
Transporting Version 8 of Icon51

Ralph E. Griswold

TR 90-5c

January 1,1990; last modified March 29,1990

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant CCR-8901573.

Transporting Version 8 of Icon

1. Background

The implementation of the Icon programming language is large and complex [1]. It is, however, written almost
entirely in C, and it is designed to be portable to a wide range of computers and operating systems.

The implementation was developed on a UNIX system. It has been installed on a wide range of UNIX systems,
from mainframes to personal computers. Putting Icon on a new UNIX system is more a matter of installation than
porting [2]. There presently also are implementations of Icon for the Amiga, the Atari ST, the Macintosh, MS-DOS,
MVS, OS/2, VM/CMS, and VMS. This document addresses the problems and procedures for porting Icon to other
operating systems and computers.

The current version of Icon is 8 [3]. All installations of Version 8 of Icon are obtained from common source
code, using conditional compilation to select system-dependent code. Consequently, transporting Icon to a new sys­
tem is largely a matter of selecting appropriate values for configuration parameters, deciding among alternative
definitions, and possibly adding some code that is computer- or operating-system-dependent.

A small amount of assembly-language code is needed for a complete installation. See Section 7. This code is
optional and only affects co-expressions. A running version of the language can be obtained by working only in C.

Transporting Icon to a new system is a fairly complex task, although there are many aids to simplify the
mechanical portions. Read this report carefully before beginning a port. Understanding the Icon programming
language is helpful during the debugging phase of a port. See [3-5].

2. Requirements

C Data Sizes

Icon places the following requirements on C data sizes:

• chars must be 8 bits.

• ints must be 16, 32, or 64 bits.

• longs and pointers must be 32 or 64 bits.

• All pointers must be the same length.

• longs and pointers must be the same length.

If your C data sizes do not meet these requirements, do not attempt to transport Icon. Call the Icon Project for
advice.

The C Compiler

The main requirement for implementing Icon is a production-quality C compiler that supports at least the de
facto "K&R" standard [6]. The term "production quality" implies robustness, correctness, the ability to handle
large files and complicated expressions, and a comprehensive run-time library.

C preprocessor should conform either to the ANSI C standard [7] or to the de facto standard for UNIX C prepro­
cessors. In particular, Icon uses the C preprocessor to concatenate strings and substitute arguments within quotation
marks. For the ANSI preprocessor standard, the following definitions are used:

UNIX is a trademark of AT&T Bell Laboratories.

#define Cat(x.y) x##y
#define Lit(x) #x

For the UNIX de facto standard, the following definitions are used:

#define Ident(x) x
#define Cat(x,y) ldent(x)y
#define Lit(x) Mx"

The following program can be used to test these preprocessor facilities:

Cat(ma,in)()
{

printf(Lit(Hello world\n));
}

If this program does not compile and print Hello world using one of the sets of definitions above, there is no point in
proceeding. Contact the Icon Project as described in Section 8 for alternative approaches.

Memory

The Icon programming language requires a substantial amount of memory to run. The practical minimum is
640Kb.

File Space

The source code for Icon is large — about 1 Mb. Compilation and testing require considerably more space.
While the implementation can be divided into components that can be transported separately, this approach may be
painful.

3. Organization of the Implementation

Icon was developed on a hierarchical file system. To facilitate file transfer between different operating systems
and to simplify porting to systems that do not support file hierarchies, the source code for Icon is provided both in
hierarchical form and in a "Hat" form in which all files reside in the same area. This document applies to both the
hierarchical and flat forms. Some of the descriptions that follow refer to file hierarchies. In interpreting this docu­
mentation for a flat system, simply ignore the directories in path specifications; the file names themselves are the
same in the hierarchical and flat version.

3.1 Source Code

There are two components of Icon:

icont a command processor that converts source-language programs into icode, the "executable binary"
for the Icon virtual machine.

iconx an executor for icode, including a run-time system that supports the operations of the Icon language.

The files related to the source are packaged in four sections:

h
icont
iconx
common

headers
files for icont
files for iconx
common files ̂

In some forms of the diskette distribution, iconx comes in two parts, since it is is too large to fit on some kinds of
diskettes.

'Some files are shared by icont and iconx. Others are in this package for organizational reasons because they are shared by other pro­
grams related to Icon.

Appendix A lists the files of each component of Icon. Some header files are used in both components; these are
identified in the appendix. The files icont.bat and iconx.bat are scripts that indicate what files are to be compiled
and loaded to produce the respective components. These scripts were derived from a UNIX implementation, but
they can be adapted easily to other systems.

4. An Overview of the Porting Process

The first step in the porting process is to configure the source code for the new system. This process is described
in Section 5.1. After this is done, icont and iconx need to be constructed.

The process for each component is essentially the same:

• provide code and definitions that are system-dependent

• compile the source files and link them to produce executable binary files

• test the result

• debug, iterating over the previous steps as necessary

icont needs to be ported before iconx, since the output of icont is needed to test iconx. Of course, bugs in icont
may not show up until iconx is tested.

