An Expression Data Type for Icon*

Kenneth Walker

TR 86-20

Sepiember 9, 1986

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant DCR-8401831.

An Expression Data Type for Icon

1. Introduction

Icon [1] is one of a series of languages, starting with SNOBOL, for processing non-numeric (particularly string)
data. SNOBOLA4 [2] consists of two essentially separate languages: one for pattern matching and one for conven-
tional computations [3]. The main goal of Icon’s design was to integrate the goal-directed evaluation of SNOBOL4
pattern matching into a language containing conventional control structures.

Icon succeeded in meeting this goal, but something has been lost. In SNOBOL4 patierns are data objects. They
can be constructed dynamically. Simple patterns can be created from strings and by using built-in functions. Com-
plex patterns can be composed from simpler ones. The notation for munipulating patterns is concise and elegant.
This notation can be compared 10 that of regular expressions or BNF grammars. Patterns capture the structure of a
set of strings as opposed 10 the process of matching strings.

Icon replaces pattern matching with string scanning. The patterns themselves are replaced by maiching expres-
sions. These are expressions that obey a matching protocol [1]. Otherwise they are just ordinary Icon expressions
and are purely syntactic constructions. Matching expressions describe the process of matching strings. Even though
it is useful 1o view the strings maiched as a set with certain characteristics, Icon matching expressions do nothing 10
encourage this abstraction.

This paper explores an approach to regaining what was lost in going from SNOBOLA to Icon. The approach
raises Icon expressions 1o the same level as SNOBOL4 patterns by creating an expression data type. Icon already
has a co-expression data type, but it has the wrong semantics for this purpose. A co-expression activation produces
at most one result even when the expression it was created from produces many. A co-expression maintains an
evaluation environment separate from the one it is activated in. Co-expressions are used in situations where an
expression generates a sequence of results and those results are needed in differently places in the program.

A feature for capturing and invoking expressions has been added 10 Icon. Except for variable scoping, the invo-
cation of an expression behaves as if the expression had been copied to the invocation site.

2. Syntax and Semantics

The changes made to the language 10 support expressions are small. A control structure has been added to Icon
for capturing expressions. It has the form

$ expr

S has the same precedence as other unary operators. The element-generation operator | has been exiended to act as
the invocation operator for expressions. For example, the code

out_of range := $(sp < 0 | sp > stack_limit)

assigns the expression (Sp < 0 | sp > stack_limit) to out_of_range. The expression can then be invoked later in
the program. For example, as the condition of an if statement:

if lout_of_range then stop("error")
and in the control expression of a until statement:

until lout_of_range do pop_stk()

This example could have been coded using a procedure instead of using a captured expression:

procedure out_of_range()
suspend (sp < 0 | sp > stack_limit)
end

and the invocation if the if statement would have been
if out_of_range() then stop("error")

However, there is a difference between procedures and expressions. A procedure has its own set of local variables.
A new instance of these variables is created at each procedure invocation. An expression, on the other hand, shares
local variables, including parameters, with the procedure invocation from which it is captured. This sharing of local
variables is in contrast to what is done for co-expressions. The creation of a co-expression makes copies of the local
variables. Consider the example:

procedure p()
local e, i
e:=$(:=2)
i=1
le
write(i)

end

When the procedure p is invoked. new instances of the variables € and i are created. The expression (i := 2) is cap-
tured and assigned to €. The variable i in this expression is the same as the one in the procedure invocation. The
invocation of e, e, causes 2 10 be assigned 10 this variable so the statement write(i) writes 2.

The same instance of these variables is used for each invocation of the expression, even when the expression
outlives the procedure invocation from which it was captured. This means that the loca! variables can also outlive
this invocation. Consider the following example.

global factor

procedure main()
local el, e2, e3

el := p(1)

e2 = p(2)

e3 := p(3)

factor := 3

write(let1, " ", le2, " ", 1e3)
end

procedure p(x)
return $(x * factor)
end

Each expression e1. €2, and €3 is captured in a different invocation of the procedure p and therefore has a different
variable X. On the other hand, the variable factor is global, and thus is shared by all three expressions. This program
writes 3 6 9.

