A Preprocessor for Icon*

Kelvin Nilsen

TR 88-1

ABSTRACT

Programming language preprocessors are important source-code development tools because
they simplify source-code configuration and contribute to a programmer’s expressiveness in
describing portable and efficient data abstractions. To satisfy the growing numbers of Icon users
who are applying Icon to real programming problems, a preprocessor with a knowledge of Icon
syntax is now provided with the Icon system. The Icon preprocessor has been fashioned afier
the well-known C preprocessor [1]. This document describes the Icon preprocessor and
discusses suggestions for how it might be used to facilitate development of Icon programs.

December 29, 1987

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

=This work was supported by the National Science Foundation under Grant DCR-8502015.

A Preprocessor for Icon

1. Tutorial Introduction

The Icon [2] preprocessor is simply a special-purpose editor that performs editing on source files before those
files arc translated by the standard Icon translator. To minimize the cost of preprocessing, the set of ediung instruc-
tions that the preprocessor is capable of performing is limited to instructions that require only a single forward pass
through the file of source code. One of the editing capabilities of the preprocessor, for example, is to replace all
occurrences of a particular word with some string of text. Another capability is to selectively include sections of a
source file that are appropriate only for a particular configuration of the code.

The Icon preprocessor executes as a filter, reading Icon source files from its standard input and writing the
results of editing to its standard output. Unlike most interactive editors, the preprocessor does not read the entire
source file into memory or buffers before processing editing instructions. Instcad, the preprocessor maintains in
memory only a list of the editing instructions that apply to a particular region of the source file and a small buffer
that holds the portion of the file that is being preprocessed. As lines are read in, mcy are modified according 10 this
list of editing instructions and writlen oul.

Editing instructions to the preprocessor take the form of preprocessor directives. All preprocessor directives
begin with a ‘$’ character in the first column of a new line. Immediately following the ‘S’ is a keyword specifying
the type of editing instruction. For example, the $include directive denotes that its file argument should be inseried
into the input stream at the point of this directive. This is frequently used 10 include existing libraries of Icon source
into the current file or to include global declarations or morc editing instructions for the preprocessor. The line
below causes the preprocessor to insert the file Snobol.lib into the current file.

$include "snobol.lib”
Another editing instruction offered by the preprocessor globally replaces a particular identifier with some string.
This editing instruction is specified using the $define directive, as shown bclow,
$define LIB_PATH "/usr/lib”

After reading the above statement, the preprocessor replaces all subsequent occurrences of LIB_PATH in which
LIB_PATH appears as a complete token with the string “/usr/iib®. Note that the quotes surrounding /usr/lib are
included in the definition of LIB_PATH. The preprocessor treats runs of alphabetic, numeric, and underscore char-
acters starting with either an alphabetic or underscore character as identifier wokens. In the linc below, the prepro-
cessor would not replace LIB_PATH because it does not appear as a complcte token.

library := open(USER_LI!B_PATH || "/lib.1%)
The editing capability described above is called macro expansion. The $define directive can also be used to
define parameterized macros. The Max macro defined below, for example, has parameters a and b.
$define Max(a,b) (((b) < (a), (a)) | (b))

Following execution of the above directive, all subsequent occurrences of the identifier Max appearing in the filc are
expanded according to the definition above. The preprocessor expects all occurrences of Max 1o be accompanied
by a two-item parameter list. The following statement,

= Max(3.5, y+6)
for example, expands into:
x = (({ly+6) < (3.5), (3.5)) | (y+6))

If Max occurs without exactly two parameters, the preprocessor treats this as a fatal error.

Parameterized macros are ofien preferable to procedure calls because they are potentially faster 10 execute and
because they offer different abstraction capabilities. For example, Icon parameters arc passed by valuc. But macros
can simulate some aspects of pass-by-reference semantics. Consider the following usage of the Max macro:

Max(x, y) = -1

Another common usc of the preprocessor is to selectively include cenain sections of codc from a sourcce file.
For example, the following might be found within a program designed to run both on UNIX' and smaller single-
tasking computers.

$itdef UNIX

file_list := open("ls -I", "pr")
$else

file_list := &null

write("Unable to list files on this computer*}
$endif

In the above section of code, if a macro named UNIX is defined, the first line is included and the others are omitied
by the preprocessor. Otherwise, the first line is omitied and the other two are included.

