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A Type Inference System for Icon

1. Introduction

Variables in the Icon programming language are untyped [1]. That is, a variable may take on values of different
types as the execution of a program proceeds. In the following example, X contains a string after the read (if the read
succeeds), but it is then assigned an integer or real, provided the string can be converted to a numeric type.

x = read()
if numeric(x) then x +:= 4

In general, it is impossible to know the type of an operator’s operands at translation time, so some type checking
must be done at run time. This type checking may result in type conversions, run-time errors, or the selection among
polymorphous operations (for example, the selection of integer verses real addition). In the current implementation
of Icon [2], all operators check all of their operands at run time. This incurs significant overhead.

Much of this run-time type checking is unnecessary. An examination of typical Icon programs reveals that the
types of most variables remain consistent throughout execution (except for the initial null value) and that these types
can often be determined by inspection. Consider

if x .= read() then
y =x| "

Clearly both operands of || are strings so no checking or conversion is needed.

The goal of a type inference system [3] is to determine what types variables may take on during the execution of
a program, It associates with each variable usage a set of the possible types of values that variable might have when
execution reaches the usage. This set may be a conservative estimate (overestimate) of the actual set of possible
types that a variable may take on because the actual set may not be computable, or because an analysis to compute
the actual set may be too expensive, However, a good type inference system operating on realistic programs can
determine the exact set of types for most operands and the majority of these sets in fact contain single types, which
is the information needed to generate code without type checking.

Icon has several types of non-applicative data structures. They all can be heterogeneous and can be used in a
recursive manner. An effective type inference system must handle these data structures without loosing too much
information through crude assumptions.

Type inference for non-applicative languages such as Icon can be accomplished using data flow analysis tech-
niques [4-6). This report describes the particular data flow analysis framework used to perform type inference on
Icon programs, It does a good job of type inference in the presence of recursive data structures. A number of type
inference systems handle recursion in applicative data structures [7-9]; the system described here deals with Icon
data types that have pointer semantics and deals with destructive assignment to components of data structures. In the
chapter Flow Analysis and Optimization of Lisp-like Structures in [5], Jones and Muchnick describe a data flow
analysis technique to determine the ‘‘shape’’ of non-applicative data structures, but that analysis looses too much
information in structures of unbounded depth (such as trees) to be an effective type inference system.

Any data flow analysis system for Icon programs must deal with Icon’s goal-directed evaluation and its unique
control structures. Determining possible execution paths through an Icon program is more complicated than it is for
programs written in more conventional languages. This report includes the description of a method for computing
such paths.



2. Abstract Interpretation

Data flow analysis can be viewed as a form of abstract interpretation [10]). This can be particularly useful for
understanding type inference. A ‘‘concrete’’ interpreter for a language implements the (operational) semantics of
the language, producing a sequence of states, where a state consists of an execution point, bindings of program vari-
ables to values, and so forth. An abstract interpreter does not implement the semantics, but rather computes informa-
tion related to the semantics. For example, an abstract interpretation may compute the sign of an arithmetic expres-
sion rather than its value. Often it computes a ‘‘conservative’’ estimate for the property of interest rather than com-
puting exact information. Data flow analysis is simply a form of abstract interpretation that is guaranteed to ter-
minate. This section presents a sequence of approximations to Icon semantics, culminating in one suitable for type
inference.

Consider a simplified operational semantics for Icon, consisting only of program points (with the current execu-

- tion point maintained in a program counter) and variable bindings (maintained in an environment). As an example
* of these semantics, consider the following program. Four program points are annotated with numbers using com-
ments (there are numerous intermediate points not annotated).

procedure main()

local s, n

# 1

s = read|()

# 2:

every n == 110 2 do {
# 3:
write(s[n])

# 4:

end

If the program is executed with an input of abg, the following states are included in the execution sequence (only
the annotated points, are listed). States are expressed in the form program point. environment.

1: [s=null, n=null)
2: [s="abc", n=null]
3: [s="abc",n=1]

3: [s="abc",n=2]

4: [s="abc",n=2]

It is customary to use the static semantics (also referred to as collecting semantics) of a language as the first
abstraction (approximation) to the operational semantics of the language. The statics semantics of a program is
defined in Cousot and Cousot [10] to be an association between program points and the sets of environments that
can occur at those points during all possible executions of the program.

Once again, consider the previous example. In general, the input to the program is unknown, so the read func-
tion is assumed cabable of produce any string. Representing this general case, the set of environments (once again
showing only variable bindings) that can occur at point 3 is

[s="",n=1],
[s="",n=2],
[s="a",n=1],
[s="a",n=2],

[s="abcd", n=1],
[s="abcd", n=2],

A type inference abstraction further approximates this information, producing an association between each vari-
able and a type at each program point. For point 3 in the preceding example the associations are



[s = string, N = integer]

The type inference system presented in this paper is best understood as the culmination of a sequence of abstrac-
tions to the semantics of Icon, where each abstraction discards certain information. For example, the static semantics
discards sequencing information among states; in the preceding program, statics semantics determine that, at point
3, states may occur with n equal to 1 and with n equal to 2, but not the order in which they must occur. This
sequencing information is discarded because desired type information is a static property of the program.

This section proceeds with a more detailed description of static semantics for Icon, then defines a sequence of
three increasingly less precise abstractions of these static semantics. The first abstraction discards dynamic control
flow information. Its purpose is to simplify the semantic model, making further abstractions easier.

The second abstraction collects, for each variable, the value associated with the variable in each environment. It
discards information such as, ‘‘x has the value 3 when y has the value 7°’, replacing it with ‘‘x may have the value 3
sometime and y may have the value 7 sometime.”". It effectively decouples associations between variables.

The second abstraction associates a set of values with a variable, but this set may be any of an infinite number of
sets and it may contain an infinite number of values. In general, this precludes either a finite computation of the sets
or a finite representation of them. The third abstraction defines a type system that has a finite representation. This
abstraction discards information by increasing the set associated with a variable (that is, making the set less precise)
until it matches a type. This third model can be implemented with standard iterative data flow analysis techniques.

This section assumes that an Icon program consists of a single procedure and that all invocations are to built-in
functions. See Section 4 for information on how to extend the abstractions to multiple procedures.

2.1 Static Semantics

The static semantics of an Icon program is defined in terms a flow graph of the program. A flow graph is a
directed graph used to represent the flow of control in a program. Nodes in the graph represent the executable primi-
tives in the program. An edge exists from node A to node B if it is possible for execution to pass directly from the
primitive represented by node A to the primitive represented by node B. Cousot and Cousot [10] prove that the static
semantics of a program can be represented as the least fixed point of a set of equations defined over the edges of the
program’s flow graph. These equations operate on sets of environments.

For an example of a flow graph, consider the Icon program

procedure main()
every write(1 to 3)
end

With the addition of the implicit fail at the end of the procedure, its parse tree is

((procedure main )

(every)  (pfail)

1 (invoke

Some of the node labels are based loosely on the ucode generated by the Icon translator for the corresponding
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language constructs (see [2]). invoke corresponds to procedure invocation. Its first argument must evaluate to the
procedure to be invoked; in this case the first argument is the global variable write. The rest of the arguments are
used as the arguments to the procedure. int n corresponds to the integer literal n. pfail corresponds to fail (which
causes procedure failure). Nodes corresponding to operations that produce values are numbered for purposes
explained below.

A flow graph can be derived from the parse tree:

(procedure main )

D)
o

ta

1 (rveke)

The node labeled procedure main is the start node for the procedure; it performs any necessary initializations to
establish the execution environment for the procedure. The edge from invoke to to is a resumption path induced by
the control structure every. The path from to to pfail is the failure path for to. It is a forward execution path rather
than a resumption path because the compound expression (indicated by ;) limits backtracking out of its left-hand
sub-expression. Section 3 of this paper describes how to construct a flow graph from an Icon program.