3. Simulating SNOBOLJ patterns

Icon and SNOBOL4 each have a rich repertoire of operations for doing string patiern matching. However, these
operations are at different levels of abstraction. Icon matching expressions describe the process of matching a string,
while the SNOBOL4 operations construct **higher level’” patterns. The implementation of SNOBOL4 patterns uses
maiching functions and backtracking control structures, but these are hidden and not directly accessible 1o the pro-
grammer. Most of the patterns constructed by SNOBOL4’s operations are easily simulated by Icon matching
expressions.

The simplest SNOBOL4 pattern is a character string (which maiches itself). The effect of this pattern can be
accomplished with the Icon unary = operator. The SNOBOL4 statement

DEPT = "FINANCE"
can be simulated in Icon by (assuming DEPT is used as a pattern and not a string):
dept := $="FINANCE"
The SNOBOL4 pattern can be used in pattern matching to select input strings which contain the string FINANCE:
DEPT = "FINANCE"

LOOP S = INPUT :F(END)

S DEPT :F(LOOP)
FOUND OUTPUT = S (LOOP)
END

An analogous lcon program is:

procedure main()
local dept, s
dept := $="FINANCE"
while s := read() do
it s ? (move(0 to *&subject) & !dept) then write(s)
end
In SNOBOLA, the pattern DEPT is automatically applied in the patiern maiching context, however the Icon expres-
sion dept must be explicitly invoked during string scanning. The Icon expression move(0 to *&subject) is one way
to simulate SNOBOL4’s unanchored mode of pattern matching; without it !dept would only march a siring at the
beginning of S.

In SNOBOLA4, the | operator represents pattern alternation. In Icon, | represents the alternation control structure.
The SNOBOLA4 statement

DEPT = “FINANCE" | "SHIPPING"

constructs a pattern which will match either the string FINANCE or the string SHIPPING and assigns the patiern to
the variable DEPT. The Icon statement

dept := $(="FINANCE" | ="SHIPPING")

captures an expression which will match the same strings and assigns the expression to the variable dept.

In SNOBOLA4, patiern concatenation is represented by a blank:
DEPT_ID = DEPT " DEPT."
In Icon, string concatenation is indicated with the || operator:
dept_id := $(!dept || =" DEPT.")

Note that in the SNOBOLA version, the concatenation is done before the assignment, The variable DEPT is derefer-
enced at this time 1o obtain a pattern and this patiern is used to construct the larger patiern. On the other hand. in the
Icon version the concatenation is really the concatenation of the resudrs of two maiching expressions. These maich-
ing expressions are not evaluated until the entire expression is evaluated during string scanning. As in the example
above, the matching expression in dept must be explicitly invoked using !.

The built-in matching functions of Icon differ somewhat from those of SNOBOL4 but the capabilities are simi-
lar. For example, the SNOBOL4 statement

DIGITS = SPAN("0123456789")
can be simulated by the Icon statement
digits := $tab(many('0123456789'))
SNOBOLA4 has four assignment operators, three of which are used in pattern matching. The operator $ is used

for immediate assignment in pattems. The first operand is a patiern. The second operand is variable which is
assigned the string matched by the patiern. The entire assignment expression is a pattern. For example. the

SNOBOLA4 pattern

GETINT =" " (DIGITS $ I) " "
can be simulated by the Icon expression
getint = $(=" " || (i := !digits) || =")

The SNOBOLA4 operator . is similar to $, but the assignment is only made after the entire pattern maich is success-
ful. It can often be simulated by the lcon operator <—. This operator does an immediate assignment which is undone
if backtracking occurs. The effects of the assignments differs during pattern matching, but the ultimate effect (once
the attempt at matching is complete) is the same.

SNOBOLA4's unary operator @ assigns the current cursor position 10 its argument. It can be simulated by the
Icon expression var = &pOs.

