
The Icon Program Library; Version 6, Release 1* 

Ralph E. Griswold 

TR 86-13b 

June 12,1986, Last revised October 17,1986 

Department of Computer Science 

The University of Arizona 

Tucson, Arizona 85721 

*This work was supported by the National Science Foundation under Grant DCR-8401831. 





The Icon Program Library; Version 6, Release 1 

Introduction 
This version of the Icon program library is intended for use with Version 6 of Icon. Basic documentation for 

Version 6 of Icon is contained in the Icon book [1] and a supplementary report [2]. 
The library contains both complete programs and collections of procedures. The programs range from demons-

trations and games to text-processing utilities. The procedures range from straightforward extensions to Icon's func-
tion repertoire to such relatively esoteric subjects as programmer-defined control operations. This manual is divided 
into two main parts according to the composition of the library: complete programs and collections of procedures. 

While the library provides some useful application programs and components that may be helpful in building 
other programs, it also provides examples of Icon programming techniques. In particular, persons who are new to 
Icon may find it helpful to read the source code for the library to see how experienced persons program in Icon. 
While not all of the code is the best possible — far from it — it illustrates useful idioms and a variety programming 
techniques. 

In the descriptions that follow, there are pointers to interesting programming techniques as well as several 
suggestions for extensions and improvements to programs. Such extensions are good exercises persons who are just 
starting in Icon. Some of these extensions, however, will challenge the most experienced Icon programmer. 

Library Format 
The root directory of the library is ipl ("Icon program library"). There are four subdirectories: source, progs, 

procs, and data. The subdirectory source contains Icon source code for both programs and procedure libraries. 
Compiled programs are in progs and translated procedures are in procs. The subdirectory data contains sample 
input for programs in progs. The names of programs and data files generally coincide, with the extensions of data 
files providing some differentiating identification. For example, the data file csgen.abc is input to the program 
csgen. There are also several files with the extension .txt that contain English-language text that is suitable as input 
to any of the programs that process text files. 

Disclaimer 
The material contained in the Icon program library is provided on an as-is basis. No claim is made that the pro-

grams are free of error or that they will function properly. The responsibility for the use of library material resides 
entirely with the user. 

Notes of errors will be appreciated and corrections will be incorporated in future releases of the library. 

New Material 
Additions are made to the Icon program library from time to time. New material is welcome. Such material 

should be sent to: 
Icon Project 
Department of Computer Science 
The University of Arizona 
Tucson, AZ 87521 

Documentation similar in form to that provided in this manual must be included and test data should be provided 
where appropriate. The final decision on inclusion of material in the library resides with the Icon Project. 



Acknowledgements 
Several persons have contributed programs and procedures to the Icon program library. In addition to the author 

of this manual, these persons include Allan Anderson, Ward Cunningham, Tom Hicks, William Malloy, Bill 
Mitchell, Mike Novak, Randal Schwartz, Steve Wampler, and George Yee. See the source files for specific attribu-
tions. 

- 2 -



Programs 

Introduction 
Most programs take input from standard input and write output to standard output. Input and output can be 

redirected and piped in the usual fashion. For example, 
csgen <../data/csgen.abc | more 

runs the program csgen on the data file csgen.abc in the parallel subdirectory and pipes the output through more1. 
Many programs take command line arguments, which may be the names of files to process or options that select 

specific processing functions. An option is prefixed by a dash, sometimes followed by an argument. For example, 
deal -h 5 

runs the program deal with the option -h and the argument 5. 
If a program is not called with the proper options or arguments, it generally terminates with an error message 

such as 
usage: [ -h n ] [ -s n ] 

which indicates the proper usage. Some programs provide more specific errors messages. Error messages are written 
to standard error output. Standard error output is always written to the console and cannot be redirected. Consult the 
descriptions of the programs that follow for details. 

The programs that follow are divided into categories by their function. 

1. Demonstrations and Games 

1.1 Non-Attacking Queens: queens 
This program displays the solutions to the non-attacking n-queens problem: the ways in which n queens can be 

placed on an n-by-n chessboard so that no queen can attack another. A positive integer can be given as a command 
line argument to specify the number of queens. For example, 

iconx queens 8 
displays the solutions for 8 queens on an 8-by-8 chessboard. The default value in the absence of an argument is 6. 
One solution for six queens is: 

1 1 0 | | | | | 

1 1 1 1 Q 1 1 1 

1 1 1 1 1 1 Q 1 

1 Q 1 1 1 1 1 1 

1 1 1 Q 1 1 1 1 

1 1 1 1 1 Q 1 1 

Comments: There are many approaches to programming solutions to the n-queens problem. This library program 
is worth reading for its programming techniques. Other solutions may be found in [1] and [5]. 

xPath syntax is system dependent. On some systems, including MS-DOS [3] and VMS [4], compiled programs cannot be run directly, 
but must be executed using iconx. For MS-DOS, the example above is done as follows: 

iconx csgen <..\data\csgen.abc | more 



Programs 

1.2 Word Intersections: cross 
This program takes a list of words and tries to arrange them in cross-word format so that they intersect. Upper-

case letters are mapped into lowercase letters on input. For example, the input 
and 
eggplants 
elephants 
purple 

produces the output 
+ + 

P 
u e 
r g 
p g 

elephants 
e I 

and 
n 
t 
s 

+ + 
Diagnostics: The program objects if the input contains a nonalphabetic character. 
Comments: This program produces only one possible intersection and it does not attempt to produce the most com-
pact result. The program is not very fast, either. There is a lot of room for improvement here. In particular, it is 
natural for Icon to generate a sequence of solutions. 