2. Invocation of the Icon Preprocessor

The standard Icon translator icont does not automatically invoke the preprocessor. To invoke the preprocessor,
specify the -p command-line option to the icont program. To translate, for example, program.icn using the prepro-
cessor option of icont, issue the following command:

icont -p program.icn

Altematively, the preprocessor can be invoked as a stand-alone program by cxecuting the command iconpp.
iconpp processes its single file argument if a file name is specified on the command line. Otherwise, iconpp
preprocesses its standard input. In either case, the resulis of preprocessing are written to standard output.

With either the icont or iconpp invocation, all -D and -l command-line flags are interpreted by the preprocessor.
The -D flag is used to define macros on the command line. The argument to the -D flag is a single string. Spaces
within this string must be enclosed within quotes If the string includes an equal sign, the remaining portion of the
string is treated as the definition for the variable. Otherwise, the definition is set to 1. This might be handy if, for
example, a single set of source files contains code for multiple versions or configurations of a program. Depending
on the combination of command-line definitions specified at translation time, the translator can produce many dif-
ferent versions of a program without the programmer ever having 1o modify any source code. The invocation below
might be used to compile a demonstration version of a program that is intended to run for 30 scconds and then quit.

icont -p -DDemo -DTimelimit=30 program.icn

The command-line definitions shown above produce the same effect as the two $define directives below:

$define Demo 1
$detine Timelimit 30

The -| command-line flag gives users control over the paths scarched to locate the file arguments of the $include
directive. The file name arguments to the $include directive may be specified as either absolute path names or as
relative file names’. Wherever a relative path name is supplied as the argument to a $define dircctive, the

! UNIX is a trademark of AT&T Bell Laboratories.

2 This description assumes that command-line parameters are processed as they are under the UNIX operating sysiem. Some of the
computers on which the preprocessor runs do not use these quoting conventions for command-line arguments. For such computers,
guating behavior depends on the C implementation that compiled iconpp.

® The syniax for relative patns and host file names depends on the host operating system and is specified for several implementations
in the appendix.

preprocessor scarches for the file relative 1o a list of possible directories. By default, this list includes a small
number of directories that are specified when Icon is installed on a particular machine. The initial value of this list
can be overwritten by setting the environment variable PPATH 1o represent a new list of scarch dircctories. The
value of PPATH should be a blank-separated string of the form p 1Py Py where each of the p. names a directory.
The directory name arguments that accompany each -| flag are appended 10 the end of the scarch list. The example
that follows assumes that some of the files included by the specificd Icon source files are found in the dircctory
{usr/icon/include.

icont -p -liusr/iconvinclude main.icn utilicn lib.icn

3. Commangd Reference

The editing commands supporied by the preprocessor can be grouped according w functionality. There are four
general funcuons provided by the preprocessor:

Global replacement of an identifier with a possibly parameterized replacement string is called macro replace-

ment.

Conditional compilation refers to the preprocessor’s ability to determine that certain blocks of code should be
compiled only if certain conditions are satisfied.
The preprocessor’s ability to insert files into the current input stream is referred to as file inclusion.

Because the preprocessor may insert or delete lines from the original Icon source, and because the translator
needs to know the original number of each line of source to provide helpful error messages, a method of com-
municating original line numbers to the translator has been devised. This is referred 10 as linc numbering.

The last topic discussed in this section is the existence of scveral implementation-dependent predefined macros.
Programmers can use thesc predefined macros to write programs that automatically yicld different configurations
when compiled in different environments.

3.1 Macro Replacement

Macros are defined using the $define directive, which has two forms. The first form is used to define an
unparameterized macro,

$define name sequence-of-1okens

The example above defines a macro of the specified name. Subsequent occurrences of the identifier name in the
input stream are replaced by the specified sequence of tokens. In the above, sequence-of-tokens may be empty.

Other macro definitions by the same name in existence at the time this dircctive is executed arc hidden on a
stack beneath this definition until this particular macro definition is erased. The sccond form of the $define direc-
tive is used to definc paramelerized macros:

Sdefine name(name > name,, ..., namer) sequence-of-1okens

In the line above, there must be no white spaw" between name and the left parenthesis that follows it. It is an
error for any subsequent occurrence of name in the input stream 10 not be parameterized with exactly the number of
paramelers (n) as arc specified in the macro definition. Each occurrence of name(parameters) in the input stream is
replaced with sequence-of-tokens after substituting within that sequence the actal parameter values for each param-
eter name. Each actual parameter, which is separated from other parameters by commas, may be a sequence of
tokens itself. Commas enclosed in nested parentheses are not interpreted as boundaries between parameters. For
example, the following invocation of the Max macro, which was defined above, is expanded using 100 as the value
of the first parameter and acker(5, 8) as the value of the second. Note that the second parameter of the expansion
includes a comma enclosed in parentheses.