The ucode instructions labeling the nodes of the graphs reflect the fact that the implementation of Icon uses a
stack-based virtual machine: there are no explicit operands. The static semantics must deal with the intermediate
results of expressions. However, a temporary variable (register) model is more convenient for this than a stack
model. Each node that produces a result is assigned some variable 7; in the environment. Assuming that temporary
variables are assigned to the example according to the node numbering, the t0 operation has the effect of

n=ntors

Expressions that represent alternate computations must be assigned the same temporary variable, as in the following
~ example for the subexpression x = (*a” | "b"). Both the parse tree and the flow graph are shown.

| .
2 |
2 (Jocal x ) (alt) 3Cstrra”) 3(stro
¥

The if and case control structures are handled similarly. In addition to temporaries for intermediate results, some

3( str"a” 3( str"d”
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generators may need additional temporary variables to hold intemnal state during suspension; it is easy to devise a
scheme to allocate them where they are needed. The parse tree is kept during abstract interpretation and used to
determine the temporary variables associated with an operation and its operands.

The equations that determine the static semantics of the program are derived directly from the semantics of the
language. The set of environments on an edge of the flow graph is related to the sets of environments on edges com-
ing into the node at the head of this edge. This relationship is derived by applying the meaning of the node (in the
standard semantics) to each of the incoming environments,

It requires a rather complex environment to capture the full operational semantics (and static semantics) of a
language like Icon. For example, the environment needs to include a representation of the external file system.
However, later abstractions only use the fact that the function read produces strings. This paper assumes that it is
possible to represent the file system in the environment, but does not give a representation. Other complexities of
the environment are discussed later. For the moment, examples will only show the bindings of variables to unstruc-
tured (atomic) values.

As an example of environments associated with the edges of a flow graph, consider the assignment at the end of
the following code fragment. The comments in the if expression are assertions that are assumed to hold at those
points in the example.

it x =7 then {

;‘xis7andyi53
}

else {
# (x is null and y is 1) or (x is "ab¢c" and y is 2)
}
X:=Yy+2

Because of the preceding if expression, there are two paths reaching the assignment. Ignoring the fact that the
assignment expression requires several primitive operations to implement, the flow graph and accompanying
environments for the expression are

([x=null,y= 1], [x = "abc", y = 2]} {[x=7y=3])

{(x=3,y=1],[x=4,y=2),[x=5,y=3])

For a conditional expression, an incoming environment is propagated to the path that it would cause execution to
take in the concrete semantics. This requires distinguishing paths to be taken on failure (backtracking paths) from
those to be taken on success. For example

{(x=1,y=2],[x=1,y=1),[x=3,y=100]}
success failure

{(x=1,y=2][x=3,y=100]} (x=1,y=1])

In general there may be several possible backtracking paths. The environments in the concrete and static semantics



‘need to include a stack of current backtracking points and control flow information, and the flow graph needs
instructions to maintain this stack. See [2] for Icon implementation techniques. However, the first abstraction elim-
inates the need for this information (and for distinguishing success and failure paths), so the information is not
presented in detail here.

2.2 Model 1: Eliminating Control Flow Information

The first abstraction involves taking the union of the environments propagated along the success and failure
paths from a node in the static semantics and propagating that union along each of the paths in the new abstraction.
The last example in the preceding section becomes:

{x=1,y=2],[x=1,y=1],[x=3,y=100]}

{(x=1y=2],[x=1,y=1), [x=3,y=100]) (x=1y=2),[x=1,y=1],[x=3,y=100])

A more formal definition for this model will be developed. This requires taking a closer look at Icon data values,
especially those values with internal structure,

In order to handle Icon data objects with pointer semantics, an environment needs more than variable bindings.
This fact is important to type inference. The problem is handled by including two components in the environment.
The first is the store, which maps variables to values. Variables include named variables, temporary variables, and
structure variables., Named variables correspond to program identifiers. Temporary variables hold intermediate
results as discussed above. Structure variables are elements of structures such as lists. Note that the sets of named
variables and temporary variables are each finite (based on the assumption that a program consisting of a single
non-recursive procedure), but for some non-terminating programs, the set of structure variables may be infinite.
Program variables include both named variables and structure variables but not temporary variables.

Values include atomic data values such as integers, csets, and strings. They also include pointers that reference
objects with pointer semantics. In addition to the values just described, temporary variables may contain (be mapped
to) program variables. These variable references may be used by assignments to update the store or they may be
dereferenced by other operations to obtain the values stored in the variables.

The second part of the environment is the heap. It maps pointers to the comresponding data objects (this differs
from the heap in the Icon implementation in that that heap also contains some data objects that do not have pointer
. semantics). For simplicity, the only data type with pointer semantics included in this discussion is the list. It is a
. partial mapping from integers to variables. Representing other such data types is straightforward. The environment
+ definition for the first abstraction is called Model 1, indicated by a subscript of [1]. Its formal definition is:

envir() = store(y) X heapyy)
store(;) = variables — values
values = integers \ strings U - - + U pointers
heap;) = pointers —» lists, where list: integers — variables
For example, the expression
a = ["abcT]

creates a list of one element whose value is the string abc and assigns the list to the variable a. Let p; be the
pointer to the list and let v, be the (anonymous) variable within the list. The resulting environment, e: envir;,
might be



e = (s, h), where s: storey), h: heapy)

s(@) =p
s(vy) = "ab¢"

h(p1)=L,, where L;: list
Li(1)=w
If the statement
al1] = "xyz"
is executed, the subscripting operation dereferences a producing p, ; then uses the heap to find Ly, which it applies

to 1 to produce the result v; . The only change in the environment at this point is to temporary variables that are not
shown. The assignment then updates the store, producing

e1=(s;, h)

s1(d) =p1
si(vy) ="xyz"

Assignment does not change the heap. On the other hand, the expression

put(a, "xyz")
adds the string xyz to the end of the list; if it is executed in the envirionment e, it alters the heap along with adding a
new variable to the store.

e;=(s1, hy)

si(@) =p,
s;(vy) = "abc"
si(v2)="xyz"

h@) =L,

Lz(l) ="
Lx2)=v2

2.3 Model 2: Decoupling Variables

The next approximation to Icon semantics, Model 2, takes all the values that a variable might have at a given
program point and gathers them together. In general, a variable may have the same value in many environments, so
this, in some sense, reduces the amount of space required to store the information (though the space may still be
infinite). The “‘cost’’ of this reduction of storage is that the any information about relationship of values between
variables is lost.

Model 2 involves constructing new types of environment, store, and heap. The new store maps sets of variables
to a sets of values; each resulting set contains the values associated with the corresponding variables in environ-
ments in Model 1. Similarly, the new heap maps sets of pointers to sets of lists; each of these sets contains the lists
associated with the corresponding pointers in environments in Model 1. The new environment contains a store and
heap, but unlike the old environment, there is only one of these environments associated with each program point.
The envirionment is constructed so that it effectlively ‘‘contains’ the environments in the set associated with the
point in Model 1.

Actually, the definitions of the store and heap are extended to operate on arbitrary sets of values; here, values
include temporary variables, even though only program variables are values in Icon (and then only as intermediate
results). In the actual implementation of the type system (see Section 5), temporary variables are handled separately,
but for these models it is convenient to treat them like other variables. If the store in Model 2 is applied to a set con-
taining a non-variable value, that value does not participate in the result; this corresponds to the fact that applying
the store in Model 1 to such a value is undefined. Similarly, non-pointer values do not participate in results from the
heap in Model 2 (note that the heap is only applied to dereferenced values, so variables will never appear).



The definition of Model 2 is
envirpy) = storepz; X heapz
storez) = 2 valves —y 2 valuos
heapyp) = 2 values —; 2 liss
In Model 1, operations produce elements from the set values. In Model 2, operations produce subsets of this set.

It is in this model that read is taken to produce the set of all strings and that the existence of an external file system
can be ignored.