1.3 Bridge Hands: deal 
This program shuffles, deals, and displays hands in the game of bridge. An example of the output of deal is 

S: 
H: 
D: 
C: 

3 
T7 
AKQ762 
QJ94 

S 
H 
D 
C 

S 
H 
D 
C 

KQ987 
52 
T94 
T82 

A652 
AKQ4 
3 
A653 

S 
H 
D 
C 

JT4 
J9863 
J85 
K7 

Options: The following options are available: 
-h n Produce n hands. The default is 1. 
-S n Set the seed for random generation to n. Different seeds give different hands. The default seed is 0. 



Programs 

1.4 Farberisms: f arb 
Dave Farber, co-author of the original SNOBOL programming language, is noted for his creative use of the 

English language. Hence the terms "farberisms" and "to farberate". This program produces a randomly selected 
farberism. 
Notes: Not all of the farberisms contained in this program were uttered by the master himself; others have learned 
to emulate him. A few of the farberisms may be objectionable to some persons. "I wouldn't marry her with a 
twenty-foot pole." 

2. Random Strings 
The programs in this section involve the random generation of strings according to various criteria. These pro-

grams are only loosely related to each other. 

2.1 Random Sentence Generation: rsg 
This program generates randomly selected strings ("sentences") from a grammar specified by the user. Gram-

mars are basically context-free and resemble BNF in form, although there are a number of extensions. 
The program works interactively, allowing the user to build, test, modify, and save grammars. Input to rsg con-

sists of various kinds of specifications, which can be intermixed: 
Productions define nonterminal symbols in a syntax similar to the rewriting rules of BNF with various alterna-

tives consisting of the concatenation of nonterminal and terminal symbols. Generation specifications cause the gen-
eration of a specified number of sentences from the language defined by a given nonterminal symbol. Grammar 
output specifications cause the definition of a specified nonterminal or the entire current grammar to be written to a 
given file. Source specifications cause subsequent input to be read from a specified file. 

In addition, any line beginning with # is considered to be a comment, while any line beginning with = causes the 
rest of that line to be used subsequently as a prompt to the user whenever rsg is ready for input (there normally is no 
prompt). A line consisting of a single = stops prompting. 
Productions: Examples of productions are: 

<expr>::=<term>|<term>+<expr> 
<term>::=<elem>|<elem>*<term> 
<elem>::=x|y|z|(<expr>) 

Productions may occur in any order. The definition for a nonterminal symbol can be changed by specifying a new 
production for it 

There are a number of special devices to facilitate the definition of grammars, including eight predefined, built-
in nonterminal symbols: 

symbol 
<lt» 
<rb> 
<vb> 
<nl> 
<> 
<&lcase> 
<&ucase> 
<&digit> 

definition 
< 
> 
1 
newline 
empty string 
any single lowercase letter 
any single uppercase letter 
any single digit 

In addition, if the string between a < and a > begins and ends with a single quotation mark, it stands for any single 
character between the quotation marks. For example, 

<'xyz'> 
is equivalent to 

5 -



Programs 

x|y|z 

Finally, if the name of a nonterminal symbol between the < and > begins with ?, the user is queried during genera-
tion to supply a string for that nonterminal symbol. For example, in 

<expr>::=<?term>|<term>+<expr> 

if the first alternative is encountered during generation, the user is asked to provide a string for <term>. Note that 
this is a strongly context-sensitive feature. 
Generation Specifications: A generation specification consists of a nonterminal symbol followed by a nonnegative 
integer. An example is 

<expr>10 

which specifies the generation of 10 <expr>s. If the integer is omitted, it is assumed to be 1. Generated sentences 
are written to standard output. 
Grammar Output Specifications: A grammar output specification consists of a nonterminal symbol, followed by 
->, followed by a file name. Such a specification causes the current definition of the nonterminal symbol to be writ-
ten to the given file. If the file is omitted, standard output is assumed. If the nonterminal symbol is omitted, the 
entire grammar is written out. Thus, 

-> 

causes the entire grammar to be written to standard output. 
Source Specifications: A source specification consists of @ followed by a file name. Subsequent input is read 
from that file. When an end of file is encountered, input reverts to the previous file. Input files can be nested. 
Options: The following options are available: 

- s n Set the seed for random generation to n. The default seed is 0. 
-I n Terminate generation if the number of symbols remaining to be processed exceeds n. There is no 

default limit. 
-t Trace the generation of sentences. Trace output goes to standard error output. 

Diagnostics: Syntactically erroneous input lines are noted but are otherwise ignored. Specifications for a file that 
cannot be opened are noted and treated as erroneous. 