4 syep - . .
White space refers 10 tab, space, newline and carmage retumn characters.

y = Max{100, acker{(5, 8))

As with the first form of this directive, other macro definitions by the same name in existence at the time this
directive is executed are hidden on a stack beneath this definition until this particular macro definition is erased. The
convention of hiding other macro definitions on a stack facilitates the creation of macro definitions that are restricted
in both scope and side effects”.

In both the parameterized and unparameterized versions of this directive, the name of the macro must be
separated from the $define keyword by at least one tab or space character. The macro and parameter names must
consist only of alphabetic, numeric, and underscore characters. No restrictions are placed on the length of macro
and parametcr names. However, very long names (above 100 characters) may result in fawal errors because of
buffer overflows when the macros are expanded. Tabs and spaces separating parameicr names from each other and
from commas and parentheses are allowed.

Following specification of the macro patiern (the name by itself for unparameterized macros, or the name and
parameter list for parameterized macros), spaces and tabs up to the first non-white character are ignored.
Sequence-of-iokens is parsed using the following rules:

1) If the ‘# character is seen, the remainder of the linc is treated as a comment. The macro definidon is terminated
at this point, and the comment is ignored by the preprocessor.

2) If the ‘\' character is seen and the following character is a newlinc6, the macro definition is extended to the line
that follows. If the following character is not a newline, the ‘\' character is simply added 10 the verbatim
replacement string for the macro.

3) Runs of alphabetic, numeric, and underscore characters are treated as identifiers. Each identifier within the
sequence of tokens that is the same as one of the macro’s parameter names is flagged for replacement at macro
expansion ume. If an identifier is not recognized as the name of a paramecicr, then the identifier is added to the
verbatim replacement string for the macro. All identifiers are case sensitive so, for example, the preprocessor
treats Max and max as distinct tokens.

The rules above have the effect of separating the replacement string into identifiers to be replaced at macro
expansion time, verbatim text to be inscried when the macro is expanded, and comments.

Notice that the replacement string for a macro is not modified by the preprocessor. This means, for example,
that the definition of y after execution of the two $define directives below is x:

$define x z
$define y x

The $erase directive has the effect of removing a macro that was already defined. Invocation of this directive
with a name that is not defined is treated as a fatal error. The following line erases the most recent definition for the
macro Compare. If the most recent definition of that name hid an earlier definition, the older definition is revealed
by the $erase directive,

$erase Compare
There is a special preprocessor directive, $undef, that has the effect of removing all macro definitions of a par-

ticular name. This is especially useful when macro names are used to conurol conditional compilation. A
configuration file, for example, might contain the following:

$undet VAX_VMS # define to obtain VAX VMS configuration
$define IBM_PC # define to obtain IBM PC configuration

* Contrast this with many C preprocessors in which the scope of = defined macro may be restricied through use of the sundef
directive, but the side effects of the #undef directive persist to the end of the preprocessed file.

® For computer sysiems that do not use the Unix convention of separating consecutive lines of text with a single newline character,
this discussion assumes that the preprocessor opens files of source in a translaie mode, such that the preprocessor sces only a newline
character to mark the boundary between two lines.

3.2 Conditional Compilation

By compiling cerain code only if a certain named macro has or has not been defincd, programmers can, among
other things, combine several versions of a program into a single source file. Within the source file, text that is to be
conditionally compiled is enclosed between $itdef or $itndef directives and $endif directives. $ifdef is an abbrevi-
ation for “‘if defined’’. $ifndef stands for *‘if not defined’’. The discussion that follows focuses on the behavior of
the $ifdef directive. The $itndef directive behaves identically, except the effects of the conditional tests are
reversed. The general iemplate for the $itdet directive is shown below:

Sitdef name

Each $ifdef directive must be followed by an $endif directive. Any code appearing between the $ifdef and the
$endif directives is included in the output of the preprocessor only if the name argument of the $ifdef directive is
the name of a defined macro. An optional $else directive may appear between the $ifde! and $endif dircctives. If
the $else directive is present, all code between the $itdef and the $else directives is included in the preprocessor
output only if the name argument of the $ifdef directive is a defined macro. If, however, the name argument is not a
defined macro, the code up 1o the $else directive is omitted from the preprocessor output and whatever code
appears between the $else and the $endif directives is included. Any text appearing on the same line as the $else
or $endif directives is ignored by the preprocessor. 1t is customary to place the same identifier following the $else
and $endif keywords as appears on the $ifdef or $itndef that opens the conditionally compiled block of code. This
information, which is treated as a comment, aids readers of the source code.

