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The Implementation of Data Structures in Version 5 of Icon 

1. Introduction 
Icon supports a variety of data types, some of which are unusual [1]. There are sophisticated access 

mechanisms for structures, including associative look-up and lists that can grow and shrink. Variables in Icon 
are untyped and structures can be heterogeneous, having elements of different types. For example, an element 
of a list can be a list — even itself. Storage management is automatic. There are no storage declarations; 
objects are created during program execution, space is allocated implicitly as it is needed, and space is 
reclaimed automatically. 

These features of Icon have a profound effect on the way that it is implemented. This report describes the 
implementation of data structures in Icon in some detail, but it does not attempt to justify all design decisions 
or to explain why every given implementation choice is better than an alternative. In fact, some aspects of the 
implementation were affected by earlier work whose traces are no longer evident. 

This report describes data structures as they are implemented in Version 5.9 of Icon [2]; there are some 
implementation differences from earlier versions. The reader should be familiar with Icon, particularly its 
data structures. This report can be read alone or in conjunction with listings of the source code to illuminate 
details. The Icon "tour" [3] is a useful auxiliary reference. Some knowledge of C [4], in which most of Icon is 
written, also may be useful. 

2. Descriptors 
All values and variables in Icon are represented by descriptors. Descriptors are fixed in size for any given 

implementation. A descriptor either may contain a value (as in the case of an Icon integer) or it may contain a 
pointer to an object that contains the value (as in the case of an Icon real number). 

The layout of data within a descriptor depends somewhat on the kind of value or variable that it 
represents. A descriptor normally consists of two words (C ints): 

t-word 
v-word 

Descriptor Layout 

The t-word (for "type") typically contains a type code and flags that indicate properties of the descriptor. The 
v-word (for "value") typically contains a value or a pointer to data representing the value. The dotted line 
between the two words of a descriptor is provided for readability and does not represent any real demarcation 
in memory. 

There are 11 source-language data types in Icon as well as records (which collectively constitute a single 
type for implementation purposes). There are also a number of internal data types, such as table elements, 
that are on a par with source-language data types, but which are not directly accessible from a source-
language program. 

There are two forms of variables, ordinary and trapped. An ordinary variable points to a descriptor that 
contains the corresponding value. A trapped variable is used in situations in which processing the variable 
requires some special action, such as in assignment to a table reference or to &pos. Some trapped variables 
point to blocks of data that contain information that is needed when the variable is accessed. Other trapped 
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variables simply contain a code that indicates the action that is required". See Sections 4, 5, and 10. 
The descriptors for all of these cases fall into six categories: 

the null value 
strings 
integers 
other values 
ordinary variables 
trapped variables 

The null value has a unique representation in which both the t-word and v-word are zero: 

The Descriptor for the Null Value 

For strings, the t-word contains the length of the string (the number of characters in it) and the v-word is a 
pointer to the first character of the string: 

length 
—• first character 

A Descriptor for a String 

In order to make string descriptors more intelligible in the diagrams that follow, a pointer to a string is fol-
lowed by the string in quotation marks rather than an address. For example, the string descriptor for "hello" 
is depicted as 

-•"hello" 

A Descriptor for the String "hello" 

Since the empty string has a length of zero, its v-word is always nonzero to avoid ambiguity with the null 
value. The actual value of the v-word of an empty string has no special significance. The empty string is indi-
cated as follows: 

An Empty String 

All descriptors except those for the null value and strings contain flags in the high-order bits of their t-
words. In subsequent diagrams, these flags are represented symbolically as follows: 

n descriptor is not the null value or a string 
p v-word of the descriptor contains a pointer to nonstring data 
v descriptor is a variable 
t descriptor is a trapped variable 
m descriptor is marked (used only during garbage collection) 

Descriptors for values other than the null value and strings, as well as those for trapped variables, also contain 
a type code in the low-order bits of the t-word. There are 20 type codes represented by small integers. The 
actual values of the type codes are not important; they are represented symbolically as shown in the following 
list: 
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descriptor type 

integer 
long integer 
real number 
cset 
file 
procedure 
list 
set 
table 
co-expression 
record 
list element 
set element 
table element 
co-expression block 
substring trapped variable 
table element trapped variable 
&pos trapped variable 
&random trapped variable 
&trace trapped variable 

type cod 

integer 
long 
real 
cset 
file 
proc 
Iheader 
sheader 
theader 
estack 
record 
lelem 
selem 
telem 
eblock 
tvsubs 
tvtbl 
tvpos 
tvrand 
tvtrac 

For example, the Icon integer 13570 is represented by 

integer 
13570 

Descriptor for the Integer 13570 

Note that the n flag distinguishes this descriptor from a string whose first character might be at the address 
13570 and whose length might have the same value as the type code for integer. 

On the other hand, a list is represented by 

np Iheader 
-• structure for the list 

Descriptor for a List 

where the v-word points to the structure for the list. The p flag is used by the garbage collector. 