SNOBOLA uses dynamic scoping rules for variables. while Icon uses static (lexical) scoping. As long as the pro-
grammer is aware the this difference, it seldom, if ever, poses a problem for simulating SNOBOL4 pattern matching
in Icon.

Captured expressions are very similar to SNOBOL4's unevaluated expressions. The $ control structure
corresponds t0 SNOBOLA4's unary * operator. The ! operator corresponds to SNOBOL4's EVAL function (although
their corresponding effects on other data types are different). SNOBOLA's unevaluated expressions are automati-
cally evaluated in a pattern matching context, while captured expressions must be explicitly invoked during string
scanning as in other contexts. One important difference is that an Icon expression can produce a sequence of results,
while a SNOBOL4 unevaluated expression produces at most one. However, a SNOBOLA4 unevaluated expression
may produce a pattern and that patien may produces a sequence of results during patiern matching.

An important use of unevaluated expressions in SNOBOLA is in the creation of recursive patierns. Because Icon
expressions are by definition *‘unevaluated™, recursive expressions can be written with no special mechanisms.
Consider the following example (from [4]) 10 print each character from a string, one per line:

ROUT = LEN(1) $§ OUTPUT *ROUT

Note that the SNOBOLA4 version of the pattern expects the anchored mode of pattern matching. Icon string scanning
is alway anchored, although a matching expression may simulate the unanchored mode as demonstrated in a previ-
ous example. The Icon version is:

rout = ${write(move(1)) || !'rout}

The expression in this example is enclosed in braces to improve readability. Parentheses could just as well have
been used to form the grouping.

One of the demonstrations of the expressive power of SNOBOL4 patterns is the ease with which a grammar can
be converted into a set of patierns (possible recursive), which recognizes strings of the language described by that
grammuar. The process of converting a grammar into corresponding set of Icon expressions is also straightforward.

Consider a grammar for input to a simple spread-sheet program. The spread-sheet is a matrix of cells containing
integer values. A cell is referenced by a pair of subscripts (integer constants) enclosed in square brackets, e.g. [3.2].
The input to the program is a formula that assigns an expression to a cell. An expression can be an if-then-else
expression where the conditional test is *‘equal’’, “*less than’’, or “*less than or equal t0’". An expression also can be
an arithmetic expression involving addition, subtraction, multiplication, division, and negation. The grammar is:

Jormula ::= subscrpt := expr

expr 2= if(relation Ythen(exprelse(expr) | simexpr
relation = expr=expr | expr<=expr | expr<expr
simexpr = 1erm + simexpr | iterm - simexpr | term
rerm 2= factor % term | factor [1erm | factor
factor 1= - basic | basic

basic 2= digits | subscrpt | (expr)

subscrpt = | digits | digits)

The Icon program to recognize this grammar is

procedure main()
local s
local formula, expr, relation, simexpr, term, factor, basic, subscrpt, digits

formula := ${!subscrpt || =":=" || lexpr}

expr = ${(="if(" || 'relation || =")then(" || 'expr || =")else(" ||
lexpr || =")") | !simexpr}

relation := ${(lexpr || ="=" || lexpr) | (‘expr || ="<=" || 'expr) |
(fexpr || ="<" || lexpr)}

simexpr = ${(term || ="+" || Isimexpr) | (term || ="-" || !simexpr} |
'term}

term = ${(factor || ="+" || iterm) | (!factor || ="/" || 'term) |
lfactor}

factor = ${(="-" || !basic) | 'basic}

basic := ${digits | !subscrpt | (="(" || lexpr || =")")}

subscrpt := ${(="[" || 'digits || ="," || digits || ="]"}

digits := $tab(many('0123456789’))

while s := read() do
if s ? lformula then
write("valid formula")
else
write("error”)
end

So far, examples of simulating SNOBOLA4 patterns have used lcon expressions that defer all evaluation until
string scanning is done. As noted above, this differs from SNOBOL4 patierns which are constructed before the
actual patiern matching is started. It is possible to model the construction of SNOBOL4 patterns more closely.