Blocks of conditionally compiled code may be nested within each other as shown below:

$ifdef VMS

helpfile := “UA_COMMON:[UAHELP BITNET]"
$ifdef Demo

timeout ;= TimelLimit:

banner .= "Demonstration Version for VMS"
$endif Demo
$endif VMS

3.3 File Inclusion
Files may be included in other files using the $include directive. There are two forms of this preprocessor
directive:
Sinclude “file"
$include <file>

The search for a file specified by a rclative path name enclosed in quotes begins with the directory of the file that
issued the $include directive. If the file is not found relative to that directory, the search procecds to consider, in
order, each of the directories on the list of scarch directories until it either finds the desired file, or exhausts the list.
The search for a relative path name enclosed in angle brackets executes similarly except the scarch begins with the
search list, skipping the directory of the file that issued the Sinciude request. In either case, if the preprocessor is
unable to find the specified file, it aborts with a fatal error message.

The iniual value of the search list is specified when the Icon system is instalicd. This initial value can be
overwritten by setting the environment variable PPATH 1o rcprescm a new list of scarch directories. The value of
PPATH should be a blank-separated string of the form p - p,, Where each of the p. names a direciory. Addi-
tional directories can be added to the scarch list by speci ymg lhcm on the command linc of the icont invocation as
arguments to the -| flag.

3.4 Line Numbering

In order for the Icon translator and the run-time system to associate error conditions with the original source line
number of the offending code, it is necessary for the preprocessor to communicate to the translator the location of
certain code in terms of file name and line number. Noie that the preprocessor may combine source code from
many different files into a single stream 10 be processed by the translator. The $line directive is designed 1o serve
this purpose. The preprocessor inserts this directive into its output stream 1o inform n¢ translator that the code that

-5

follows appears in the original source at a particular line number of a particular file. The general form of this com-
mand is shown below:

$line num “file"

If, for example, the line below appears on line 4 of the file main.icn:
$include "snobol.lib”
the output of the preprocessor is given by:

$line 0 "snobol.lib”
the conienis of the file “snobol.lib”
$line 4 “main.icn”

Note that the newline character appearing at the end of this preprocessor dircctive is significant in that, upon
encountering it, the translator increments its internal representation of the current line number. In the example
above, the line immediatedly following the last line shown corresponds to line 5 of main.icn. This is communicated
1o the translator by first setting the line number and file name o0 4 and main.icn respectively, and allowing the new-
line character that terminates the preprocessor directive to increment the line number from 4 to 5.

Besides inserting the $line directive into its output, the preprocessor also understands and acts appropriatcly
whenever this directive occurs in its input stream. This permits, for example, the preprocessor to filter a single
source file more than once as the file is prepared for translation.

It is also conceivable that tools might become available to generate Icon source according to user specifications,
Frequently, the code from this sornt of ool is combined automatically with user-supplied code, possibly even within
the same file of Icon source code. An example of this sort of application is the UNIX YACC[3] program, which
takes as input a context-free grammar and fragments of C source code and produces a C program that combines the
user-supplied C source code with an automatically generated parser for the context-free grammar written in C. In
this application, it is helpful for the C compiler to know the origin of certain blocks of code in terms of the original
specifications that were supplied to the YACC program. YACC communicates this information 10 the translator by
inserting the equivalent of $line directives into its output, which becomes the input to the preprocessor. Developers
of similar tools for Icon are free to use this same approach, placing $line dircctives in the Icon source they generate.

3.5 Predefined Macros

Some features of Icon are not available in all implementations of Icon. Other capabilitics behave differently,
depending on the implementation. For example, the "t" mode of the open function is not meaningful in UNIX
implementations of Icon. The code below might appear in a source file intended to run on either UNIX or MS-DOS
compulters.