In addition to this obvious sequence of steps, some aspects of the implementation may be deferred until the
entire system is running, or they may be implemented in a preliminary manner and subsequently refined. For exam­
ple, the assembly-language portion of iconx is best left unimplemented until the rest of the system is running.

Considerable frustration can be avoided if problems that come up can be circumvented with temporary
expedients until the majority of the implementation is working properly. Similarly, conservative choices should be
made during the initial phases of the implementation.

5. Conditional Compilation

Conditional compilation is used extensively in Icon to select code that is appropriate to a particular installation.
Conceptually, conditional compilation can be divided into two categories:

(1) Matters related to the details of computer architecture, run-time system idiosyncrasies, specific C com­
pilers, and operating-system variants.

(2) Matters that are specific to operating systems that are distinctly different, such as MS-DOS, UNIX, and
VMS.

5.1 Parameters and Definitions

There are many defined constants and macros in the source code for Icon that vary from system to system. The
file h/config.h, which is included at the beginning of every .c file, manages the configuration1. It includes
h/define.h and, based on the information there, provides appropriate definitions, including defaults for information
that is not specified in define.h. It is in define.h that changes and additions for a specific implementation need to
be made. This file initially contains definitions for a "vanilla" 32-bit system. If your system closely approximates
such a system, you will have few changes to make to define.h. Over the range of possible systems, there are many
possibilities as described below. Do not be intimidated by the large number of options that follow; only a few are
needed for any one implementation.

The definitions are grouped into categories so that any necessary changes to define.h can be approached in a
logical way.

1 config.h includes <Stdio.h>, so you should not include it elsewhere.

Debugging code: Icon contains some code to assist in debugging. It is enabled by the definitions

#define DeBugTrans /* debugging code for the translator in icont */
#define DeBugLinker /* debugging code for the linker in icont */
#define DeBuglconx /* debugging code for the executor */

All three of these are automatically defined if DeBug is defined. DeBug is defined in define.h as it is distributed,
so all debugging code is enabled.

The debugging code for the translator consists of functions for dumping symbol tables (see icont/tsym.c). These
functions are rarely needed and there are no calls to them in the source code as it is distributed.

The debugging code for the linker consists of a function for dumping the code region (see icont/lcode.c) and
code for generating a debugging file that is a printable image of the icode file produced by the linker. This debug­
ging file, which is produced if the option -L is given on the command line when icont is run, frequently is useful if
problems are encountered in the linker. See Section 6.

The debugging code for the executor consists of a few validity checks at places where problems have been
encountered in the past. It also provides functions for dumping Icon values. See iconx/rmisc.c and
iconx/rmemmgt.c.

It usually is advisable to leave the debugging code enabled until Icon is known to be running properly. The code is
innocuous and adds only a few percent to the size of the executable files. It should be removed by deleting the
definition listed above from define.h as the final step in the implementation.

C preprocessor considerations: If your C preprocessor supports the ANSI draft standard, add

#define StandardPP

to define.h.

C compiler considerations: If your C compiler supports the ANSI C draft standard, add

#define StandardC

to define.h.

This has several effects. One is to provide a typedef for pointer that is void * rather than char *. It also enables
function prototypes and the use of the void type for functions that do not return values.

C library considerations: If your C compiler has an ANSI C draft standard C library, add

#define StandardLib

to define.h.

Alternatively, if your system has a standard C preprocessor, compiler, and library, just add

#define Standard

which defines StandardPP, StandardC, and StandardLib.

If your C compiler supports the void type but not the ANSI C draft standard, add

#define VoidType

to define.h.
If your C compiler supports function prototypes but not the ANSI C draft standard, add

#define Prototypes

to define.h. This causes function prototypes (in proto.h) to be used in place of forward declarations. The use of
prototypes may be very helpful in getting Icon to work, especially on systems with 16-bit ints or unusual pointer
representations. (Function prototypes are produced using a macro, Params(s). See the definition of Params(s) in
h/config.h and examples of its use in h/proto.h.)

On some systems it may be necessary to provide a different typedef for pointer than mentioned above. For
example, on the huge-memory-model implementation of Icon for Microsoft C on MS-DOS, its define.h contains

- 4 -

typedef huge void ^pointer

If an alternative typedef is used for pointer, add

#define PointerDef

to define.h to avoid the default one.

Sometimes computing the difference of two pointers causes problems. Pointer differences are computed using
the macro DiffPtrs(p1 ,p2), which has the default definition:

#define DiffPtrs(p1 ,p2) (word)((p1)-(p2))

where word is a typedef that is provided automatically and usually is long int.

This definition can be overridden in define.h. For example, Microsoft C for the MS-DOS large memory model
uses

#define DiffPtrs(p1 ,p2) ((word)(p1)-(word)(p2))

If you provide an alternate definitions for pointer differencing, be careful to enclose all arguments in parentheses.