It was demonstrated in Section 2 that an Icon procedure can return an expression whose characteristics depend
on the arguments to that procedure. In fact, those arguments can themselves be expressions. This makes it possible
1o write Icon procedures that model SNOBOL4's concatenation and alternation operators along with a procedure to
model SNOBOL4's ARBNO function. The first step is to write a procedure to coerce strings into ‘‘patterns’”.

procedure pattern(x)
if type(x) == "expression” then return x
if x = string(x) then return $=x
stop("expression or string expected")
end

The procedure pattern is used by the procedures concat, alt, and arbno 1o ensure that their arguments are
expressions. The procedure concat returns an expression that, when invoked, concatenates the results of invoking
its two arguments. The procedure alt returns an expression that, when invoked and repeatedly resumed, produces
the result sequence of its first argument followed by that of its second. The procedure arbno returns a recursive
expression that, when invoked and repeatedly resumed, produces the concatenation of zero or more invocations of
its argument:

procedure concat(el, e2)
el = pattern(e1)
e2 := pattern(e2)
return $(lel1 || le2)
end

procedure alt(e1, e2)
el := pattern(et)
e2 := pattern(e2)
return $(le1 | le2)
end

procedure arbno(e)

local rep_e

e := pattern(e)

return rep_e = 3$(™ | (‘e || rep_e))
end

The following SNOBOL4 pattern matches a binary number enclosed in parenthesis.
X = "(" ARBNO("0" | "1"))"
An analogous lcon expression constructed using the above procedures is:
x := concat("(", concat(arbno(alt("0", “1")), "}"))

SNOBOLA4’s syntax is simpler, but the patiern construction operations are a fixed primative part of the language.
There is no way to simulate them with other features, nor is there any way 10 generize them. The ease with which
they are simulated by Icon procedures demonstrates the expressive power of Icon. 1t is possible 1o write new pattemn
construction procedures in Icon beyond the operations of SNOBOLA4. The generality of Icon expressions is explored
farther in Section 4.

The last example could have been coded without using the procedures 1o construct the expression:

binary := $("" | (="0" | ="1") || 'binary)
x = $(="(" || 'binary || =")")

However, that is not true for all problems. Consider an Icon program that reads a file of keywords and constructs an
expression that will match any of them.

procedure main()
local file, keys. s

file := open("keywords") | stop("cannot open keywords")
keys = $&fail
while keys := alt(keys, read(file))
while s := read() do
if s 7 lkeys then
write("match”)
else
write("no match”)
end

&fail is a no-op in an aliernation and provides a convenient starting point for building the expression. In the loop
while keys := ait(keys, read(file))

the variable keys is used in the construction of its next value. but it is not a recursive definition. The variable must
be dereferenced and its value used. This would not happen if keys were inside the expression being captured. Simi-
larly, read must executed when the expression is constructed and not later when it is invoked. In addition. calling
alt has the effect of allocating new variables (its parameters) to hold references to the two sub-expressions. Recall
that these variables outlive the procedure invocation. This example dynamically creates a tree where the nodes are
expressions and variables captured with each expressions reference the subtrees. Invocation of keys starts a tree
walk which is driven forward by faiture of the sub-expressions and resumption of the expression by the surrounding
context (the nature of the tree walk is determined in part by the operator. |. used in the expressions).

Suppose the file keywords contains:

saguaro
cholla
prickly pear

When the file has been read, the variable keys will contain the expression represented by the tree:

el
e2

e1 E_)“prickly pear”

e2

o1 [x > "cholla

e2

"saguaro”

Ovals contain the code for each expression and rectangles contain the variables for each expression. These are con-
nected by bold arrows to form the complete expression. In general, variables can be shared among expressions,
though sharing does not occur here. In the diagram, code is shown as if it were copied for each expression. In the
implementation, it is really shared, but this does not affect the semantics. A thin arrows from each variable points to
its value.