$itdet UNIX

f := open(tname, "r")
Selse

f := open(fname, "rt")
$endif

Certain environment-specific macros are automatically defined 10 facilitate the writing of programs that, at
preprocessing time, configure themselves for their environment. For each implementation of Icon, exactly one of the
following is automatically defined within the preprocessor:

$define VMS # on a VAX computer running VMS
$define MSDOS # on an MS-DOS computer
$define AMIGA # on a Commodore Amiga

$define ATARL_ST # on an Atari ST

$define MACINTOSH # on an Apple Macintosh

$define UNIX # on any computer running the UNIX operating system

4. Style Conventions and Recommendations

Accompanying the increased expressiveness of programming with a preprocessor come increased complexity 1o
programs and the accompanying increased probability of programmer error. Certain style conventions and concerns
are discussed here which help programmers avoid some of the common pitfalls of programming with a preproces-
sor.

Because parameterized macro expansions appearing in the source code usc the same syntax as procedure and
function invocations, the readability of preprocessed source code occasionally suffers. Consider, for example, the
definition of a macro named zap that might appear in some included file:

$detine zap() (tab(many(" \t')))

Invocations of zap found throughout the source might lead a reader of the code to believe that a procedure
named zap has been defined. However, the reader would not be able to find the definition of any procedure by that
name. Also, because certain types of expressions, which are mentioned below, are not recommended for use as
macro paramelters, it is important for the programmer to easily recognize the distinction between a procedure call
and a macro invocation.

To reduce both of the above-mentioned sources of error or confusion, it is recommended that the designer of an
Icon program adopt some consistent convention that distinguishes procedure invocations from macro expansions.
One convention, for example, is to give macros names that at least begin with an uppercase character and to use
only lowercase characters for procedure names.

For similar reasons, defining macros on the icont or iconpp command line is not recommended unless docu-
mentation of some sort is provided. One method of documenting this usage is 10 place a batch script or UNIX-style
makefile in the same directory as the source code for a particular application.

When defining parameterized macros, care must be taken to ensure that expansion of the macro using actual
parameters not violate the macro’s original intent. One characteristic of macro ¢xpansion that programmers should
take care to avoid is that each of the macro parameters may be replicated in the result of macro expansion. If the
paramelters are generating expressions or expressions that otherwise may produce side effects, unwanted replication
of the side effects may occur when the macro is expanded. The foliowing example demonstrates this problem. The
intention of the RecEQ macro defined below is to test for record equality. In this example, record equality is
defined by the programmer as equality by reference of the id fields in each record.

$define RecEq(e1, €2) e1.id === e2.id & €2
If the RecEqQ macro is used in the following context, its original intent is violated.

it RecEqg(read_rec(), !rec_list) then
write("duplicate recorc”)

The problem is that the preprocessor expands the above source into:

it read_rec().id === !rec_list.id & !rec_list then
write("duplicate record")

which is clearly not what was desired. In general, programmers should avoid thc use of generators and other
expressions producing side effects as macro parameters. Aliernatively, it is somelimes possible to define macros
that avoid this problem:

$define RecEq(e1, e2) el.id === 2(tmp := €2, tmp.id) & tmp

Another precaution to take in designing reliable macro definitions is 1o enclose within parentheses all occurrences of
parameters in the macro expansion. This is necessary because the parameters may be expressions within which the
relative precedence of operations might be affecied by the context of the macro expansion. Consider a macro writ-
ten 1o perform unit conversions from inches to feet.

$define Feet{inches) inches / 12.0

Because division has higher precedence than addition in Icon, this expression produces undesired results in the fol-
lowing:

write("5 + 7 inches makes: ", Feet{(5+7), " feel”)
Instead of writing 1, this linc outputs the number: 5.5833333! To fix this, enclosc inches in parenthescs:
$define Feet(inches) ((inches) / 12.0)

Similar problems may occur when operators surrounding the macro expansion intcract in an unexpected way with
the macro expansion itself. For example, since not has a very high precedence in Icon, the following use of the
RecEq macro is corrupied by its coniext:

not RecEq(r1, r2) & r1 = r2
The Icon translator groups the result of macro expansion as parenthesized below.,
(not rl.id) === 2(tmp := r2, r2.id) & tmp & r1 = r2

To avoid this problem, the entire macro expansion should be enclosed in parentheses. Below is a revised definition
of RecEq.

