
The Icon Program Library* 

Ralph E. Griswold 

TR 90-7b 

January 1,1990; last revised March 8,1990 

Department of Computer Science 

The University of Arizona 

Tucson, Arizona 85721 

*This work was supported by the National Science Foundation under Grant CCR-8713690. 





The Icon Program Library 

1. Introduction 
The Icon program library consists of Icon programs and procedures as well as data. Icon Version 8 is required to 

run most of the library [1,2]. 
In addition to the Icon program library proper, the library distribution contains an object-oriented version of Icon 

written in Icon. See [3] for instructions for unloading and using this program. 

Section 6 briefly describes the contents of the library. More compete documentation is contained in comments in 
the program and procedure files. You may wish to print these files to have documentation handy. 

The material in the Icon program library was contributed by Icon users. It is in the public domain and may be 
copied freely. The Icon Project packages and distributes the library as a service to Icon programmers. The Icon pro­
ject makes no warranties of any kind as to the correctness of the material in the library or its suitability for any 
application. The responsibility for the use of the library lies entirely with the user. 

2. Unloading the Library 

The Icon program library consists of three parts: programs, collections of procedures, and data. Normally, these 
components should be placed in separate directories named progs, procs, and data. The method of unloading the 
distribution files varies from system to system; system-specific instructions are included separately. 

The physical division of the library into progs, procs, and data is motivated by logical and organizational con­
siderations, not operational ones. Other names can be used and all the material can be placed in one directory, for 
example. This may be necessary on some systems. 

3. Link Search Paths 

Many of the programs link procedures. For example, options is used by many programs for processing 
command-line options and is linked from "ucode" files obtained from translating options.icn. 

Icon searches for ucode files first in the current directory and then in directories specified by the I PATH environ­
ment variable. I PATH consists of a sequence of blank-separated path names. The search is in the order of the 
names. For example, on a UNIX system running csh, 

setenv IPATH "../procs /usr/icon/ilib" 

results in a search for file names in link declarations first in the current directory, then in ../procs, and finally in 
/usr/icon/ilib. 

The method of setting IPATH varies from system to system. Since the current directory always is searched first, 
if ucode files are placed in the same directory as the program files, IPATH need not be set. See the next section. 

4. Installing the Library 

Installing the Icon program library consists of two steps: (1) translating the procedure files to produce ucode files 
and (2) compiling the programs. 

Ucode files are produced by translating the procedure files with the -c option to icont, as in 

icont -c options 

which translates options.icn. The result is two ucode files named options.ul and options.u2. The .u1 files 

- 1 



contains the procedure's code and the .u2 file contains global information about the procedure. It is these files that a 
fink declaration such as 

link options 

needs. 
A script for translating all the procedure files is provided with the most distributions. Once the procedure files 

have been translated, the ucode files can be moved to any place that is accessible from I PATH. 

The programs are compiled using icont without the -C option, as in 

icont deal 

which compiles deal.icn, a program that produces randomly selected bridge hands. The result of compiling a pro­
gram is an "icode" file whose name is system dependent. On some systems, the name is the same as the name of 
the program file with the .icn suffix removed (for example, deal). On other systems, the icode file has the suffix .icx 
in place of .icn (for example, deal.icx). 

On systems that support the direct execution of icode files (UNIX, for example), an icode file can be run just by 
entering its name on the command line, as in 

deal 

On other systems (MS-DOS, for example), icode files must be run using the Icon executor, iconx, as in 

iconx deal 

(This also works on systems that support direct execution.) Note that the suffix (if any) need not be mentioned. 
Many Icon programs take arguments and options from the command line. Options are identified by dashes. For 

example, in 

deal -h 10 

the -h 10 instructs deal to produce 10 hands. 

Icode files can be moved to any location. Ucode files are needed only during compilation. They need not be 
accessible when icode files are run. 

5. Usage Notes 

It is important to read the documentation at the beginning of programs and procedures in the library. It includes 
information about special requirements, limitations, known bugs, and so forth. 

Some of the programs in the Icon program library are quite large and may require more memory than is avail­
able on some personal computers. 

The library has evolved over a period of time. Some programs were written to run under earlier versions of Icon 
and do not take advantage of all the features of Version 8. 