C sizing and alignment: There are four constants that relate to the size of C data and alignment:

IntBits
WordBits
Double

(default: 32)
(default: 32)
(default: undefined)

IntBits is the number of bits in a C int. It may be 16, 32, or 64. WordBits is the number of bits in a C long (Icon's
"word"). It may be 32 or 64. If your C library expects doubles to be aligned at double-word boundaries, add

#define Double

to define.h.

The word alignment of stacks used by co-expressions is controlled by

StackAlign (default: 2)

If your system needs a different alignment, provide an appropriate definition in define.h.

Most computers have downward-growing C slacks, for which stack addresses decrease as values are pushed. If
you have an upward-growing stack, for which stack addresses increase as values are pushed, add

#define UpStack

to define.h.

Floating-point arithmetic: There are three optional definitions related to floating-point arithmetic:

Big (default: 9007199254740092.)
LogHuge (default: 309)
Precision (default: 10)

The values of Big, LogHuge, and Precision give, respectively, the largest floating-point number that does not loose
precision, the maximum base-10 exponent + 1 of a floating-point number, and the number of digits provided in the
string representation of a floating-point number. If the default values given above do not suit the floating-point arith­
metic on your system, add appropriate definitions to define.h.
Open options: The options for opening files wi\hfopen() are given by the following constants:

ReadBinary (default: "rb")
ReadText (default: "r")
Write Binary (default: "wb")
WriteText (default: "w")

These defaults can be changed by definitions in define.h.
Run-time routines: The support for some run-time routines varies from system to system. The related constants
are:

IconGcvt (default: undefined)
IconQsort (default: undefined)
SysMem (default: undefined)
index (default: undefined)
rindex (default: undefined)

If IconGcvt and IconQsort are defined, versions of gcvt() and qsortQ in the Icon system are used in place of the
routines normally provided in the C run-time system. These constants only need to be defined if the versions of
these routines in your run-time system are defective or missing.

If SysMem is defined and IntBits == WordBits, the C run-time routines memcpyO and memset() are used in
place of the corresponding Icon routines memcopyi) and memfill(). SysMem is automatically defined if Stan-
dardLibis.

Different C compilers use different names for the routines for locating substrings within strings. The source code
for Icon uses index and rindex. The other possibilities are strchr and strrchr. If your system uses the latter names,
add

#define index strchr
#define rindex strrchr

to define.h.

Similarly, Icon uses unlink for the routine that deletes a file. The other common name is remove. If your sys­
tem uses this name, for example, add

#define unlink remove

to define.h.

Storage management: Icon includes its own versions of mallocQ, calloc(), realloc(), and free() so that it can
manage its storage region without interference from allocation by the operating system. Normally, Icon's versions
of these routines are loaded instead of the system library routines.

Leave things are they are in the initial configuration, but if your system insists on loading its own library rou­
tines, multiple definitions will occur as a result of the Id in src/iconx. If multiple definitions occur, go back and add

#define IconAlloc

to define.h. This definition causes Icon's routines to be named differently to avoid collision with the system routine
names.

One possible effect of this definition is to interfere with Icon's expansion of its memory region in case the initial
values for allocated storage are not large enough to accommodate a program that produces a lot of data. This prob­
lem appears in the form of run-time errors 305-307. Users can get around this problem on a case-by-case basis by
increasing the initial values for allocated storage by setting environment variables [8].

Icon's dynamic storage allocation system uses three memory regions. In some implementations, these regions
expand if necessary, allowing memory space to be used in a flexible fashion. This "expandable regions" method
relies on the use of brk() and sbrk() and the system treatment of user memory space as one logically contiguous
region. This method does not work on many systems that treat memory as segmented or do not support brk() and
sbrk(). On such systems, fixed-sized regions are used. Since this is the commonest case,

#define FixedRegions

is included in define.h initially. If your system supports brk() and sbrk(), you may wish to remove this definition in
order to get better utilization of memory. However, since expandable regions are more prone to problems than fixed
regions, it is wise to start with the latter and try the former only after everything else is working.

Storage regions: The sizes of Icon's run-time storage regions for allocated data normally are the same for all imple­
mentations. However, different values can be set:

MaxStatSize (default: 20480 if co-expressions are enabled, else 1024)
MaxAbrSize (default: 65000)
MaxStrSize (default: 65000)

Since users can override the set values with environment variables, it is unwise to change them from their defaults
except in unusual cases.

The sizes for Icon's main interpreter stack and co-expression stacks also can be set:

MStackSize (default: 10000)
StackSize (default: 2000)

As for the block and string storage regions, it is unwise to change the default values except in unusual cases.