3. Blocks 
Most kinds of Icon data are represented by blocks of words. These blocks have a comparatively uniform 

structure that is designed to facilitate their processing during garbage collection. 
The first word of every block contains a type code — the same code that is in the t-word of a descriptor 

that points to the block. Some blocks are fixed in size for all values of a given type. For example, all Icon 
values of type file point to blocks of the same size. For example, as a result of 

in := open("log.dat") 
the value of in is 

These are internal data types. 
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np file 
file 

-• UNIX file descriptor 
file status 

— • "log.dat" 

The Value of in 

The string name of the file is used in tracing and diagnostic operations. Files are discussed in more detail in 
Section 12. 

Blocks of some other types, such as record blocks, vary in size from value to value, but any one block is 
fixed in size and never grows or shrinks. If the type itself does not determine the size of the block, the second 
word in the block contains the size (in bytes). In the diagrams that follow, the sizes of blocks are given for 32-
bit computers such as the VAX. For example, given the record declaration 

record complex(r,i) 

and 

j := complex(1,3) 

the value of j is: 

np record 
record 

28 

n integer 
1 

n integer 
3 

type 
size ( 

• record constructor 

A Record with Two Fields 

The record constructor contains information that is needed to resolve field references. See Section 13. 
On the other hand, with the declaration 

record term(value, code, count) 

and 

word := term("chair", "noun", 4) 

the value of word is: 

np record 
record 

36 

n integer 
4 

type code 
size of block 

• record constructor 

-•"chair" 

- •noun 

A Record with Three Fields 

As illustrated by this example, blocks may contain descriptors as well as non-descriptor data. Non-
descriptor data comes first in the block, followed by any descriptors, as illustrated by the preceding figure. The 
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location of the first descriptor in a block is constant for all blocks of a given type, which facilitates garbage 
collection. 

Some blocks, such as those for the standard input and output files, are compiled as part of the Icon run-
time system. Other blocks, such as those for the procedures declared in a program, are created when the pro-
gram is translated, linked, and loaded into memory prior to execution. Such blocks are located in regions of 
memory that are static and they are not moved during program execution. Most blocks, such as those pro-
duced during execution by the creation of lists and other structures, are dynamically allocated in a "heap" 
region. Blocks in the heap region may be moved (relocated) during garbage collection. 

All pointers to blocks are in the v-words of descriptors, since descriptors contain the information needed 
to identify blocks (the p flag, the type code, and the address of the block). If a block in the heap is moved as a 
consequence of garbage collection, all pointers to it are changed accordingly. 

4. Variables 
Variables are represented by descriptors, just as values are. Variables for identifiers point to descriptors 

for the corresponding values. Ordinary variables always point to descriptors for values, never to other vari-
ables. 

The values of local identifiers are kept on the stack, while the Values of global and static identifiers are 
located at fixed places in memory. Variables that point to the values of identifiers are created on the stack by 
icode instructions [3] that correspond to the use of the identifiers in the program. 

A variable that references a value in a data structure points directly to the descriptor for the value. The 
low-order portion of the t-word for such a variable contains the offset, in words, of the value descriptor from 
the top of the block in which the value is contained. This offset is used by the garbage collector. The use of 
words, rather than bytes, allows larger offsets. For example, the variable word.count for the record given in 
the preceding section is: 

• record constructor 

••"chair" 

• "noun 

A Field Reference 

Unlike an ordinary variable, a trapped variable does not point to a descriptor for its value, but instead 
either (1) points to a block that contains information that is necessary to dereference or assign to the variable, 
or (2) indicates a computation that must be performed to dereference or assign to the variable. 

The first kind of trapped variable is used for substring and table references, which are described in Sections 
5 and 10. The keyword &pos is an example of the second kind of trapped variable and is represented by 

nv 7 

record 
36 

5 

4 

n integer 
4 

ntv tvpos 
-• value of &pos 

The Trapped Variable for &pos 

The type code tvpos determines the computation to be performed. If &pos is dereferenced, as in 

write (&pos) 
the current position in the &subject, which is stored in a fixed location in the run-time system, is produced. 
On the other hand, in 
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&pos := expr 
the value of expr is stored at that location. Note, however, that this requires type checking and possible type 
conversion, since the value of expr may not be an integer. This is why an ordinary variable cannot be used for 
&pos. 

5. Strings 
Icon strings, unlike C strings, are not null-terminated and may contain any of the 256 characters in the 

Icon character set. The characters of Icon strings, like C strings, are in consecutive locations (bytes) in 
memory. 

As described earlier, an Icon string is represented by a descriptor that contains its length and the address of 
its first character. This address is a byte address and may not be at a word boundary. Such descriptors are 
called string qualifiers or simply qualifiers. The string "the" is represented by the qualifier 

-•"the" 

The Qualifier for "the" 

The pointer to "the" is just a notational convenience. A more accurate representation is 

. t h e . 

The Qualifier for "the" 

The actual value of the v-word might be 569a (hexadecimal), where the character t is at location 569a, the 
character h is at location 569b, and the character e is at location 569c. 

String qualifiers are used to represent all Icon-style strings (as opposed to C-style strings that are used in 
the C computations). Because a qualifier delimits a string only by the address of its first character and its 
length, Icon strings can overlap or be contained within other Icon strings. Note that the computation of the 
length of an Icon string is simple and does not require examination of the characters in the string. 

