A Recursive Interpreter for Icon*

Janalee O'Bagy

TR 87-2

Janauary 19, 1987; Corrected March 2, 1987

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant DCR-8502015.

A Recursive Interpreter for Icon

1. Introduction

Icon is a programming language designed for string and list processing and general high-level programming
tasks. Icon gencralizes the traditional view of expression evaluation in which expressions evaluate 1o a single result.
In Icon, expressions may produce a sequence of results. Such expressions are called generators. Generators produce
only one result at a time; alternatives are produced if the surrounding context demands them. Alternative computa-
tional paths are the basis for the expression evaluation mechanism of Icon, which is goal-directed. Goal-directed
evaluation attempts to produce a result for cach expression. Failure during expression evaluation causes alternatives
to be taken,

The implementation of gencrators and goal-directed evaluation requires automatic control backtracking. How-
ever, because expression evaluation is limited lexically, a full coroutine facility is not required”. Several implemen-
tations of Icon have been developed. All of them are based on a similar virtual machine with a stack-based architec-
ture; an interpreter executes the virtual machine instructions. However, in these implementations the core of the
expression evaluation mechanism is intricate and complicated and obscures the simple properties of the underlying
semantics. This report describes a new approach to implementing expression evaluation based on recursive
interpretation. This interpreter provides a basis for implementing goal-directed evaluation that is straightforward and
conceptually clear. Furthermore, the recursive implementation does not sacrifice speed and is comparable to previ-
ous implementations in efficiency.

After a brief discussion of implementation issues, previous models for implementing the expression cvaluation
mechanism are discussed to give perspective on the development of ideas in this area. Following this, the recursive
interpreter method is presented. An understanding and programming familiarity with Icon is assumed. In particu-
lar, the reader should be familiar with the terms generator, goal-directed evaluation, control backiracking, and
result sequence and have a clear understanding of their meanings in Icon. Descriptions of these terms and of Icon
expression evaluation semantics are given in [1,2].

2. Comments on Icon Expression Evaluation

The goal-directed evaluation process is founded on the concept that an expression may have an alternative
result. In a language in which expressions produce exactly one result, or have only only way of being satisfied,
goal-directed evaluation is meaningless. If an expression fails, there is no other way for evaluation to proceed
except beyond the expression.

Success/Failure. In Icon, an expression may fail to produce a result, it may produce exactly one result, or it

may produce many results. If an expression produces a result (or more than one) it succeeds, otherwise the expres-
sion fails. Success or failure of expressions drives the control structures of the language. An example is,

if find(s1,s2) = i then write(i)
Any expression can be used in control clauses of control structures,

Goal-Directed Evaluation, The embedded control structure for the evaluation of all expressions is goal-
directed evaluation. The evaluation mechanism auempts to produce a result for all expressions. If failure occurs
during the evaluation of the expression, the evaluation mechanism resumes previous components of an expression.
The resumption of expressions on failure is automatic in the goal-directed evaluation process. Consider, for exam-
ple, the implied control flow of this Icon expression:

s == la

Suppose that s is a string and that a is a list of strings. Then s is compared to each element of a until an identical
string is found. In a language such as C, by contrast, the implied control flow and state information would be coded

“The co-expression facility is not discussed in this report.

explicitly by the programmer. The variable telling the current index into the array would be named and the control
would be detailed by a for or while loop.

Order of Evaluation. Expressions are evaluated from left to right, and resumed in a last-in, first-out order dur-
ing goal-directed evaluation. The result is cross-production evaluation and gives all possible results of combining
results left-to-right with right-most results produced first. For example, if expr; has the result sequence {1, 2, 3}, and
exprz has the result sequence {10, 20, 30}, the result sequence for

expn + expn
is (11,21, 31, 12, 22, 32, 13, 23, 33].

Bounded Expressions. An important semantic feature of Icon concems the scope of its goal-directed evalua-
tion mechanism. Rather than having the entire program, or even a procedure body, consist of one monolithic expres-
sion, Icon programs consist of separate bounded expressions. Control backtracking is limited to the scope of a
bounded expression. Once the bounded expression produces a result, it cannot be resumed for another. For example,
suppose the following two lines occur in a procedure body:

write(i = find(s1,52))
P()

Once the first line has produced a result, it cannot be resumed for another. Thus the outcome of evaluating p() can-
not affect the evaluation of the previous line. If p() fails, the generator find is not resumed.

Bounded expressions are the basic structural components of goal-directed evaluation. They begin a context for
goal-direcied evaluation of an expression and control the generation of results for expressions. Understanding

where bounded expressions occur in the source language is important to a clear understanding of the implementa-
tion. The implicit bounded expressions of Icon are:

e Each expression of a procedure body is bounded.

¢ In a compound expression {expr1; expry; ...; expr, }, all expressions except expr, are bounded.
¢ The control expression of an if expression is bounded.

o The control and do expressions looping control structures are bounded. For example, in while expr; do
expry, both expr; and expr; are bounded.

Note that since the expressions of a procedure body are bounded, every procedure consists of at least one
bounded expression. Furthermore, during evaluation, bounded expressions become nested, as in

while expr; do {
if expr; then exprz
expry

}

Generators. Generators bring two issues to the implementation. First, the internal state information of the gen-
erator must be maintained. For example, in S == !a, the element generator ! must keep track of the position in a in
order to successively generate its elements. The local state of the generator must be preserved between suspension
and resumption.