Finally, with fixed-regions storage management, a list used for pointers to strings during garbage collection, can
be sized:

QualLstSize (default: 5000)

Like the sizes above, this one normally is best left unchanged.
Allocation size: Normally malloc() is used to allocate space for Icon's storage regions. This limits region sizes to
the value of the largest unsigned int. Some systems provide alternative allocation routines for allocating larger
regions. To change the allocation procedure for regions, add a definition for AllocReg to define.h. For example,
the huge-memory-model implementation of Icon for Microsoft C uses the following:

#define AllocReg(n) halloc((long)n,sizeof(char))

Note: Icon still uses mallocO for allocating other blocks. If this is a problem, it may be possible to change this by
defining malloc in define.h, as in

#define malloc Imalloc

If this is done, and the size of the allocation is not unsigned int, add an appropriate definition for the type by defining
AllocType in define.h, such as

#define AllocType unsigned long int

It is also necessary to add a definition for the limit on the size of an Icon region:

#define MaxBlock n

where n is the maximum size allowed (the default for MaxBlock is MaxUnsigned, the largest unsigned int). It gen­
erally is not advisable to set MaxBlock to the largest size an alternative allocation routine can return. For the huge-
memory-model implementation mentioned above, MaxBlock is 256000.

File name suffixes: The suffixes used to identify Icon source programs, ucode files, and icode files may be specified
in define.h:

#define SourceSuffix (default: ".icn")
#define U1 Suffix (default: ".u1")
#define U2Suffix (default: ".u2")
#define USuffix (default: ".u")
#define IcodeSuffix (default: "")
#define IcodeASuffix (default: "")

USuffix is used for the abbreviation that icont understands in place of the complete U1 Suffix or U2Suffix.
IcodeASuffix is an alternative suffix that iconx uses when searching for icode files specified without a suffix. For
example, on MS-DOS, IcodeSuffix is ".icx" and IcodeASuffix is ".ICX".

If values other than the defaults are specified, care must be taken not to introduce conflicts or collisions among
names of different types of files.
Paths: If icont is given a source program in a directory different from the local one ("current working directory"),
there is a question as to where ucode and icode files should be created: in the local directory or in the directory that
contains the source program. On most systems, the appropriate place is in the local directory (the user may not have

write permission in the directory that contains the source program). However, on some systems, the directory that
contains the source file is appropriate. By default, the directory for creating new files is the local directory. The
other choice can be selected by adding

#define TargetDir SourceDir

Command-line options: The command-line options that are supported by icont are defined by Options. The
default value (see config.h) will do for most systems, but an alternative can be included in define.h.

Similarly, the error message produced by icont for erroneous command lines is defined by Usage. The default
value, which should correspond to the value of Options, is in config.h, but may be overridden by a definition in
define.h.

Environment variables: If your system does not support environment variables (via the run-time library routine
getenv), add the following line to define.h:

#define NoEnvVars

This disables Icon's ability to change internal parameters to accommodate special user needs (such as using memory
region sizes different from the defaults), but does not otherwise interfere with the use of Icon.

Character set: If you are porting Icon to a computer that uses the EBCDIC character set, add

#define EBCDIC 1

to define.h.
Host identification: The identification of the host computer as given by the Icon keyword &host needs to be
specified in define.h. The definition

#define HostStr "unspecified host"

is provided in define.h initially. This definition should be changed to an appropriate value for your system.

Exit codes: Exit codes are determined by the following definitions:

NormalExit (default: 0)
ErrorExit (default: 1)

Memory monitoring: The number of bytes for reporting block sizes in allocation history files produced by memory
monitoring [9] is determined by

MMUnits (default: WordSize)

A smaller value is needed if the size of any Icon block is not an even multiple of WordSize. This occurs, for exam­
ple, on computers with 80-bit (1-1/2 word) floating-point numbers, in which case the value of MMUnits should be
defined to be 2.
Clock rate: Hz defines the units returned by the timesQ function call. Check the documentation for this function on
your system. If it says that times are returned in terms of 1/60 second, no action is needed. Otherwise, define Hz in
define.h to be the number of times() units in one second.

The documentation may refer you to an additional file such as /usr/include/sys/param.h. If so, check the value
there, and define Hz accordingly.

Executable Images: If you have a BSD UNIX system and want to enable the function save(s), which allows an
executable image of a running Icon program to be saved [3], add
Keyboard functions: If your system supports the keyboard functions getch(), getche(), and kbhit(), add

#define KeyboardFncs

to define.h.

System function: If your system supports the system() function for executing command line, add

#define SystemFnc

to define.h.

Dynamic hashing:

Four parameters configure the implementation of tables and sets:

HSIotS Initial number of hash buckets; it must be a power of 2

HSegs Maximum number of hash bucket segments
MaxHLoad Maximum allowable loading factor

MinHLoad Minimum loading factor for new structures

The default values (listed below) are appropriate for most systems. If you want to change the values, read the
discussion that follows.