Suppose a program point is annotated with the set containing the following two environments from Model 1.
€1, €2 € enviry,
e1=(s, hy)
si(x)=1
siy)=pa
hi(p1) =Ly

e2=(s2, hy)
s2(x)=2
s20)=p1
ha(p1)=L2
Under Model 2 the program point is annotated with the single environment & € envir(y;, where
é=(s,h)

({x)=1(1,2)
$(yh=(p1)
§([X'Y])= {lrzvpl]

hp1)= (L1, L)
Note that a store in Model 2 is distributive over union. That is,

X v Y)=3X)u ¥Y)
so the entry for §({x, y}) is redundant. A store applied to a non-variable is the empty set, as in

(5H=1)

Consequently, such values need not be explicitly represented. A heap in Model 2 is also distributive over union; in
- this case it is non-pointers that need not be explicitly represented.

In going to Model 2 information is lost. In the last example, the fact that x = 1 is paired with p; =L, and x =2 is
paired with p; =L, is not represented in Model 2.

Just as read is extended to produce a set of values, so are all other operations. These ‘‘extended” operations
are then used to set up the equations whose solution formally defines Model 2. This extension is straightforward. For
example, the result of applying a unary operator to a set is the set obtained by applying the operator to each of the
elements in the operand. The result of applying a binary operator to two sets is the set obtained by applying the
‘operator to all pairs of elements from the two operands. Operations with more operands are treated similarly. For
example

{1,3,5)+(2,4)={1+2,144,3+2,3+4,5+2,5+4}
={(3,5.5,7,7,9)
={3,5,7,9)

The loss of information mentioned above affects the calculation of environments in Model 2. Suppose the addition in



the last example is from
Z=X+Y
and that Model 1 has the following three environments at the point before the calculation

[x=1,y=2,2=0]
[x=3,y=2,2=0]
[x=5,y=4,2=0]

after the calculation the three environments will be

x=1y=2,z=3]
[x=3,y=2,2=5]
[x=5,y=4,2=9]

If this is translated into the environment of Model 2, the result is
[x={1,3,5},y=(2,4),z2=(3,5.9]]

However, when doing the computation using the semantics of + in Model 2, the value for z is {3, 5, 7, 9). The solu-
tion to the equations in Model 2 overestimates (that is, give a conservative estimate) for the values obtained by
obtaining a solution using Model 1 and translating it into the domain of Model 2.

Consider the following code with respect to the semantics of assignment in Model 2. (Assume that the code is
executed once, so only one list is created.)

x = [10, 20]
i := if read() then 1 else 2
X[i] := 30

After the first two assignments, the store maps X to a set containing one pointer and maps i to a set containing 1 and
2. The third assignment is not as straightforward. Its left operand evaluates to two variables; the most that can be
said about one of these variables after the assignment is that it might have been assigned 30. If (s, h) is the environ-
ment after the third assignment then

s({(x))={p1)
s((i)) = (1,2)
s({v1)) = (10, 30)
s({v2])) = (20, 30}

h({p,}) = (L4}

Li(1)=wv,
Li(2)=v2

Clearly all assignments could be treated as being ‘‘uncertain'’, but this would involve discarding too much informa-
tion; assignments would only add to the values associated with variables and not replace the values. Therefore
assignments where the left hand side evaluates to a set containing a single variable are treated as special cases.

2.4 Model 3: A Type System
The environments in Model 2 can contain infinite amounts of information, as in the program

X =1
repeat x +:= 1

where the set of values associated with x in the loop consists of all the counting numbers. No algorithm can find the
least fixed point of an arbitrary set of equations in Model 2.

The final step is to impose a finite type system on values. A type is a (possibly infinite) set of values. This type
system presented here includes three classifications of basic types. The first classification consists of the Icon types
without pointer semantics: integers, strings, csets, etc. The second classification groups pointers together according
to the lexical point of their creation. This is similar 1o the method used to handle recursive data structures in [7].
Consider the code '



every inser(x, [1 to 5])

If this code is executed once, five lists are created, but they are all created at the same point in the program, so they
all belong to the same type. The intuition behind this choice of types is that structures created at the same point in a
program are likely to have components of the same type, while structures created at different points in a program
may have components of different types.

The third classification of basic types handles variable references. Each named variable and temporary variable
is given a type to itself. Structure variables are grouped into types according to the program point where the pointer
to the structure is created. This is not necessarily the point where the variable is created; in the following code, a
pointer to a list is created at one program point, but variables are added to the list at different points

x =]
push(x, 1)
push(x ,2)

References to these variables are grouped into a type associated with the program point for [], not the point for the
corresponding push.

If a program contains k non-structure variables and there are n locations where pointers can be created, then the
basic types for the program are integer, string, ..., P1, ..., Pa, V1, ., Vi, {v1}, ..., (&} where B, is the pointer type
created at location i, Vj is the variable type associated with P, and v; is a named variable or a temporary variable.
Because programs are lexically finite they each have a finite number of basic types. The set of all types for a pro-
gram is the smallest set that is closed under union and contains the empty set along with the basic types:

types = { {}, integers, strings,..., (integers v strings),..., (integers L strings U **+ UwW) )

Model 3 replaces the arbitrary sets of values of Model 2 by types. This replacement reduces the precision of the
information, but allows for a finite representation and allows the information to be computed in finite time,

In Model 3, both the store and the heap map types to types. The store is only concemed with the variable types
in its input. The heap is only concerned with the pointer types in its input and only produces types associated with
structure variables. A set of values from Model 2 is converted to a type in Model 3 by mapping that to set the smal-
lest type containing it. For example, the set

{1,4,5,"23","0")
is mapped to
integer U string
The definition of envir(y is
envirgs) = store(s; X heapy
storegs) = types — types
heapys) = types — types
types g 2 vlues
- There is exactly one variable type for each pointer type in this model. The heap simply con31sts of this one to one
mapping; the heap is of the form
h®) =V;
This mapping is invariant over a given program. Therefore, the type equations for a program can be defined over
store(3) rather than envirgs) with the heap embedded within the type equations.
Suppose an environment from Model 2 is

ce envirlz]
e=(s,h)

s({a})) = (p1,p2)
s({vi})) =1(1,2)
s({v2]) = (1)

s({va}) ={12.03)
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h({p:}) = (L1, L7}
h({p2}) = {Ls}
Li(l)=w,
L)=w;
Lx2)=v;
Ly(1)=vs

Suppose the pointers p; and p; are both created at program point 1. Then the associated pointer type is P; and the
associated variable type is V;. The corresponding environment in Model 3 is

& € envirp)

¢=@ h)

&{a)) =P

8(V)) = integer U real
heey =V,

3. Constructing Flow Graphs

Icon’s goal-directed evaluation scheme and its unique control structures pose a challenge for constructing flow
graphs for Icon programs. This section presents a solution to that problem in the form of an attribute grammar. The
attribute grammar is presented here using a convenient notation; it is implemented by a hand-coded walk of the syn-
tax tree. Productions in the attribute grammar are of the form

<non-terminal> := <sequence of symbols> {
<attribute calculations>

}

If there are several instances of a non-terminal in a production, they are distinguished by subscripts. These sub-
scripts do not affect the underlying context-free grammar, but are important in the attribute calculations. An attri-
bute of a symbol is specified using dot notation. For example, the succ attribute of expry is denoted

expry.succ

The nodes in the flow graph are taken to be a subset of the nodes in the syntax tree. This is convenient to implement
and, for the type inference system presented here, it is adequate. Every symbol in the attribute grammar is assumed
to have an attribute named node whose value is the corresponding node in the syntax tree.

Edges in the flow graph are represented by arrows. Standard mathematical set notation is used in the attribute
computations. For example, the set of all possible edges from expr.node to nodes in the set expr.succ is
{x—>y : x = expr.node, y € expr.succ)

The use of braces here is distinguished from those surrounding the attribute computations.

Symbols have several synthesized attributes and several inherited attributes. The synthesized attributes contain
information which is passed to the surrounding expression. The inherited attibutes contain information which comes
from the surrounding expression.