The second issue is subtler: generators prolong the lifetime of temporary values. For example, in s == la, wher-
ever the operands of the comparison operation reside, those locations cannot be released; the possible resumption of
the element generation operator ! causes the reevaluation of the string comparison operation. The first element of a
may not be equivalent to S. Since the comparison is performed again with subsequent elements of a, the left
operand must still reside in the same location. The solution to the prolonged lifetime of temporaries ultimately
depends on the design of the virtual machine (or the evaluator) for Icon. If the Icon virtwal machine is a stack
machine where operations get their operands from the stack, those operands must be replicated when generators are
present, since operations consume their operands. If the Icon machine is a temporary register machine, the values of
registers must be preserved throughout the scope of the expression.

A further point about generators is that a generator implicitly provides a control backtracking point for an
expression. Within a bounded expression, control backtracking points introduced by generators are accumulated as
the expression is evaluated. The backtracking points obey stack protocol and the last generator evaluated is the first

to be resumed.

Generative control structures also introduce control backtracking points and may also require additional state
information. The limitation control structure, for example, requires a method for keeping track of the number of
results an expression produces.

The implementation issues can be summarized as follows:

o The backtracking points due to nested bounded expressions and generators must be maintained in stack
order.

¢ A uniform mechanism to resume generators when failure occurs is needed.
o The state information for generators must be preserved.
o Generators extend the lifetime of temporary values.

The implicit nature of goal-directed evaluation combined with the generalized concepts of success, failure, and
generators gives Icon its expressive power. The embedded evaluation mechanism and control structure allow con-
cise expression of computation; fewer explicit control structures need be present in an expression. The challenge
for the implementor is to design a coherent, well-integrated model for implementing the features of Icon cxpression
evaluation.

3. The Icon Virtual Machine

All of the implementations of Icon discussed in this report are based on a similar virtual Icon machine. Icon
source programs are translated into a virtual machine code, which is then interpreted. The virtual machine is based
on a stack architecture; expressions are translated into post-fix notation. Thus operations get their corresponding
arguments from the stack and replace the arguments with the result of the operation. An example of code for the
simple addition expression i + 5 is: 7

var i
int 5
plus

The code for a generative operator or function is similar. There is no distinction in the generated code for genera-
tors. Thus the code for 1 to 10 by 1 is:

int 1
int 10
int 1
toby

As explained previously, the inherent goal-directed contro! structure is founded on the concept of a bounded
expression in which control backtracking takes place. In the virtual machine code, a bounded expression expr; is
represented by the code

mark L1
code for expr

unmark

L1:

If expr; fails, execution continues at the code at label L1, If expr; produces a result, the unmark is reached and exe-
cution continues at the instruction following the unmark. The conventional control structures are translated into
code consisting of explicitly bounded expressions with the appropriate failure labels. For example, the code for the
compound expression

{ expr;; expr; expr3 }

mark L1
code for expn

unmark

L1:
mark L2
code for expn
unmark

L2:

code for expn

Similarly, the if expression
if expr; then expry else expn
is translated into

mark L1

code for expn

unmark

code for expr

goto L2
L1:

code for expr3
L2:

Note that only the control clause is bounded. The selected expression is evaluated in whatever context the if expres-
sion occurs.

A looping control structure is used to repeatedly evaluate an expression as long as the control clause succeeds.
Therefore, looping control structures ultimately fail. A different form of the mark instruction, which does not have
an explicit failure label, is used for the control clause of a loop. The instruction is mark0, and it transmits failure 10
the surrounding context. For example,

while expr; do expr
consists of two bounded expressions and is translated into:

L1:
mark0
code for expn
unmark
mark L1
code for expr
unmark
goto L1

The repeat and until expressions are similar.

The code for generative control structures has two variations in the implementations discussed in this report. In
two of the implementations, the virtual machine has an instruction, esusp, which corresponds to the concept that an
expression is suspending. The generative control structures are then translated into code consisting of both mark
and esusp instructions. For example, the altemation expression expr; | expr; is translated into

mark L1
code for expr

esusp

goto L2
L1:

code for expr
L2:

In two other implementations, the code for alternation is:
alt L1
code for expn
goto L2

L1:
code for expn
L2:

The first form uses the instruction esusp to perform the actions needed to suspend a generator, while the second
form uses a distinct instruction for cach generative control structure and the suspension is done at that point. The
recursive interpreter uses the latter form,

4. Previous Models of Implementation

Several implementations of Icon have been developed since the original version written by the designers of Icon.
This section briefly discusses three significant versions that have evolved over the years. All use the stack-based
architecture for the Icon virtual machine, They differ in their approaches to solving the following problems: main-
taining the failure points of bounded expressions and generators, detecting failure and resuming generators, main-
taining local state information for generators, and maintaining temporary Icon values. Also, the use of the system
stack varies, and some of the implementations use an auxiliary stack for maintaining information.

Versions 1 and 2

The original implementation of Icon, written in Fortran, [3,4] uses two stacks. The interpreter stack holds active
procedure frames and the temporary Icon values due to expression evaluation. A second stack, called the control
stack, holds control and state information for goal-directed evaluation.

A global variable holds the failure label for the current bounded expression. When a bounded expression is
evaluated, the current failure label is saved on the control stack and the new failure label is assigned to the failure
variable; also the heights of the interpreter and control stacks are saved on the control stack. In the absence of gen-
erators, if failure occurs during evaluation, the current failure label is used to continue evaluation. Icon values on
the interpreter stack due to the current bounded expression are removed by restoring the interpreter stack height to
its original value, and the most recently stack failure label is restored from the stack.

Generators use the control stack to maintain local state between suspension and resumption. Generators are
coded so that each call 1o the generator produces the next result. Thus they follow a coding convention that deter-
mines whether a call is the initial call or a call due to resumption. After a gencrator produces a result, it saves its
local state on the control stack and also copies the temporary Icon values on the interpreter stack to the control
stack. By using the most recently stacked height, only the values relevant to the current expression are saved. The
generator then pushes a failure label on the stack that points to the place in the code where the generator is called.