Every set or table starts with HSIotS hash buckets, using one bucket segment. When the average hash bucket
exceeds MaxHLoad entries, the number of buckets is doubled and one more segment is consumed. This repeats
until HSegs segments are in use; after that, structure still grows but no more hash buckets are added.

MinHLoad is used only when copying a set or table or when creating a new set through the intersection, union,
or difference of two other sets. In these cases a new set may be more lightly loaded than otherwise, but never less
than MinHLoad if it exceeds a single bucket segment.

For all machines, the default load factors are 5 for MaxHLoad and 1 for MinHLoad. Because splitting or com­
bining buckets halves or doubles the load factor, MinHLoad should be no more than half MaxHLoad. The average
number of elements in a hash bucket over the life of a structure is about 2/3 x MaxHLoad, assuming the structure is
not so huge as to be limited by HSegs. Increasing MaxHLoad delays the creation of new hash buckets, reducing
memory demands at the expense of increased search times. It has no effect on the memory requirements of
minimally-sized structures.

HSIotS and HSegs interact to determine the minimum size of a structure and its maximum efficient capacity.
The size of an empty set or table is directly related to HSegs+HSIots; smaller values of these parameters reduce
the memory needs of programs using many small structures. Doubling HSIotS delays the onset of the first structure
reorganization until twice as many elements have been inserted. It also doubles the capacity of a structure, as does
increasing HSegs by 1.

The maximum number of hash buckets is HSIotSx(2"(HSegs-l)). A structure can be considered "full" when
it contains MaxHLoad times that many entries; beyond that, lookup times gradually increase as more elements are
added. Until a structure becomes full, the values of HSIotS and HSegs do not affect lookup times.

For machines with 16-bit ints, the defaults are 4 for HSIotS and 6 for HSegs. Sets and tables grow from 4 hash
buckets to a maximum of 128, and become full at 640 elements. For other machines, the defaults are 8 for HSIotS
and 10 for HSegs. Sets and tables grow from 8 hash buckets to a maximum of 4096, and become full at 20480 ele­
ments.

Optional features: Some features of Icon are optional. Some of these normally are enabled, while others normally
are disabled. The features that normally are enabled can be disabled to, for example, reduce the size of the execut­
able files. A negative form of definition is used for these, as in

#define NoLargelnts

which can be added to define.h to disable large-integer arithmetic. It may be necessary to disable large-integer
arithmetic on computers with a small amount of memory, since the feature increases the size of iconx by 15-20%.

Examine config.h to see what other features can be disabled and the definitions to use.

One optional feature that normally is disabled is the ability to call an Icon program from a C function [10]. This
feature can be enabled by adding

#define IconCalling

to define.h.

The implementation of co-expressions requires an assembly-language routine. Initially, define.h contains

#define NoCoexpr

to disable co-expressions during the initial phases of transporting Icon to a new system. Leave this definition in for
the first round, although you may want to remove it later and implement co-expressions, (see Section 7).

Search path: The -x option requires knowledge of where to find iconx. The path is given in paths.h, which con­
tains the following as distributed:

#define IconxPath "iconx.exe"

This definition can be changed as needed.

5.2 Operating System Differences

Conditional compilation for operating systems usually is due to differences in run-time library routines, differ­
ences in file naming, the handling of input and output, and environmental factors.

The presently supported operating system are AmigaDos, Atari ST TOS, the Macintosh under MPW, MS-DOS,
MVS, OS/2, UNIX, and VM/CMS, and VMS. There hooks for transporting to an unspecified system (a new port).
The associated defined symbols are

AMIGA
ATARI_ST
HIGHC 386
MACINTOSH
MSDOS
MVS
OS
PORT
UNIX
VM
VMS

AmigaDos
Atari ST TOS
MS-DOS in 32-bit protected mode for 80386 processors
Macintosh
MS-DOS
MVS
OS/2
new port
UNIX
VM/CMS
VMS

Conditional compilation uses logical expressions composed from these symbols. An example is:

#if MSDOS

/+ code for MS-DOS */

#endif

#if UNIX || VMS

/* code for UNIX and VMS */

#endif

Each symbol must be defined to be either 1 (for the target operating system) or 0 (for all other operating systems).
This is accomplished by defining the symbol for the target operating system to be 1 in define.h. In config.h, which
includes define.h, all other operating-system symbols are automatically defined to be 0.

Logical conditionals with #if are used instead of defined or undefined names with #ifdef to avoid nested condi­
tionals, which become very complicated and difficult to understand when there are several alternative operating sys­
tems. Note that it is important not to use #ifdef accidentally in place of #if, since all the names are defined.

The file define.h initially contains

#define PORT 1

Leave it as is; later you should come back and change PORT to some more appropriate name.

- 10-

Note: The PORT sections contain deliberate syntax errors (so marked) to prevent sections from being over­
looked during porting. These syntax errors must, of course, be removed before compilation.