Like blocks, some strings are compiled into the run-time system and others, such as strings that appear as 
literals in a program, are loaded into memory along with the program. During program execution, Icon 
strings may be stored in work areas (usually referred to as "buffers"), but most newly created strings are allo-
cated in a common string region. As source-language operations construct new strings, their characters are 
appended to the end of those already in the string region. The amount of space allocated in the string region 
typically increases during program execution until the region is full, in which point it is compacted by garbage 
collection, squeezing out characters that are no longer needed. 

5.1 String Construction 
Some operations that produce strings require the allocation of new strings, while other operations just pro-

duce new qualifiers. For example, 
s := "ab" || "cdef" 

allocates a string and produces a qualifier for it: 
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... a b c d e f 

The Qualifier for a Newly Allocated String 

This qualifier then becomes the value of S. The strings "ab" and "cdef" are literals and hence are loaded in 
with the program, instead of being in the string region. 

On the other hand, 

s[2:5] 

does not allocate a string, but only produces a qualifier that points to a substring of S: 

s[2:5] 

7> 
abco-ef 

A Substring 

Copies of them are made in the string region when the concatenation above is performed. 
Operations such as concatenation allocate new strings and add them to the end of the current characters in 

the string region. At any time, the string region contains a sequence of consecutive characters into which vari-
ous qualifiers point. In the case of a concatenation such as 

81 || S2 
the string values of s1 and s2 are appended to the end of the existing string in the string region. One optimiza-
tion is performed: In case s1 is the last string in the string region, s2 is simply appended to the end of the string 
region. Thus operations of the form 

S := S || expr 

perform less allocation than operations of the form 

S := expr 11 s 

Except for this optimization, no string construction operation attempts to use another instance of a string 
that may occur somewhere else in the string region. Thus 

s1 := "ab" 
s2 := "a" I 

| "c" 
"be" 

produce two distinct strings: 

s1 

s2 

... abcabc 

An Example of Duplicate Allocation 
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5.2 Substrings 
Assignment to a subscripted string, as in 

s1[i] := S2 
does not, in general, change the ith character of s i to s2. Instead, it is equivalent to the following concatena-
tion: 

s1 := s1[1:i] || s2 || s1[i + 1:0] 

When s1 [i] is evaluated, the context (dereferencing or assignment) in which the result will be used may not 
be known. For example, if a procedure p contains the expression 

return s[i] 
and s is a global identifier, the use of the subscripted string depends on the context of the procedure invoca-
tion, which might be 

write (p()) 

or 
P() := "" 

In order to handle such situations, when a string-valued variable is subscripted, a substring trapped variable is 
produced. For example, if 

s := "abcdef" 
the result of evaluating s[2:5] is a substring trapped variable that has the form 

ntv tvsubs 

nv 

nv 

tvsubs 
3 length 

offset 

-•"abcdef" 

The Substring Trapped Variable Produced by s[2:5] 

The length and offset of the substring provide the necessary information either to produce a qualifier for the 
substring in the case of dereferencing, or to construct a new string in the case of assignment. Note that the 
string itself is pointed to via a variable, since if an assignment is made, it is necessary to change the value of the 
variable that is subscripted. 

After an assignment such as 

s[2:5] := "x" 

the situation is: 
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ntv tvsubs 

s 

tvsubs 
1 
2 

nv 

nv 

length 
offset 

i 

4 
*"axef" 

The Substring Trapped Variable After Assignment 

Note that the length of the subscripted portion of the string has be changed to correspond to the length of the 
string assigned to it. This reflects the fact that subscripting identifies the portions of the string before and after 
the subscripted portion ("a" and "ef", in this case). In the case of a multiple assignment to a subscripted 
string, only the original subscripted portion is changed. Thus, in 

(s[2:5] := "x") := "yyyyy" 

the final value of y is "ayyyyyef". 

6. Numeric Types 
Icon integers may be as large as C longs. On computers for which C ints are the same size as C longs, 

integers are contained in descriptors as illustrated by the diagrams above. On computers for which C ints are 
smaller than C longs, Icon integers that do not fit into C ints are contained in blocks that are pointed to by 
descriptors. For example, on the PDP-11 the integer 1000000 is represented by 

np long 
long 

1000000 -

The Integer 1000000 on the PDP-11 

Icon real numbers are represented by C double-precision/7oar.s (64 bits) and are contained in blocks. For 
example, the real number 2.0 is represented by 

np real 
real 

2.0 -

The Real Number 2.0 

Thus a real number block is 5 words (10 bytes) on a 16-bit computer and 3 words (12 bytes) on a 32-bit com-
puter. 