The symbol expr has a synthesized attribute named begin. The value of begin is the first node to be executed in
the expression represented by the symbol. For primitive expressions like literals and identifiers, it is the node associ-
ated with that symbol. For example, the attribute computation for a literal is (in this case, the node for expr and
literal are identical):

-11-



expr = literal {
expr.begin := expr.node

}
For most operators it is the first node to be executed in the first subexpression:

expr = expry + expr {
expr.begin := expry.begin

}
The computation of the begin attribute is straightforward and is omitted in the following examples.

Expressions have two inherited attributes, succ and fail. The value of the succ attribute for an expression is a
set of nodes and contains all nodes that might be executed next if the expression succeeds. Similarly, the value of
the fail attribute is a set of nodes that contains all nodes that might be executed next if the expression fails.

Expressions have two other synthesized attributes, resume and edges. The value of the resume attribute is a
set of nodes. It contains the nodes where execution might continue if control backtracks to this expression, For
expressions that cannot be resumed, the set of nodes is synthesized from the nodes of an expression preceding this
one in execution order. For example, if the expression

2
is in the context
X + 2

then its resume set consists of the node for !.

The value of the edges attribute for an expression is the set of edges in the flow graph that originate within the
expression (the edges may or may not lerminate within the expression). Consider the expression

tab(!x) & =""
Its parse tree and flow graph (with edges numbered) are

(globaltab ) ((bang) str *:"
(localx)

Each node of the parse tree is attributed by the edges set of the corresponding sub-expression. For example, the
edges set for local x contains edge 2, the set for bang contains edges 2-4, the set for invoke contains 1-6, etc.
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In the actual implementation, the edges attribute is not explicitly represented. Instead the edges of the flow
graph are stored in a more efficient manner,

Literals and identifiers cannot be resumed, so their resume nodes are the fail nodes supplied by the context.
These expressions always succeed, so they contribute edges from their node to all nodes in the succ set supplied by
the context.

expr = literal {
expr.resume = expr.fail
expr.edges := {x—y : x = expr.node, y € expr.succ)

The keyword &fail always fails, so it is impossible for control to backtrack into it; it has no resume nodes. It
contributes edges from its node to all nodes in its fail set.

expr = &fail {
expr.resume := {}
expr.edges = {x—y : x = expr.node, y € expr.fail}

Icon operators can be categorized by the number of results they can produce. A monogenic operator produces
exactly one result. A conditional operator produces either 0 or 1 result (that is it either fails or succeeds with one
result). A generative operator can produce several results.

Addition is a typical monogenic binary operator. If its first operand succeeds, control passes to the beginning of
the second operand. If the first operand fails, the entire expression fails. If the second operand succeeds, the opera-
tion is executed. If the second operand fails, the first operand is resumed (the operands are responsible for producing
the correct resume set even if it is something before them that is actually resumed). If the expression is resumed,
then the second operand is resumed, because the operation itself cannot produce a second result. The edges originat-
ing from this expression are those from the two operands plus all edges from the addition node to nodes in the succ
set.

expr = expri + exprz {
expri.succ = {expr2.begin)
expry.fail := expr.fail
expra.succ := {expr.node}
exprz.fail := expri.resume
expr.resume := exprz.resume
expr.edges = expri.edges U expra.edges u {x—y : x = expr.node, y € expr.succ)

}

The unary operator / (“‘is null’’) is conditional. If the operand succeeds, the operator is executed. If the operand
fails, the expression fails. If the expression is resumed, the operand is resumed. This operator contributes edges from
the operator node to nodes in both the succ set of the expression and, because the operator can fail, to the resume
set of the operand.

expr = /expn {
expri.succ = {expr.node}
expryfail ;= expr.fail
expr.resume = expri.resume
expr.edges := expri.edges U {x—y . x = expr.node, y € (expr.succ u expry.resume)}

}

The unary operator ! (“‘bang’’) is generative. It is similar to *‘is null'’, except that the operator, rather than the
operand, is resumed first during backtracking:

expr.resume := {expr.node}

Other operators follow patterns similar to the three just discussed. Control structures, on the other hand, present
unique attribute computations. Many control structures do not contribute nodes to the graph. Instcad they just affect
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what edges are put in the graph. This is because they do not perform any data computations; they just affect the flow
of control. The productions for several control structures follow.

The not control structure reverses the roles of the succ and fail sets. not bounds the expression it is applied to;
that is, it prevents backtracking into the expression. This bounding is reflected in the fact that the resume set of the
expression is discarded.

expr ;= not expr {
expri.succ = expr.fail
expry fail := expr.succ
expr.resume = expr.fail
expr.edges = expri.edges

}

The semicolon causes control to pass from its first operand to its second regardless of whether the first one suqceeds
or fails. The first operand is bounded so its resume set is discarded. The second operand shares the succ, fail, and
resume attributes with the expression as a whole.

expr = expr ; expr2 {
expri.succ = {exprz.begin}
expry.fail ;= {exprz.begin)
eXPr2.Succ = expr.succ
expra.fail ;= expr.fail
expr.resume = expra.resume
expr.edges = expri.edges v exprz.edges

}

If the first operand of alternation succeeds, the entire expression succeeds. If the first operand fails, the second
operand is executed. The succ nodes and fail nodes of the second expression correspond to those of the entire
expression. If the expression is resumed, either operand could be resumed depending on which one produced the
last result.

expr = expr | expr2 {
expri.succ = expr.succ
expry.fail := {expra.begin)
eXpr2.SuUcc = expr.succ
exprz.fail ;= expr.fail
expr.resume = expri.resume u expra.resume
expr.edges = expri.edges v expra.edges

}

If the control clause of an if expression succeeds, the then expression is executed. If the control clause fails, the
else expression is executed. The resume points of the control clause are discarded. The succ nodes and fail nodes
of both the then expression and the else expression are the same as those of the entire expression. If the if expres-
sion is resumed, either the then or the else clause could be resumed depending on which was executed.

expr .= if expry then expr: else expr {
expri.suce = {expra.begin}
expry.fail := {expra.begin}
eXpr2.Succ = @xpr.succ
expra.fail := expr.fail
€XPr3.SucC = expr.succ
expr.fail := expr.fail
expr.resume = expra.resume u expra.resume
expr.edges = expri.edges U expra.edges U expra.edges

}

Constructing the flow graph for a case expression requires some additional attributes beyond those used for simpler
expressions. There are two ways for control to leave an expression, but there are three ways for control to leave a
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case clause, If the comparison between the case control expression and a case clause selection expression succeeds,
the clause is selected and control ultimately passes to a node in either succ or fail for the case expression. If the
- comparison fails, control passes to the selection expression of the next case clause if there is one and to a node in
fail for the case expression if there is no next clause. The inherited attribute cmpfail is the set of nodes to which
control may pass if the comparison fails. The succ and fail attributes are the same as those for the entire case
expression. The node for the case clause is used to represent the comparison operation for the clause.

case—clause ::= expr : exprz {
expri.succ := {case—clause.node}
exprn .fail := case—clause.cmpfail
expra.succ = case—clause.succ
exprq.fail ;= case—clause.fail
case-clause.resume := expra.resume
case—clause.edges := expri.edges u expra.edges U
{x—y : x = case—lause.node, y € (expry.resume U {exprz.begin})}

}

The resume set for the entire case expression is the union of these sets for the clauses.

Additional attributes are needed to indicate the presence of the default clause and to pass its begin node to the
end of the case list. This involves some conditional attribute computations. The productions for the default clause,
the case list, and the case expression are rather involved and have been omitted.

In the discussion so far, the effects of break and next expressions have been ignored. The attributes of a loop
and those of enclosed break and next expression are related, so it is necessary to communicate between them, Con-
sider:

while
repeat
break break !"abc”

The first break has the effect of replacing the repeat loop with
break !"abc”

which in turn has the effect of replacing the while loop with
"abc"

The succ set and fail set for the while loop must be passed down to 1"abc” and the resume set of "abc™ (the !
node) must be passed up to the while loop.