When failure occurs, the failure routine checks for a generator. If there is a generator, the failure routine
resumes the most recently suspended generator by restoring the information from the control stack. Once the local
state of the generator and the temporary Icon values are restored on the interpreter stack as they were at the time the
generator suspended, control is transferred to the label stored by the generator, and the generator is called to pro-
duce its next result.

Notice that this implementation requires that temporary Icon values be copied twice, once (o be saved on the
control stack, and again when the values are restored to the interpreter stack. Furthermore, the coding of generators
is highly specialized and differs from other routines throughout the run-time sysiem.

Versions 3 through §

Versions 3 through 5 of Icon [5-7], which are written in C and assembly language, combine the interpreter and
control stacks on the system stack used by C. The information for active procedure frames, bounded cxpressions,
generators, and temporary Icon values is maintained on the same stack. This requires assembly language code to
augment the C code, since the system stack is manipulated throughout interpretation.

Information for expression evaluation is maintained in two types of frames: expression frames and gencrator
frames. Global pointcrs are maintained to point to the current expression and generator frames. Whenever a
bounded expression is cnlered, a new expression frame is created on the system stack. Expression frames hold the
values of the previous expression and generator frame pointers and a failure continuation associated with the current
bounded expression. On the other hand, when a generator suspends, a generator frame is created. Generator {rames
hold the previous frame pointer values and a failure continuation for the gencrator. Following the generator frame,
the Icon temporary values relevant to the current expression are copied on the stack. The local state of the gencrator
is maintained by keeping its activation frame on the stack and branching back to the main interpreter routine.

When failure occurs, the interpreter looks at the current values of the expression and generator frame pointers. 1f
a gencrator is present, the interpreter restores the values from the generator frame and transfers back to the
suspended generator. If there is no generator, the interpreter removes the current expression frame and continucs
exccution at the failure continuation stored in the expression frame.

The interaction between generator and expression frames in the implementation is rather complicated. For
example, generative control structures, such as alternation and limitation, cause both expression and generator
frames to be created. The conceptual basis of expression evaluation is obscured by the interleaving of the frames.
Furthermore, the interpreter and all routines associated with expression evaluation are written in assembly language.
This implementation is by far the most complex.

Version 6

Version 6 of Icon [8] is similar to Version 5, but it is written entirely in C. This transformation is accomplished
by introducing recursion into the implementation of generators. Version 6 also makes use of an interpreter stack for
expression evaluation information in addition to the system stack used by C.

Whereas Versions 3 through 5 retained the local state of a generator by leaving its activation record on the sys-
tem stack and branching to the interpreter (using assembly language), Version 6 has the generator call the interpreter
recursively, avoiding assembly language. Recursion is used only for generative operators and functions, however,
and not for generative control structures. The values of Icon expressions are maintained on the interpreter stack and
operations use the values on the interperter stack for their arguments. Version 6 uses expression and generator
frames to implement the control flow of goal-directed evaluation. The frames have the same structure and meanings
as in Version 5, but are maintained on the interpreter stack, interleaved with the Icon values, instead of the system
stack.

Comments

The fundamental problem with these implementations is that conceptual basis for expression evaluation is com-
plicated. The intricacy arises because the implementations distinguish between the failure control points for
bounded expressions and those for generators. Thus separate mechanisms (for example, the frames of Versions 3
through 6) are required for each. When failure occurs, the actions taken differ depending on whether or not genera-
tors are present. Furthermore, the control information that is explicitly constructed for bounded expressions and
generators must be explicitly removed.

The recursive model for implementing expression evaluation simplifies goal-directed contro! flow by treating
failure control points due 1o bounded expressions and generators in a uniform manner. By synthesizing the failure
points, all control information for goal-directed evaluation can be kept implicitly in recursive calls to the interpreter.
The explicit methods of previous implementations are not necessary.

5. The Recursive Interpreter Model

The recursive interpreter focuses on the notion of alternatives in the evaluation process. Since alternative com-
putational paths are taken when failure occurs and the interpreter must know where to continue in the code on
failure, alternatives introduce failure continuations. An interpretive process that recurses when generators are
encountered implicitly preserves both the internal state of the generator and control information for lifo resumption.
Bounded expressions, although they do not introduce alternatives, also provide failure continuations. Through gen-
erators and bounded expressions, all control flow for Icon expression evaluation is expressed in terms of failure con-
tinuations.

The recursive interpreter is simple and uniform. It is mainly described by the interplay between recursing at
failure continuation points and returning, either to resume generators or to discard them.

Conceptually, an expression is evaluated in a goal-directed evaluation context. The main component of the
cvaluation context consists of the failure continuation. Bounded expressions, generators, and generative control
structures change the current evaluation context, since each of these constructs provides a new failure continuation
point. Whenever the interpreter encounters an expression that provides a new failure continuation, it saves the
failure continuation and calls itself to provide a new context for evaluation. If the expression is a generator, the
interpreter also replicates the appropriate values on the interperter stack, since these values may be used again if
generators are resumed. If failure occurs in a subsequent context, the interpreter returns to the previous context with
a signal to resume generators. Execution then continues at the failure continuation of that context. On the other
hand, if the end of a bounded expression is reached, the interpreter returns a signal indicating that the bounded
expression is to be removed. This unwinds the levels of recursion built up during the evaluation of the bounded
expression and implements limiting the expression 10 one result during goal-directed evaluation.

The Icon expression evaluation context is represented primarily in the interpreter by two local variables, one for
the failure continuation point and on¢ for a pointer into the interpreter stack that identifies the beginning of the
values relevant 1o the expression. To implement generators and goal-directed cvaluation, a conventional interpreter
for expressions evaluated on a stack is augmented with these two state variables to represent the evaluation context.
The interpretive process follows the method outlined above.