7. Csets 
Since Icon uses 8-bit characters, regardless of the computer on which it is is implemented, there are 256 dif-

ferent characters that can occur in csets. A cset block consists of a header word containing the cset type code 
followed by 256 bits, each of which represents the presence or absence of a character in the cset. Thus a cset 
block, including the heading type word, is 17 words (34 bytes) long on a 16-bit computer and 9 words (36 
bytes) long on a 32-bit computer. 
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A bit is 1 if the corresponding character is in the cset and 0 otherwise. The first 128 bits correspond to the 
ASCII character set, as illustrated by the value of &ascii: 

np cset 
cset 

l i i i i im i i i i i i i i i i i i i i i i i i i i i i i 
l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 

l i i i i i m m m i m i i i m m i i i i 
l i i i i i n i im im im i i i i im i i i 
30000000000000000000000000000000 

}0000()00()0()0()0000000000000000000 

[WOfWWXXKXXWOOOOOOOOOOOOOOOOOOO 

X)00000()()O000()0()()O()0()00000000()00 

The Value of &ascii 

Because of the way that memory is displayed in these diagrams, the rightmost bit in each word has the 
lowest address. Thus, the cset block for the first character, ' \00 \ is 

cset 
30000000000000000000000000000001 

XKWOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

xwooooooooooooooooooooooooooooo 
XXXX)()0()0()00()00()0()00000000000000 

XXX)000000()00()00()000000()0()000()00 

)0(X)()00()000()0()0()00()()00()0()0()00000 

xwooooooooooooooooooooooooooooo 
30000000000000000000000000000000 

The Cset Block for '\00' 

Similarly, the cset block for the last character, '\xff, is 

cset 
30(X)0(>0()00()0()0000(>00<)000000000(>0 

XXWOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

XX)OO()OOOO()OOOO()OOOO()O()O()O()O()OO0 

)000()0()0(K)0()000(X)000()00000000000 

)(X)0()00000()0()()0(X)0()()00000000()000 

XXXJOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

X>0()0000000000(>000<)0()000000<)0<)00 

10000000000000000000000000000000 

The Cset Block for \xff' 

Another example is the cset for 'aeiou': 
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cset 
oooooooooooooooooooooooooooooooo 
30000000000000000000000000000000 

30000000000000000000000000000000 

OOOOOOOOOO1000001OOOOOI000I00010 
O()()0000000000()00000()0000()0000000 

30000000000000000000000000000000 

30000000000000000000000000000000 

30000000000000000000000000000000 

The Cset Block for 'aeiou' 

8. Lists 
Lists can be accessed by position, but they also can grow and shrink at their ends as the result of stack and 

queue operations. The structures used for lists therefore are more complicated than those that would be 
needed to support only positional access. 

A list consists of a list header block, which contains the usual type word, the current size of the list (the 
number of elements in it), and descriptors that point to the first and last blocks on a doubly-linked chain of list 
element blocks that contain the actual list elements. 

When a list is created, either by 
list(i ,expr) 

or by 
\exprvexpr2, ..., exprj 

there is only one list element block. Other list element blocks may be added to the chain as the result of pushes 
or puts. 

A list element block contains the usual type word, the size of the block (in bytes), three words used to 
determine the locations of elements in the list element block, and descriptors that point to the next and previ-
ous list element blocks, if any. (The null descriptor indicates the absence of a pointer.) Following this data are 
slots for elements (slots always contain valid descriptors, even if they are not used to hold list elements). The 
number of slots in a list element block is at least eight (an ad hoc implementation constant). This allows some 
expansion room for adding elements to lists, such as the empty list, that are small initially. 

The data structures for a list are illustrated by the result of evaluating 
a := [7,8,9] 

which produces the following structures: 
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np Iheader 
Iheader 

3 
np 

np 

lelem 

lelem 

number of 

^ 

A 

r 
lelem 

100 
8 
0 
3 
0 
0 
0 
0 

n integer 
7 

n integer 
8 

n integer 
9 
0 
0 
0 
0 
0 
6 
0 
0 
0 
0 

size of block 
number of slots in block 
first slot used 
number of slots used 
pointer to previous list element block 

pointer to next list element block 

slotO 

slot 1 

slot 2 

slot 3 

slot 4 

slot 5 

slot 6 

slot 7 

Data Structures for the List [7, 8, 9] 

Note that there is only one list element block and that the slot indexing is zero-based. Unused slots contain 
null values that are logically inaccessible. 

8.1 Storage of Elements in List Blocks 
Elements in a list element block are stored as a circular queue. If an element is added to the end of a list, as 

in 

put(a, 10) 

the result is equivalent to 

a := [7,8, 9,10] 
The value is added to the "end" of the last list element block (assuming there is an unused slot). The result is: 
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(header 

np 

np 

lelem 

lelem 

number of elements currently in the list 

lelem 
100 

8 
0 
4 
0 
0 
0 
0 

n integer 
7 

n integer 
8 

n integer 
9 

n integer 
10 
0 
0 
0 
0 
0 
0 
0 
0 

size of block 
number of slots in block 
first slot used 
number of slots used 
pointer to previous list element block 

pointer to next list element block 

slotO 

slot 1 

slot 2 

slot 3 

slot 4 

slot 5 

slot 6 

slot 7 

The List Element Block After a put 

Note that the increase in the number of elements in the list is reflected in the list header block. 
If an element is added to the beginning of a list, as in 

push (a, 6) 

the result is equivalent to 

a := [6,7,8,9,10] 
The new element is put at the "beginning" of the first list element block (assuming there is an unused slot). For 
the case above, the result is: 
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Iheader 
5 

np 

np 

lelem 

lelem 

number of elemt 

J 

:nts currently in th 

lelem 
100 

8 
7 
5 
0 
0 
0 
0 

n integer 
7 

n integer 
8 

n integer 
9 

n integer 
10 
0 
0 
0 
0 
0 
0 

n integer 
6 

size of block 
number of slots in block 
first slot used . . 
number of slots used 
pointer to previous list element block 

pointer to next list element block 

slotO 

slot 1 

slot 2 

slot 3 

slot 4 

slot 5 

slot 6 

slot 7 

The List Element Block After a push 

Note that the "beginning", which is before the first physical slot in the list element block, is the last physical 
slot. The locations of elements that are in a list element block are determined by the three integers at the head 
of the list element block — "removal" of an element by a pop, get, or pull does not shorten the list element 
block or overwrite the element — the element merely becomes inaccessible1. 