To make it easy to locate all the places where there is code that may be dependent on the operating system, such
code is bracketed by unique comments of the following form:

/*
* The following code is operating-system dependent.
*/

/*
* End of operating-system specific code.
*/

Between these beginning and ending comments, the code for different operating systems is provided using condi­
tional expressions such as those indicated above.

There presently are a total of 43 segments that contain such code. The files that contain operating-system-
dependent code are listed in Appendix B. Look through some of the files that contain such segments to get an idea
of what is involved. Each segment contains comments that describe the purpose of the code. In some cases, the
most likely code or a suggestion is given in the conditional code under PORT. In some cases, no code will be
needed. In others, code for an existing system may suffice for the new system.

In any event, code for the new operating system name must be added to each such segment, either by adding it
to a logical disjunction to take advantage of existing code for other systems, as in

#if MSDOS || UNIX || PORT

#endif

#if VMS

#endif

and removing the present code for PORT or by filling in the segment with the appropriate code, as in

#if PORT

/* code for the the port */

#endif

If no code for the target operating system, a comment should be added so that it is clear that the situation has been
considered.

You may find need for code that is operating-system dependent at a place where no such dependency presently
exists. If the situation is idiosyncratic to your operating system, which is most likely, simply use a conditional for
PORT as shown above. If the situation appears to need different code for several operating systems, add a new seg­
ment similar to the other ones, being sure to provide something appropriate for all operating systems.

Do not use #else constructions in these segments; this encourages errors and obscures the mutually exclusive
nature of operating system differences.

- 11

6. Building and Testing

6.1 The Command Processor

Start by compiling all the C programs listed in icont.bat. Link the resulting object files to produce icont. If you
encounter problems, first check the portions of code containing operating system dependencies.

Once you have a version of icont, try it on the Icon programs in tests. For example, to translate hello.icn in
tests, do

icont -c hello.icn

The -c option stops icont at the point it produces ucode files, which are an intermediate form of virtual machine
code. This should yield two ucode files, hello.u1 and hello.u2. The .u1 file contains procedure declarations and
code for the Icon machine; the .u2 file contains global declaration information. These files both consist of printable
text. They should be identical to the corresponding files in test/stand unless the EBCDIC character set is used in
the port.

Checking icode files is next. Since icode files are binary and vary somewhat from system to system, they cannot
be checked as easily as ucode files. However, as mentioned in Section 5.1, if icont is compiled with the linker
debugging code enabled, the -L command-line option produces a printable image in a file with suffix .ux. For
example,

icont -L hello.u1

produces an icode image hello.ux. Compare this to the corresponding file in tests/stand. Remember that differ­
ences are to be expected and the check is only a rough one.

6.2 The Executor

If you gel this far without apparent problems, you are ready for the next part of the transporting process: iconx.
Compile all the C programs listed in iconx.bat and load them to form iconx.

As a first test, try iconx on hello.icn in tests as follows:

icont hello.icn
iconx hello

If all is well, the last step should print out "hello world" and some identifying information. If it doesn't, the problem
may be in either icont or iconx.

Once this test has been passed, more rigorous testing should follow. At this point, you probably will want to
devise a way of testing programs, since there are a large number of tests. This is done for the UNIX implementation
using the following script:

for i in 'cat $1.1st'
do

rm -f local/$i.out
echo Running $i
icont -s $i.icn
if test - r $i.dat
then

iconx $i <$i.dat >local/$i.out 2>&1
else

iconx $i >local/$i.out 2>&1
fi
echo Checking $i
diff local/$i.out stand/$i.out
rm -f $i

done

Something similar can be concocted for most other systems. Making such a facility as easy to use as possible is

12-

worth the effort.

There are many test programs for testing different aspects of iconx. These range from simple tests to
"grinders". The names of the test programs are listed in the following files:

check.1st tests whose results differ from system to systems
coexpr.lst tests that use co-expressions
expr.lst tests that contain a wide variety of expressions
float. 1st tests that test floating-point arithmetic
gc.lst tests of garbage collection
ico n. 1st short but varied tests
large.1st tests of large-integer arithmetic
mode 1.1st tests of features that depend on hashing parameters
new. 1st tests of new features
other.lst tests of more complex programs

There are data files for all test programs, although some data files are empty. The names of data files correspond
to the names of the Icon programs but end in .dat. For example, the Icon program meander.icn, listed in icon.1st,
takes data from meander.dat. tests/stand contains files whose names end in .out that contain the expected output
of each test program. For example, the expected output of meander.icn is contained in meander.out.

Start with icon. 1st. The output should be identical to that in the distributed .out files. Any discrepancies should
be checked carefully and corrections made before continuing.

The programs listed in expr.lst execute a wide variety of individual expressions. Ideally, there should be no
discrepancies between their output and the expected output. If there are many discrepancies, something serious
probably is wrong. If there are only a few discrepancies, they may be noted while other testing is conducted.

The program listed in check. 1st certainly will show some differences, since they test features whose results are
time- and environment-dependent.

