by temporary variables. This problem can be solved by
assigning the null value to temporary variables that are no longer active. However, this

incurs significant overhead. The trade off between assigning null values and the reduced

-149 -

effectiveness of garbage collection should be explored.

e The Icon compiler generates C code. If it generated assembly language code, it could
make use of machine registers for state variables, such as the procedure frame pointer,
and for holding intermediate results. This should result in a significant improvement in

performance (at the cost of a less portable compiler and one that must deal with low-level

details of code generation).

e Several of the analyses in the compiler rely on having the entire Icon program available.
Separate compilation is very useful, but raises problems. On possible solution is to
change the analyses to account for incomplete information. They could assume that
undeclared variables can be either local or global and possibly initialized to a built-in
function or unknown procedures, and that calls to unknown operations can fail, or return
or suspend any value and perform any side-effect on any globally accessible variable.
This would significantly reduce the effectiveness of some analyses. Another approach is
to do incremental analyses, storing partial or tentative results in a data base. This is a
much harder approach, but can produce results as good as compiling the program at one
time.

¢ Enhancements to the compiler can be complemented with improvements to the run-time

system. One area that can use further exploration is storage management.

-150 -

Acknowledgements

I would like to thank Ralph Griswold for acting as my research advisor. He provided the bal-
ance of guidance, support, and freedom needed for me to complete this research. From him I
leamed many of the technical writing skills I needed to compose this dissertation. I am indebted
to him and the other members of the Icon Project who over the years have contributed to the
Icon programming language that serves as a foundation of this research. I would like to thank
Peter Downey and Saumya Debray for also serving as members on my committee and for pro-
viding insightful criticisms and suggestions for this dissertation. In addition, Saumya Debray
shared with me his knowledge of abstract interpretation, giving me the tool I needed to shape the

final form of the type inferencing system.

I have received help from a number of my fellow graduate students both while they were still
students and from some after they graduated. Clinton Jeffery, Nick Kline, and Peter Bigot
proofread this dissertation, providing helpful comments. Similarly, Janalee O'Bagy, Kelvin Nil-
sen, and David Gudeman proofread earlier reports that served as a basis for several of the
chapters in this dissertation. Janalee O'Bagy’s own work on compiling Icon provided a founda-
ton for the compiler I developed. Kelvin Nilsen applied my liveness analysis techniques to a
slightly different implementation model, providing insight into dependencies on execution

models.

- 151 -

Appendix A — The Implementation Language

This appendix contains a description of the language used to implement the run-time opera-
tions of the Icon compiler system. Chapter 5 provides a description of the design goals of the
implementation language and an introduction to it. Some of the design decisions for the
language were motivated by optimizations planned for the future, such as constant folding of
csets. The use of these features is presented as if the optimizations were implemented; this
insures that the optimizations will be supported by the run-time system when they are imple-

mented. This appendix is adapted from the reference manual for the language [37].

The translator for the implementation language is the program rtt. An rtt input file may con-
tain operation definitions written in the implementation language, along with C definitions and
declarations. Rtt has a built-in C preprocessor based on the ANSI C Standard, but with exten-
sions to support multi-line macros with embedded preprocessor directives [46]. Rtt prepends a

standard include file, grttin.h, on the front of every implementation language file it translates.

The first pant of this appendix describes the operation definitions. C language documentation
should be consulted for ordinary C grammar. The extensions to ordinary C grammar are
described in the latter part of the appendix.

The grammar for the implementation language is presented in extended BNF notation. Ter-
minal symbols are set in Helvetica. Non-terminals and meta-symbols are set in Times-Italic. In
addition to the usual meta-symbols, ::= for ‘‘is defined as’’ and | for ‘‘alternatives’’, brackets
around a sequence of symbols indicates that the sequence is optional, braces around a sequence
of symbols followed by an asterisk indicates that the sequence may be repeated zero or more

times, and braces followed by a plus indicates that the enclosed sequence may be repeated one or

more times.

-152 -

Operation Documentation

An operation definition can be preceded by an optional description in the form of a C string
literal.

documented-definition ::= [C-string-literal | operation-definition

The use of a C string allows an implementation file to be run through the C preprocessor without
altering the description. The preprocessor concatenates adjacent string literals, allowing a multi-
line description to be written using multiple strings. Alternatively, a multi-line description can
be written using \' for line continuation. This description is stored in the operation data base
where it can be extracted by documentation generation programs. These documentation genera-
tors produce formatted documentation for Icon programmers and for C programmers maintain-
ing the Icon implementation. The documentation generators are responsible for inserting newline

characters at reasonable points when printing the description.

Types of Operations

Rt can be used to define the built-in functions, operators, and keywords of the Icon language.
(Note that there are some Icon constructs that fall outside this implementation specification sys-
tem. These include control structures such as string scanning and limitation, along with record

constructors and field references.)

operation-definition ::=
function result-seq identifier ([param-list]) [declare | actions end |

operator result-seq op identifier ([param-list]) [declare] actions end |

keyword result-seq identifier actions end |

keyword result-seq identifier const key-const end

-153-

result-seq ::= { length , length [+]} |
{length[+]} |
{}

length ::=integer | *

result-seq indicates the minimum and maximum length of the result sequence of an operation
(the operation is treated as if it is used in a context where it produces all of its results). For exam-
ple, addition always produces one result so its result-seq is {1, 1}. If the minimum and max-
imum are the same, only one number need be given, so the result-seq for addition can be coded
as {1}. A conditional operation can produce either no results (that is, it can fail) or it can produce
one result, so its result-seq is {0, 1}. A length of * indicates unbounded, so the result-seq of ! is
indicated by {0, *}. An * in the lower bound means the same thing as 0, so {0, *} can be written
as {*, =}, which simplifies to {*}. A result-seq of {} indicates no result sequence. This is not the
same as a zero-length result sequence, {0}; an operation with no result sequence does not even

fail. exit is an example of such an operation.

A + following the length(s) in a result-seq indicates that the operation can be resumed to per-
form some side effect after producing its last result. All existing examples of such operations
produce at most one result, performing a side effect in the process. The side effect on resumption
is simply an undoing of the original side effect. An example of this is tab, which changes &pos

as the side effect.

For functions and keywords, identifier is the name by which the operation is known within
the Icon language (for keywords, identifier does not include the &). New functions and keywords
can be added to the language by simply translating implementations for them. For operations, op
is (usually) the symbol by which the operation is known within the Icon language and identifier
is a descriptive name. It is possible to have more than one operation with the same op as long as

they have different identifiers and take a different number of operands. In addition to translating

- 154 -

the implementation for an operator, adding a new operator requires updating iconc’s lexical
analyzer and parser to know about the symbol (in reality, an operator definition may be used for
operations with non-operator syntax, in which case any syntax may be used; iconc’s code gen-
erator identifies the operation by the type of node put in the parse tree by a parser action). In all
cases, the identifier is used to construct the name(s) of the C function(s) which implement the
operation.

A param-list is a comma separated list of parameter declarations. Some operations, such as
the write function, take a variable number of arguments. This is indicated by appending a pair of
brackets enclosing an identifier to the last parameter declaration. This last parameter is then an
array containing the tail of the argument list, that is, those arguments not taken up by the preced-

ing parameters. The identifier in brackets represents the length of the tail and has a type of C

integer.
param-list ::=param { , param }* [| identifier]]

Most operations need their arguments dereferenced. However, some operations, such as assign-
ment, need undereferenced arguments and a few need both dereferenced and undereferenced ver-

sions of an argument. There are forms of parameter declarations to match each of these needs.

param ::= identifier |
underef identifier |

underef identifier —> identifier

A simple identifier indicates a dereferenced parameter. underef indicates an undereferenced
parameter. In the third form of parameter declaration, the first identifier represents the undefer-
enced form of the argument and the second identifier represents the dereferenced form. This
third form of declaration may not be used with the variable part of an argument list. These
identifiers are of type descriptor. Descriptors are implemented as C structs. See [3] for a

detailed explanation of descriptors.

- 155 -

Examples of operation headers:

"detab(s,i,...) — replace tabs with spaces, with stops at columns indicated.”
function{1} detab(s, i[n])
actions

end

"X <—> y — swap values of x and y."