8.2 Adding and Removing List Blocks 
If an element is added to a list and no more slots are available in the appropriate list element block, a new 

list element block (with eight slots) is allocated and linked in. For example. 

every push(a,5 to 1 by -1) 

is equivalent to 

a := [1,2, 3, 4, 5, 6, 7, 8, 9,10] 

The result is: 

'Pathological source-language code can access such elements, at least transiently. 
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np 

np 

Iheader 
10 

lelem 

lelem 

lelem 
100 

np lelem 

integer 
i* 

integer 
2 

size of block 
number of slots in block 
first slot used 
number of slots used 
pointer to previous list element block 

pointer to next list element block 

slotO 

slot 1 

slot 2 

slot 3 

slot 4 

slot 5 

slot 6 

slot 7 

lelem 
100 

8 
4 
8 

np lelem 

0 
0 

n integer 
7 

n integer 
8 

n integer 
9 

n integer 
10 

n integer 
3 

n integer 
4 

n integer 
5 

n integer 
6 

size of block 
number of slots in block 
first slot used 
number of slots used 
pointer to previous list element block 

pointer to next list element block 

slotO 

slot 1 

slot 2 

slot 3 

slot 4 

slot 5 

slot 6 

slot 7 

The Addition of a List Element Block 

As elements are removed from a list by get (which is synonymous with pop) or pull, the indices in the 
appropriate list element block are adjusted. Thus if two elements are popped, as in 

pop(a); pop(a) 
the result is equivalent to 
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a := [ 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 ] 

and the structures become: 

Iheader 

np lelem 

np lelem 

np 

I 

np 

lelem 
100 

lelem 

integer r 
integer 

2 

size of block 
number of slots in block 
first slot used 
number of slots used 
pointer to previous list element block 

pointer to next list element block 

slotO 

slot 1 

slot 2 

slot 3 

slot 4 

slot 5 

slot 6 

slot 7 

lelem 
100 

8 
lelem 

integer 
7 

n integer 
8 

integer 
9 

integer 
i'o 

integer 
3 

integer 
4 

n integer 
5 

n integer 
6 

size of block 
number of slots in block 
first slot used 
number of slots used 
pointer to previous list element block 

pointer to next list element block 

slotO 

slot 1 

slot 2 

slot 3 

slot 4 

slot 5 

slot 6 

slot 7 

The Result of Removing Elements from a List Element Block 
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Note that the second list element block is still linked in the chain, even though it no longer contains any 
elements that are logically accessible. A list element block is not removed from the chain when it becomes 
empty, but only when an element is removed from a list that already has an empty list element block. Thus 
there is always at least one list element block on the chain, even if the list is empty. Aside from simplifying the 
access to list element blocks from the list header block, this avoids repeated allocation in the case that 
pop/ push pairs occur at the boundary of two list element blocks. 

Continuing the example above, 

pop(a) 
which is equivalent to 

a := [4, 5, 6,7, 8, 9,10] 

causes the empty list element block to be removed: 

Iheader 
7 

np 

np 

lelem 

lelem 

number of elemi 

) 

:nts currently in th 

lelem 
100 

8 
5 
7 
0 
0 
0 
0 

n integer 
7 

n integer 
8 

n integer 
9 

n integer 
10 

n integer 
3 

n integer 
4 

n integer 
5 

n integer 
6 

size of block 
number of slots in block 
first slot used 
number of slots used 
pointer to previous list element block 

pointer to next list element block 

slotO 

slot 1 

slot 2 

slot 3 

slot 4 

slot 5 

slot 6 

slot 7 

The Removal of an Empty List Element Block 

Note that the value 3 is still physically in the list element block, although it is logically inaccessible. 

8.3 Positional References to Lists 
A positional reference of the form a[i] requires locating the correct list element block (note that out-of-

range references can be determined by examining the list header block). If the list has a number of list element 
blocks, this involves linking through the list element blocks, keeping track of the count of elements in each 
block until the appropriate one is reached. Nonpositive specifications are converted to positive ones before 
accessing the chain of list element blocks. 

The result of evaluating a[i] is a variable that points to the appropriate slot in the list. For the preceding 
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example, a[3] produces a variable that points to the descriptor for the value 6 in [4, 5, 6, 7, 8, 9, 10]. 

nv 23 

lelem 
100 

8 
5 
7 
0 
0 
0 
0 

n integer 
7 

n integer 
8 

n integer 
9 

n integer 
10 

n integer 
3 

n integer 
4 

n integer 
5 

n integer 
6 

size of block 
number of slots in block 
first slot used 
number of slots used 
pointer to previous list element block 

pointer to next list element block 

slotO 

slot 1 

slot 2 

slot 3 

slot 4 

slot 5 

slot 6 
af3] ............................................ L _ 

slot 7 
6 

Referencing a List Element 

Note the offset of 23 words in the t-word of the variable. 