These loop attributes must be maintained in a stack-like manner. A loop must push loop-succ and loop-fail
values. A break expression must use the top values on these stacks and pop them. Similarly, a break expression
must push a loop-resume value. A loop must use the top value on this stack and pop it. An additional inherited
attribute, loop-next, is needed to supply the destination for next expressions. This must also be maintained as a
stack with loops pushing values and break expressions poping them.

Other expressions must pass loop-succ, loop-fail, and loop-next attributes onto their sub-expressions. They
must also merge, on an element-wise basis, the loop-resume stacks of the sub-expressions. Note that all the stack
operations must be applicative.

4. Interprocedural Analysis

The analysis described so far ignores the fact that Icon programs can be made up of several possibly recursive
procedures. Procedure calls can be implemented in an interpreter for the real semantics by including in the environ-
ment a stack of activation frames containing local variables. In the abstract interpreter for type inference there is
only one frame for each procedure. This frame is a summary of all possible frames for the real semantics. In Model
3, there is still only one store; part of it contains global variables and part of it contains local variables, with the local
part changing from procedure to procedure.
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This summarizing of procedure frames is effective as long as procedures are used consistently, that is, always
called with parameters of the same type. While it is quite easy to write polymorphous procedures in Icon, this does
not seem 10 be exploited a great deal. A major use of polymorphous procedures would be to implement an abstract
data type such as a queue, which could be used in different contexts to contain different types of elements, but Icon
already has powerful built-in data structures along with functions to manipulate them. It is typically only these
built-in functions that are polymorphous and the type inference system takes their polymorphous nature into
account. The type system does handle polymorphous procedures *‘correctly’’, but discards potentially useful infor-
mation,

A flow graph for an entire program is constructed from the flow graphs for its individual procedures. An edge is
added from every invocation of a procedure 10 the head of that procedure and edges are added from every return,
suspend, and fail back to all the invocations of that procedure. In addition, edges must be added from an invocation
of a procedure to all the suspends in the procedure to represent resumption,

. These edges are different from other edges in that only types for variables with global lifetimes are transmitted

over them. Because static variables have global lifetimes, they are transmitted throughout the program, even
though they are only used in one procedure. Local variables are transmitted around an invocation, unaffected by the
procedure being invoked.

The head of a procedure initializes local variables to the null type. It is also treated as if it contains initialization
code to set static variables to the null type on the "first call”. This code would look something like

initialize locals

if (first-call) then {
initialize statics
user initialization code

}

However, in the flow graph this just looks like a branching of paths; the first-call condition effectively disappears
like other success/failure information. Before entering the main procedure, global variables are set to the null type
. and all static variables are set to the empty type. In some sense the empty type represents an impossible execution
path. There is a path in the flow graph from the stant of the program to the body of a procedure that never passes
through the initialization code. However, static variables will have an empty type along this path and no operation
on them is valid.

Procedures in Icon are first-class values and procedure names are global variables whose values can be changed
during execution; it may not be possible to determine the call graph of a program (the interprocedural part of the
flow graph) without first doing type inference. However, type inference needs the call graph. This *‘chicken and
egg’’ problem is solved by effectively constructing the call graph during type inference.

The soundness of an iterative data flow analysis system is not dependent on the order in which edges are visited;
what is important is that all edges are eventually visited. This visiting of all edges must then be repeated until a fixed
point is reached. Thus it is not necessary to know all the edges at the start of the analysis, as long as they are all
known before the end of the analysis.

Each procedure is given its own basic type. Thus at an invocation, the type of what is being invoked indicates all
- procedures that might actually be invoked. This type is used to construct the mterprocedural edges associated with
the invocation. This type may not be complete during the early part of type inference, but it is guarameed to be com-
plete by the end.

It is also useful to know invocation information when constructing flow graphs within procedures. This is
because some procedure invocations can fail and others cannot; it is best to eliminate as many failure edges as is
practical from the flow graph. It is also helpful to eliminate unneeded resumption paths. It would be possible to
wait and add these edges during type inference when they were found necessary, but a simpler (if less exact)
approach is used.

In the actual implementation of the type inference system, it is assumed that assignments are not made to pro-
cedure names. If such an assignment is detected, type inference gives up (and no type information is known other
than that any operand can be of any type). This seems to be a reasonable assumption; programmers sometimes
assign to the names of built-in functions, but this is almost always a subtle error and not an intentional use of the
ability to make such an assignment. Thus when the name of a procedure is used in an invocation, it is known exactly
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what is being invoked. In cases where something other than a simple procedure name is being invoked, it is conser-
vative to assume that the invocation can both fail and generate values.

5. Implementation

A prototype implementation of the type inference system has been written in Icon. It takes as input the parse tree
of an Icon program and outputs information about the types of operands. The prototype constructs a flow graph,
determines the set of basic types for the program, and then solves the type inferencing equations by iterating over
the flow graph, computing successive approximations until the type information converges.

The prototype type inference systems differs in several details from Model 3. These details include more
efficient representations for some information along with the implementation of things not covered in the model,
The prototype has been tested on a large number of Icon programs and the quality of the results has been compared
to that of a very simple type-determining system, Finally, a more efficient version of type inference has been imple-
mented and tested. The rest of this section discusses these aspects of the implementation in more detail.

5.1 Differences Between the Model and the Prototype

In the abstract interpretation models presented in this paper, temporary variables are kept in the store and refer-
ences to them are values in the type system, This is unnecessary. A temporary variable has exactly one definition
where its value is set and at most one use where its value is extracted, and the definition always precedes the use.
Therefore, only one copy of the temporary is needed. In the implementation, this copy is kept in the node of the
parse tree that the temporary is associated with. All references to temporary variables are implicit in the parse tree,
50 temporary variable references are not included as values in the implemented type system.

Icon has several structure types with pointer semantics. In addition to lists, there are sets, tables, and records.
Sets are collections of values. Values may be added or deleted from a set. The members of a set are not variables.
However, it is convenient to put them in the store as *‘variables” which are never changed. This allows them to be
‘treated uniformly with the components of other structures. A type is allocated for each set creation point and a vari-
able type is created for each set type. This variable type contains all the ‘‘variables’’ in all the sets in the
corresponding set type.

Tables are mappings from values to variables. When used as mappings, they act as total mappings. The variables
that have not been explicitly assigned contain the default value specified when the table was created. However,
when the elements of a table are generated or when the table is sorted, only the elements that have been explicitly
assigned values are produced. Therefore, a table needs to be implemented as a partial mapping from values to vari-
ables (those elements defined by assignments) along with a default value. A type is allocated for each creation point
of a table and variable types are allocated for the key, entry, and default value for each table type.

A record is a fixed set of variables (fields). Individual variables can be selected by field name or by integer posi-
tion. Each record declaration introduces a record ‘‘type’’. However, as with lists, a type is added to the type system
for each creation point (call to the record constructor) for a given record ‘‘type’’. A variable type is created for each
field for each record type. This variable type contains the corresponding field from each record in the record type.
This choice of variable types reflects the fact that a field is likely to be used consistently with respect to type across
all records of a given record type, but may be used differently from other fields in these records.

Because record constructors and built-in functions can be assigned to variables and then invoked through those
variables, it may not be possible to identify all structure creation points until type inference is in progress. However,
it is easiest to allocate all variable types before type inferencing starts. This problem is solved by allocating an extra
type along with the associated variable type(s) for each category of structure. If creation points are found that were
not identified before type inference started, the structures produced at those points are put in the corresponding extra
type.

Assignments are variable definitions, but in addition, some variable uses can also be treated as definitions. Con-
sider the expression

x lll ["end”]

If x does not contain a list, execution will terminate with an error message. Therefore, the abstract list concatenation
in the type inference system can intersect the type of x with the set of list types, defining a new type for X in its
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output store. As an example of where this improves the results of type inference, suppose X is assigned a list with
the statement

x = [read()]

The programmer may be confident that the read will succeed, but type inference can not make that assumption. If x
is the null type before the assignment, type inference gives it the type *‘list or null" after the assignment expression.
However, after the list concatenation expression, X is given the type *‘list’’. Thus the code gencration phase of a
compiler must be able to produce code to check the type of x at the concatenation, but not thereafter.