" Reverses swap if resumed."

operator{0,1+} <—> rswap(underef x —> dx, underef y —> dy)
declare
actions

end

"&fail — just fail"
keyword{0} fail
actions

end

Declare Clause

Some operations need C declarations that are common to several actions. These can be

declared within the declare clause.
declare ::= declare { C declarations}

These may include tended declarations, which are explained below in the section on extensions
to C. If a declaration can be made local to a block of embedded C code, it is usually better to put

it there than in a declare clause. This is explained below in the discussion of the body action.

- 156 -

Constant Keywords

Any keyword can be implemented using general actions. However, for constant keywords,
iconc can sometimes produce more efficient code if it treats the keyword as a literal constant.
Therefore, a special declaration is available for declaring keywords that can be represented as

Icon literals. The constant is introduced with the word const and can be one of four literal types.
key-const ::= string-literal | cset-literal | integer-literal | real-literal

When using this mechanism, it is important to be aware of the fact that rtt tokenizes these literals
as C literals, not as Icon literals. The contents of string literals and character literals (used to
represent cset literals) are not interpreted by rit except for certain situations in string concatena-
tion (see [46]). They are simply stored, as is, in the data base. This means that literals with
escape sequences can be used even when C and Icon would give them different interpretations.
However, C does not recognize control escapes, so '\"”", which is a valid Icon literal, will result in
an error message from rt, because the second quote ends the literal, leaving the third quote dan-

gling. Only decimal integer literals are allowed.

Actions
All operations other than constant keywords are implemented with general actions.

Actions fall into four categories: type checking and conversions, detail code expressed in

extended C, abstract type computations, and error reporting.

actions ::= { action }*

-157-

action ::= checking-conversions |
detail-code |
abstract { rype-computations '} |
runerr(msg_number [, descriptor]) [;]

{ actions}

Type Checking and Conversions

The type checking and conversions are

checking-conversions ::= if type-check then action |
if type-check then action else action |
type_case descriptor of { { type-select } + }

len_case identifier of { { integer : action }+ default : action}

type-select ::={ type-name : }+ action |

default : action

These actions specify run-time operations. These operations could be performed in C, but speci-
fying them in the implementation language gives the compiler information it can use to generate

better code.

The if actions use the result of a type-check expression to select an action. The type_case
action selects an action based on the type of a descriptor. If a type_case action contains a
default clause, it must be last. type-select clauses must be mutually exclusive in their selection.
The len_case action selects an action based on the length of the variable part of the argument

list of the operation. The identifier in this action must be the one representing that length.

A type-check can succeed or fail. It is either an assertion of the type of a descriptor, a conver-

sion of the type of a descriptor, or a logical expression involving type-checks. Only limited

-158 -

forms of logical expressions are supported.

type-check ::= simple-check { && simple-check }* |
| simple-check

simple-check ::=is: type-name (descriptor) |
cnv: dest-type (source [, destination]) |

def: dest-type (source , value [, destination])

dest-type ::= cset |
integer |
real |
string |
C_integer |
C_double |
C_string |
(exact)integer |
(exact)C_integer
tmp_string |

tmp_cset

The is check succeeds if the value of the descriptor is in the type indicated by type-name.
Conversions indicated by cnv are the conversions between the Icon types of cset, integer, real,
and string. Conversions indicated by def are the same conversions with a default value to be

used if the original value is null.

dest-type is the type to which to a value is to be converted, if possible. cset, integer, real,
and string constitute a subset of icon-type which is in tum a subset of type-name (see below).

C_integer, C_string, and C_double are conversions to intemal C types that are easier to

-159 -

manipulate than descriptors. Each of these types corresponds to an Icon type. A conversion to an
internal C type succeeds for the same values that a conversion to the corresponding Icon type
succeeds. C_integer represents the C integer type used for integer values in the particular Icon
implementation being compiled (typically, a 32-bit integer type). C-double represents the C
double type. C-string represents a pointer to a null-terminated C character array. However, see
below for a discussion of the destination for conversion to C_string. (exact) before integer or
C_integer disallows conversions from reals or strings representing reals, that is, the conversion

fails if the value being converted represents a real value.

Conversion to tmp_string is the same as conversion to string (the result is a descriptor),
except that the string is only guaranteed to exist for the lifetime of the operation (the lifetime of
a suspended operation extends until it can no longer be resumed). Conversion to tmp_string is
generally less expensive than conversion to string and is never more expensive, but the resulting

string must not be exported from the operation. tmp_cset is analogous to tmp_string.

The source of the conversion is the descriptor whose value is to be converted. If no destina-
tion is specified, the conversion is done ‘‘in-place’’. However, it may not actually be possible to
do an argument conversion in the argument’s original location, so the argument may be copied
to another location as part of the conversion. Within the scope of the conversion, the parameter
name refers to this new location. The scope of a conversion is usually only important for conver-
sions to C types; the run-time system translator and the Icon compiler try to keep the movement
of descriptor parameters transparent (see below for more details). All elements of the variable
part of an argument list must be descriptors. Therefore, when an element is converted to a C

type, an explicit location must be given for the destination.

The destinations for conversions to cset, integer, real, string, (exact)integer, tmp_string,
and tmp_cset must be descriptors. The destinations for conversions to C_integer, C_double,
and (exact)C_integer must be the corresponding C types. However, the destination for conver-
sion to C_string must be tended. If the destination is declared as ‘‘tended char *'’, then the

dword (string length) of the tended location will be set, but the operation will not have direct

- 160 -

access to it. The variable will look like a ‘‘char #’’. Because the operation does not have access
to the string length, it is not a good idea to change the pointer once it has been set by the conver-
sion. If the destination is declared as a descriptor, the operation has access to both the pointer to
the string and the string’s length (which includes the terminating null character). If a parameter
is converted to C_string and no explicit destination is given, the parameter will behave like a

‘“‘tended char *’’ within the scope of the conversion.

The second argument to the def conversion is the default value. The default value may be

any C expression that evaluates to the correct type. These types are given in the following chart.

cset: struct b_cset
integer: C_integer
real: double
string: struct descrip
C_integer: C_integer
C_double: double
C_string: char »
tmp_string: struct descrip
tmp_cset: struct b_cset

(exact)integer: C_integer

(exact)C_integer: C_integer

The numeric operators provide good examples of how conversions are used:

operator{1} / divide(x, y)
if cnv:(exact)C_integer(x) && cnv:(exact)C_integer(y) then
actions

else {

-161 -

if lcnv:C_double(x) then
runerr(102, x)

if lcnv:C_double(y) then
runerr(102, y)

actions

}

end

Within the code indicated by actions, x and y refer to C values rather than to the Icon descriptors

of the unconverted parameters.

The subject of any type check or type conversion must be an unmodified parameter. For
example, once an in-place conversion has been applied to a parameter, another conversion may
not be applied to the same parameter. This helps insure that type computations in iconc only
involve the unmodified types of arguments, simplifying those computations. This restriction

does not apply to type checking and conversions in C code.

Scope of Conversions

The following discussion is included mostly for completeness. The scope of conversions
sounds complicated, but in practice problems seldom occur in code that ‘‘looks reasonable’’. If a
problem does occur, the translator catches it. Normally, the intricacies of scope should be
ignored and the person writing run-time routines should code conversions in a manner that

seems natural.

An ‘‘in-place’’ conversion of a parameter can create a scope for the parameter name separate
from the one introduced by the parameter list. This is because conversions to C types may
require the converted value to be placed in a different location with a different type. The param-
eter name is then associated with this new location. The original scope of a parameter starts at

the beginning of the operation’s definition. The scope of a conversion starts at the conversion. A

- 162 -

scope extends through all code that may be executed after the scope’s beginning, up to a runerr
or a conversion that hides the previous scope (because the type checking portion of the imple-

mentation language does not contain loops or arbitrary gotos, scope can easily be determined
lexically).