If an undefined nonterminal symbol is encountered during generation, an error message that identifies the 
undefined symbol is produced, followed by the partial sentence generated to that point. Exceeding the limit of sym-
bols remaining to be generated as specified by the -I option is handled similarly. 
Caveats: Generation may fail to terminate because of a loop in the rewriting rules or, more seriously, because of 
the progressive accumulation of nonterminal symbols. The latter problem can be identified by using the -t option 
and controlled by using the -I option. The problem often can be circumvented by duplicating alternatives that lead 
to fewer rather than more nonterminal symbols. For example, changing 

<term>::=<elem>|<elem>*<term> 

to 
<term>::=<elem>|<elem>|<elem>*<term> 

increases the probability of selecting <elem> from 1/2 to 2/3. See [6] for a discussion of the general problem. 
Comments: This program is an extension and elaboration of a program described in some detail in [1]. It illustrates 
many features of Icon, including a combination of string and list processing as well as extensive use of generators. 
The source code is worth studying. 

There are many possible extensions to the program. One of the most useful would be a way to specify the proba-
bility of selecting an alternative. 



Programs 

2.2 Context-Sensitive Generation: csgen 
This program accepts a context-sensitive production grammar and generates randomly selected sentences from 

the corresponding language. See [7] for a discussion of such grammars. 
Uppercase letters stand for nonterminal symbols and -> indicates the lefthand side can be rewritten by the right-

hand side. Other characters are considered to be terminal symbols. Lines beginning with # are considered to be 
comments and are ignored. A line consisting of a nonterminal symbol followed by a colon and a nonnegative 
integer i is a generation specification for i instances of sentences for the language defined by the nonterminal (goal) 
symbol. An example of input to csgen is: 

# a(n)b(n)c(n) 
# Salomaa, p. 11. 
# Attributed to M. Soittola. 
# 
X->abc 
X->aYbc 
Yb->bY 
Yc->Zbcc 
bZ->Zb 
aZ->aaY 
aZ->aa 
X:10 

The output of csgen for this example is 
aaabbbccc 
aaaaaaaaabbbbbbbbbccccccccc 
abc 
aabbcc 
aabbcc 
aaabbbccc 
aabbcc 
abc 
aaaabbbbcccc 
aaabbbccc 

A positive integer followed by a colon can be prefixed to a production to replicate that production, making its 
selection more likely. For example, 

3:X->abc 
is equivalent to 

X->abc 
X->abc 
X->abc 

Option: The -t option writes a trace of the derivations to standard error output. 
Limitations: Nonterminal symbols can only be represented by single uppercase letters, and there is no way to 
represent uppercase letters as terminal symbols. 

There can be only one generation specification and it must appear as the last line of input. 
Comments: Generation of context-sensitive strings is a slow process. It may not terminate, either because of a loop 
in the rewriting rules or because of the progressive accumulation of nonterminal symbols. The program avoids 
deadlock, in which there are no possible rewrites for a string in the derivation. 

This program would be improved if the specification of nonterminal symbols were more general, as in rsg. 

7 -



Programs 

2.3 Parenthesis-Balanced Strings: parens 
This program produces parenthesis-balanced strings in which the parentheses are randomly distributed. 

Options: The following options are available: 
-b n Bound the length of the strings to n left and right parentheses each. The default is 10. 
-n n Produce n strings. The default is 10. 
-I s Use the string s for the left parenthesis. The default is (. 
-r s Use the string s for the right parenthesis. The default is ) . 
-v Randomly vary the length of the strings between 0 and the bound. In the absence of this option, all 

strings are the exactly as long as the specified bound. 
For example, the output for 

parens -v -b 4 - I "begin " - r "end " 
is 

begin end 
begin end begin end 
begin begin end end begin end 
begin end begin begin end end 
begin end 
begin begin end end 
begin begin begin end end end 
begin end begin begin end end 
begin end begin end 
begin begin end begin end begin end end 

Comments: This program was motivated by the need for test data for error repair schemes for block-structured pro-
gramming langauges. See [8]. A useful extension to this program would be some way of generating other text 
among the parentheses. In addition to the intended use of the program, it can produce a variety of interesting pat-
terns, depending on the strings specified by -I and -r. 

2.4 Shuffled Files: shuffile 
This program writes a version of the input file with the lines shuffled. For example, the result of shuffling 

On the Future!-how it tells 
Of the rapture that impells 

To the swinging and the ringing 
Of the bells, bells, bells-

Of the bells, bells, bells, bells, 
Bells, bells, bells— 

To the rhyming and the chiming of the bells! 

is 
To the rhyming and the chiming of the bells! 

To the swinging and the ringing 
Bells, bells, bells-

Of the bells, bells, bells-
On the Future!-how it tells 

Of the bells, bells, bells, bells, 
Of the rapture that impells 

Option: The option - s n sets the seed for random generation to n. The default seed is 0. 
Limitation: This program stores the input file in memory and shuffles pointers to the lines; there must be enough 
memory available to store the entire file. 

- 8 



Programs 

3. Text Tabulation 

3.1 Character Tabulation: tabic 
This program tabulates characters and lists each character and the number of times it occurs. Characters are 

written using Icon's escape conventions. Line termination characters and other control characters are included in 
the tabulation. 
Options: The following options are available: 

- a Write the summary in alphabetical order of the characters. This is the default. 
-n Write the summary in numerical order of the counts. 
-u Write only the characters that occur just once. 