5.2 Empirical Performance

The type inference system has been run on a suite of 514 Icon programs. This suite includes programs used to
-test Icon implementations, programs written as course assignments, and application programs written to solve a
- variety of problems. While no claim can be made that the suite accurately represents a cross-section of typical Icon

programs, it does include the work of many different programmers with a variety of programming styles.

Type information was accumulated for all the operands where such type information could be useful in a code
generator. Types were classified as consisting of a unique Icon type or consisting of multiple Icon types. Icon types
differ from the types in the type inference system in that they only contain dereferenced values, there is only one list
type, etc. The results of performing type inference on the suite is

unique types: 22973
multiple types: 2333

Thus, the type inference system determined a unique type for about 90% of all operands.

During testing, a number of operands with no type were found. These either represent unreachable code or
meaningless expressions. In this way, type inference pointed out a number of programming errors. (None of these
programs were included in the above results,)

In order w find out how much information is being gained by using a powerful type inference system, a simple
type-determining system was written for comparison. It does a bottom-up pass of the parse trec. It assigns literals
and keywords their corresponding type, but assigns variables ‘‘any type'’, that is, the union of all types. It treats
operations very much like the type inference system does, computing a result type based on operand types. In order
for this to be a fair comparison, the simple type determining system assumes that procedure names, function names,
and record constructor names cannot be assigned to, just as the type inference system makes this assumption. The
following results are for the same programs and operands as are the above results for type inference. Unique types
have been broken into several categories (note that procedure names also include record constructor names and
function names).

unique types
lteral constants: 6116
keywords: 337
procedure names: 6745
other: 3101
16299
multiple types: 9007

Thus, without type inference, it is only possible to determine unique types for about 64% of all opcrands.

5.3 A Variation on Type Inference

One variation of the type inference system has been implemented. It is based on the obscrvation that structure
variable types always represent a set of variables so that assignments can only add to the associated type and never
restrict it. For this reason, propagating variable/type associations for these structure variablcs (rom node to node
through the flow graph may not add to the precision of the type information.

In this variation of type inference, named variables are still put in the stores that are propagated through the flow
graph, but structure variables are put in a ‘‘global’’ store that is shared by all nodes. When the suite of programs
was run through this system, only one operand among all of the programs went from having a unique type to having
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multiple types. On programs with structure types, this system runs significantly faster than the theoretically more
precise system.

6. Conclusions

An carlier data flow analysis framework for type inference of Icon was developed in a rather ad hoc manner.
The present type inference system evolved out of an attempt to explain and justify that earlier system. Abstract
interpretation has proven useful not only for describing type inference, but also for understanding and reasoning
about it. The current system is simpler and more closely reflects the semantics of Icon than the earlier system.

The current implementation is rather slow and uses a lot of memory. Both of these problems are due to the fact
that type information about every variable is propagated to every node. The usual solution to this problem is to
precompute definition-use chains that link variable definitions to variable uses. Because structure variables can rea-
sonably be put in a global store, definition-use chains are only needed for named variables. These definition-use
chains can be computed before type inference begins, although invoking a non-procedure variable may occasionally
require making pessimistic assumptions about the definition-use chains of global variables. With this information,
variable types need only be kept at variable definitions. In addition, a type need only be recomputed when another
type it depends on changes. These dependencies are reflected in the definition-use chains and in the parse trees of
expressions. Using these techniques and implementing type inference in C should result in a system efficient enough
for use in a production compiler.

The information produced by this type inference system presents numerous opportunities for a compiler to elim-
inate type checking from generated code. In the present Icon implementation (based around an interpreter), all of the
type checking is done in run-time routines. With type inference, type checking is only needed for 10% of all
operands, making it practical (at least in a compiler) to remove type checking from most run-time routines and gen-
erate it in-line instead. In addition, as a byproduct of type inference, it is possible to identify operands that are not
variable references. Using this information, unnecessary dereferencing can also be eliminated without any addi-
tional analysis. Beyond aiding in the generation of good code, type inference can detect cases where operands can-
not be valid, allowing the production of better diagnostic information.
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Appendix A -— Proof of Counsistency for the Abstractions

This appendix contains a proof that Model 1 is consistent with the static semantics and proofs for two operations
that Model 3 is consistent with Model 1. The conditions used to guarantee that a model is consistent with a less
abstract model depend on imposing a lattice on the domain of each model. The domain of static semantics and
Model 1 is sets of environments (enviry)). The lattice used here is the usual lattice for a power set: subset is the
ordering relation (<), union is the join operation (v), the empty set is bottom, and the set of all environments is top.

The domain of Model 3 is stores). Assume
§1, S2 € storey)
then the ordering relation and join operation are defined by
s1 < sz iff V te types, si(t) < sa(t)
81V S2 =83, where V t € types, s3(t) = 8;(t) U sa(t)

The first step in proving the that store(s is a lattice under this ordering relation is to show that the type system
forms a lattice under the subset relation. The basic types are non-empty and disjoint. The type system is constructed
to be the smallest set closed under union containing the basic types and the empty set. Using these facts, it can be
shown that each type can be uniquely represented as a union of zero or more basic types and conversely, that each
such union is a type. Thus the type system with the subset relation is isomorphic to the power set of type names with

the subset relation and the type system forms a lattice. Is is then easy to show that the lattice of the type system
induces a lattice structure on storeys).

Let D; be the domain of abstraction i. Given an edge m of the flow graph with n being the node at the head of m,
a transfer function

fmj: Di - Di

implements the portion of the semantics in abstraction i of node n that causes control to transfer to m. The input to
the function is the join of the values on the incoming edges. Suppose

Xy, X2, X3, X4, X5 € Di

are the values associated with the edges of the graph

N

X4 X5

and assume that the transfer functions of the outgoing edges are f4; and fs;, then the equations for this graph are
x4=f45(x; vx2v ;‘3)
xs = f53(x; v X2 v X3)
A transfer function needs to be monotone, that is
V x1,X2 € D 8.L X1 € X2, fmi(X1) S fmji(x2)
A model i is said to be consistent with a less abstract model j, if there exists an abstraction function

o Dj—)Di
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and a concretization function
¥: D; > D

such that the following four conditions hold
1. Vxj,x2€ Dj s.t. x3 $x3, 0x)) S ax2)
2. V&, R2¢€ D st &) <%z, YR1)SYRD
3. Vie D;, £=a(¥k))
4. Vxe Dj, x<ya(x)

and, in addition, for every edge m
5. Vxe Dj, afnj(x)) < fmi(a(x))

The next step is to show that Model 1 is consistent with the static semantics. The domain of each of these
abstractions is the same and both a and y are the identity functions. Thus conditions 1-4 are trivially true, Condition
5 degenerates to

£ 0(X) < f1 (%)

Where f, 0 and fy,; are corresponding transfer functions in the static semantics and Model 1, respeétively. By the
definition of Model 1, each f,; can be written as

fm1(x) = fno(x) U F(x)

where F(x) is the union of the results of the transfer functions for the other edges leaving the same node. Condition
5 follows immediately.

So far the problem of ‘‘memory allocation’’, that is, the naming of pointers and structure variables, has been
ignored. A naming scheme must be chosen in order to prove correctness of list operations. A simple scheme is to
have two ‘‘system’’ variables, A, and A,, which are used to assign integer subscripts to new pointers and structure
variables, respectively. For example, suppose the current enironment is (s, h;) (in Model 1) and

s1(Ag)=3
si(A)=7

and the expression
["a", Ibl' .cil]

is executed. This expression allocates a new pointer and 3 new structure variables, so the resulting environment,
(s2, h2), has

s2(Ap) =4

s2(Av) =10

s2(v7)="a"

sa(vg)="b"

s2(vg) ="c”

ha(p3)=L

L) =v,

L(2)=vs

LB)=vy
However, the type system presented here depends on being able to identify where in the program pointers are
created. It is also necessary to identify the creation point of a pointer associated with a structure variable. Therefore
each pointer and structure variable is also be subscripted by the program point at which the pointer is created. If the

previous example occurs at point n in the flow graph then p3 becomes p, 3 and v, becomes v, 3. This is just a
renaming with respect to the simple allocation scheme in Model 1, but is important to later models.