5.1 The Interpreter

The interpreter described in the following sections is presented in Icon as a prototype of the actual implementa-
ton. Describing a prototype avoids unnecessary detail. To further simplify the explanation, the issues of Icon pro-
cedure invocation and local variables are omitted. These issues are relatively uninteresting and are implemented in
the standard way by pushing Icon local variables on the stack and maintaining a pointer to the local environment.
The model for expression evaluation is unaffected by local Icon state. In all the examples, variables are global vari-
ables.

The interpreter routine implements the virtual machine. It requires code to interpret, a stack to hold Icon values,
and the ability to perform the primitive operations of the instructions. The global variables of the interpreter are
described below:

» icode—a list holding the virtual machine instructions

¢ ipc—an index into icode

o stack—the interpreter (virtual machine) stack used to hold Icon values
¢ globals—a table consisting of the global variables of the Icon program

Each invocation of the interpreter is an evaluation context for an expression. Variables local to the interpreier
are used to maintain the expression context:

procedure interp(ep,sp)
local fipc

end

The variable ep points to the portion of the interpreter stack where the values relevant to the current expression

begin, and the sp points to the current top of the interpreter stack. The variable fipc is the failure continuation for
the current expression; it is simply an index into the icode list of virtual instructions.

Invocations of the interpreter accumulate as new expression contexts are encountered. The interpreter rcturns
under two situations: when failure occurs or when the end of a bounded expression is reached. The interpreter
retuns a value that informs the invoking context how to respond to the outcome. The signal Resume is returned
when an expression fails and indicates that goal-directed evaluation must resume suspended generators. The signal
Clear is returned when the end of a bounded expression is reached and indicates that goal-directed evaluation in the
most recent bounded expression is complete.

The structure of the Icon program implementing the prototype interpreter is:

global stack, icode, ipc
global iglobals

record var(v)

procedure main()
init()
interp(0, 0)
end

procedure interp{ep, sp)
local fipc, signal

repeat {
case Fetchinst() of {
"var" :

"int"
"plus”

nmarku

end

The interpreter consists of a simple loop that fetches instructions and selects the appropriate code. The
Fetchinst procedure increments the ipc and returns the instruction pointed to by its original value. A corresponding
FetchOpnd procedure returns the operand of an instruction.

Simple instructions, such as an integer or string literal, push and pop values from the interpreter stack. For
example, the code in the interpreter for int is:

"int" |
sp += 1
stack[sp] := FetchOpnd()
}

When an Icon source variable is referenced, the interpreter pushes a record on the stack whose value is the name of
the variable. The code for var is:

"var® : {
Sp +:= 1
stack[sp] := var(FetchOpnd())
}

Variables are dereferenced when required by context. For example, operations dereference their operands. The
procedure DeRef dereferences a variable by looking up the corresponding value in the globals table.

Operations use the values from the stack as their operands. Operations in Icon are either monogenetic, condi-
tional, or generative. Monogenetic operations produce exactly one result. For example, the arithmetic operations +,
», elc., are monogenetic. The code for the plus instruction typifies these operations:

"plus” : {
DeRef(sp -1)
DeRef(sp)
stack[sp-1] := stack[sp-1] + stack[sp]
sp —i= 1
}

Notice that the arguments are replaced by the result of the addition and that the sp is decremented. Execution con-
tinues at the beginning of the interpreter loop.

Conditional operations, on the other hand, may produce a result or they may fail 10 produce a result. In the case
that a result is produced, interpretation is similar to a monogeneltic operation, like addition above. However if the
operation fails, interp returns a Resume signal to continue goal-directed evaluation in a previous context. For
example, the code for the numerical comparison operation < is

"numit” : {

DeRef(sp -1)

DeRef(sp)

if stack[sp—1] >= stack[sp]
then return Resume

stack[sp-1] := stack[sp]

sp —i= 1

}

The remaining generative operations are discussed in later sections.

When control decisions are encountered, cither directly in the icode or in the primitive operations, the current
context of the expression environment is saved and the interpreter is invoked to continue execution in a new
environment. There are several situations that require a new context to be created: bounded expressions, gencrative
control structures, and generative operations and functions. Interpreting a bounded expressions gives the first exam-
ple of the basic control pattern of the interpreter,

5.2 Bounded Expressions

An expression is bounded in order to control the generation of its results. When a bounded expression produces
a result, its computation is complete and any information related to it may be removed. This information is of two
kinds: the values on the interpreter stack that accumulate during evaluation, and the recursive invocations of the
interpreter due 1o generators in the expression. Both kinds of information must be removed when the expression is
complete.

The ep points to the base of the stack for the expression currently being evaluated. Since bounded expressions
occur only at control decision points, a bounded expression does not need to be connected with the values that may
currently reside on the interpreter stack. Thus when evaluation begins for a bounded expression, the ep is adjusted
1o point to a ‘‘fresh’’ portion of the stack.

As shown previously, a bounded expression expn; occurs as code surrounded by the instructions mark and
unmark:

mark L1
code for expn
unmark

L1:

The mark instruction *‘marks’’ the boundary for control backtracking and the label L1 is the failure continuation,
the place in the icode 1o continue execution if the expression expn fails. If the expression succeeds, the unmark
instruction is reached and the interpreter removes the context of expr;. The code for mark follows:

“mark" : {
fipc := FetchOpnd() # get the failure continuation
if interp(sp+1,sp) = Resume then # expression failed
ipc = fipc
}

At the mark instruction, the failure continuation L1 is saved in fipc. The interpreter is called as
interp(sp+1,sp), making the ep of the new context point to the first unused portion of the stack. The instructions of
the bounded expression arc interpreted in the new context.