4. Bevond SNOBOL4 Patterns

Pattern matching in the style of SNOBOLA4 is done using only concatenation. alternation, recursion, side effects
(conditional and unconditional assignments) and a repertoire of built-in functions. There is no way for a SNOBOL4
programmer to write new matching functions. The Icon programmer is not limited to these operations. Any Icon
operator, function, procedure, or control structure can be used during string scanning,

Some problems are awkward 1o solve using SNOBOL4 patterns. Consider Exercise 1.18 in [4]. The problem is
1o print all items in a list. The list is represented by a string with items separated by commas. There may or may not
be a final comma. The solution given is:

NEXTI = BREAK(".") $ OUTPUT LEN(1) | (LEN(1) REM) $ OUTPUT ABORT | ABORT
GETI = NEXTI *GETI
PRINTI = POS(0) GET!

It is awkward to use ABORT 10 control backtracking. It takes some thought to see exactly what it is doing in the

context of a given pattern. Contrast this with an analogous Icon solution:

nexti := ${(write(tab{upto(’,’))) & move(1)) | (not pos(0) & write(tab(0)))}
printi := $if Inexti then !printi

Once nexti has printed an item, it cannot be resumed because it is invoked within a bounded expression. the condi-
tion of the if expression. (Even better solutions can be obtained by using many(™,) rather than upto(’,’) and itera-
tion rather than recursion.)

Another class of problems require putting pattern matching in a loop with conventional code; pattern matching
extracts information from the string and the conventional code uses the information. In Icon, the loop and the con-
ventional code can be incorporated with the matching. Consider the problem of reading entries into a table. In the
input, the entries are of the form keyivalue. An input line may contain several entries separated by commas. A SNO-
BOLA4 pattern to match an entry, extracting the key and value, is

GET_ENTRY = BREAK("") $ KEY LEN(1) (BREAK("") $ VAL LEN(1) | REM § VAL)

The table can then be filled using a double loop. The outer loop reads input lines. The inner loop extracts informa-
tion from each entry and removes the entry from the line:

T = TABLE()
READLP S = INPUT :F(EOF)
ITEMLP S GET_ENTRY = :F(READLP)
T<KEY> = VAL {(ITEMLP)

EOF

In Icon, entries can be added 10 the table during string scanning. Assuming the table is in the variable 1, the follow-
ing Icon expression will maich an entry and put it in the table.

get_entry := ${t{tab(upto(’:'))] := (move(1) & (tab(many(™.")) | "N}

It is not necessary 1o remove the entry from the line. A loop can iterate over the entries without leaving string scan-
ning. An expression to process an entire line is:

fill_tabl := $while !get_entry do move(1)

The table can now be read in with the code:

t = table()
while s := read() do
s ? ffill_tabl

Using arbitrary Icon expressions in string scanning can simplify solutions to many problems, but in general these
expressions will not obey the matching protocol. This protocol requires that matching expressions return the sub-
string matched and preform data backiracking on &pos. In the last example, fill_tabl did not obey the matching pro-
tocol. but for that problem it did not matter.

For those problems where it does matter, the following procedure can be used. It wraps a matching protocol
around an arbitrary expression.

procedure mich_proto(expr)

local init_pos

return $(init_pos := (&pos <— &pos), lexpr, &subject[init_pos : &pos))
end

The expression &pos <— &pos forces data backtracking on &pos.

Consider the problem of writing a maiching expression 10 recognize strings in the classical context sensitive
language {A"B"C" I n 2 0}. Given the auxiliary procedure

procedure span(c)
suspend " | tab(many(c))
end

the expression

AnBnCn = ${(>span('A’) = *span('B’) = =#span('C’)) & pos(0)}
matchs the desired strings but does not produce the strings. mich_proto can be used 1o solve the problem:

procedure main()
local AnBnCn, s

AnBnCn := mtch_proto(${(*span(’A’) = *span('B’) = *span(’C’)) & pos(0)})
while s := read() do
s ? write("™"", IAnBnCn, "\"")
end

The usefulness of expressions is not limited to string scanning. There are many applications where the input
includes some specifications that are used later in processing. The traditional approach to these applications is to
store the specifications in a data structure and interpret them whenever they are needed. However, for some applica-
tions, it is simpler 10 translate the specifications into expressions and invoke the expressions whenever they are
needed.