The following conventions are maintained in the proof that Model 3 is consistent with Model 1.
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i, j, k € positive integers

n € nodes

v € variables (non-structure variables unless otherwise stated)
Vais Vo € structure variables

r; € temporary variables

V,, € variables types

Pux € pointers

P, € pointer types

L€ types

Let Type: 2vsiues —y 2vaules be the function that maps an arbitrary set of values to the smallest type containing
those values. Type has the following properties (given without proof)

e it is monotone

e it is distributive over union

o Vx,ye 2= Type(x Ny) < Type(x) N Type(y)

o Vxe 2nves x  Type(x)

e ¥ x € types, x=Type(x)

e V x ¢ variables, Type(x) ¢ variables

e V¥ x, s.t. x N variables = {), Type(x) N variables = (]}

The definition of
o 2% _y storeps)
letx € 2m
a(x) =8, where
Vi, &t) = Type({d: v € tn variables, (s, h) € x,d=5s(v)})
The function § = a(x) is distributive over union. Proof, let
1, € types
8(t; U t2) = Type({d: v € (1 U 1) N variables, (s, h) € x, d=s(v)})
= Type({d: v € y N variables, (s, h) € x,d=s(v)} U (d: v € 1, N variables, (s, h) e x,d=s(v)})
=Type({d: v € t; N variables, (s,h) € x,d=s(v)}) U
Type({d : v € ta N variables, (s, h) € x, d=s(v)})
=8(t1) U §(12)
Also, if t N variables = {} then
81 =Type((D=()

All transfer functions in Model 3 transform stores in such a way as to preserve this distributivity over union and to
preserve the fact that a store produces the empty set when applied to a non-variable type.

The definition of

¥. store(s) — 2™

-23-



let § € storeqy
¥(3) = ((s, h) € envirp):
Vv, s(v) € 3(v)
V Vai, S(Vai) € $(Va)
V Pux» h(pnx) =L where L: positive integers — {vpy : for some k) is some paritial mapping )

Proof of Condition 1
Assume
x1, X2 €570, ax) =8, ax) =4
X; S X2
by the definition of this ordering relation
X1 X2
by the definition of alpha
Vt, 8;(t) = Type({d : v € t N variables, (s, h) € x;,d =s(v)})
< Type({d: v € t variables, (s, h) € x3,d=5s(v))) x; € X2, Type is monotone

= 8(t) definition of a

therefore by the definition of the ordering relation over stores)

8<%

o(x;) S 0(x2)
Proof of Condition 2
Assume

81, §; € storep)

1<%
by the definition of v

Yén={(s,h):
Y v, s(v)e §;(v)
V Voi, $(Vai) € 81(Va)
V Pax. h(pax) =L where L: positive integers — {vax : for some k} }
by the definition of the ordering relation on storegs;
Vv, 8§(v) S8xv)
V Vo, 81(Va) < 82(Vn)
therefore
Y&y ((s,h):
Vv, s(v) € 8xv)
V Vai, S(Vai) € 82(Vo)



V Pux. h(Pax) =L where L: positive integers — {v,x : for some k} }
by the definition of ¥, the right-hand side is ¥(32)

¥31) <¥(52)
Proof of Condition 3
Let

§, §; € storegz; s.L §; = a(¥(3))
If

V t € basic types, 8;(t) = 8(1)
then it follows from the fact that these stores are distributive over union and induction on the number of basic types
in t that

V te types, 8i(t) = 1)
There are three classes of basic types to consider.

Case 1: t is a non-variable type
aM=(=%
Case 2: t = {v) for some variable v
8,(1) = Type({d : (s, h) € ¥(3), d =s(V)})) by definition of o
= Type({d: d € §({v])}) by definition of ¥
= Type(8({v)))
=8({v))
=§1)
Case 3:t=V,
81(t) = Type({d : va; € Vg, (s, h) € 15), d=5s(vp3)}) by definition of &
=Type({d: d e §(V.})}) by definition of y
= Type(3(V+))
=8(Va)
=8(1)

Proof of Condition 4
Assume
xe 2™
by the definition of a
Y(a(x)) = WS) where
V t, §t) = Type({d : v € t n variables, (s, h) € x, d = s(v)})
by the definition of ¥
Wa(x)) =¥®)=((s1, hy) :
V v,s1(v) € §((v)) = Type({d : (s, h) € x,d =5(v)})
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V' Vaj, $1(Va) € 8(Va) = Type({d : Vo € Vi, (s, h) € X, d = 5(vny)})
V Pux. h(pax) =L where L: positive integers — (Vo : for some k} }

let
(s1,h)) e x
Vv, s1(v) € Type({ s1(v)))
< Type({d: (s, h) € x,d =s(V)})
V Vo $1(Vo) € Type({ s1(vas)))
< Type({d : voj € Vy, (s, h) € x,d =5(vay)})
* therefore

(s1. ) € Y(o(x))
x < Y(o(x))
x < Wa(x))

Proof of Condition 5 for selected transfer functions

Consistency between Model 1 and Model 3 will be shown for assignment and list creation. A transfer function is
constructed for the operation at a node based on the temporary variables associated with that node and its operands.
These functions need to dereference the contents of temporary variables. Let the dereferencing function for Model 1
be

Deref): store(;) X temporary variables — values
s(s(r; )) if s(r; ) € variables
Derefi(s.7:)=1 5(r;)  otherwise
and let the dereferencing function for Model 3 be
Derefs: store(s; X temporary variables — 2Values
Deref3(8, ri )= (8({r: }) - variables) U 8(3({r; }))

Assignment

Let some node of a flow graph be labeled with assignment. Let o be the temporary variable associated with the
node and ry and r, be the temporary variables associated with the left and right operands, respectively. Let assign;
be the transfer function associated with the node in Model 1.

assign;(x) = {(s1, h) : (s, h) € x, s(r; ) € variables, V v € variables

s(v) ifves(ry) and v#rg
si(v) =1 s(r) ifv=rg )
Deref\(s, ry) ifv=s(ry)

(There are situations where assignment in Icon is more complicated than this, but they are not dealt with in this
proof.)

Assignment in Model 3 needs to distinguish between ‘‘certain’’ assignment, when there is only one variable on
the left hand side, and ‘‘uncertain’’ assignment, when there might be more than one variable. Let assigns be the
transfer function in Mode! 3 using the same temporary variables as assign;. Let

assigny(8) = §
where, for t= {}
sHiw={)



for t € basic types, let t; = §{r }) n variables

() ift#(ro}andtdy
4y ift=(ro)
810 =1 Derefa 8, r2) if t=1, = (v), for some variable v # ro

Derefs(8, r2) U¥t) ift#(ro).tcty,andVv,t# (v)

foryi=20 13

$1(t) = 1) U §(1y)
Condition 5 for assignment is

V x € 2™, afassign;(x)) < assigna(a(x))
let

ofassign;(x)) = §

assigny(a(x)) = §;
by the definition of the ordering on store(s), this requires proving

Vi, (1) < 8(1)

Only proofs for the interesting cases of t € variable basic types are presented here. By the definition of a and
assngn,

81(t) = Type({d : v € t, (s1.;) € assigny(x), d = 5;(V)])

s(v) ifves(r;) and v#rg
=Type({d: v e t,(s, h) e x,s(r;) € variables, d ={s(ry) ifv=rg )
Derefl(s, 7'2) ifV=S(r1)

a(x) =8
ty = §({r1)) N variables
= Type({d: (s, h) € x,d = s(r}))) N variables
Then by the definition of assigns, for t € variable basic types

0] ift#(ro}andtdn
) i i.fl={r0]
5200 =1 Derefy(8, r2) ift =y={v),v#ro

Deref3(3, r2) U(t) ift#{ro).tct,andVyv,t # (v}
The proof is driven by the cases in the preceding formula.