The use of an in-place conversion in the first sub-expression of a conjunction, cnvl && cnv2,
has a potential for causing problems. In general, there is no way to know whether the first
conversion will effectively be undone when the second conversion fails. If the first conversion is
actually done in-place, the parameter name refers to the same location in both the success and
failure scope of the conjunction, so the conversion is not undone. If the conversion is done into
a separate location, the failure scope will refer to the original value, so the conversion will effec-
tively be undone. Whether the conversion is actually done in-place depends on the context in
which operation is used. However, conversion to C_integer and C_double always preserve the
original value, so there is no potential problem using them as the first argument to a conjunction,

nor is there any problem using a non-conversion test there. An example of this uncertainty:

if cnv:string(s1) && cnv:string(s2) then {
/*s1 and s2 both refer to converted values */

}

else {

/% 82 refers to the original value. s1 may refer to either the original or the

converted value */

The translator issues a warning if there is a potential problem.

It is possible for scopes to overlap; this happens because scopes start within conditional
actions. In rare instances, executable code using the name may appear within this overlapping
scope, as in the following example, which resembles code that might be found in the definition

of a string analysis function such as find.

- 163 -

if is:nuli(s) then {
if !def:C_integer(i, k_pos) then
runerr(101, i)
}
else {
if \def:C_integer(i, 1) then

runerr(101, i)

actions

Here, actions occurs within the scope of both conversions. Note that actions is not in the scope
of the original parameter i. This is because that scope is ended in each branch of the outer if by

the conversions and the runerrs.

If overlap does occur, the translator tries to insure that the same location is used for the name
in each scope. The only situation when it cannot do this is when the type of the location is dif-
ferent in each scope, for instance, one is a C_integer and the other is a C_real. If a name is

referenced when there is conflicting scope, the translator issues an error message.

Type Names

The type-names represent types of Icon intermediate values, including variable references.
These are the values that enter and leave an operation; ‘‘types’’ internal to data structures, such

as list element blocks, are handled completely within the C code.

type-name ::= empty_type |
icon-type |

variable-ref

-164 -

icon-type ::= null |
string |
cset |
integer |
real |
file |
list |
set |
table |
record |
procedure |

co_expression

variable-ref ::= variable |
tvsubs |
tvtbl |
kywdint |
kywdpos |
kywdsubj

The rype-names are not limited to the first-class types of Icon’s language definition. The
type-names that do not follow directly from Icon types need further explanation. empty_type is
the type containing no values and is needed for conveying certain information to the type
inferencing system, such as an unreachable state. For example, the result type of stop is
empty_type. It may also be used as the intemnal type of an empty structure. Contrast this with

null, which consists of the null value.

Variable references are not first-class values in Icon; they cannot be assigned to variables.

- 165 -

However, they do appear in the definition of Icon as arguments to assignments and as the subject

of dereferencing. For example, the semantics of the expression
s[3] :=s

can be described in terms of a substring trapped variable and a simple variable reference. For this
reason, it is necessary to include these references in the type system of the implementation
language. variable consists of all variable references. It contains five distinguished subtypes.
tvsubs contains all substring trapped variables. tvibl contains all table-element trapped vari-
ables. kywdint contains &random and &trace. kywdpos contains &pos. kywdsubj contains

&subject.

Including C Code

As noted above, C declarations can be included in a declare clause. Embedded C code may

reference these declarations as well as declarations global to the operation.

Executable C code can be included using one of two actions.

detail-code ::=body { extended-C} |
inline { extended-C'}

body and inline are similar to each other, except that inline indicates code that is reasonable
for the compiler to put in-line when it can. body indicates that for the in-line version of the
operation, this piece of C code should be put in a separate function in the link library and the
body action should be replaced by a call to that function. Any parameters or variables from the
declare clause needed by the function must be passed as arguments to the function. Therefore, it
is more efficient to declare variables needed by a body action within that body than within the

declare. However, the scope of these local variables is limited to the body action.

Most Icon keywords provide examples of operations that should be generated in-line. In the

following example, nulidesc is a global variable of type descriptor. It is defined in the include

- 166 -

files automatically included by rtt.

"&null — the null value.”
keyword{1} null
abstract {
return null
}
inline {
return nulldesc;

}

end

Error Reporting

runerr(msg_number [, descriptor 1) [;]

runerr is translated into a call to the run-time error handling routine. Specifying this as a
separate action rather than a C expression within a body or inline action gives the compiler
additional information about the behavior of the operation. msg_number is the number used to
look up the error message in a run-time error table. If a descriptor is given, it is taken to be the

offending value.

Abstract Type Computations

abstract { type-compuzations }

The behavior of an operation with respect to types is a simplification of the full semantics of
the operation. For example, the semantics of the function image is to produce the string

representing its operand; its behavior in the type realm is described as simply returning some

-167 -

string. In general, a good simplification of an operation is too complicated to be automatically
produced from the operation’s implementation (of course, it is always possible to conclude that
an operation can produce any type and can have any side effect, but that is hardly useful). For

this reason, the programmer must use the abstract action to specify type-computations.
type-computations ::= {store[type]=1type[;]}* [returntype[;]]

type-computations consist of side effects and a statement of the result type of the operation.
There must be exactly one return type along any path from the start of the operation to C code

containing a return, suspend, or fail.

A side effect is represented as an assignment to the store. The store is analogous to program
memory. Program memory is made up of locations containing values. The store is made up of
locations containing types. A type represents a set of values, though only certain such sets
correspond to types for the purpose of abstract type computations. Types may be basic types
such as all Icon integers, or they may be composite types such as all Icon integers combined with
all Icon strings. The rules for specifying types are given below. A location in the store may
correspond to one location in program memory, or it may correspond to several or even an
unbounded number of locations in program memory. The contents of a location in the store can
be thought of as a conservative (that is, possibly overestimated) summary of values that might

appear in the corresponding location(s) in program memory at run time.

Program memory can be accessed through a pointer. Similarly, the store can be indexed by a
pointer type, using an expression of the form store[type], to get at a given location. An Icon glo-
bal variable has a location in program memory, and a reference to such a variable in an Icon pro-
gram is treated as a pointer to that location. Similarly, an Icon global variable has a location in
the store and, during type inferencing, a reference to the variable is interpreted as a pointer type
indexing that location in the store. Because types can be composite, indexing into the store with

a pointer type may actually index several locations. Suppose we have the following side effect

-168 -

store[typel | = type2

Suppose during type inferencing typel evaluates to a composite pointer type consisting of the
pointer types for several global variables, then all corresponding locations in the store will be
updated. If the above side effect is coded in the assignment operator, this situation might result

from an Icon expression such as
every (x | y) := &null

In this example, it is obvious that both variables are changed to the null type. However, type
inferencing can only deduce that at least one variable in the set is changed. Thus, it must assume
that each could either be changed or left as is. It is only when the left hand side of the side effect
represents a unique program variable that type inferencing knows that the variable cannot be left
as is. In the current implementation of type inferencing, assignment to a single named variable is

the only side effect where type inferencing recognizes that the side effect will definitely occur.

Indexing into the store with a non-pointer type corresponds to assigning to a non-variable.
Such an assignment results in error termination. Type inferencing ignores any non-pointer com-
ponents in the index type; they represent execution paths that don’t continue and thus contribute

nothing to the types of expressions.

A type in an abstract type computation is of the form

type ::=type-name |
type (variable) |
attrb-ref |
new type-name (type { , type }*) |
store [type] |
type ++ pype |

- 169 -

type ** fype |
(type)

The type(variable) expression allows type computations to be expressed in terms of the type of
an argument to an operation. This must be an unmodified argument. That is, the abstract type
computation involving this expression must not be within the scope of a conversion. This restric-

tion simplifies the computations needed to perform type inferencing.

This expression is useful in several contexts, including operations that deal with structure
types. The type system for a program may have several sub—-types for a structure type. The struc-
ture types are list, table, set, record, substring trapped variable, and table—element trapped vari-
able. Each of these Icon types is a composite type within the type computations, rather than a
basic type. Thus the type inferencing system may be able to determine a more accurate type for

an argument than can be expressed with a type—name. For example, it is more accurate to use

if is:list(x) then
abstract {
return type(x)
}
actions
else

runerr(108, x)

than it is to use

-170 -

if is:list(x) then
abstract {
return list
}
actions
else

runerr(108, x)

Structure values have internal ‘‘structure’’. Structure types also need an internal structure that
summarizes the structure of the values they contain. This structure is implemented with type

attributes. These attributes are referenced using dot notation:

attrb-ref ::= type . attrb-name

attrb-name ::=Ist_elem |
set_elem |
key |
tbl_elem |
default |
all_fields |
str_var |

trpd_tbl

Just as values intemnal to structure values are stored in program memory, types internal to struc-

ture types are kept in the store. An attribute is a pointer type referencing a location in the store.