3.2 Word Tabulation: tablw 
This program tabulates words and lists number of times each word occurs. A word is defined to be a string of 

consecutive upper- and lowercase letters with at most one interior occurrence of a dash or apostrophe. 
Options: The following options are available: 

- a Write the summary in alphabetical order of the words. This is the default. 
-i Ignore case distinctions among letters; uppercase letters are mapped into to corresponding lowercase 

letters on input. The default is to maintain case distinctions. 
-n Write the summary in numerical order of the counts. 
-I n Tabulate only words longer than n characters. The default is to tabulate all words. 
-u Write only the words that occur just once. 

4. Mailing Labels 

4.1 Produce Mailing Labels: labels 
This program produces labels using coded information taken from the input file. In the input file, a line begin-

ning with # is a label header. Subsequent lines up to the next header or end-of-file are accumulated and output so as 
to be centered horizontally and vertically on label forms. Lines beginning with * are treated as comments and are 
ignored. 
Options: The following options are available: 

-C n Print n copies of each label. 
- s s Select only those labels whose headers contain a character in s. 
-t Format for curved tape labels (the default is to format for rectangular mailing labels). 
-w n Limit line width to n characters. The default width is 40. 
-I n Limit the number of printed lines per label to n. The default is 8. 
-d n Limit the depth of the label to n. The default is 9 for rectangular labels and 12 for tape labels (-t). 
-f Print the first line of each selected entry instead of labels. 

Options are processed from left to right. If the number of printed lines is set to a value that exceeds the depth of 
the label, the depth is set to the number of lines. If the depth is set to a value that is less than the number of printed 
lines, the number of printed lines is set to the depth. Note that the order in which these options are specified may 
affect the results. 
Printing Labels: Label forms should be used with a pin-feed platen. For mailing labels, the carriage should be 
adjusted so that the first character is printed at the leftmost position on the label and so that the first line of the output 
is printed on the topmost line of the label. For curved tape labels, some experimentation may be required to get the 
text positioned properly. 

- 9 -



Programs 

Diagnostics: If the limits on line width or the number of fines per label are exceeded, a label with an error message 
is written to standard error output. 

4.2 Zip Code Sorting: zipsort 
This program sorts labels produced by labels in ascending order of their postal zip codes. 

Option: The option -d n sets the number of lines per label to n. The default is 9. This value must agree with the 
value used to format the labels. 
Zip Codes: The zip code must be the last nonblank string at the end of the label. It must consist of digits but may 
have an embedded dash for extended zip codes. If a label does not end with a legal zip code, it is placed after all 
labels with legal zip codes. In such a case, an error messages also is written to standard error output. 

5. Laminated Files 

5.1 Laminating Files: lam 
This program laminates files named on the command line onto the standard output, producing a concatenation of 

corresponding lines from each file named. If the files are different lengths, empty lines are substituted for missing 
lines in the shorter files. A command line argument of the form - s causes the string s to be inserted between the 
concatenated file lines. 

Each command line argument is placed in the output line at the point that it appears in the argument list. For 
example, lines from filel and file2 can be laminated with a colon between each line from filel and the correspond-
ing line from file2 by the command 

lam filel - : file2 

File names and strings may appear in any order in the argument list. If - is given for a file name, standard input 
is read at that point. If a file is named more than once, each of its lines will be duplicated on the output line, except 
that if standard input is named more than once, its lines will be read alternately. For example, each pair of lines 
from standard input can be joined onto one line with a space between them by the command 

lam - "- " -

while the command 
lam filel "- " filel 

replicates each line from filel. 

5.2 Delaminating Files: delam 
This program delaminates standard input into several output files according to the specified fields. It writes the 

fields in each line to the corresponding output files as individual lines. If no data occurs in the specified position for 
a given input line an empty output line is written. This insures that all output files contain the same number of lines 
as the input file. 

If - is used for the input file, the standard input is read. If - is used as an output file name, the corresponding 
field is written to the standard output. 

The fields are defined by a list of field specifications, separated by commas, colons, or semicolons, of the follow-
ing form: 

n the character in column n 
n-m the characters in columns n through m 
n+m m characters beginning at column n 

where the columns in a line are numbered from 1 to the length of the line. 
The use of delam is illustrated by the following examples. The command 

-10-



Programs 

delam 1-10,5 x.txt y.txt 
reads standard input and writes characters 1 through 10 to file x.txt and character 5 to file y.txt. The command 

delam 10+5:1-10:1-10:80 mid x1 x2 end 
writes characters 10 through 14 to mid, 1 through 10 to x1 and x2, and character 80 to end. The command 

delam 1-80; 1-80 - -
copies standard input to standard output, replicating the first eighty columns of each line twice. 

5.3 Delaminating Files by Separators: delamc 
This program delaminates standard input into several output files according to the separator characters specified 

by the string following the -t option. It writes the fields in each line to the corresponding output files as individual 
lines. If no data occurs in the specified position for a given input line an empty output line is written. This insures 
that all output files contain the same number of lines as the input file. 

If - is used as an output file name, the corresponding field is written to the standard output. If the -t option is not 
used, an ascii horizontal tab character is assumed as the default field separator. 

The use of delamc is illustrated by the following examples. The command 
delamc labels opcodes operands 

writes the fields of standard input, each of which is separated by a tab character, to the output files labels, opcodes, 
and operands. The command 

delamc -t: scores names matric ps1 ps2 ps3 
writes the fields of standard input, each of which are separated by a colon, to the indicated output files. The com-
mand 

delamc -t,: oldata f1 f2 
separates the fields using either a comma or a colon. 