8.4 Other List Construction Operations 
The other sources of lists are list sectioning (a[i:j] and its variants), list concatenation, copy(a), sort(a), 

and sort(t). 
In the case of a list section, a new list is constructed and the specified elements are copied into it. The new 

list has only one list element block, regardless of the number of list element blocks in the list in which the sec-
tion is specified. As with explicit list creation, at least eight slots are provided. The function copy(a) is simi-
lar — one list element block is created and all the elements from a are copied into it. 

In list concatenation, two list element blocks are created, one for each of the lists specified in the concate-
nation (regardless of their list element block structure). These two list element blocks are linked together after 
the elements are copied into them. The use of two list element blocks rather than a single large one is primarily 
a matter of convenience. 

The function sort(a) is very similar to copy (a), but sort(t) is more interesting, since a list of two-element 
lists is produced. These two-element lists have list element blocks with only two slots. This is the only case in 
which list element blocks have less than eight elements. 

9. Sets 
Since sets can contain an arbitrary number of members of any type, a hash lookup scheme is used to pro-

vide an efficient way of locating set members. For every set there is a set header block that contains a word for 
the number of members in the set and slots that serve as heads for (possibly empty) linked lists ("buckets") of 
set element blocks. The number of slots is an implementation parameter. There are 37 slots in table header 
blocks on the VAX, but only 13 slots on the PDP-11, where the address space is more limited. 

The structure for an empty set, produced by 
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s := set([]) 
is: 

np sheader 
sheader 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

number of members in the set 
slotO 

slot 1 

slot 2 

slot 3 

slot 4 

slot 5 

slot 6 

slot 7 

slot 8 

An Empty Set 

Each member of a set is contained in a separate set element block. When a value is a looked up in a set (for 
example, to add a new member), a hash number is computed from this value. The hash number modulo the 
number of slots is used to select a slot. 

Each set element block contains a descriptor for its value, the corresponding hash number, and a pointer 
to the next set element block, if any, on the list. For example, the set element block for the integer 37 is: 

selem 
37 

integer 
37 

hash number 
member value 

pointer to next set element block 

The Set Element Block for the Integer 37 

As illustrated by this figure, the hash number for an integer is just the value of the integer. This member goes 
in slot 0 on the VAX, since its remainder on division by the number of slots is zero. See Section 11 for a gen-
eral discussion of hash computations. 

The structures for the set 

s := set([37, 0]) 

are: 
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sheader 
2 

np selem 

0 
6 
0 
0 
0 
0 
0 
6 
0 
0 
0 
0 
0 
6 
0 
0 

; 

selem 
0 

n integer 
0 

np selem 
selem 

37 
n integer 

37 
0 
0 

A Set with Two Members 

This example was chosen for illustration, since both 0 and 37 go in slot 0. 
In searching the list, the hash number of the look-up value is compared with the hash numbers in the set 

element blocks. If a match is found, the value in the set element block may or may not be the same as the 
value being looked up (collisions in the hash computation are inevitable). Thus if the hash numbers are the 
same, it is necessary to compare the values. The comparison that is used corresponds to the source-language 
operation 

To improve the performance of the look-up process, the set elements in each linked list are ordered by their 
hash numbers. When a chain of set element blocks is examined, the search stops if a hash number of an ele-
ment on the chain is greater than the hash number of the value being looked up. 

If the value is not found and the lookup is being performed to insert a new member, a set element block for 
the new member is created and linked into the list. The word in the set header block that contains the number 
of members is incremented to reflect the insertion. For example, 

insert(s, -37) 
inserts a set element block for -37 at the head of the list in slot 0, since its hash value is -37. 

10. Tables 
Tables are implemented in a fashion similar to sets, with a header block containing slots for elements 

ordered by hash numbers. A table header block contains an extra descriptor for the default assigned value. 
An empty table with the default entry value 0, produced by 

t := table(O) 
illustrates the structure of the table header block: 
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np theader 
theader 

0 
n integer 

0 
0 
0 
0 
0 
0 
6 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

number of elements in the table 
default assigned value 

slotO 

slot 1 

slot 2 

slot 3 

slot 4 

slot 5 

slot 6 

slot 7 

slot 8 

An Empty Table 

Table lookup is more complicated that set lookup, since table elements contain both an entry value and an 
assigned value and a new table element can be created by assignment to a table reference with an entry value 
that is not in the table. 

The structure of a table element block is illustrated by the one produced for an assignment such as 

t[37] := 1 

telem 
37 
0 
0 

n integer 
37 

n integer 
1 

hash number 
pointer to next table element block 

entry value 

assigned value 

The Structure of a Table Element Block 

In the case of a table reference such as 

t[x] 
the hash number for the entry value x is used to select a slot and the corresponding list is searched for a table 
element block that contains the same entry value. As for sets, comparison is first made using hash numbers; 
values are compared only if their hash numbers are the same. 