To illustrate this, consider evaluating an if expression whose result is the larger of two strings:
if s1 << s2 then s2 else s1

The corresponding virtual machine code is:

mark L1

var s1

var s2

lexit

unmark

var s2

goto L2
L1:

var s1
L2:

At the mark instruction, the interpreter saves the failure continuation L1 and invokes itself with new ep and sp
values 1o establish a new context. In the new context, the variables $1 and s2 are pushed onto the stack and the lexi-
cal comparison operation is performed. For the moment, suppose that s1 is lexically less than s2. Then the com-
parison succeeds and lex!t decrements the sp, leaving S2 on the top of the stack as the result.

The interpreter then executes the unmark instruction. This indicates the end of a bounded expression, whose
context is 1o be removed. The context consists of the values on the stack from the ep and invocations of the inter-
preter caused by evaluating the bounded expression. In this case, the evaluation of 81 << 2 leaves only one result
result on the stack and does not incur any new invocations of the interpreter.

The code for unmark is simply
"unmark” : return Clear

After the retumn, control returns to the interpreter at the mark instruction. Since the signal is Clear, the failure con-
tinuation for the bounded expression is not used. Execution continues at the current value of the ipc, which points
to the instruction following the unmark. Notice that since ep and sp are local variables in the interpreter, they are
automatically reset to their previous values by the return. Thus the contents of the stack are as they were before the
bounded expression was evaluated. As execution continues, S2 is pushed on the stack and it becomes the result of
the if expression.

-10-

5.3 Failure

In the example above, the expression produces a result and unmark signals that the context of the expression is
10 be removed by rcturning the appropriate signal. Likewise, failure is communicated by returning a signal that indi-
cates failure. In general, left-to-right evaluation of expressions causes recursion at control decision points, and
failure causes the interpreter to return to the most recent control decision. If there are no generators, the most recent
control point is the failure continuation of the current bounded expression.

Contrast the execution in the previous section with one in which failure occurs. Using the same example, sup-
posc now that s1 is lexically greater than S2 so that S1 << s2 fails. The lexical comparison operation is conditional
and is coded like all the conditional operations:

“lext” @ {
DeRef(sp -1)
DeRef(sp)
if stack[sp—1] >>= stack[sp]
then return Resume
stack[sp—1] := stack[sp]
sp —i= 1

}

Execution proceeds as in the previous example upto the lexlt instruction. Since the comparison fails, lexlt returns
the signal Resume. Control returns to the code in the interpreter at the mark instruction. Since the signal is
Resume, the failure continuation for the bounded expression is used to continue execution. The fipc points to the
code at L1 and execution continues at the icode instruction var s1, making this the outcome of the if expression.

In the absence of generators, failure is simple and merely causes the context of the bounded expression o be
removed and execution to continue at the failure label associated with the bounded expression. The expression fails,
but goal-directed evaluation has no alternatives since the expression does not have generators. The next section
discusses generators, which introduce alternatives during the goal-directed evaluation. Resumption of generators is
straightforward and follows naturally from the method of recursing at failure continuation points.

5.4 Generators

A generator provides an alternative computational path during goal-directed evaluation. Specifically, it intro-
duces a failure continuation. Recursion is the basic mechanism used to encode failure continuations for control
backtracking. The recursive interpreter makes no distinction between the failure continuations of bounded expres-
sions and those of generators, and handles them similarly.

However, besides recursing 10 ‘‘stack’’ its failure continuation, a generator must also address the lifetime prob-
lem of temporary Icon values (see Section 2). In a given context of evaluation, the ep points to the base of the
values on the interpreter stack that are relevant to the current expression context. Therefore, just before a generator
invokes the interpreter, it copies the values on the interpreter stack from the current ep to the sp. In the new con-
text, the ep then points to the base of the replicated values. Evaluation in the new context uses only the values {rom
its ep; the previous values on the interpreter stack are left intact. Replicating the values extends the lifetime of the
temporary Icon values and makes them available again if the generator is resumed.

As in the code for mark, a generator checks the signal returned by the interpreter and resumes only if appropri-
ate. If the generator is not 1o be resumed, the signal is propagated by returning it to a previous context of the inter-
preter, thus removing the context of the generator.

All varieties of generators in Icon—operators, built-in functions, generative control structures, and Icon
procedures—are implemented in the same way. Every form of suspension establishes a new failure continuation,
replicates values on the interpreter stack, and calls the interpreter recursively to stack its failure continuation and
establish a new context.

The alternation control structure illustrates the combination of copying, recursion, and signals used in the imple-
mentation. The generated code for the expression

expry | expn

-11-

att L1

code for expr

goto L2
L1:

code for exprn
L2:

The label L1 is the failure continuation of the alternation expression. If goal-directed evaluation resumes the alterna-
tion expression, evaluation continues with the code for the aliernative expression expry. The code for alternation is:

"alt" . {

fipc := Fetchinst() # get the failure continuation
newsp := copy(ep,sp) # copy the values from the ep to sp
signal := interp(sp+1,newsp)
if signal = Resume then # evaluate alternative expression
ipc = fipc
else

return signal

}
The interpreter uses the procedure copy to replicate the values on the interpreter stack. This procedure returns the
new value of the stack pointer after the copy.

Consider evaluating the expression 1 <<= (s2 | 83), which succeeds if either 82 or s3 is lexically greater than
s1. The code for the expression is:

global s1

alt L2

global s2

goto L3
L2:

global s3
L3:

lexle

After the first global instruction, the alternation instruction is evaluated. Alternation fetches and saves the failure
continuation and replicates the values of the current context. This may include many values besides the variable s1,
depending on the context of the expression $1 <<= (s2 | 83) in the source code. Execution continues in a new con-
text at the global s2 instruction. The goto avoids evaluating the alternative expression.