The programs listed in other.lst and new.1st test some features that are not tested elsewhere. They should be
treated like the programs listed in icon.1st.

The programs listed in float. 1st are likely to show many differences, since the routines that convert floating-point
numbers to strings vary widely from system to system. It is enough to check that the numerical magnitudes are
correct.

The program listed in model.1st shows differences if run on a system that has 16-bit ints or if hashing parame­
ters are altered.

Since storage management is one of the parts of Icon that is likely to give trouble, there are special storage-
management tests in gc.lst. These programs run for a long period of time. One program may show a difference in
output if the fixed-regions version of memory management is used, since it may run out of space.

The programs in large. 1st require large-integer arithmetic. Run these tests if that feature is supported.

The programs in coexpr.lst require co-expressions. Save them for later.

Not much general advice can be given about locating and correcting problems that may show up in testing
iconx. It has to be done the hard way and may involve learning more about the Icon language [4] and how it is
implemented [1]. A good debugger can be very helpful.

If your system can produce core dumps that are useful for debugging, set the environment variable ICON-
CORE. This will cause iconx to produce a code dump on abnormal termination.

7. Co-Expressions

Once Icon is running satisfactorily, you may wish to implement co-expressions. This requires an assembly-
language routine.

Note: If your system does not allow the C stack to be at an arbitrary place in memory, there is probably little
hope of implementing co-expressions. If you do not implement co-expressions, the only effect will be that Icon pro­
grams that attempt to use a co-expression will terminate with an error message.

13

All aspects of co-expression creation and activation are written in C in Version 8 except for a routine, coswitch,
that is needed for context switching. This routine requires assembly language, since it must manipulate hardware
registers. It either can be written as a C routine with asm directives or as an assembly language routine.

Calls to the context switch have the form coswitch(old_cs,new_cs,first), where old_cs is a pointer to an array
of words (C longs) that contain C state information for the current co-expression, new_cs is a pointer to an array of
words that hold C state information for a co-expression to be activated, and first is 1 or 0, depending on whether or
not the new co-expression has or has not been activated before. The zeroth element of a C state array always con­
tains the hardware stack pointer (sp) for that co-expression. The other elements can be used to save any C frame
pointers and any other registers your C compiler expects to be preserved across calls.

The default size of the array for saving the C state is 15. This number may be changed by adding

#define CStateSize n

to define.h, where n is the number of elements needed.
The first thing coswitch does is to save the current pointers and registers in the old_CS array. Then it tests first.

If first is zero, coswitch sets sp from new_cs[0], clears the C frame pointers, and calls interp. If first is not zero, it
loads the (previously saved) sp, C frame pointers, and registers from new_cs and returns.

Written in C, coswitch has the form:

/*
* coswitch
*/

coswitch(old_cs, new_cs, first)
long *old_cs, *new_cs;
int first;
{

/* save sp, frame pointers, and other registers in old_cs */

if (first == 0) { /* this is first activation */

/* load sp from new_cs[0] and clear frame pointers */

interp(0, 0);
syserr("interp() returned in coswitch");
}

else {

/* load sp, frame pointers, and other registers from new_cs */

}

After you implement coswitch, remove the #define NoCoexpr from define.h.
To test your context switch, run the programs in coexpr.lst. Ideally, there should be no differences in the com­

parison of outputs.
If you have trouble with your context switch, the first thing to do is double-check the registers that your C com­

piler expects to be preserved across calls — different C compilers on the same computer may have different require­
ments.

Another possible source of problems is built-in stack checking. Co-expressions rely on being able to specify an
arbitrary region of memory for the C stack. If your C compiler generates code for stack probes that expects the C

14-

stack to be at a specific location, you may need to disable this code or replace it with something more appropriate.

8. Trouble Reports and Feedback

If you run into problems, contact us at the Icon Project:

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, AZ 85721
U.S.A.

(602)621-4049

icon-project@cs.arizona.edu (Internet)
... {uunet, allegra, noao}! arizona! icon-project (uucp)

Please also let us know of any suggestions for improvements to the porting process.

Once you have completed your port, please send us copies of any files that you modified so that we can make
corresponding changes in the central version of the source code. Once this is done, you can get a new copy of the
source code whenever changes or extensions are made to the implementation. Be sure to include documentation on
any features that are not implemented in your port or any changes that would affect users.

Acknowledgements

Many persons have been involved in the implementation of Icon. Contributions to its portability have been made
by Mark Emmer, Bill Mitchell, Gregg Townsend, Ken Walker, and Cheyenne Wills.

References

1. R. E. Griswold and M. T. Griswold, The Implementation of the Icon Programming Language, Princeton
University Press, 1986.