This is true of the spread-sheet program mentioned above. The following implementation is for a 3-by-3
spread-sheet. Three global lists associate information with each of the 9 cells, The value list holds the integer value
of each cell. The dependent list associates a set of dependent formulas with each cell. For example, the formulas
[1.1]:=3%[1.3] and [3.1]:=[1,3]-]2.3] are both dependent on cell [1.3}. These formulas are stored as expressions
which implement them. Whenever the value of a cell changes, all the formulas in its dependent set are executed. In
this way information is propagated throughout the spread-sheet. mainaining the relationships established by the for-
mulas.

Whenever a formula for a cell is changed, the old formula must be cleared from any dependent sets it is in. The
clear list contains an expression for each cell. This expression purges the current formula for that cell from all
dependent sets it was put in.

Formulas are translated into expressions by augmenting the parser given in Section 3 with semantic functions.
The global variables and the main procedure for the program are:

global value, dependent, clear, ref_list

procedure main()
local s
local formula. expr, relation, simexpr, term, factor, basic, subscrpt, digits

"

formula := ${ref_list := [); install(!subscrpt, =":=", lexpr)}

expr = ${ifexpr(="if(", 'relation. =")then(", lexpr, =")else(". lexpr,
=")") | lsimexpr)

relation := ${eql(lexpr, ="=", lexpr) | leg(lexpr, ="<=", lexpr) |
Iss(lexpr, ="<", lexpr))

simexpr = ${plus('term, ="+", Isimexpr) | minus(!term, ="-", !simexpr) |
termj

term = ${times(!factor, ="+", term) | divide(!factor, ="/", lterm} |
lfactor}

tactor := ${neg(="-", !basic) | !basic}

basic ${num(!digits) | deref(!subscrpt) | 2(="(", lexpr, =")")}
subscrpt := $subconv(="[", !digits, =",", digits, ="]")
digits = $integer(tab{many('0123456789°)))

value := list(9, 0)

dependent = list(9)

every dependent[1 to 9] := set([])
clear := list(9, $&null)

while s := read() do
s ? ((Mformula & print()) | write("invalid formula™))
end

The semantic function used in digits is just the built-in function integer which translates the character string into the
corresponding integer. The semantic function used in basic for a number is the procedure:

procedure num(n)
return $n
end

It takes an integer (produced by digits) as an argument and simply returns an expression which evaluates 1o that
integer.

The semantic function for addition is a procedure which takes two subexpressions and returns an expression
which evaluates to the sum of the numbers obtained by evaluating the two subexpressions.

procedure plus(e1, op, e2)
return $(le1 + le2)
end

The semantic function for the if expression returns a captured if expression with subexpressions invoked in the
proper places.

procedure ifexpr(s1, rel, s2, e1, s3. e2)
return $if lrel then lel else le2
end

The semantic functions for subtraction, multiplication, division, negation, and the relations are similar, but they are
not shown here. The print procedure for displaying the spread-sheet is also not shown.

The semantic function for subscripting converts the two subscripts into the list index for the cell. It also does a
range check. Note that this semantic function returns an integer rather than an expression.

procedure subconv(st, i1, s2, i2, s3)
it (1 <= i1 <=3) & (1 <=i2 <= 3) then
return (i1 = 1) * 3 + i2

else {
write("subscript out of range”)
fail
)
end

The semantic function for dereferencing a cell has the added task of creating a list of the cells that the current for-
mula references; that is, the ones it depends on. Note that ref_list is initialized at the start of formula.

procedure deref(cell)
put(ref_list, cell)
return $value(cell]
end

The most involved semantic actions are preformed by the procedure install, which finishes building the formula and
updates the global lists. The new formula, update. computes the value. updates the cell, and invokes any dependent
formulas. It only does the update if the value of the cell changes. This allows circular dependencies among cells as
long as computations converge.