Now the lexle is performed. There are two important points to notice. First, lexie operates on replicated values.
Any computations using values on the stack in this context do not affect the contents of the stack as they were when
alternation was first encountered. Secondly, the most recent failure continuation is due to the altemation expression.
Thus if the comparison fails, control returns to alternation and the second alternative is attempted.

The uniformity of the interpretive process makes goal-directed evaluation straightforward. In the example
above, if the first attempt of the lexical comparison succeeds, the result of the expression s1 <<= (s2 | s3) becomes
the value of s2. The context of the altermation expression in the interpreter remains until the end of the bounded
expression in which it occurs is reached. At that point, the alternation context is removed by a Clear signal. On the
other hand, if the comparison fails or if failure occurs in a subsequent computation, a Resume signal is returned to
alternation and execution continues at its failure continuation. The comparison is then made with the second alter-

native.
5.5 Generative Operators and Functions

The distinction between operators and functions is syntactic only. This section describes the implementation of

the generator expr; t0 expr. Generative functions such as find and upto are implemented in the same way as the to
generator.

-12-

The code generated for expry 10 expry is

code for expr
code for expr
int 1
toby

Note that the default increment value is 1; the translator supplies the increment value if it is omitied. Before the
toby instruction is reached, its operands are cvaluated and their results are left on the interpreter stack.

The general actions of the toby generator mimic those of alternation. There are only two new observations to be
made about a generative operator. First, notice that a failure continuation is not given explicitly as an argument 10
the toby instruction. The failure continuation for toby is simply whatever instruction follows it. Second, notice that
the arguments for toby are on the top of the interpreter stack during evaluation of toby. There is no need to repli-
cate the arguments of toby. Therefore, unlike altemation, which copies from the ep to the current sp, toby copies
from the current ep Lo the value just preceding its first argument. After the replicated values, toby pushes the result
of its computation on the stack. In that way, the previous values on the interpreter stack are properly connected with
the result of the toby operation.

The code for toby follows:
"toby" : {
fipc = ipc # set the failure continuation
DeRef(sp-2)
DeRef(sp-1)
DeRel(sp)
from = stack[sp - 2]
limit ;= stack[sp —1]
inc := stack[sp]
while from <= limit do {
newsp := copy(ep,sp-3) # copy current context
stack[newsp+1] := from - # push result of toby
signal := interp(sp + 1,newsp + 1)
if signal "= Resume then return signal
ipc := fipc
from := from + inc

}

return Resume

5.6 Generative Control Structures

The two remaining generative control structures are limitation and repeated aliermation. These two control struc-
ures require an extension of the techniques seen so far. Briefly, the problem is that these control structures require
knowing information that is hidden in the levels of recursion; communicating by signals is insufficient. Fortunately,
the method used to implement these control structures is simple and does not burden the interpreter with additional
mechanisms and state information.

Repeated Alternation

The result sequence for |expr; is the repeated concatenation of the result sequence for expry. For example, the
result sequence for |"a" is

{ "a", "a", "a", ... }
and the result sequence for |(1 to 3) is
{1,2,3,1,2,3 1,23, ...}

The result sequence for expr; is produced repeatedly unless at some point the evaluation of expr; fails. Only

-13-

expressions whose outcomes depend on side effects or global variables may succeed on one evaluation and fail on
another. For example, evaluating read() succeeds for each line in the input, and fails when the end of the input is
reached. Thus |read() repeatedly reads until end-of-file causes evaluation of read() to fail. In evaluating |expry, if
repeated alternation did not check for failure of expr, execution could never continue past the expression. Hence,
rcpeated alternation must be aware of the outcome of evaluating expry. The generated code for the repeated alierna-
tion expression |expr; is:

repalt
code for expn
contrep

Notice that contrep is executed only if expr; succeeds; if it fails, contrep is not reached.

The difficulty in implementing repeated alternation is that the two instructions repalt and contrep must com-
municate. So far, the method used for communicating has been returning signals between contexts of interpretation.
However, contrep cannot return to the context at repalt, since returning removes the context of the repalt expres-
sion. For example, if the repeated aliernation expression is 1 to 10, and if contrep returns, the invocation of the
interpreter due to the generator toby would be unwound and the gencrator would be removed prematurely.

A possible solution is to use a global variable for communicating. If contrep sets a global variable that indi-
cates the expression succeeded, then when repalt regains control it could look at the value of the global variable to
know if the expression succeeded. However, repeated alternation cxpressions may be nested. A global state vari-
able must be mainained across expression contexts, being saved and restored at each invocation and return. Furth-
ermore, the limitation control structure also requires similar communication. Thus a second ‘‘state’” variable would
have 10 be introduced for it as well.

To avoid burdening the implementation with extra state variables, the recursive interpreter uses a simpler
method to achieve communication. It constructs a variable on the interpreter stack when an instance of repcated
alternation is evaluated. So far in the discussion of the implementation, only Icon global variables have been used.
For an Icon source variable, the interpreter pushs a record on the stack whose value is a string naming an Icon vari-
able. To construct a local variable, the interpreter pushes a record whose value is an index into the interpreter stack.
The code sequence below constructs a such a variable:

sp +:= 1
stack|sp] := 0
sp += 1

stack[sp] := var(sp—1)

Given that the interpreter is in some expression context, executing the code above has the following affect on the
interpreter stack:

ep —>

0
sp —> record var___J

Whenever an instance of repeated alternation is evaluated, the interpreter constructs a variable on the interpreter
stack that is associated with that instance of the control structure. The corresponding contrep instruction need only
know where that variable is when it gains control. The uniformity of the interpreter stack behavior makes locating
this variable straightforward.