$define RecEq(e1, e2) ((e1).id === 2(tmp := (e2), tmp.id) & tmp)

Yet another source of possible preprocessor-induced programmer error results from the preprocessor’s limited
knowledge of Icon syniax. The preprocessor’s concept of an identifier is any string of alphabetic, numeric and
underscore characters that begins with an alphabetic or underscore character. This somewhat naive definition treats
Icon keywords such as &cset or &subject each as a pair of tokens: an & followed by an identificr. Because of this,
it is possible to define a macro by the name of, for example, subject that would replace occurrences of &subject
with & followed by the result of macro expansion. Since an Icon programmer sces &subject as a complete token,
macro expansion of only subject would probably be unexpected. For this reason, it is best to avoid keyword names
when selecting names for macros. Note that a similar problem may occur with floating-point constants. A macro
named e4, for example, might produce surprising results if applied to real literals such as 5e4.

5. Theory of Operation

The preprocessor is organized internally as two major components, a lexical analyzer and a parser[4]). Most of
the details of preprocessing are dealt with by the lexical analyzer. The parser’s principal responsibility is to recog-
nize occurrences of macro names and expand their definitions.

5.1 Lexical Analysis

The first phase of preprocessing consists of lexical analysis. The lexical analyzer scarches for cerain patterns in
the input stream: and acts on the pattemns seen. For example, the lexical analyzer recognizes Icon comments and
removes them. The lexical analyzer also recognizes preprocessor directives and takes responsibility for dealing with
them.

Any time the ‘$’ character is seen as the first character of a linc, the remainder of the linc is assumed to be a
preprocessor directive. If the identifier that immediately follows the *$’ is not the name of a valid preprocessor
directive, the preprocessor aborts with a fatal error message.

The lexical analyzer rcmoves from the input file preprocessor directives after interpreting the editing instructions
they contwain. The lexical analyzer also removes blocks of code that are enclosed in conditional compilation direc-
lives whose conditions are not satisfied. The preprocessor keeps track of the current file name and line number, set-
ting these values whenever a $include or $line directive is processed, and incrementing the linc number each time a
newline character is encountered. This information is made available 10 the parser so that error messages generated
by the parser can refer to the file name and line number of the offending code. Rules for the parsing of macro
definitons are provided in § 3.1, where usage of the $define directive is described in detail.

Other than preprocessor directives, the lexical analyzer has only a few special tokens to recognize. The
preprocessor’s concept of a token is considerably more relaxed than that of the Icon translator. It makes no attempt
10 verify proper Icon syntax and may produce output that the Icon translator rejects.

Comments are treated as complete tokens by the preprocessor. Wherever a ‘#' character that is not a part of
some other token is seen, the text that immediately follows up to a newline character is trcated as a comment. Com-
ments are removed from the input file by the preprocessor.

When double or single quotes are found, the preprocessor recognizes these as introducing Icon strings and cscts
respectively. The preprocessor treats the entire string or cset as a single woken. It does this by searching for the ter-
minating double or singlc quote respectively. The preprocessor understands Icon escape mechanisms for special
characters such as ‘\", ‘\"’, ‘\n’ and ‘'\033', and permits the escaping of a newlinc to exiend a string or cscl
definition to the following linc. If, while processing a string or cset, the last character on a line is an underscore, the
preprocessor likewise extends the string or cset definition to the line that follows.,

The preprocessor’s concept of an identifier is the same as that of Icon; runs of underscore, alphabetic, and
numeric characters that begin with either an underscore or alphabetic character are treated as identifiers.

White space is ignored by the preprocessor. Anything not fitting any of the patterns specified above is treated as
a token consistng of a single character. As mentioned above, preprocessor tokens are different from Icon wokens,
Icon’s lexical analyzer would, for example, treat the string := as a single token representing the assignment operator.
The preprocessor represents this as two tokens, colon and equals. This is permitted because the preprocessor's
parser does not need complete information about the source file. It scarches only for macro invocations.

The parser communicates with the lexical analyzer in several ways. The main function of the lexical analyzer is
to divide the input file into tokens. The input filc is revealed 10 the parser by the lexical analyzer one complete token
at a ime. The parser receives each token upon its request to the lexical analyzer.