The procedure getopt, used to process command-line options in the previous version of the library, has been 
replaced by the procedure options, which is somewhat easier to use. If you presently use getopt in other programs, 
you may wish to convert to options. 

6. Library Contents 

As mentioned earlier, detailed documentation about programs and procedures is contained in their files. A brief 
catalog of the contents of the Icon program library follows. 

- 2 -



6.1 Programs 

animal: Play the familiar "animal" game. 

calc: Calculate Icon values. 
colm: Arrange data items in columns. 
concord: Produce a concordance. 
cross: Arrange words in intersecting crossword fashion. 

csgen: Generate sentences from a context-sensitive grammar. 
deal: Display randomly generated bridge hands. 

delam: Delaminate file into several files according to field specifications. 

delamc: Delaminate file into several files according to tabs. 

diffn: Show differences among several files. 

diffword: List the distinct words in a file. 
edscript: Produce script for the ed editor. 

empg: Produce program to measure Icon expressions. 
farb: Produce a ' 'Farberism". 

fileprnt: Display representations of characters in a file. 
filter: Filter file. 

format: Format text, 
gcomp: Produce the complement of a UNIX file specification. 
grpsort: Sort groups of lines. 

hufftab: Compute state transitions for Huffman decoding. 

ilnkxref: Produce link cross-reference of Icon program. 

ipp: Preprocess Icon programs. 
ip ri nt: Print Icon program. 
ipsort: Sort procedures in Icon program. 

ipsplit: Split Icon program into separate procedure files. 
ipxref: Produce cross reference for Icon program. 

itab: Entab Icon program. 

iundecl: Find undeclared Icon identifiers. 

iwriter: Produce Icon expressions that write lines of file. 

krieg: Play game of kriegspiel. 
kross: Show all intersecting characters in two strings. 
kwic: Produce index of keywords in context. 
labels: Format mailing labels. 

lam: Laminate several files into one file. 
latex idx: Process LaTeX .idx file. 
linden: Generate strings in OL-system. 
lisp: Interpret Lisp program. 

load map: Produce load map of UNIX object file. 

miu: Generate strings in MTU system. 

- 3 -



memsum: Summarize memory usage of Icon program. 
monkeys: Generate random text. 
pack: Package a group of files in a single file (see unpack). 
parens: Generate random parenthesis-balanced strings. 
parse: Parse infix expressions (see also parsex). 

parsex: Parse arithmetic expressions (see also parse). 

press: Compress or uncompress file. 
proto: Compile all Icon syntactic forms. 

queens: Generate solutions to the n-queens problem (see also vnq). 
recgen: Produce recognizer for context-free language. 

roffcmds: List commands and macros in roff text. 
rsg: Generate random sentences from grammar. 
ruler: Write character ruler. 

shuffile: Shuffle fines in a file. 

solit: Play solitaire. 

tabic: Tabulate characters in a file. 
tablw: Tabulate words in a file. 

textcnt: Tabulate properties of a text file. 
trim: Trim lines in a file. 
turing: Simulate a Turing machine. 

u n iq u e: Filter out identical adjacent lines of a file. 
unpack: Unpackage a group of files (see pack). 

vnq: Display solutions to the n-queens problem interactively on an ANSI-standard terminal (see also 
queens). 

zipsort: Sort labels by ZIP code. 

6.2 Procedures 

allot: Perform iterative conjunction. 

bincvt: Convert binary data. 

bold: Enbolden and underscore text. 

codeobj: Encode and decode Icon values as strings (see also object). 

collate: Collate and decollate strings. 

colmize: Arrange data in columns. 

complex: Perform complex arithmetic. 

currency: Format in American currency. 

dif: Generate differences. 

escape: Interpret Icon literal escapes. 

filename: Parse file name. 

fullimag: Produce full image of Icon value (see also image and ximage). 

gcd: Compute greatest common divisor. 

- 4 -



gener: Generate various strings. 
hexcvt: Convert hexadecimal numbers. 
image: Produce image of Icon value. 
isort Sort with customization. 
largint: Perform arbitrary-precision integer arithmetic. 