6. Icon Program Utilities 

6.1 Icon Program Cross Reference: ipxref 
This program cross-references Icon programs. It lists the occurrences of each variable by line number. Variables 

are listed by procedure or separately as globals. The options specify the formatting of the output and whether or not 
to cross-reference quoted strings and non-alphanumerics. Variables that are followed by a left parenthesis are listed 
with an asterisk following the name. If a file is not specified, then standard input is cross-referenced. 
Options: The following options change the format defaults: 

-C n The column width per line number. The default is 4 columns wide. 
-I n The starting column (i.e. left margin) of the line numbers. The default is column 40. 
-w n The column width of the whole output line. The default is 80 columns wide. 

Normally only alphanumerics are cross-referenced. These options expand what is considered: 
-q Include quoted strings. 
-x Include all non-alphanumerics. 

Note: This program assumes the subject file is a valid Icon program. For example, quotes are expected to be 
matched. 

- 1 1 -



Programs 

6.2 Sort Icon Declarations: ipsort 
This program reads an Icon program and writes an equivalent program with the procedures sorted alphabeti-

cally. Global, link, and record declarations come first in the order they appear in the original program. The main 
procedure comes next followed by the remaining procedures in alphabetical order. 

Comments and white space between declarations are attached to the next following declaration. 
Limitations: This program only recognizes declarations that start at the beginning of a line. 

Comments and interline white space between declarations may not come out as intended. 

6.3 Icon Program Splitting: ipsplit 
This progam reads an Icon program and writes each procedure to a separate file. The output file names consist of 

the procedure name with .icn appended. If the -g option is specified, any global, link, and record declarations are 
written to that file. Otherwise they are written in the file for the procedure that immediately follows them. 

Comments and white space between declarations are attached to the next following declaration. 
Notes: The program only recognizes declarations that start at the beginning of lines. Comments and interline white 
space between declarations may not come out as intended. 

If the -g option is not specified, any global, link, or record declarations that follow the last procedure are dis-
carded. 

7. Miscellaneous Utilities 

7.1 Line Lengths: II 
This program prints the lengths of the shortest and longest lines in files named on the command line. If there is 

no command line argument, the standard input is used. The argument - may be used to explicitly specify the stan-
dard input. 

7.2 Trimming Lines: trim 
This program copies lines from standard input to standard output, truncating the lines at n characters and remov-

ing any trailing blanks. The default value for n is 80. For example, 
trim 70 <grade.txt >grade.fix 

copies grade.txt to grade.fix, with lines longer than 70 characters truncated to 70 characters and the trailing blanks 
removed from all lines. 

The -t option causes all lines to be n characters long by adding blanks to short lines; otherwise, short lines are 
left as is. 

7.3 Sorting Groups of Lines: grpsort 
This program sorts input containing "records" defined to be groups of consecutive lines. Output is written to 

standard output. Each input record is separated by one or more repetitions of a demarcation line (a fine beginning 
with the separator string). The first line of each record is used as the key. 

If no separator string is specified on the command line, the default is the empty string. Because all input lines are 
trimmed of whitespace (blanks and tabs), empty lines are default demarcation lines. The separator string specified 
can be an initial substring of the string used to demarcate fines, in which case the resulting partition of the input file 
may be different from a partition created using the entire demarcation string. 

The -O option sorts the input file but does not produce the sorted records. Instead it lists the keys (in sorted 
order) and line numbers defining the extent of the record associated with each key. 

The use of grpsort is illustrated by the following examples. The command 
grpsort "catscats" <x >y 

sorts the file X, whose records are separated by lines containing the string "catscats", into the file y placing a single 

12-



Programs 

line of "catscats" between each output record. Similarly, the command 
grpsort "cats" <x >y 

sorts the file x as before but assumes that any line beginning with the string "cats" delimits a new record. This may 
or may not divide the lines of the input file into a number of records different from the previous example. In any 
case, the output records will be separated by a single line of "cats". Another example is 

grpsort -o <bibliography >bibkeys 
which sorts the file bibliography and produces a sorted list of the keys and the extents of the associated records in 
bibkeys. Each output key line is of the form: 

[s-e] key 
where 

S is the line number of the key line 
e isthelinenumberofthelastline 
key istheactualkeyoftherecord 

- 1 3 -



Procedures 

Introduction 
Collections of translated procedures are in the distribution directory procs. These files can be linked into other 

programs. For example, if the Icon program library resides in /usr/icon/v6/ipl, the procedures in gener.icn can be 
linked with an Icon program by using the link declaration 2: 

link 7usr/icon/v6/ipl/procs/gener" 
The I PATH environment variable [2] can be used to have the directory containing the translated procedures 
searched automatically. For example, if I PATH is set to /usr/icon/v6/ipl/procs, the link declaration need only be 

link gener 

1. Math Procedures: math 
The following procedures compute standard trigonometric functions. The arguments are in radians. 

sin(x) sine of x 
cos(x) cosine of x 
tan(x) tangent of x 
asin(x) arc sine of x in the range -rc/2 to rc/2 
acos(x) arc cosine of x in the range 0 to n 
atan(x) arc tangent of x in the range -nil to rc/2 
atan2(y,x) arc tangent of x/y in the range -TC to n 

The following procedures convert from degrees to radians and conversely: 
dtor(d) radian equivalent of d 
rtod(r) degree equivalent of r 

The following additional procedures are available: 
sqrt(x) square root of x 
exp(x) exponential function of x 
log(x) natural logarithm of x 
logl 0(x) base-10 logarithm of x 
f loor(x) largest integer not greater than x 
ceil(x) smallest integer nor less than x 

Failure Conditions: asin(x) and acos(x) fail if the absolute value of x is greater than one. sqrt(x), log(x), and 
logl 0(x) fail if x is less than zero. 