The lexical analyzer also handles most of the details of editing the input file. This is necessary principally
because the parser sees only the list of tokens comprising the input file. The parser does not know, for example,
where line breaks or other white space occurs. This is especially significant because the preprocessor’s tokens are
different from the Icon translator’s tokens. Because of this, white spacc, even though it is ignored by the parser,
must be preserved by the preprocessor. Consider, for example, the consequences of inserting a space beiween the
colon and equals tokens of assignment Consider also what might occur if separating spaces are removed between
two identifiers. A second reason it is necessary that the lexical analyzer perform the editing is because the results of
macro expansion must be rescanned for further macro replacements by the preprocessor.

The lexical analyzer maintains a buffer which represcnts the limited region of current interest within the prepro-
cessed file. File dawa that precedes this window is compleicly preprocessed and is either writien 1o the
preprocessor’s standard output, or buficred internally for the purpose of writing to standard output. The parser can
edit and view only text that appears in the window. The parser anchors the beginning point of the window by plac-
ing markers in the input file. The end of the window is simply the point at which the parser is currently looking. As
place markers are shifted or removed, the beginning of the window shifts forward 1o the next marked point in the
file. As the parser requests tokens, the end of the window advances. The lexical analyzer automatically writcs 1o
standard output the text that is revealed when the window’s starting point advances.

There are only two types of place markers, and only one marker of each type requircd by the parser. A delete
marker is placed when the parser recognizes that a certain section of the original file must be deleted. A request by
the parser 1o place a delete marker positions the marker immediately before the most recently returned token. A save
marker is placed when the parser anticipates the need to obuain an exact copy of a contiguous region of text from the

.9.

input file. A request to place a save marker positions that marker immediately following the most recently returned
token. Having placed the appropriatc marker, the parser can issuc to the lexical analyzer commands 10 delete from
the delete marker to the current focus, or to save from the save marker to the current focus. In response to the save
command, the lexical analyzer returns a pointer to a copy of the saved text.

In expanding macros, the parser removes occurrences of the macro with its parameters, if there arc any, and
replaces this with the macro’s definition. An insert instruction is provided by the lexical analyzer for use by the
parser in accomplishing this task. The inserted text is placed immediately following the current focus of the lexical
analyzer so that inserted text is scanned as analysis proceeds.

5.2 Parsing

As discussed above, the parser’s only responsibility is to expand macro definitions. The parser repeatedly asks
the lexical analyzer for a token undl it receives an identifier that represents a macro name. The parser places a
delete marker at the beginning of that identificr token, and looks up the definition of the macro.

If the definition is unparametcrized, the parser simply tells the lexical analyzer to delete from the deleie marker
to the current focus (which is the character immediately following the identifier). Then the preprocessor inserts the
verbatim replacement text for the macro.

If the macro definition is parameterized, the preprocessor parses the parameter list. It does this by first looking
for the opening parenthesis, then placing a save marker and scanning forward for either a comma or a closing
parenthesis. While searching for the end of a particular parameter, the parser maintains a count of the number of
parcntheses opened but not closed. This count must be zero in order for a comma or closing parenthesis 10 be
recognized as the end of a parameter. When the end of a particular parameter is found, the parser tells the lexical
analyzer 10 save from the save marker 1o its current focus. The string that is returncd by the save instruction is
stored by the parser on a list of actual parameters. If the token following the parameter is a comma, the parser
repeats the above process, looking for the next parameter. Otherwise, the next token is the closing parenthesis that
terminates the list of parameters. After all parameters have been parsed, the parser checks to be sure that the
number of parameters found matches the macro's definition. Then it tells the preprocessor to delete from the delete
marker to the current focus and to insert the result of macro expansion.

Note that, in both the unparametcrized and parameterized forms of macro expansion, the result of macro expan-
sion is rescanned by the preprocessor for further substitution. Suppose the following is found in an Icon source file.

status codes

$define OK 1
$define FIRST_ERROR 2
$define END_OF_FILE (FIRST_ERROR + 0)

$define BUFFER_OVERFLOW (FIRST_ERROR + 1)
$define Eof(f) ((f).status = END_OF_FILE)

it Eof(file1) then
write("can’'t read data")

The lexical analyzer strips the comments and stores the macro definitions. The first token seen by the parser is the
identifier if. The next token is the identifier Eof. The parser recognizes Eof as the name of an existing macro, and
expands it. Since file1 is the parameter 1o Eof, the result of expanding the macro is:

if ((fite1).status >= END_OF_FILE) then
write{"can't read data")