A list is made up of (unnamed) variables. The Ist_elem attribute of a list type is a type
representing all the variables contained in all the lists in the type. For example, part of the code

for the bang operator is as follows, where dx is the dereferenced operand.

171 -

type_case dx of {
list: {
abstract {
return type(dx).lst_elem
}

actions

This code fragment indicates that, if the argument to bang is in a list type, bang retumns some

variable from some list in that type. In the type realm, bang returns a basic pointer type.

The set_elem attribute of a set type is similar. The locations of a set never ‘‘escape’’ as vari-
ables. That is, it is not possible to assign to an element of a set. This is reflected in the fact that a
set_elem is always used as the index to the store and is never assigned to another location or

returmned from an operation. The case in the code from bang for sets is

set: {
abstract {
return storeftype(dx).set_elem)
}

actions

}

Tables types have three attributes. key references a location in the store containing the type
of any possible key value in any table in the table type. tbl_elem references a location contain-
ing the type of any possible element in any table in the table type. default references a location
containing the type of any possible default value for any table in the table type. Only tbl_elem

corresponds to a variable in Icon. The others must appear as indexes into the store.

172 -

Record types are implemented with a location in the store for each field, but these locations
cannot be accessed separately in the type computations of the implementation language. These
are only needed separately during record creation and field reference, which are handled as spe-
cial cases in the compiler. Each record type does have one attribute, all_fields, available to type

computations. It is a composite type and includes the pointer types for each of the fields.

Substring trapped variables are implemented as structures. For this reason, they need struc-
ture types to describe them. The part of the structure of interest in type inferencing is the refer-
ence to the underlying variable. This is reflected in the one attribute of these types, Str_var. It is
a reference to a location in the store containing the pointer types of the underlying the variables
that are ‘‘trapped’’. str_var is only used as an index into the store; it is never exported from an
operation.

Similarly table-element trapped variables need structure types to implement them. They have
one attribute, trpd_tbl, referencing a location in the store containing the type of the underlying
table. The key type is not kept separately in the trapped variable type; it must be immediately
added to the table when a table-element trapped variable type is created. This pessimistically
assumes that the key type will eventually be put in the table, but saves an attribute in the trapped
variable for the key. trpd_tbl is only used as an index into the store; it is never exported from an
operation.

The type computation, new, indicates that an invocation of the operation being implemented
creates a new instance of a value in the specified structure type. For example, the implementa-

tion of the list function is

-173 -

function{1} list(size, initial)
abstract {
return new list(type(initial))
}
actions

end

The type arguments to the new computation specify the initial values for the attributes of the
structure. The table type is the only one that contains multiple attributes. (Note that record con-
structors are created during translation and are not specified via the implementation language.)

Table attributes must be given in the order: key, tbl_elem, and default.

In the type system for a given program, a structure type is partitioned into several sub-types
(these sub-types are only distinguished during type inferencing, not at run time). One of these
sub-types is allocated for every easily recognized use of an operation that creates a new value for
the structure type. Thus, the following Icon program has two list sub-types: one for each invoca-

tion of list.

procedure main()

local x

x = list(1, list(100))

end

Two operations are available for combining types. Union is denoted by the operator ‘++’ and
intersection is denoted by the operator ***’, Intersection has the higher precedence. These opera-
tions interpret types as sets of values. However, because types may be infinite, these sets are

treated symbolically.

174 -

C Extensions

The C code included using the declare, body, and inline actions may contain several con-
structs beyond those of standard C. There are five categories of C extensions: access to interface

variables, declarations, type conversions/type checks, signaling run-time errors, and return state-

ments.

In addition to their use in the body of an operation, the conversions and checks, run-time
error, and declaration extensions may be used in ordinary C functions that are put through the

implementation language translator.

Interface Variables

Interface variables include parameters, the identifier for length of the variable part of an argu-
ment list, and the special variable result. Unconverted parameters, converted parameters with
Icon types, and converted parameters with the intemal types tmp_string and tmp_cset are
descriptors and within the C code have the type struct descrip. Converted parameters with the
internal type of C_integer have some signed integer type within the C code, but exactly which
C integer type varies between systems. This type has been set up using a typedef in the automat-
ically included include file so it is available for use in declarations in C code. Converted parame-
ters with the intemnal type of C_double have the type double within the C code. Converted
parameters of the type C_string have the type char *. The length of the variable part of a argu-
ment list has the type int within the C code.

result is a special descriptor variable. Under some circumstances it is more efficient to con-
struct a return value in this descriptor than to use other methods. See Section 5 of the implemen-

tation language reference manual for details.

-175 -

Declarations

The extension to declarations consists of a new storage class specifier, tended (register is an
example of an existing storage class specifier). Understanding its use requires some knowledge
of Icon storage management. Only a brief description of storage management is given here; see

the Icon implementation book for further details.

Icon values are represented by descriptors. A descriptor contains both type information and
value information. For large values (everything other than integers and the null value) the
descriptor only contains a pointer to the value, which nesides elsewhere. When such a value is
dynamically created, memory for it is allocated from one of several memory regions. Strings are
allocated from the string region. All other relocatable values are allocated from the block region.
The only non-relocatable values are co-expression stacks and co-expression activation blocks.
On some systems non-relocatable values are allocated in the static region. On other systems

there is no static region and these values are allocated using the C malloc function.

When a storage request is made to a region and there is not enough room in that region, a
garbage collection occurs. All reachable values for each region are located. Values in the string
and block regions are moved into a contiguous area at the bottom of the region, creating (hope-
fully) free space at the end of the region. Unreachable co-expression stacks and activator blocks
are ‘‘freed’’. The garbage collector must be able to recognize and save all values that might be
referenced after the garbage collection and it must be able to find and update all pointers to the
relocated values. Operation arguments that contain pointers into one of these regions can always
be found by garbage collection. The implementations of many operations need other descriptors
or pointers into memory regions. The tended storage class identifies those descriptors and
pointers that may have live values when a garbage collection could occur (that is, when a

memory allocation is performed).

A descriptor is implemented as a C struct named descrip, so an example of a tended

descriptor declaration is

-176 -

tended struct descrip d;

Blocks are also implemented as C structs. The following list illustrates the types of block
pointers that may be tended.

tended struct b_real *bp;
tended struct b_cset *bp;
tended struct b_file *bp;
tended struct b_proc *bp;
tended struct b_list *bp;
tended struct b_lelem *bp;
tended struct b_table *bp;
tended struct b_telem =*bp;
tended struct b_set *bp;
tended struct b_selem *bp;
tended struct b_record *bp;
tended struct b_tvkywd *bp;
tended struct b_tvsubs *bp;
tended struct b_tvtbl *bp;
tended struct b_refresh *bp;

tended struct b_coexpr *cp;

Alternatively, a union pointer can be used to tend a pointer to any kind of block.

tended union block *bp;

Character pointers may also be tended. However, garbage collection needs a length associ-
ated with a pointer into the string region. Unlike values in the block region, the strings them-

selves do not have a length stored with them. Garbage collection treats a tended character pointer

177 -

as a zero-length string. These character pointers are almost always pointers into some string, so
garbage collection effectively treats them as zero-length substrings of the strings. The string as a
whole must be tended by some descriptor so that it is preserved. The purpose of tending a char-

acter pointer is to insure that the pointer is relocated with the string it points into. An example is

tended char *s1, *s2;

Tended arrays are not supported. tended may only be used with variables of local scope.
tended and register are mutually exclusive. If no initial value is given, one is supplied that is

consistent with garbage collection.

Type Conversions/Type Checks

Some conditional expressions have been added to C. These are based on type checks in the

type specificaton part of the implementation language.

is: type-name (source)
cnv: dest-type (source , destination)

def: dest-type (source , value , destination)

source must be an Icon value, that is, a descriptor. destination must be a variable whose type is
consistent with the conversion. These type checks may appear anywhere a conditional expres-
sion is valid in a C program. Note that is, cvn, and def are reserved words to distinguish them

from labels.