2. R. E. Griswold, Installation Guide for Version 8 of Icon on UNIX Systems, The Univ. of Arizona Tech. Rep.
90-2, 1990.

3. R. E. Griswold, Version 8 of Icon, The Univ. of Arizona Tech. Rep. 90-1,1990.

4. R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1983.

5. R. E. Griswold, An Overview of Version 8 of the Icon Programming Language, The Univ. of Arizona Tech.
Rep. 90-6,1990.

6. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1978.

7. Technical Committee X3J11, Draft Proposed American National Standard for Information Systems —
Programming Language C, 1988.

8. R. E. Griswold, ICONT(l), manual page for UNIX Programmer's Manual, The Univ. of Arizona Icon Project
Document IPD109, 1990.

9. G. M. Townsend, The Icon Memory Monitoring System, The Univ. of Arizona Icon Project Document
IPD113,1990.

10. R. E. Griswold, Icon-C Calling Interfaces, The Univ. of Arizona Tech. Rep. 90-8, 1990.

15

mailto:icon-project@cs.arizona.edu

Appendix A — Files Used for Components of Icon

Files marked by * are used in more than one component.

Files Used for icont

config.h*
cproto.h*
cpuconf.h*
define, h*
fdefs.h*
general.h
globals.h
header.h*
keyword, h*
Ifile.h
link.h
odefs.h*
opcode.h
opdefs.h*
paths.h*
proto.h*
rt.h*
sizes.h
tlex.h
token.h
tproto.h
trans, h
tree.h
tsym.h
version, h*

ebcdic.c
err.c
getopt.c
keyword.c
Icode.c
Iglob.c
link.c
llex.c
Imem.c
long.c*
Inklist.c
Isym.c
opcode.c
optab.c
parse.c
tcode.c
tlex.c
tlocal.c
tmain.c
tmem.c
toktab.c
trans.c

general configuration information
function prototypes
processor configuration information
system-dependent definitions
function definitions
general header information
global declarations
icode header structure
keyword definitions
information for link declarations
heading information for the linker
operator definitions
opcode structure
icode instruction definitions
file paths
function prototypes
header for run-time system
data sizing
information for lexical analysis
token definitions
function prototypes
heading information for the translator
code tree information
information for symbol tables
version information

EBCDIC conversion routines
error messages
command-line processing routines
keyword structure
linker code generator
processor for global linking information
linker
lexical analyzer
linker memory management
long-string routines
file linking
linker symbol table management
opcode table
state tables for operator recognition
parser
translator code generator
lexical analyzer for translation
local routines
main program
memory management for translation
token table
translator

16

tree.c
tsym.c
util.c

ed for iconx

config.h*
cproto.h*
cpuconf.h*
define, h*
fdefs.h*
gc.h
header.h*
keyword.h*
memsize.h*
odefs.h*
opdefs.h*
proto.h*
rproto.h*
rt.h*
version, h*

extcall.c
fconv.c
fmath.c
fmemmon.c
fmisc.c
fscan.c
fstr.c
fstranl.c
fstruct.c
fsys.c
fxtra.c
idata.c
imain.c
interp.c
invoke.c
istart.c
Imisc.c
long.c*
Irec.c
Iscan.c
memory.c
oarith.c
oasgn.c
ocat.c
ocomp.c
omisc.c
oref.c
oset.c
ovalue.c
time.c
rcomp.c
rconv.c
rdebug.c
rdefault.c

code tree constructor
translator symbol table management
utility routines

general configuration information
function prototypes
computer configuration information
system-dependent definitions
function definitions
garbage collection definitions
icode header
keyword definitions
memory sizing
operator definitions
icode definitions
function prototypes
function prototypes
run-time definitions
version information

external function stub
conversion functions
math functions
memory-monitoring functions
miscellaneous functions
scanning functions
string construction functions
string analysis functions
data structure functions
system functions
extra functions
data
main program
icode interpreter
function and procedure invocation
main program for calling Icon from C
miscellaneous library routines
long-integer routines
library routines for record
scanning routines
memory-mangement routines
arithmetic operations
assignment operations
concatenation operations
comparison operations
miscellaneous operations
referencing operations
set operations
value operations
time and date routines
comparison routines
conversion routines
debugging routines
default value routines

17

rdoasgn.c assignment routines
rlocal.c local routines
rlargint.c large-integer routines
rmemexp.c memory management routines for expandable regions
rmemfix.c memory management routines for fixed regions
rmemmgt.c general memory management routines
rmisc.C miscellaneous routines
rstruct.C structure routines
rsys.C system routines

18

Appendix B — System-Dependent Code

The following source files contain code that is operating-system dependent. The number of places where such
code occurs in each file is given in parentheses.

config.h (1)
proto.h (1)
rt.h (1)

icont:

link.c (3)
Imem.c (4)
tlocal.c (1)
tmain.c (4)
util.c (1)

iconx:

fmath.c (1)
fsys.c (6)
imain.c (6)
interp.c (4)
rconv.c (1)
rlocal.c (1)
rmemexp.c (1)
rmisc.c (1)

common:

time.c (6)

19