2. Bit Operations: bitops 
The following procedures perform operations on characters strings of zeros and ones ("bit strings"). 

and(b1, b2) logical' 'and'' of b1 and b2 
bitstring(i) convert integer i to bit string 
bsum(b1, b2) arithmetic sum of b1 and b2 (used by other procedures) 
decimal(b) convert b to integer 

2In MS-DOS, backslashes can be used in place of slashes in such link declarations, but they must be escaped, as in 

link "\\usr\\icon\\v6\\ipl\\procs\\gener" 

- 1 4 -



Procedures 

exor(b1, b2) * 'exclusive-or'' of b1 and b2 
neg(b) negation of b 
or(b1, b2) logical "or" of b1 and b2 

Note: If i in bitstring(i) is negative, the value produced is the corresponding unsigned 32-bit bit string. 
Bugs: Integer values that exceed those allowable in Icon may produce bogus results or spurious diagnostics. 

3. Radix Conversions: radcon 
The following procedures convert numbers from one radix to another. The letters from a to z are used for "digits" 
greater than 9. All the conversion procedures fail if the conversion cannot be made. 

exbasel 0(i, j) convert base-10 integer i to base j 
inbasel 0(s, i) convert base-i integer s to base 10 
radCOn(s, i, j) convert base-i integer s to base j 

Limitation: The maximum base allowed is 36. 

4. Complex Arithmetic: complex 
The following procedures perform operations on complex numbers. 

complex(r, i) create complex number with real part r and imaginary part i 
cpxadd(x1, x2) add complex numbers x1 and x2 
cpxdiv(x1, x2) divide complex number x1 by complex number x2 
cpxmul(x1, x2) multiply complex number x1 by complex number x2 
cpxsub(x1, x2) subtract complex number x2 from complex number x1 
cpxstr(x) convert complex number x to string representation 
strcpx(s) convert string representation s of complex number to complex number 

5. Collated Strings: collate 
These procedures collate (interleave) respective characters of two strings and decollate such strings by selecting 
every other character of a string, produce a string consisting of interleaved characters of S1 and s2. 

collate(s1, s2) collate the characters of s1 and s2. For example, 
collate("abc", "def") 

produces "adbecf". 
decollate(s, i) produce a string consisting of every other character of s. If i is odd, the odd-numbered char-

acters are selected, while if i is even, the even-numbered characters are selected. 
Diagnostics: Run-time error 208 occurs if the arguments to collate are not of the same size. 

6. Emphasized Text: bold 
These procedures produce text with interspersed characters suitable for printing to produce the effect of boldface 
(by overstriking) and underscoring (using backspaces). 

bo Id (S) bold version of S 
uscore(s) underscored version of s 

- 1 5 -



Procedures 

7. Shuffling: shuffle 
The procedure shuffle(x) shuffles a string or list. In the case that x is a string, a corresponding string with the char-
acters randomly rearranged is produced. In the case that x is a list, the values in the list are randomly rearranged. 

8. Segmented Strings: segment 
The procedure segments, c) generates consecutive substrings of s consisting of characters that respectively do/do 
not occur in c. For example, 

segmentfNot a sentence.", &lcase ++ Sucase) 
generates 

"Not" 
u it 

"a" 
ii ii 

"sentence" 

9. String Utilities: Strutil 
These procedures perform simple operations on strings. 

Compress(s, c) compress consecutive occurrences of characters in C that occur in s 
delete(s, c) delete all occurrences of characters in c that occur in S 
rotate(s, i) rotate S i characters to the left (negative i produces rotation to the right); the default value of 

iis 1 

10. Structure Utilities: structs 
These procedures manipulate trees and acyclic graphs (dags). The structures are represented with lists. See [1]. 

depth(t) compute maximum depth of tree t 
eq(x, y) compare list structures x and y 
ldag(s) construct a dag from the string s 
Itree(s) construct a tree from the string s 
stree(t) construct a string from the tree t 
tcopy(t) copy tree t 
teq(t1, t2) compare trees t1 and t2 
visit(t) visit, in preorder, the nodes of the tree t 

Note: The procedure Idag has a second argument that is used on internal recursive calls; a second argument must 
not be supplied by the user. 

11. Icon Literal Escapes: escape 
The procedure escape(s) produces a string in which Icon quoted literal escape conventions in s are replaced by the 
corresponding characters. For example, escape("\\143\\141\\164") produces the string "cat". 

16 



Procedures 

12. Images of Icon Values: image 
The procedure Image(x) produces a string image of the value x. The value produced is a generalization of the value 
produced by the Icon function image(x), providing detailed information about structures. 