Case 1: t# {ro}andtg
suppose 3 (s, h) € x s.t. s(ry) € L. tis a variable basic type so
t="Type({s(r1)})
< Type({d: (s, h) € x,d=s(ry)}) N variables

=1
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but this contradicts the assumption t ¢ t;, thus
V(s,h)ex, s(r1)dt
81(1) = Type((d : v € t, (s, h) € x,s(r; ) € variables, d = s(v)})
< Type({d:ve t,(s.h) e x,d=s(V)})
82(0 =3(v)
=Type({d:ve t, (s, h) e x,d=s(v)})
L) <8:(D

Case 2: t={ro)
§;(t) = Type({d : (s, h) € x, s(r,) € variables, d = s(r;)})
= Type({d : (s, h) € x,d = s(r, )] N variables)
< Type({d : (s, h) € x, d = s(r;)}) N Type(variables))
= Type({d : (s, h) € x,d =s(r;)}) N variables
L=t
= Type({d : (s, h) € x,d =s(r,)}) N variables
51D S8
Case3: t == (v],v#ro
suppose 3 (s, h) € x, s.L.s(r;) € variables and s(r;) # v
{s(r1)} < Type({s(r1)])
< Type({d : (s1, hy) € x, d = 51(r1)}) N variables
=t
={v}
but this implies s(r ) = v, which contradicts the assumption, so
V (s, h) € x s.t.s(r,) € variables, s(r,) =v
8:1(t) = Type({d : (s, h) € x, d = Deref,(s, r2))

s(s(rz)) ifs(r2) € variables

=Type({d:(s,h) € x,d ={s(r2) otherwise

= Type({d : (s, h) € x, s(r;) € variables, d =s(s(r2)}) u Type({d : (s, h) € x, d = s(r;) ¢ variables})

32(t) = Deref3(3, r2)
= (8((r2)) - variables) U 8(8{(r2)))
8({r2)) - variables = Type({d : (s, h) € x,d =s(r2))) - variables
= (Type({d: (s, h) € x,d =s(r2) € variables}) U
Type({d : (s, h) € x, d = s(r2) ¢ variables}))) - variables
=Type({d: (s, h) € x,d =s(r,) ¢ variables))
8(3({r2})) = Type({d : v e Type({d; : (s1, 1) € x, d) =s1(r2))) N variables, (s, h) € x, d = 5(v)}
2 Type({d:ve {d;:(s;, ) € x,dy =5,(r2)}) N variables, (s, h) € x, d = s(v)}
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= Type({d : (s, h) € x, (51, hy) € x, 51(r2) € variables, d = s(s;(r2))})
=2 Type({d : (s, h) € x, s(r2) € variables, d = s(s(r2))})

$1(1) < 82(1)

Cased: t# (ro), tgt,andVv, ty 2 (v)

) s(v) ifves(r)
8;(t) = Type({d: ve t, (s, h) € x,s(r;) € variables, d = Derefi(s,r2)) if v=s(r;) )
s(v) ifves(ry)
= Type({d: ve t,(s, h) € x, s{(r; ) € variables, d =1 s(s(r2)) if v=s(r,) and s(r2) € variables }
s(r2) if v=s(r;) and s(r2) ¢ variables

=Type({d:v e t,(s,h) € x,s(r;) € variables, v#s(r;), d=s(v)}) v
Type({d: v e t,(s, h) e x,s(r;) e variables, v=s(r,), s(r2) € variables, d = s(s(r2))}) L
Type({d : v e t,(s, h) € x,s(r, ) € variables, v==5(ry), s(r2) ¢ variables, d = s(r2)})
c Type({d: v e t,(s, h) e x,s(r;) € variables, d=s(v)}) v
Type({d : (s, h) € x, s(r2) € variables, d =s(s(r2))}) v
Type({d : (s, h) € x, s(r2) ¢ variables, d =s(r2)})

Using intermediate results from Case 3
8,(1) = Deref(8, r2) L §(1)
2 Type({d: (s,h) € x,d =s(rp) ¢ variables}) U
Type({d: (s, h) € x,s(ry) € variables, d = s(s(r2))}) U
Type({d:ve t,(s,h) e x,d=s(v)})
5 € (0

List Creation

Let node n of a flow graph be labeled with list creation. Let r¢ be the temporary variable associated with the
node and ry through r,, be the temporary variables associated with the m operands, whose valucs will be put in the
list. Let list; be the transfer function associated with the node in Model 1.

s(v) ifve (ro,Ap Ay and Vi, 1Si<m, v# vy
an(A,) ifV=fo

listy(x) = {(s1, hy) : (s, h) € x, 5;(v) ={ Derefy(s,7;) if 1 SisSmandv= vy i1
s(Ap) + 1 ifv=A;

s(A,) +m ifv=A,

.

h(p;p) ifj#nork#s(Ap)
@) =1L if j=nand k=s(Ap), where Vi, 1Si<m,L() = Vosarsics )

Let list; be the transfer function in Mode! 3 using the same temporary variables as list;. Then

list3(8) = §

where, for t = {)
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Hm=0
for t € basic types

1) ift#(ro)andt#V,
HM =P, ift={ro}

AN Qberefa& r) ift=V,

forti=thUts
81(h) = 8i() U &1 (ta)

Note that in Model 3, 8((A,)) = integer and §((A;)) = integer for all 8. These variables play no part in Model 3, but
are retained to keep o and y simple.

Let
oflisty(x)) = 3,
listy(a(x)) = 8,

then condition S for list creation requires proving
Vi, 5 %0

As with assignment, only proofs for the interesting cases of t € variable basic types are presented here. In addition,
it is assumed that t # {A;) and t # {A,] as these cases are trivial. By the definition of o and list,

81(t) = Type((d : v € t, (s1,hy) € list;(x), d = 5,(V)})

s(v) ifv#roand Vi, 1Sism, v# vygani-
=Type(f{d:ve t,(s,h)e x,d= Paan) ifv=rg D
Derefi(s,r;) ifl Sismand v = Vg i1
Let
a(x)=38
Then by the definition of list, for t € variable basic types
&) ift#{ro)andt#V,
MO =}P, ift={ro)

(Vo) U Qoeref,(g, r) ift=V,

The proof is driven by the cases in the preceding formula.

Case 1: t# {ro)andt# V,
851() =Type({d:ve t,(s,h) e x,d =5(V)))
52(0) = 8
=Type({d:ve t,(s,h)e x,d=s(v)})
810 = 82(1)

Case 2: t={ro}
§;(t) =Type({d:(s,h) e x,d = Pastay))
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c Type((d: d € Py})
= Type(Pa)
=P,

() =P,

810 = 82(1)

Case3: t=V,

R S(Vas(A)+-1) ificlori>m
8i(1) =TYP°({d:(s. h) € x, Voa(A -1 € Vo, d= Derefi(s, 7; ) fl<i<m

= Type({d: (s, h) € X, Vo1 € Vo, i<l ori>m,d=s(Vagari-1)}) Y
Type({d: (s,h) € x, 1 <Si<m,d=Derefy(s7; )))

< Type({d: (s,h)e x,ve Vnd=s(¥)))u QTypc((d : (s, h) € x,d =Derefi(s,7: )})
$0) = (V) U Deref 8, 7;)
= Type({d: (s, h) € x,ve Vo, d=5(V)}) U Queref,(s, r)

Using the same arguments used in Case 3 for assignment
Type({d: (s, h) € x, d = Deref\(s,7i ))) < Deref3(§, ri )

SIOX=1>1()
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