Imap: Map list elements. 
mapbit: Map string into its bit representation. 
math: Perform mathematical computations. 
morse: Convert string to Morse code. 
ngrams: Tabulate n-grams in a text file. 

numbers: Convert numbers to various forms. 
object: Encode and decode Icon values as strings (see also codeobj). 
options: Process command-line options. 
patterns: Perform SNOBOL4-style pattern matching. 
patword: Produce letter pattern for a word. 

pdae: Perform programmer-defined argument evaluation. 
pdco: Perform programmer-defined control operations. 

permute: Perform permutations, combinations, and other character rearrangements. 

phoname: Generate possible words from telephone numbers. 
printcol: Print columnar data. 

printf: Format in C printf style. 
radco n: Convert radix. 
rational: Perform rational arithmetic. 
segment: Segment string. 

seqimage: Produce string image of Icon result sequence. 

shquote: Quote words for shells. 

shuffle: Shuffle string or list. 

snapshot: Show state of Icon string scanning. 
strings: Perform operations on strings. 

structs: Perform operations on structures. 

tuple: Simulate n-tuples. 

usage: Provide interface operations. 

wildcard: Match UNIX wild-card patterns. 
wrap: Wrap text lines. 

ximage: Produce image of Icon value (see also fullimag and image). 

6.3 Data 

*.csg: 
*.krs: 
*.lbl: 

Input to csgen. 

Input to kross. 

Input to label. 

- 5 



*.lin: 
*.rsg: 
*.tur: 

*.txt: 
*.wrd: 

farber.sen: 

palin.sen: 

Input to linden. 
Input to rsg. 
Input to turing. 

Sample text. 
Word lists. 

Farberisms. 

Palindromic sentences, 

7. Future Library Releases 
There are many contributions to the Icon program library that have not yet been distributed. This material 

includes: 
• Programs that are operating-system specific. 

• Complex packages. 

• Programs that require specific data files. 

• Programs that need more documentation. 

• Recent arrivals. 

The Icon program library will be updated as this material is put into a form suitable for distribution. 

8. Note to Contributors 
Material for the Icon program library always is welcome. It must be prepared in the style exemplified by the 

material in this release. Adequate documentation is essential; it must be in the format used for present library — we 
do not have the resources to rewrite or reformat contributed documentation. Test data also must be provided — at 
least enough so that we can determine that the contributed program material is basically functional. In cases where 
test data is impractical because of the nature of the contribution, instructions for testing should be provided. 

Program material can be submitted by electronic mail at one of the addresses given in the next section or on 
magnetic media. Printed listings are not acceptable. 

Contributions to the Icon program library must be free of any restrictions. The decision to include contributed 
material in the Icon program library rests entirely with the Icon Project. The Icon Project reserves the right to 
modify submissions to conform to library standards, to correct errors, and to make improvements. Contributors wil 
be consulted in the case of substantial changes. 

9. Bugs 
If you find a bug in the Icon program library or can suggest an improvement, please let us know: 

Icon Project 
Department of Computer Science 
Gould-Simpson Building 
The University of Arizona 
Tucson, AZ 85721 
U.S.A. 

(602) 621-4049 

icon-project@ cs.arizona.edu (Internet) 
... {uunet,allegra, noao}!arizona!icon-project (uucp) 

6 -

http://cs.arizona.edu


Acknowledgements 
The following persons contributed material to this release of the Icon program library: 

Paul Abrahams 
Robert J. Alexander 
Allan J. Anderson 
David S. Cargo 
nary A. Coutant 
Ward Cunningham 
Michael Glass 
Ralph E. Griswold 

Anthony Hewitt 
Thomas R. Hicks 
Tim Korb 
William P. Malloy 
William H. Mitchell 
Jerry Nowlin 
Randal L. Schwartz 
David Slate 

Gregg M. Townsend 
Kenneth Walker 
Stephen B. Wampler 
Kurt A. Welgehausen 
Robert C.Wieland 
Cheyenne Wills 
George D. Yee 
David Yost 

References 

1. R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs, 
NJ, 1983. 

2. R. E. Griswold, Version 8 of Icon, The Univ. of Arizona Tech. Rep. 90-1,1990. 

3. C. L. Jeffery, Programming in Idol—An Object Primer, The Univ. of Arizona Tech. Rep. 90-10,1990. 

- 7 -