If a table element block with a matching entry value is found, a variable that points to the corresponding 
assigned value is produced. For example, if 37 is in t as illustrated above, a subsequent reference 

t[37] 
produces: 
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nv 7 
telem 

37 
0 
0 

n integer 
37 

n integer 
1 

Result of a Table Reference 

If this variable is dereferenced, as in 

write(t[37]) 

the value 1 is written. On the other hand, if an assignment is made to this variable, as in 

t[37] +:= 1 

the assigned value in the table element block is changed: 

telem 
37 
0 
0 

n integer 
37 

n integer 
2 

Result of Assignment to a Table Reference 

If a table element with a matching entry value is not found, a table element trapped variable is created. 
Suppose, for example, that the entry value 36 is not in the table t. Then 

t[36] 
produces the following result: 

ntv tvtbl 
tvtbl 

36 
np 

n 

theader 

integer 
36 

hash number 

— • table header block for t 
entry value 

reserved for subsequent use 

A Table Element Trapped Variable 

The last descriptor in the table element trapped variable block is reserved for subsequent use, as described 
below. 

The use of this trapped variable depends on the context in which the reference that produced it is used. If 
it is dereferenced, as in 

write(t[36]) 
the default assigned value, 0, which is in the table header block for X, is produced. It is possible, however, for 
elements to be inserted in a table between the time the table element trapped variable is created and the time it 
is dereferenced. An example is 
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write(t[36], t[36] := 2) 
Since functions do not dereference their arguments until all the arguments have been evaluated, the result of 
dereferencing the first argument of write should be 2, not 0. In order to handle such cases, when a table ele-
ment trapped variable is dereferenced, its list must be searched again to determine whether to return the 
assigned value of a newly inserted element or to return the default value. 

If an assignment is made to the table reference, as in 

t[36] +:= 1 

the table element trapped variable is converted to a table element and inserted in the appropriate place in the 
table. Note that the structures of table element blocks and table element trapped variable blocks are the same, 
allowing this conversion without allocating a new table element block. 

It is necessary to search the list for its slot again to determine the place to insert it. As in the case of dere-
ferencing, elements may have been inserted in the table between the time that the table element trapped vari-
able is created and the time that a value is assigned to it. 

Normally, no matching entry is found and the table element trapped variable, transformed into a table ele-
ment block, is inserted with the new assigned value. If a matching entry is found, its assigned value is simply 
changed. 

Note that reference to a value that is not in a table requires only one computation of the hash value, but 
two lookups in the list of table element blocks for its slot. 

11. Hash Computations 
The purpose of using hash numbers is to reduce the time necessary to determine if a value is in a set or 

table. Storing the hash numbers in element blocks speeds the search, since comparison of hash numbers 
avoids the more time-consuming comparison of values in most cases. 

The computation of hash numbers is an interesting problem, since sets and tables can contain values of any 
type. As shown above, the computation of the hash number for an integer is trivial. In the case of strings, the 
hash number is determined by adding the numerical values of the characters of the string, up to a maximum of 
10. The length of the string is added to the result. For csets, the hash number is the exclusive-or of the words 
containing the bits for the cset. 

Structures such as lists and records pose a conceptual problem, since the hash number computation for a 
value must produce the same number regardless of when the computation is made, and hence must be based 
on some unchangeable attribute of the value. However, the elements in a list may change, as well as its size. 
Even the location of a list (the address of its list header block) may change because of garbage collection [3]. In 
fact, the only unchangeable attribute of a list is its type, I header. The situation is the same for sets and tables. 
In these cases, the types are used as hash numbers. This differentiates lists, sets, and tables, but all values of a 
given structure type have the same hash number. For example, all lists go into the same slot and their elements 
all have the same hash number. 

Consequently, lookup for structure types is linear. Fortunately, few programs construct sets or tables that 
contain a large number of elements that are structures of the same type. For such situations, better perfor-
mance could be obtained if there were a word for a hash number (such as the time of creation) in each struc-
ture header block. This would increase the size of every structure, however. 

12. Files 
A value of type file in Icon points to a block that contains the UNIX* file descriptor, a status word, and the 

string name of the file. The file status values are 

'UNIX is a trademark of AT&T Bell Laboratories. 
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0 
1 
2 
4 
8 

16 

closed 
open for reading 
open for writing 
open to create 
open to append 
open as a pipe 

For example, the value of &input is 

np file 
file 

1 
6 

files 

The Value of &input 

while the value of &output is 

The Value of &output 

Another example is 

out := open("log", "a") 

for which the value of out is 

#• UNIX file descriptor 

*"&input ' 

np file 
file 

2 
7 

files 
* UNIX file descriptor 

*• "&output" 

np file 
file 

10 
3 

files 
¥• UNIX file descriptor 

* " l o g ' 

The Value of out 

Note that the file status is 10, corresponding to being open for writing and appending. 

Closing a file, as in 

close(out) 
merely changes its file status: 
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file 
-• UNIX file descriptor 

file status 

•"log' 

A Closed File 

13. Procedures 
There are three kinds of procedures in Icon: declared procedures, built-in functions, and record construc-

tors. All are source-language values. The blocks for the three kinds of procedures are similar, differing only 
in detail. 