To illustrate, suppose that the interpreter stack has the following form when repeated altemation is encountered:

ep —> v
»
Sp—> 1

Since repeated alternation is a generator, it follows the general protocol: it saves the failure continuation for the
expression, it copies from the current €p to Sp, and it invokes the interpreter with the new context. In addition, just
before the copy, repalt pushes a value on the stack and after the copy, constructs a variable which points to it. When
the interpreter is invoked, the stack has the form:

—14-

(ep) —> v
2
»

0 <
ep —> v
\/3

k<]
sp —> record var

The repeated alternation expression is cvaluated in this new context. There are three possibilities for the expression.
It may fail to produce a result, it may produce exactly one result, or it may be a generator and produce many results.
If the expression produces exactly one result—that is, if it is not a generator—then the stack has the form:

(ep) —> v
»
B
0 <
ep —> v
»
i
record var
sp —> result for expr;

Notice that the variable is the second value from the top of the stack. On other hand, the expression expr; may be a
generator. No matter how complicated this generator is, it follows the protocol for a generator: the context of the
stack prior to the evaluation of the generator is copied and the interpreter is called with the ep pointing to the new
expression context. Thus after evaluating the generative expression expr, the top of the stack still has the form
above; the repeated alternation variable is the second word from the top of the stack.

The code for repeated alternation is:

"repalt”; {
fipc = ipc # establish the failure continuation
sp +:= 1 # make room for the control structure value
repeat |{
ipc = fipc
stack[sp] := 0 # set the repalt value 1o 0
newsp = copy(ep,sp — 1)
stack[newsp+1) = var(sp) # construct a variable pointing to repalt value
signal := interp(sp+1,newsp+1)
if signal == Resume then return signal

it stack[sp] = O then return Resume # contrep was not reached

}

The code at repalt pushes the integer 0 on the stack. If the expression succeeds, contrep is reached and this instruc-
tion changes the value to 1 1o indicate that the expression succeeded. The code for contrep follows:

"contrep” : {
stack[stack[sp—1].v] := 1 # change repalt value to 1
stack[sp—1] := stack[sp] # remove variable
sp —i= 1

}

Note that besides changing the value of the repeated aliernation variable to indicate success, contrep also replaces
the variable with the result of the expression. Otherwise, this variable would interfere with subsequent computa-
tions.

—15-

Limitation

Unlike alternation, limitation is not a generator; instead it limits generators. In the expression expry \ expr, the
task of limitation is to count the results that expr; produces. When the expression has produced the number of results
specified by expr, the expression is prevented from producing more results. The limitation control structure
removes all information relevant 10 expr; when it produces its last allowed result. Limitation can be thought of as a
generalization of a bounded expression. The generated code for expr; \ expr is

code for expn
limit

code for expn
Isusp

In order to control the generation of results for expry, limit and Isusp must cooperate. The Isusp instruction
must signal to remove the expression context only when the expression produces its last permitted value. The same
mechanism for communicating used in repeated alternation is used for the limitation control structure. limit pushes
a variable on the interpreter stack to be used by Isusp to count the results produced by the expression. In addition, a
new signal is introduced for limitation. The signal Limit is used to the remove the context of the limit expression.
Using this signal avoids interference with the Clear signal.

Notice that the value of expry is on the stack when limit is reached. limit constructs a variable to point to that
value, copies the stack, and establishes a new context by recursing. Also, the variable pointing to the limit value is
replicated in order to be available 10 Isusp. When limit gains control again, its actions depend on the signal it
receives. If the signal is Clear, limit must return since the bounded expression in which is occurs is complete. If the
signal is Resume, then the expression was not capable of producing the number of results specified by the limit
counter and limit propagates the Resume signal. The code in the interpreter for limitation follows:

“Timit" : {
DeRef(sp)
if stack[sp] = 0 then return Resume # expression limited 1o O results
sp +:= 1
stack[sp] = var(sp-1) # push a variable that points to limit counter

newsp := copy(ep,sp-2)
signal := interp(sp+1,newsp)
if signal = Limit & stack[sp] = 0 then

sp —i= 1
else
return signal

}

Suppose that arbitrary values v, v, and 3 are on the stack in the current context when the limitation control struc-
ture is encountered. Then when limit invokes the interpreter, the stack has the form:

(ep) —> v
2
i
result of exprn <
record var
ep —> v
v

k]
sp —> record var

Notice that limit constructs two variables pointing to the limit value, one in its current context and one in the new
context. When expry produces its last allowed result, Isusp replaces the limit value with this result and also replaces
the first variable with the value 0 to indicate that this instance of limitation is complete. (Limitation expressions may
be nested; the Limit signal must propagate to the appropriate occurrence of limit.) The code for Isusp follows:

—16-

"lsusp”: {

i .= stack|sp-1].v # get pointer to limit value

stack[i] —:= 1 # decrement limit value

if stack[i] "= O then { # last resuft not yet produced
stack[sp-1] = stack[sp]
sp —= 1
}

else { # last allowed resuft has been produced
stack[i] := stack[sp] # replace limit counter with result
stack[i+1] := 0 # replace variable
return Limit

}
}

By using the variable pointing to the limit value (now the second word from the top of the stack, since expr; has
been evaluated), Isusp decrements the limit value and checks that it is non-zero. If so, expr; has not yet produced
all its allowed results. Isusp replaces the variable with the result and execution continues in the current context. If
the limit value has reached zero, the current result is the last allowed. Isusp replaces the limit value with this result
and replaces the variable just above the limit value with the integer 0. It then returns the Limit signal in order to
remove the context of exprn.