-10-

Once the new formula has been created, any dependencies for the old formula are cleared and new dependencies
are established along with a new clear expression. Finally the formula is executed.

procedure install(cell, s, e)
local update, new_val

if not pos(0) then fall
update = ${
new_val = le
if new_val "= value[cell] then {
value|[cell] := new_val
every !ldependent[cell]

}

establish new dependencies
Iclear[cell]
clear[cell] := $&null
every new_depend(update, cell, 'ref_list)
lupdate
return

end

procedure new_depend(update, cell, ret_cell)
local part_clear
insert(dependent|[ref_cell], update)
part_clear := clear|cell]
clear{cell] := $(lpart_clear & delete(dependent(ref_cell], update))
return
end

5. Implementation

Previously, the lifetime of local variables was the same a that of the procedure invocation they belonged to, so
they could be allocated on the interpreter stack [S). With the addition of expressions 1o Icon, local variables must
exist as long as they can be referenced through an expression. This requires allocating local variables on the heap.
An internal data type locals, similar to the record data type, has been added to Icon for this purpose. When a pro-
cedure is invoked, a locals block is allocated for it.

The expression data type is implemented as a block with two fields. One field points to the code for the expres-
sion and the other points to the locals block for the expression. When $ captures an expression, it allocates a new
block and fills in the fields. The instruction pointer for the expression's code is fixed for each instance of $ and the
locals pointer comes from the current interpreler state.

An expression is analogous to a procedure body. The code needed to implement it is similar to that for
suspend expr

Invocation is simpler for an expression than for a procedure because there are no arguments and the local variables
have already been allocated. Invocation copies the fields from the expression block into the corresponding inter-
preter state variables. saving on the stack the information needed to return.

6. Conclusions

The expression data type is a valuable addition to Icon just as the pattern data type was a valuable feature of
SNOBOLA. It allows pattern matching problems to be factored into manageable pieces and the corresponding
matching expressions assigned 1o variables with suggestive names. This is analogous to breaking a complex numeri-
cal expression into subexpressions and computing cach into a variable with a mnemonic name. In theory,

-11 -

procedures could be used 10 divide up a patiern matching problem, but in practice procedure syniax is too bulky for
small expressions. Captured expressions on the other hand employ a very concise syntax.

Icon's captured expressions are similar to SNOBOL4’s unevaluated expressions. For most problems a pattern
may be an unevaluated expression, but for some problems parts of the pattern must be evaluated when the patiern is
created. lcon programs can use procedures to construct expressions. The arguments to these procedures correspond
to the evaluated parts of SNOBOLA4 patterns.

fcon is an attempt 1o demonstrate that the separation of pattern matching and conventional computations found
in SNOBOL4 is unnecessary. The expression data type fills in a major gap in that demonstration. In addition,
expressions have proven useful for storing some kinds of data in executable form, eliminating the needed 10 inter-
pret data structures when the information is needed.

Acknowledgements

The idea of capturing expressions in Icon originated from discussions with Dave Gudeman. Dave, Ralph
Griswold, Janalee O'Bagy, and Kelvin Nilsen participated in discussions on the implementation. Ralph Griswold
provided numerous helpful suggestions on the presentation of this report.

References
1. R. E. Griswold and M. T. Griswold, The Icon Programming Language. Prentice-Hall, Inc.. Englewood Cliffs,
NI, 1983.

R. E. Griswold, J. F. Poage and |. P. Polonsky, The SNOBOL4 Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, second edition, 1971.

3. R.E.Griswold and D. R. Hanson, **An Aliernative to the Use of Patterns in String Processing”’, ACM Trans.
Prog. Lang. and Systems 2, 2 (1980), 153-172.

4. R, E. Griswold, String and List Processing in SNOBOL4; Techniques and Applications, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1975,

5. R. E. Griswold and M. T. Griswold, The Implementation of the Icon Programming Language, Princeton
University Press. In press.

o