The replacement is then scanned by the preprocessor. When the lexical analyzer reaches the identifier
END_OF_FILE, the parser looks this up and finds that it is an unparamcicrized macro. Upon replacing this
identifier with its expansion, the code becomes:

if ((file1).status >= (FIRST_ERROR + 0)) then
write("can't read data")

Scanning proceeds with the left parenthesis immediatcly to the left of FIRST_ERROR. When FIRST_ERROR is

210 -

encountered by the parser, it is replaced by 2, yielding:

it ((file1).status >= (2 + 0)) then
write("can't read data")

6. Acknowledgements

The design of the Icon preprocessor strongly resembles the C preprocessor. As such, 1 am indebied to those who
designed it. All members of the Icon group at the University of Arizona have discussed the design and implementa-
tion of this preprocessor and have read and commenicd on at least one version of this document. The group consists
of Ralph Griswold, Dave Gudeman, Bill Mitchell, Janalee O'Bagy, Gregg Townsend, and Ken Walker. Gregg
Townsend has been especially helpful in providing a very dewiled commentary on an earlier draft of the iconpp
documentauon. Ralph Griswold has helped by reviewing several drafts of this documentation and suggesting a
variety of improvements, especially regarding this paper’s scope and focus.

References
1. S.P.Harbison and G. L. Steele Jr., C: Reference Manual, Prentice Hall, 1984,
2. R.E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs,

NJ, 1983.
3. S.C.Johnson, Yacc: Yet Another Compiler-Compiler, Bell Laboratories, Murray Hill, New Jersey, 1978.
4. B. W.Kemighan and P. J. Plauger, Software Tools, Addison-Wesley Publication, 1976.

-11-

Appendix
System Dependent File Naming Conventions

The preprocessor, in dealing with an $include directive, must determine whether the actual file name argument
is a relative or absolute file name. If the argument is a relative file name, the preprocessor must combine that name
with each of the directories on its search list as it atlempts to locate the file for inclusion.

The rules for distinguishing beiween relative and absolute file names are system dependent, as arc the rules for
combining directory names from the search list with relative file names to obtain absolute file names. In some
cases, the conventions supported by the preprocessor do not allow all of the gencrality available from the host
operating system. However, the preprocessor attempls to provide at least one way to name each possibie file.

MS-DOS

The MS-DOS version of the preprocessor treats both forward and backward slashes as dclimiters between
directory levels. If the second character of a file name is a colon, the first character is treated as a drive name.
Drive names may be specified for either relative or absolute file names.

If the character immediately following the optional drive name and colon in a file name is either a forward or
backward slash, the file is treated as an absolute path name. If the drive name is omitted from an absolute file name,
the current drive serves as the drive for the absolute path,

Under the MS-DOS operating system, the concept of a current working directory represents a different directory
for each available drive. Relative file names specified with a drive name must be found relative to the current
directory for that drive. Such file names are simply handed to the open function of the C run-time system. No
auempt is made to combine relative file names of this form with any of the directorics named on the search list.

Relative file names without a drive name arc combined with directory names by appending a forward slash and
the relative file name to the end of the dircctory name. When combining a relative file name of this form with the
current directory, the relative file name is only combined with the current directory of the current drive,

UNIX

Under the UNIX operating system, any file name beginning with a */* is treated as an absolute file name. All
other files are assumed to be relative path names.

Directory names are combined with relative path names by appending a */* 10 the end of the directory name and
catenating the result with the relative path name.

VMS

File names under the VMS operating system are considerably more complex than the UNIX file names that the
preprocessor was originally designed to handie. Further, the C programmer’s interface to the VMS operating
system provides slightly dificrent capabilities than are available to UNIX programmers. Instcad of auempting to
define rules that allow the preprocessor to distinguish beiween absolute and relative file names, all filc names are
assumed 1o be relative file names. In processing $include dircectives, the preprocessor conceplually sets the current
working directory to each of the directories in its scarch list, and for each directory aucmpts to open the specified
file, proceeding to the next directory on the list if the open fails and there are more dircctories on the search list.
The operating system ignores the current directory’s state when opening files specificd with absolute path names. If
the file exists, the first attempt to open that file succeeds, regardless of what directory is current. If the file does not
exist, all atlempts 10 open the file fail, and the preprocessor aborts with a fatal error message.