Tags are used to uniquely identify structures. A tag consists of a letter identifying the type followed by an 
integer. The tag letters are L for lists, R for records, S for sets, and T for tables. The first time a structure is encoun-
tered, it is imaged as the tag followed by a colon, followed by a representation of the structure. If the same structure 
is encountered again, only the tag is given. 

An example is 
a := ["x"] 
push (a, a) 
t := table() 
push(a.t) 
t[a] := t 
t["x"] := [] 
t[t] := a 
write(lmage(t)) 

which produces 
T1 :["x"->L1:[], L2:[T1, L2, "x"]->T1, T1->L2] 

Note that a table is represented as a list of entry and assigned values separated by ->. 

13. List Mapping: Imap 
The procedure Imap(a1, a2, a3) maps elements of a1 according to a2 and a3. This procedure is the analog for 
lists of the built-in string-mapping function map(s1, S2, s3). Elements in a1 that are the same as elements in a2 are 
mapped into the corresponding elements of a3. For example, given the lists 

a1 := [1,2,3,4] 
a2 := [4,3,2,1] 
a3 := ["a","b","c","d"] 

then 
Imap(a1,a2,a3) 

changes a1 to 
["dye", "bY'a"] 

Note that the value of a1 is modified. 
Lists that are mapped can have any kinds of elements. The operation 
x === y 

is used to determine if elements x and y are equivalent. 
All cases in Imap are handled as they are in map, except that no defaults are provided for omitted arguments. 

As with map, Imap can be used for transposition as well as substitution. 
Warning: If Imap is called with the same lists a2 and a3 as in the immediately preceding call, the same mapping 
is performed, even if the values in a2 and a3 have been changed. This improves performance, but it may cause 
unexpected effects. 
Comments: It is easy to change Imap to produce a new list instead of modifying a1; this is a good exercise for 
beginning Icon programmers. The "caching" of the mapping table based on a2 and a3 also can be removed easily 
to avoid the potential problem mentioned in the warning above. 

17 



Procedures 

14. Snapshots of Scanning: snapshot 
The procedure snapshotQ writes a snapshot of the state of string scanning, showing the value of &subject and 
&pos. For example, 

"((a+b)-delta)/(c*d))" ? { 
tab(bal('+-/*')) 
snapshot() 
} 

produces 

I I 
| Ssubject = " ( ( a+b ) -de l t a ) / ( c *d ) ) " | 

Note that the bar showing the &pos is positioned under the &posth character (actual positions are between charac-
ters). If &pos is at the end of &subject, the bar is positioned under the quotation mark delimiting the subject. For 
example, 

"abcdefgh" ? (tab(O) & snapshot()) 
produces 

| &subject = "abcdefgh" | 
I I I 

Escape sequences are handled properly. For example, 
"abc\tdef\nghi" ? (tab(uptoC\n')) & snapshot̂ )) 

produces 

I I 
| &subject = "abc\tdef\nghi" | 
I I I 

15. Miscellaneous Generators: gener 
These procedures generate sequences of results. 

hex() sequence of hexadecimal codes for numbers from 0 to 255 
label(s, i) sequence of labels with prefix s starting at i 
OCtalQ sequence of octal codes for numbers from 0 to 255 
Star(s) sequence consisting of the closure of s starting with the empty string and continuing in lexi-

cal order as given in s 

16. Result Sequences: seqimage 
The procedure Seqimage{e, i, j} produces a string image of the result sequence for the expression e. The first i 
results are printed. If i is omitted, there is no limit. If there are more than i results for e, ellipses are provided in the 
image after the first i. If j is specified, at most j results from the end of the sequence are printed after the ellipses. If 
j is omitted, only the first i results are produced. 

- 1 8 -

file:///nghi


Procedures 

For example, the expressions 

Seqimage{1 to 12} 
Seqimage{1 to 12,10} 
Seqimage{1 to 12,6,3} 

produce, respectively, 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...} 
{1, 2, 3, 4, 5, 6 10, 11, 12} 

Warning: If j is not omitted and e has a infinite result sequence, Seqimage does not terminate. 

17. SNOBOL4 Pattern Matching: patterns 
These procedures provide procedural equivalents for most SNOBOL4 patterns and some extensions. See [9-11]. 
Procedures and their pattern equivalents are: 

Any(s) 
Arb() 
Arbno(p) 
Arbx(i) 
Bal() 
Break(s) 
Breakx(s) 
Cat(p1,p2) 
Discard(p) 
Exog(s) 
Find(s) 
Len(i) 
Limit(p, i) 
Locate(p) 
MarbQ 
Notany(s) 
Pos(i) 
Replace(p, s) 
Rpos(i) 
Rtab(i) 
Span(s) 
String(s) 
Succeed() 
Tab(i) 
Xform(f, p) 

ANY(S) 
ARB 
ARBNO(P) 
ARB(I) 
BAL 
BREAK(S) 
BREAKX(S) 
P1 P2 
/P 
\S 
FIND(S) 
LEN(I) 
P \ i 
LOCATE(P) 
longest-first ARB 
NOTANY(S) 
POS(I) 
P = S 
RPOS(I) 
RTAB(I) 
SPAN(S) 
S 
SUCCEED 
TAB(I) 
F(P) 