The type_case statement may be used in extended C. This statement has the same form as
the corresponding action, but in this context, C code replaces the actions in the type-select

clauses.

-178 -

Signaling Run-time Errors

runerr is used for signaling run-time errors. It acts like a function but may take either 1 or 2

arguments. The first argument is the error number. If the error has an associated value, the

second argument is a descriptor containing that value.

Return Statements

There are three statements for leaving the execution of an operation. These are analogous to

the corresponding expressions in the Icon language.

ret-statments ::=return ret-value ; |

suspend ret-value ; |

fail ;

ret-value ::= descriptor |
C_integer expression |
C_double expression |

C_string expression |

descript-constructor

descriptor is an expression of type struct descrip. For example

tended struct descrip dp;

suspend dp;

Use of C_integer, C_double, or C_string to prefix an expression indicates that the expression

-179 -

evaluates to the indicated C type and not to a descriptor. When necessary, a descriptor is con-
structed from the result of the expression, but when possible the Icon compiler produces code
that can use the raw C value (See Section 5 of the implementation language reference manual).

As an example, the integer case in the divide operation is simply

inline {
return C_integer x / y;

}

Note that a retumed C string must not be in a local (dynamic) character array; it must have a glo-

bal lifetime.

A descript-constructor is an expression that explicitly converts a pointer into a descriptor. It
is only valid in a return statement, because it builds the descriptor in the implicit location of the

retumn value.

descript-constructor ::=string (length , char-ptr) |
cset (block-ptr) |
real (block-ptr) |
tile (block-ptr) |
procedure (block-ptr) |
list (block-ptr) |
set (block-ptr) |
record (block-ptr) |
table (block-ptr) |
co_expression (stack-ptr) |
tvtbl (block-ptr) |

named_var (descr-ptr) |

- 180 -

struct_var (descr-ptr , block—ptr) |
substr (descr-ptr , start , len) |
kywdint (descr-ptr) |

kywdpos (descr-ptr) |

kywdsubj (descr—ptr)

The arguments to string are the length of the string and the pointer to the start of the string.
block—ptrs are pointers to blocks of the corresponding types. stack—ptr is a pointer to a co—
expression stack. descr—ptr is a pointer to a descriptor. named_var is used to create a reference
to a variable (descriptor) that is not in a block. struct_var is used to create a reference to a vari-
able that is in a block. The Icon garbage collector works in terms of whole blocks. It cannot
preserve just a single variable in the block, so the descriptor referencing a variable must contain
enough information for the garbage collector to find the start of the block. That is what the
block—ptr is for. substr creates a substring trapped variable for the given descriptor, starting

point within the string, and length. kywdint, kywdpos, and kywdsubj create references to key-

word variables.

Note that retuming either C_double expression or substr(descr—ptr, start, len) may trigger

a garbage collection.

- 181 -

Appendix B — Correctness of the Type Inferencing Model

The appendix discusses the correciness of the type inferencing model with respect to the
semantics of Icon. A series of abstractions is correet il cach abstraction is consistent with the
previous abstraction. The standard dcfinition of consistency is uscd. This definition is given

below.

A proof is given that Model 1 is consistent with the collecting semantics; this is done without
examining the semantics of individual operations. Model 2 is not considered in this discussion of
consistency. Instcad, Model 3 is compared dircctly with Model 1. A full proof that Model 3 is
consistent with Model 1 requires examining the semantics of cach operation. Icon is too large a
language for such a proof to be practical. A partial proof is given in which consistency is proven

for the domain of the models and for thc semantics of two opcrations.

envirp) is defined in Chapter 3 to contain just a store and a hcap. Arguments are given that the
remaining information needed o represent the state ol an con interpreter can be ignored. A
proof of correctness must must explicitly discard this information later in the abstraction pro-
cess. This remaining information, the balance component ol the cnvironment, is finite at any

point in execution, so it can be encoded as an infeger. enviry is redefined here to be
envir(;y = storeqy) X heapy) X balance

balance = integer

The conditions used to guarantce that a model is consistent with a less abstract model depend
on imposing a lattice on the domain of cach model. The domain of collecting semantics and
Model 1 is sets of environments (enviry;)). The lattice uscd here is the usual lattice for a power
set: subset is the ordering relation (<), union is the join opcration (v), the empty set is bottom,

and the set of all environments is top.

The domain of Model 3 is storcj3;. Assume
81, 52 € store(s)
then the ordering relation and join operation arc defined by
s) <, iff V t € variable types, s;(1) < sy(1)

s; v s = s3, where V L € variable types, s3(1) = si(t) U sa(1)

The first step in proving that storcs; is & lattice under this ordering relation is to show that the
type system forms a lattice under the subset relation. The basic types are non-empty and disjoint.
The type system is constructed to be the smallest set closed under union containing the basic
types and the empty set. It follows that the type system with the subset relation is isomorphic to
the power set of type names with the subsct relation and that the type system forms a lattice. It is

then easy to show that the lattice of the type systeny induces @ lattice structure on stores).

Let D; be the domain of abstraction i. Given an edge m of the flow graph with n being the

node at the head of m, a transfer function
fm i D; - Di

implements the portion of the semantics in abstraction i of node n that causes control to transfer

to m. The input to the function is the join ol the values on the incoming edges. Suppose
X1, X2, X3, X4, X5 € D;

are the values associated with the edges ol the graph

- 183 -

and assume that the transfer functions of (he oulgoing edpes arc fy; and fs;, then the equations for

this graph are
Xa={a5(x1 v x2 v x3)
xs = fs;(x; v X2 v x3)
A transfer function needs to be monotone, that is

V x1, X2 € Dy s.b X1 € x2, fmi(x1) € Imi(x2)

A model i is said to be consistent with a less absiract modcl j, if there exists an abstraction

SJunction
a: Dj—- D
and a concretization function
Y: D> D
such that the following four conditions hold
1. Vxi,x2€ Dj s.tx; £x2, a(x)) < afxy)

2. VX, %€ D; s.l. X S Xz, WX)) <Y(X7)

- IR1 -

3. VXe D, & =a(Wx))
4. Vxe Dj, x<va(x))
and, in addition, for every edgc m

5. Vx € Dj affmi(x)) < fmi(cx(x))

The next step is to show that Modcl 1 is consistent with the collecting semantics (abstraction
0). The domain of each of these abstractions is the same and both a and y are the identity func-

tions. Thus conditions 1-4 arc trivially truc. Condiiion S degencrates to
fm0(x) < fm,1(x)

where {0 and f, are corresponding transfer funciions in the collecting semantics and in Model
1, respectively. The transfer function for the success edge of a node sclects those environments
on the incoming edges to the node that cause the operation associated with the node to succeed.
The transfer function produccs its result set by applying the mcaning of the operation to each

selected environment. This function is the same in both modecls, so condition § is true for it.

There may be several failure cdges for a node; this results from the fact that different paths
reaching the node may produce different backiracking paths. In both models, the transfer func-
tions for these edges selcct thosc environments on the incoming cdges that will cause the opera-
tion associated with the node to fail. The transfer functions in the collecting semantics further
reduce the set of environments they operate on by selecting only those whose backtracking stack
(encoded within the ‘‘balance’ component of the environment) indicates that the edge should be
taken. In order to avoid dealing with (he actual encoding of the balance component of the
environment, it is updated identically in both the the collecting semantics and in Model 1. For
example, the portion of the balance component that encodes the backtracking stack is **popped’’
by the transfer functions for failurc edges. I an update is applicd to a balance component where

the update is not defincd, a zcro balance component resulls (zcro is chosen as an arbitrary

- 185 -

integer). This can happen in Modcl 1 becausc that abstraction may propagate environments to
edges where they cannot occur in the collecting semantics. Each fy; for failure edges can be

written as
fm1(X) = fn0(x) U F(x)

where F(x) is the union of the results of the transler functions for the other failure edges leaving

the same node. Condition 5 follows immediaicly.