Declared Procedures 
For declared procedures, the procedure block contains the usual type and block size words, followed by 

five words that characterize the procedure: 

address for the procedure in the interpretable program (icode) 
the number of arguments (formal parameters) in the procedure 
the number of dynamic local identifiers in the procedure 
the number of static local identifiers in the procedure 
the index of the first static local identifier in the procedure 

The remainder of the procedure block contains descriptors: first the string name of the procedure and then the 
string names of the arguments, dynamic local identifiers, and static local identifiers, in that order. The pro-
cedure name is needed for tracing. The function display(f, i) uses the index of the first static local identifier, 
the procedure name, and the names of the local identifiers. 

Descriptors for the values of arguments and dynamic local identifiers are allocated on the stack when a 
procedure is called. The values of static local identifiers for all procedures are contained in a single array at a 
fixed location in memory. 

For example, the procedure declaration 

procedure p(a1,a2) 
local i 
static base, index 

end 
has the following procedure block: 

25-



proc 
76 size of block 

• entry point of the procedure in the icode 
number of arguments 
number of dynamic local identifiers 
number of static local identifiers 
index of first static local identifier 

-*"p' 

- • "a l " 

-• "a2' 

•*"!' 

-• "base" 

-•"index" 

A Procedure Block 

The 0 value for the index in the static identifier region indicates that base is the first static local identifier in 
the program (the indices of static identifiers are zero-based). 

Built-in Functions 
Functions are distinguished from declared procedures by the value -1 in the word that otherwise contains 

the number of dynamic local identifiers. An example is 

proc 
36 

-1 

size of block 
— • entry point of the function in the run-time system 
number of arguments 
built-in function indicator 

-•"repl" 

The Procedure Block for the Function repl 

The entry point refers to the corresponding C function in the run-time system. Note that there are no argu-
ment names. 

Some functions, such as write, allow an arbitrary number of arguments. This is indicated by the value -1 
in place of the number of arguments: 

proc 
36 size of block 

• entry point of the function in the run-time system 
indicator of a variable number of arguments 
built-in function indicator 

-• "write" 

The Procedure Block for the Function write 
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Record Constructors 
A record declaration produces a record constructor, which is analogous to a built-in function. For exam-

ple, 

record term(value, code, count) 
produces a record constructor term that creates records of type term, as in 

x := term ("noun", 5,0) 

Record constructors are distinguished from declared procedures and built-in functions by the value -2 in 
place of the number of dynamic local identifiers. The entry point refers to the C function that constructs 
record blocks. Each record declaration is distinguished by a unique record identification number. This 
number appears in place of the number of static local identifiers. For example, if the first record declaration in 
a program is 

record term(value, code, count) 
then its record identification number is 1 and the procedure block for its record constructor is: 

proc 
36 size of block 

• entry point for record construction in the run-time system 
number of arguments 
record constructor indicator 
record identification number 

-•"term' 

The Procedure Block for the Record Constructor term 

The record identification number could be used to distinguish records of different types for the purpose of 
hashing, but it is not. 

14. Co-Expressions 
A co-expression consists of a stack on which the evaluation of the co-expression takes place, a descriptor 

that points to the most recent activator of the co-expression, pointers related to expression evaluation, a 
refresh block, and a word containing the number of times the co-expression has been activated. 

Consider the following procedure 

procedure labgen(tag, i, j) 
return create tag || (i to j) 

end 
and the co-expression produced by 

e := labgen("L", 1,1000) 
The value assigned to e is: 
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estack 
0 
0 

0 
np eblock 

pointer to the most recent activator 

•+ stack base 
-• stack pointer 
-• argument pointer 
-• boundary 

number of results produced 

• refresh block 

A Co-Expression Stack 

On the VAX, the stack grows from large addresses toward smaller ones, so when the co-expression is activated 
the stack grows away from the type word. 

Prior to the first activation of e, the most recent activator is null. The stack base, stack pointer, argument 
pointer, and boundary refer to stack locations that are related to expression evaluation. The data pushed on 
the stack when an expression is evaluated is machine dependent. See [5] for details. 

The refresh block is used to produce a refreshed copy of the co-expression, as in 

e := Ae 

which restores the values of the local identifiers in e to the values they had when e was originally created. 
The refresh block contains a pointer to the location in the icode where the expression corresponding to the 

co-expression is located, followed by the number of arguments, the number of local identifiers, a descriptor 
that points to the procedure block for the procedure in which the co-expression was created, and the values of 
the arguments and local identifiers at the time of creation: 

The refresh block and corresponding procedure blocks are: 
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eblock 
52 

3 
0 

np proc 

1 

n integer 
1 

n integer 
1000 

"I " 

-> c proc 
60 size of block 

• entry point in the icode 
number of arguments 
number of local identifiers 

-•"labgen' 

"*/•.*-." -•"tag 

• • " j -

A Co-Expression Refresh Block and its Procedure Block 

When a co-expression is activated, its pointer to its most recent activator is filled in by the co-expression that 
activated it. When it suspends, the number of results is increased by 1. For example, if 

lab := @e 
is evaluated in the procedure main, the co-expression for e becomes 
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np 
estack 
estack 

np eblock 

-> co-expression for &main 

Result of a Co-Expression Activation 
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