The following procedures relate to the application and control of pattern matching: 
Apply(s, p) S ? P 

19-



Procedures 

Mode() anchored or unanchored matching (see Anchor and Float) 
Anchor() &ANCHOR = 1 if Mode := Anchor 
Float() &ANCHOR = 0 if Mode := Float 

In addition to the procedures above, the following expressions can be used: 
P1()|p2() P1|P2 
v <- p() P . V (approximate) 
v := p() P $ V (approximate) 
fail FAIL 
=s S (in place of String(s)) 
p1 () || p2() P1 P2 (in place of Cat(p1, p2)) 

Using this system, most SNOBOL4 patterns can be satisfactorily transliterated into Icon procedures and expres-
sions. For example, the pattern 

SPAN("0123456789") $ N "H" LEN(*N) $ LIT 
can be transliterated into 

(n <- Span('0123456789')) || ="H" || 
(lit <- Len(n)) 

Concatenation of components is necessary to preserve the pattern-matching properties of SNOBOL4. See the docu-
ments referenced above for details and limitations. 
Caveats: Simulating SNOBOL4 pattern matching using the procedures above is inefficient. 

18. Defined Control Operations: pdco 
These procedures use co-expressions to used to model the built-in control structures of Icon and also provide new 
ones. See [12]. 

Alt{e1,e2} models e1 | e2 
Colseq {e1, e2,...} produces results of e1, e2,.. . alternately 
Comseq{e1, e2} compares result sequences of e1 and e2 
Cond {e 1, e2,...} models the generalized Lisp conditional 
Every{e1, e2} models every e1 do e2 
Galt{e1, e2,...} models generalized alternation: e1 | e2 | . . . 
Lcond{e1, e2,...} models the Lisp conditional 
Limit {e1, e2} models e1 \ e2 
Ranseq{e1, e2,...} produces results of e1, e2,.. . at random 
Repalt{e} models |e 
Resume{e1, e2, e3} models every e1 \ e2 do e3 
Select {e1, e2} produces results from e1 by position according to e2 

Comments: Because of the handling of the scope of local identifiers in co-expressions, expressions in 
programmer-defined control operations cannot communicate through local identifiers. Some constructions, such as 
break and return, cannot be used in arguments to programmer-defined control operations. 

- 2 0 -



Procedures 

•} 

19. Defined Control Regimes: pdae 
These procedures use co-expressions to model the built-in argument evaluation regime of Icon and also provide new 
ones. See [13]. 

parallel evaluation with last result used for short sequences 
extract results of even-numbered arguments according to odd-numbered values 
models standard Icon "lifo" evaluation 
parallel evaluation terminating on shortest sequence 
left-to-right reversal of lifo evaluation 
parallel evaluation with shorter sequences re-evaluated 
simple evaluation with only success or failure 

Comments: Because of the handling of the scope of local identifiers in co-expressions, expressions in 
programmer-defined argument evaluation regimes cannot communicate through local identifiers. Some construc-
tions, such as break and return, cannot be used in arguments to programmer-defined argument evaluation regimes. 
At most 10 arguments can be used in the invocation of a programmer-defined argument evaluation regime. This 
limit can be increased by modifying Call, a utility procedure that is included. 

Allpar{e1,e2,...} 
Extract {el,e2, 
Lifo{el,e2,...} 
Parallel{e1,e2,...} 
Reverse{e1,e2,...} 
Rotate{e1,e2,...} 
Simple{e1,e2,...} 

• 2 1 -



References 

1. R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs, 
NJ, 1983. 

2. R. E. Griswold, W. H. Mitchell and J. O'Bagy, Version 6 of Icon, The Univ. of Arizona Tech. Rep. 86-10b, 
1986. 

3. R. E. Griswold, Version 6 of Icon for MS-DOS, The Univ. of Arizona Tech. Rep., 1986. 
4. G. M. Townsend, Using Version 6 of Icon Under VMS, The Univ. of Arizona Tech. Rep., 1986. 
5. R. E. Griswold, Programming in Icon; Problems and Solutions from the Icon Newsletter, The Univ. of 

Arizona Tech. Rep. 86-2a, 1986. 
6. C. S. Wetherwell, "Probablistic Languages: A Review and Some Open Questions", Computing Surveys 12,4 

(1980), 362-379. 
7. A. Salomaa, Formal Languages, Academic Press, 1973. 
8. D. B. Anderson and M. R. Sleep, "Uniform Random Generation of Balanced Parenthesis Strings", ACM 

Trans. Prog. Lang, and Systems 2,1 (1980), 122-128. 
9. R. E. Griswold, Pattern Matching in Icon, The Univ. of Arizona Tech. Rep. 80-25,1980. 
10. R. E. Griswold, Models of String Pattern Matching, The Univ. of Arizona Tech. Rep. 81-6,1981. 
11. A. C. Fleck, "Formal Models for String Patterns", in Current Trends in Programming Methodology; Data 

Structuring, vol. IV, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1978,216-240. 
12. R. E. Griswold and M. Novak, "Programmer-Defined Control Operations", Computer J. 26, 2 (May 1983), 

175-183. 
13. M. Novak and R. E. Griswold, Programmer-Defined Argument Evaluation Regimes, The Univ. of Arizona 

Tech. Rep. 82-16,1982. 

- 2 2 