So far the problem of ‘‘memory atfocation™, that Is, the naming of pointers and structure
variables, has been ignored. A naming scheme must be cliosen in order to prove correctness of
list operations. A simple scheme is (0 have two *'sysiem’ variables, Ap and A,, which are used
1o assign integer subscripts to ncw pointers and structune variables, respectively. For example,
suppose the current environment is (s, hy, b;) (in Modcl 1) and

S](Ap) =3
si(Ay) =7

and the expression
[fa", "b", "c"]

is executed. This expression allocates a new pointer and 3 new structure variables, so the result-

ing environment, (s, hy, by), has

Sz(Ap) =4
SZ(AV) =10
s2(v7) ="a"
s2(vg) = "b"
$2(vg) ="c"
hy(p3)=L
L(1) = vy
L2)=v;g
L3)=vs

- 16 -

However, the type system presentcd here depends on being able to identify where in the program
pointers are created. It is also necessary 10 identify the creation point of a pointer associated with
a structure variable. Therefore each pointer and structurc variable is also subscripted by the pro-
gram point at which the pointer is crcated. I the pnevious example occurs at point n in the flow
graph then p; becomes p, 3 and v, becomes v, 5. This is just a renaming with respect to the sim-

ple allocation scheme in Modcl 1, but is imponant 1o later models.

The Consistency of Model 3 with respect to Model |

The following conventions arc maintaincd in the proof that Model 3 is consistent with Model

i, j, k € positive integers

n € nodes

v € variables (usually non-structure variables unless otherwise stated)
Vni» Vnj € Structurc variables

r; € temporary variablcs

V, € variablc typcs

Pnx € pointers

P, € pointer types

L€ types

As explained above, a proof of consisicncy requires establishing functions o and y and
demonstrating conditions 1 through 5. Lt Type: 2v<ie= .y 2velves he the function that maps an

arbitrary set of values to the smallest type containing (hosc valucs. This is an auxiliary function

- 1K7 -

used for defining o. Type has the following propertics (given without proof)
¢ it is monotone
e it is distributive over union
o Vx,ye 2= Type(x Ny) < Type(x) N Type(y)
o Vxe 2= x c Type(x)
e V x € types, x = Type(x)
e V x ¢ variables, Type(x) ¢ variables

e V x, s.t. x Nvariables = {}, Type(x) N variables = {}

The definition of

o 2°"m — storep)
is

let x € 27

a(x) = § where

V t € variable types, §(1) = Type({d:ve t, (s, h,b) e x,d=s(v)})

The function § = a(x) is distributive over union. Prood, lel

11, 1z € variable types

S(ut)=Type({d:ve ty Uty (s.h,h)c x.d- s(v)})

=Type({d:ve t, (s, e x,d=s8(v)] Wld:ve (s, h,b) e x,d=5s(v)})

- 188 -

=Type({d:ve 1, (s, h,b)e x,d = s(v)}])u
Type({d:ve ta,(s,h,b)e x,d=s(v)]})
=3(t) Vv 1)

All transfer functions in Model 3 transform stores in such a way as to preserve this distributivity

OVer union.

The definition of
Y. storegy) — 27"
is

let § € storeys)

¥3) = {(s, h,b) € cnvir;:
Y v, s(v)e 5({v]))
V Vai S(Vni) € YVa)
V Pox, h(pny) =L

where L: positive intcgers — {v,: lor some k) is some partial mapping

b € intcgers]

Proof of Condition 1 (o is monotonc)
Assume

X1, X2 €27V a(xy) = 8, a(x2) =&

- 189 -

X1 £ X2
by the definition of this ordering relation
X1 S X2
by the definition of a
V t € variable types, §;(1) = Type({d: v € L, (s, h,b) € x;,d=5(V)))
c Type({d:ve 1.(s,h,b) € x3,d=5(v)}) Type is monotone
= 8x(1) definition of o
therefore by the definition of the ordering relation over storeyy)
§1<8§

a(x)) € a(xz)

Proof of Condition 2 (yis monotonc)

Assume
§1. 52 € storepy
§1<8;

by the definition of y

¥&1) = {(s.h, b):

Vv, s(v)e §({v]))

v Va i s(vni) € $1(Va)

- 190 -

V Pnk, h(pax) =L where L: positive integers — {v, : for some k)
b € integers)
by the definition of the ordering relation on storeys
Vv, §i1(v) € 82(v)
V Vi, $1(Vo) € 32(Vy)
therefore
Y8y e {(s.h,b):
Vv, s(v) e §({v}])
V Vni, S(Vni) € §2(V,)
V Paxs h(pax) =L where L: positive integers = {vqy : for some k}
b € integers)
by the definition of v, the right-hand sidc is ¥(3;), so

Y31 £ Y82)

Proof of Condition 3 (mappings from abstract to concrete back to abstract preserve information)
Let
§, §) € storepy) s.L § = a(v(s))

The goal is to prove that

w»
"
(723

- 191 -

If it can be established that
V t € basic variable types, §;(1) = §(1)

then it follows from the fact that these stores arc distributive over union and induction on the

number of basic types in t that
V t e variable types, $;(1) = §(t)

There are two classes of basic types to consider in order to establish the above hypothesis.

Case 1: t = {v} for some variablc v

$1(1) = Type({d : (s, h, b) € YB), d = s(v)}) by definition of o
= Type({d : d € §({v}))) by definition of y
= Type(3({v}))
=3((v))
=81
Case2:t=V,

§;(1) = Type({d : vn;i € Vi, (s, h,b) € ¥8), d =s(vn;)}) by definition of a

=Type({d:d € §V,))) by definition of ¥

= Type(8(Va))

=3(Vn)

=§(1)

-192 -

Proof of Condition 4 (mappings from concrete 10 abstract back to concrete only introduce

uncertainty)
Assume
xe 2™
by the definition of a
Wa(x)) = W§) where
V t € variable types, ¥(t) = Type({d: v e (s, h,b) ¢ x,d =5s(V)})
by the definition of y
Wa(x)) = ¥E)={(s1, hy, br) :
Vv, s)1(v) € {v))=Type({d: (s,h,b) € x,d =5(v)})
V Vai, $1(Vag) € 8(Vo) = Type({d : vaj € Vi, (s, h,b) € x,d = s(vn)})
V Pax, hi(pax) = L where L: positive integers — {vqx : for some k)

by € integers)

It is necessary to show that any element of x is in a(x)). By the above equation, y(a(x)) con-
tains environments with all combinations of all possible heaps and balances; in particular, any
heap and balance from x occur in these combinations. It must be shown that any store from x

also occurs in these combinations.

Let
(s1.hy, b)) e x

Vv, s1(v) € Type({ si(v)))

-193 -

< Type({d: (s, h,b) € x,d =5(V)])
V Vai, $1(vai) € Type({ si(vai)))
< Type({d : Voj € Va, (s, h,b) € x,d =5(vay)})
therefore
(51,0, by) € Ya(x)
x Yo(x))

x < y(a(x))

Proof of Condition § for selected transfer functions

Consistency between Model 1 and Modcl 3 will be shown for assignment and list creation. A
transfer function is constructed for the opcration at a node based on the temporary variables
associated with that node and its opcrands. These functions need to dereference the contents of

temporary variables. Let the dereferencing function for Modecl 1 be
Deref): store;;) X temporary variables -» values

s(s(r;) if s(r;) € variables
Derefy(s, 7;) ={s(r,v) othcrwisc

and let the dereferencing function for Modcl 3 be
Deref3; store(s) X temporary variables — 2vslues

Derefa(8, r;) = (8({r; }) - variablcs) U §(5({r; }) m variables)

-194 -

Lemma 1:
V §=a(x), x € 25V

Deref3(3, r;) 2 Type({d : (s, h, b) € x, d =Deref (s, r; }})

Proof
Deref3(8, r;) = (8({r; }) - variables) U 8(3((r; }) N variables)
8((r:)) - variables = Type({d : (s, h,b) € x, d = s(r;)}) - variables
= Type({d: (s, h,b) € x,d = s(r;) ¢ variables))
8(5({ri }) ~ variables) =
Type({d : v e Type({d; : (s, hy, by) € x,d; = s1(r;)}) N variables, (s, h, b) € x,
d=s(v)})

2 Type({d:ve {d;:(s1,hi, b)) € x,dy = 5(r,)}) N variables, (s, h, b) € x,d = s(v)})

= Type({d: (s, h,b) € x, (s, hy, b)) € x, 5)(r;) € variables, d = s(s;(r;))})

2 Type({d : (s, h, b) € x, s(r;) € variablcs, d = s(s(r;))})
Derefs(8, r;) 2 Type({d : (s, h,b) € x,d = s(r;) ¢ variables}) U

Type({d: (s, h,b) € x, s(r;) € variables, d = s(s(r;))})

s(str,)) if s(r;) € variables
=Type({d:(s,h,b) e x,d = s(ri) otherwise

=Type({d : (s, h,b) € x,d =Derel (s, r,)

- 195 -

Assignment

Let some node of a flow graph be labelcd with assignment. Let ro be the temporary variable
associated with the node and r, and r, bc the temporary variables associated with the left and
right operands, respectively. Let assign; be the transfer function associated with the node in

Model 1.

assign;(x) = {(s1, h, b) : (s, h, b) € x, s(r,) € variables, V v € variables

s(v) ifves(r;) and v#ryp
si(v)=4s(r,) ifv=rg }
Derefi(s, r2) ifv=s(ry)
(There are situations where assignment in Icon is morc complicated than this, but they are not

dealt with in this proof.)