Iteration

In every expr;, the expression expr; is repeatedly resumed until its result sequence is complete. Like a bounded
expression, the computation of expr is isolated from previous contexts; thus a mark instruction can be used 1o begin
the evaluation of expr;. However, rather than delimiting the code for expr; with an unmark, which removes its con-
text after the first successful evaluation, the expression is delimited with an instruction that forces failure and hence
the resumption of expr;. The code for every expr follows:

mark0
code for expr

pop
efail

When the efail instruction is reached during execution, it must resume any suspended generators in exprs; since a
Resume signal resumes generators in a previous context, the code for efail is simply:

“efail" : retumn Resume

In the expression every expr; do expr, for each result in expry the expression expr, is re-evaluated in a new
goal-directed context. Thus expry is a bounded expression. The code for every expry do expr is:

mark0
code for expn

pop
mark0

code for expn
unmark
efail

6. Performance of the Recursive Interpreter

Since the interpreter described here calls itself recursively whenever there is a new context for expression
evaluation, such as at the beginning of a bounded expression and when a generator suspends, it is important to know
what effect this recursion has on the performance of interpretation and the resources it requires.

There are two main issues: the cost of recursive calls in terms of time and the amount of stack space needed. It is
not possible 1o compare the recursive interpreter with all of its successors in a meaningful way, since their

-17-

performance depends on many matters that are not related to the issues here. However, some valid comparisons can
be made.

Thé Version 6 interpreter, which is in use at present in the publically distributed version of Icon, is writien
entirely in C and uses recursion to some extent, as described in Section 4. It is about 5% to 10% slower than its
predecessor, which relied on assembly language code to perform manipulations on the system stack that did not
conform to ordinary stack protocols. In addition, the interpreter loop itself in the predecessor was written in assem-
bly language. The diffcrence in performance between these interpreters probably is attributable to the use of assem-
bly language rather than C.

The recursive interpreter also is written entirely in C and is structurally similar to the Version 6 interpreicr,
except for the more general use of recursion in place of the explicit construction of frames on the interpreter stack.
The question, then, is the comparative cost of the two approaches to handling information that must be saved when
generators suspend.

Timing tests on a VAX 8600 and a Sun-3 Workstation show no measurable difference in running specd between
the two interpreters on a wide range of programs, although it is possible o contrive programs that favor onc or the
other interpreter.

There is, however, a noticeable difference in stack utilization. While there are very substantial variations from
program to program, the average high-water mark on the system stack, which is used for C calls, is about four limes
higher for the recursive interpreter than for the Version 6 interpreter. On the other hand, the average high-water
mark on the interpreter stack for the recursive interpreter is about one-half that of the Version 6 interpreter. It is
worth noting that the interpreter stack is a C array and contributes significantly to the space needed to run user pro-
grams. :

For computers with a limited amount of memory, the amount of system stack used by the recursive interpreter
could limit the kinds of programs it could handle. However, the amount of system stack used by the recursive inter-
preter for suspended generators is limited by the number of generators suspended at any one time. In Icon, this
number typically is relatively small; a maximum of five is typical.

7. Conclusions

As indicated earlier, the recursive interpreter is completely implemented and operational. It currently is being
used in an experimental version of Icon that is being used to develop new expression evaluation mechanisms.

The idea of using recursion in an interpreter is hardly new [9). The use of recursion for handling expression
evaluation in Icon is important because it provides a conceptually clear approach to handling generators and goal-
directed evaluation. Recursive calls isolate evaluation in new contexts and provide a natural mechanism for saving
state information. 1t is easy to implement new control structures because of the correspondence between new
cvaluation contexts in evaluation and recursion in their implementation.

Performance is not a significant issue for the recursive interpreter. Its advantages apply primarily to possibic
extensions to Icon and the implementation of similar types of expression evaluation in other programming
languages such as C [10] and Pascal [11). While details vary for different languages and implementation frame-
works, the same principles apply. In fact, the approach described here is not limited to interpretation. It can be
applied 1o compilation as well, in which the code that is generated makes a similar use of recursion. The potential
advantage of compilation is that optimizations can be performed that are not practical for an interpreter.

Acknowledgements

Ralph Griswold contributed substantially 1o the conceptual ideas in this model for implementing Icon expression
evaluation, as well as 1o the presentation of the ideas in this report.

The first implementation of Icon was done primarity by Dave Hanson and Tim Korb. Cary Coutant and Steve
Wampler implemented the interpreter that used assembly language to manipulate the system stack in non-standard
ways. Bill Mitchell introduced recursion into the implementation of generators in Version 6.

Each of these implementations contributed to subsequent ones. The work described here owes a substantial debt
to all of its predecessors.

- 18-

References

1.

o

9.
10.
11.

R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1983.

D. Gudeman, A Continutation Semantics for Icon Expressions, The Univ. of Arizona Tech. Rep. 86-15, 1986.

I. T. Korb, The Design and Implemeniation of A Goal-Directed Programming Language, Doctoral
Disscrtation, The University of Arizona, 1979.

R. E. Griswold, D. R. Hanson and J. T. Korb, ‘‘Generators in Icon’’, ACM Trans. Prog. Lang. and Systems 3,
2 (Apr. 1981), 144-161. '

S. B. Wampler, Control Mechanisms for Generators in Icon, Doctoral Dissertation, The University of
Arizona, 1981.

S. B. Wampler and R. E. Griswold, ‘‘The Implementation of Generators and Goal-Directed Evaluation in
Icon®, Software—Practice & Experience 13, 6 (June 1983), 495-518.

R. E. Griswold and W. H. Miichell, A Tour Through the C Implementation of Icon; Version 5.10, The Univ.
of Arizona Tech. Rep. 85-19, 1985.

R. E. Griswold and M. T. Griswold, The Implementation of The Icon Programming Language, Princelon
University Press, 1986.

H. Abelson and G. J. Sussman, Structure and Interpretation of Computer Programs, The MIT Press, 1985.
T. A. Budd, ‘‘ An Implementation of Generators in C*, J, Computer Lang. 7(1982), 69-87.
E. Gallesio, The Programming Language w, Draft Report, University of Nice, 1985.

19—