Assignment in Model 3 nceds to distinguish between assignments treated as strong updates
(those with only one variable on the Icft hand side) and those trcated as weak updates (those
where there might be more than onc variable). L.t assigns be the transfer function in Model 3

using the same temporary variables as assign,. Let
assigns(8) = §;

for t € basic variable types, let t, = §({r }) N variables

50 ift#{ro}and1 gy
) u ift={rg)
sy = Deref3(8, r2) if t=1, = (v], for some variable v # rg

Deref3(§,r2)u§(l) ifl#(I‘o].(Cl],andVV,ll#{V]

for1, = U 13 where 3, t3 € variablc types

S1(t) = 81(12) L §1(1y)

- 196 -

Condition S for assignment is
V x € 27, a(assign(x)) < assign(a(x))
Let
o(assign,(x)) = §,
assigny(a(x)) = 8,
By the dcfinition of the ordering on store(s, this requires proving
Vi 30 cs0)
Only proofs for the interesting cascs of
L e variable basic types
are presented here. By the definition of a and assign,
§1() = Type({d: v e t,(s), h;, b)) € assigny(x), d = 5;(v)})
=Type({d:ve t,(s,h,b) € x, s(r;) € variables,

s(v) ifv#s(ry) and v#rg
d=4s(ry) ifv=rg)]
Derefi(s,r2) v=s(r;)

a(x)=3§

and let y, be the variable type in Model 3 on the left-hand-side of the assignment for the given set

of environments, x, from Model 1:

ty = {r1)) » variables = Type({d : (s, h, 1) ¢ »,d = 5(r;)}) N variables

-197 -

Then by the definition of assign, for t € variable basic types

§(1) iftz{rg)andt gy,
1 ift={ry)
8200 =1 Derefs(s, r2) ift=4=(v).vero

Derefa(S, r2) U 8(t) iftz(ro)l.tcy,and Vv, 4y # (V)

The proof of condition 5 is driven by the cases in the preceding formula.

Case 1: t2 {ro}andt ¢y

t does not appear on the lefi-hand-side of the assignment in Model 3. First, show by contrad-

iction that it does not appear on the left-hand-side in any store in Model 1.

Suppose 3 (s, h, b) € x s.t. s(r;) € L. tis a variablc basic type so

t="Type({s(r1)))

c Type({d : (s,h,b) € x,d =s(r,)}) N variables

4y

But this contradicts the assumption t & t,, thus

V(s,h,bex, s(r))¢t

Applying this to the formula for §,

§1(t) = Type({d: v e t, (s, h,b) € x,s(r) € variables, d = s(v)})

c Type({d:ve t,(s,h,b)e x,d=s(v)})

$2(1) = 8(1)

=Type({d:ve (s, h,b)e x,d=s(v)))

- 198 -

$1() < 32(1)

Case 2: t= {rg)

8§1() = Type({d : (s, h, b) € x, s(r;) € variables, d = 5(r;)})

=Type({d: (s, h,b) € x,d=s(r|)} n variablcs)

c Type((d : (s, h, b) € x,d =s(r;)}) N Type(variables))

= Type({d: (s, h, b) € x, d =s(r,)}) N variables

=4

= Type({d : (s, h, b) € x,d =s(ry)}) N variablcs

S1(1) € 82()

Case 3: t =1, = {v}, v #ro for some variablc v

tis the variable type on the left-hand-side of the assignment in Model 3 and it contains a sin-
gle variable. First, show by contradiction that this variable is the only one that appears on the

left-hand-side in any storc in Modcl 1.

Suppose 3 (s, h, b) € x, s.t. s(r;) € variablcs and s(r;) # v

{s(r1)) € Type({s(r1)))

< Type({d: (s1, hy) € x,d = s;(r1)}) N variables

4

199 -

But this implies s(r,) = v, which contradicts thc assumption, so
V (s,h,b) € x s.t.s(ry) € variables, s(r;)= v
Applying this to the formula for §,
81(t) = Type({d : (s, h, b) € x, s(r;) € variablcs, d = Deref,(s, r2)))

o Ty]”({d : (S! h' b) € X, d= Dercfl(s, ’2)])

$2(0) = Derefs(8, r2)
Therefore, by Lemma 1

§1(D € 5(1)
Cased: t#{ro},tcy,and Vv, 4y # (v)

$;(0) =Type({d: ve t,(s,h,b) € x,s(r;) € variables,

s(v) ifvzs(ry)
d=1Derefi(s,r2) ifv=s(r;) |

=Type({d:ve t,(s,h,b) € x, s(r,) € variables, v#s(r;), d = s(v)}) U

Type({d: ve t,(s,h,b) € x,s(r;) € variables, v==s(r;),d = Derefi(s,r2)})

C Type({d:ve t,(s,h,b)e x,d=s(v)}) U Type({d: (s,h,b) € x,d = Deref;(s,72)})

82(1) = Derefs(8, r2) U (1)

-200 -

= Derefa(§, r2) U Type({d: ve , (s, h, b) € x,d =s(v)})
Therefore, by Lemma 1
IO =103

List Creation

Let node n of a flow graph be labeled with list creation. Let ro be the temporary variable
associated with the node and r, through r, be the temporary variables associated with the m
operands, whose values will be put in the list. Let lis, be the transfer function associated with the

node in Model 1.

listy(x) = {(s1, h; ,b): (s, h,b) € x,

s(v) ifved {ro,Ap AJand Vi, 1Si<m, v # Vo i1
PasiA) ifv=rg
si(v) =< Derefy(s, r;) if 1 <i<mand v= vy -1
s(Ap) + 1 ifv=A,
s(Ay)+m ifv=A,
.

h(p) ifj#nork# s(Ap)
hi@id =L if j=nand k = s(A,), where Vi, 1 <i<m, L()= Vasayi-t)

Let list; be the transfer function in Model 3 using the samc (emporary variables as list;. Then
list3(8) = §;

fort e basic types

-201 -

s ift#£{ro}andt#V,
=] P, ift={ro}

(Vo) U Qomf,(s, r) ift=V,

for t; = t; U 13 where t,, t3 € variable types
S1() = 81(1) L Bi(1y)

Note that in Model 3, 3({A,}) = integer and 3({A,}) = intcger for all 8. These variables play no

part in Model 3, but are retained to keep a and y simplc.

Let
a(lisy(x)) = §,
lista((x)) = §2

then condition 5 for list creation requires proving
Vi 5 <50

As with assignment, only proofs for the interesting cases of t € variable basic types are
presented here. In addition, it is assumed that t # {A,} and t # {A,]} as these cases are trivial. By

the definition of « and list;
§1(1) = Type({d : v € t,(s;,hy, by) € listy(x), d = 5;(v)})

=Type({d:ve t,(s,h,b) e x,

s(v) ifV#roandVi.ISiSm,V¢Vn‘,(w.1

d= pn.l(A') ifv=ro])
Derefy(s, r;) fl<i€<mandv= Vns(AHi-1

-202 -

a(x)=8§

Then by the definition of lists, fort € variable basic types

81 ift#(ro)andt# V,
Lt)=]P, ift={ro)

(Vo U QDerefa(é. r) ift=V,

The proof is driven by the cases in the preceding formula.

Case 1: t# {ro}andt#V,
§i() = Type({d:ve (s, h,b) € x,d=5(V)})
$21) = 8(1)
=Type({d:ve t,(s.h,b) € x,d=5s(v)})
8§10 = %200
Case 2: 1= {ro)
$1(1) = Type({d: (s, h, b) € X, d = Pasia)))
< Type({d :d € P))

= Type(Po)

-203 -

8i(1) = 52(1)

Case3: t=V,

i) =Type({d:(s.h,b) € X, Vasa)+i-1 € Vsubn,

S(Vna(A+i-1) ificlori>m
d=1perefi(s, ;) ifl1<ism 1))

= Type({d: (s, h, b) € X, Vosaysi-1 € Vn,i<10ri>m,d=s(Vasari-1))) V
Type({d: (s,h,b) € x,1<i<m,d=Deref (s))})

< Type({d: (s,h,b)e x,ve V,,d=s(v)}) U

C{Typc((d : (s, h,b) e x,d=Deref (s)})
() = 8(Va) U QDeref,(s. r)
=Type({d: (s.h.b) € x,vE Vo d=s(V)})) U chrcr;,(s. ri)

Applying Lemma 1

81(1) < 521

This completes the proof of correctness for the framework of the abstract interpretation and

for two operations in the language. Proofs for most other operations are similar.

-204 -

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, second edition, 1990.

K. Walker and R. E. Griswold, Building and Installing the Icon Compiler, The Univ. of
Arizona Icon Project Document [PD158, 1991.

R. E. Griswold and M. T. Griswold, The Implementation of the Icon Programming
Language, Princeton University Press, 1986.

R. Milner, ‘‘A Theory of Type Polymorphism in Programming’’, Journal of Computer
and System Sciences 17, 3 (Dec. 1978), 348-375.

N. Suzuki, *‘Inferring Types in Smalltalk’’, Eighth Annual ACM Symposium on Principles
of Programming Languages, Jan. 1981, 187-199.

J. A. Robinson, ‘A Machine-Oriented Logic Based on the Resolution Principle’’, J. ACM
12, 1 (Jan. 1965), 2341.

M. A. Kaplan and J. D. Ullman, ‘‘A General Scheme for the Automatic Inference of

Variable Types', Fifth Annual ACM Symposium on Principles of Programming
Languages, Jan. 1978, 60-75.

G. Weiss and E. Schonberg, Typefinding Recursive Structures: A Data-Flow Analysis in
the Presence of Infinite Type Sets, Technical Report #235, Courant Inst. of Mathematical
Sciences, New York Univ, Aug. 1986.

M. S. Hecht, Flow Analysis of Computer Programs, North-Holland, New York, NY, 1977.

S. S. Muchnick and N. D. Jones, Program Flow Analysis: Theory and Applications,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

N. D. Jones and S. S. Muchnick, ‘‘A Flexible Approach to Interprocedural Data Flow
Analysis and Programs with Recursive Data Structures’’, Ninth ACM Symposium on
Principles of Programming Languages, 1982, 66-74.

P. Mishra, ‘‘Towards a Theory of Types in Prolog’’, Proceedings 1984 Symposium on
Logic Programming, Montvale, NJ, 1984, 289-298. ’

S. Horwitz, P. Pfeiffer and T. Reps, ‘‘Dependence Analysis for Pointer Variables’’,
Proceeding of the 1989 Conference on Programming Language Design and
Implementation, SIGPLAN Notices 24, 7 (July 1989), 2840.

D. R. Chase, M. Wegman and F. K. Zadeck, ‘‘Analysis of Pointers and Structures’’,
Proceeding of the 1990 Conference on Programming Language Design and
Implementation, SIGPLAN Notices 25, 6 (June 1990), 296-310.

K. Walker, A Type Inference System for Icon, The Univ. of Arizona Tech. Rep. 88-25,
1988.

A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison Wesley, Reading, MA, 1985.

T. W. Christopher, Efficient Evaluation of Expressions in Icon, Unpublished Draft, Illinois
Institute of Technology, 198S.

-205 -

18.). O’Bagy, The Implementation of Generators and Goal-Directed Evaluation in Icon, The
Univ. of Arizona Tech. Rep. 88-31, 1988.
19. B. W. Kemighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1978.
20. American National Standard for Information Systems — Programming Language - C,
__ANSI X3.159-1989, American National Standards Institute, New York, 1990.

21. G. R. Andrews and R. A. Olsson, et al.,”"An Overview of the SR Language and
Implementation’’, ACM Trans. Prog. Lang. and Systems 10, 1 (Jan. 1988), 51-86.

22.). L. Weiner and S. Ramakrishnan, ‘‘A Piggy-back Compiler for Prolog’’, Proceeding of
the 1988 Conference on Programming Language Design and Implementation, SIGPLAN
Notices 23,7 (July 1988), 288-295.

23.). Bartlett, “*‘SCHEME—>C a Portable Schemc-10-C Compiler”, Research Report 89/1,
Dec. Western Research Laboratory, Jan. 1989,

24. T. Yuasa and M. Hagiya, ‘‘Kyoto Common Lisp Report'', Research Institute for
Mathematical Sciences, Kyoto University.

25. B. Stroustrup, The C++ Programming Language, Addison Wesley, Reading, MA, 1986.

26. S. C. Johnson, Yacc: Yet Another Compiler-Compiler, Bell Laboratories, Murray Hill,
New Jersey, 1978.

27. M. E. Lesk and E. Schmidt, Lex — A Lexical Analyzer Generator, Bell Laboratories,
Murray Hill, New Jersey, 1979.

28. D. H. D. Warren, An Abstract Prolog Instruction Set, Technical Note 309, SRI
International, Menlo Park, CA, Oct. 1983.

29. M. J. C. Gordon, The Denotational Description of Programming Languages, An
Introduction, Springer Verlag , 1979.

30. J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory, MIT Press, Cambridge, 1977.

31. D. Gudeman, ‘‘Denotational Semantics of a Goal-Directed Language’’, ACM Trans. Prog.
Lang. and Systems, to appear.

32. H. Abelson and G. J. Sussman, Structure and Interpretation of Computer Programs, MIT
Press, Cambridge, MA, 1985.

33. J. Rees and W. Clinger, et al.,"’Revised3 Report on the Algorithmic Language Scheme’’,
SIGPLAN Notices 21, 12 (Dec. 1986), .

34. J.F. Nilsson, ‘*On the Compilation of a Domain-Bascd Prolog’’, Information Processing,
1983, 293-299.

35. P. Cousot and R. Cousot, ‘‘Abstract Interpretation: A Unified Lattice Modecl for Static
Analysis of Programs by Construction or Approximation of Fixpoints’’, Fourth ACM
Symposium on Principles of Programming Languages, 1977, 238-252.

36. J. Martinek and K. Nilsen, Code Generation for the Temporary-Variable Icon Virtual
Machine, Technical Report 89-9, Department of Computer Scicnce, Iowa State Universty,
Dec. 1989.

-206 -

37.

38.

39.

41.

42,

43.

45.
46.

K. Walker, An Implementation Language for Icon Run-Time Routines, The Univ. of
Arizona Icon Project Document IPD79, 1989.

B. Prabhala and R. Sethi, “‘Efficient Computation of Expressions with Common
Subexpressions'’, Fifth Annual ACM Symposium on Principles of Programming
Languages, Jan. 1978, 222-230.

S. K. Debray, Private Communication.
W. M. McKeeman, * ‘Peephole Optimization'’, Comm. ACM 8, 7 (July 1965), 443-444.

W. A. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs and C. M. Geschke, The
Design of an Optimizing Compiler, American Elsevier Pub. Co., New York, 1975.

A. S. Tanenbaum, H. Staveren and J. W. Stevenson, *‘Using Peephole Optimization on
Intermediate Code’’, ACM Trans. Prog. Lang. and Systems 4, 1 (Jan. 1982), .

R. E. Griswold and M. T. Griswold, The Icon Analyst, No. 1, Aug. 1990.
R. E. Griswold, The Icon Program Library, The Univ. of Arizona Tech. Rep. 90-7, 1990.
J. Kececioglu, Private Communication.

K. Walker, A Stand-Alone C Preprocessor, The Univ. of Arizona Icon Project Document
IPD65a, 1989.

-207 -

