
Porting the UNIX Implementation of Icon; Version 5.10*

William H. Mitchell

TR 85-20a

ABSTRACT

This document explains how to port the UNIX implementation of Version 5.10 of the
Icon programming language. The Icon system is composed of a translator, a linker, and a
run-time system. Procedures for porting each system component are described in detail.
This document is meant to be a companion to the Icon "tour" (TR 85-19) and the source
code for the system.

August 31, 1985; Revised October 21, 1985

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

•This work was supported by the National Science Foundation under Grant DCR-8401831.

i i-TWini'ii »i— - 'i : - . ,̂ . -..•* '"•'"hr—jfntitimhlitnifri -

Porting the UNIX Implementation oflcon; Version 5.10

1. Introduction

This document describes how to port the Version 5.10 Icon interpreter to a UNIX environment. The Icon
system has three major components: a translator, a linker, and a run-time system. The translator and the
linker are entirely written in C and porting them is primarily a matter of setting constant values that are
appropriate for the target machine. Portions of the run-time system are written in assembly language and thus
must be written anew for each machine. The run-time system also contains a very small amount of C code
that must be written on a per-machine basis.

The sections of this document that describe the porting of the translator and the linker are straightfor­
ward, being merely a description of a process. While porting the translator and the linker are tasks of follow­
ing instructions, porting the run-time system is a task of design and programming. The approach taken is to
describe what function each routine must perform and how it is implemented in the VAX7 version of Icon.
The porter's job is to determine how to implement the various routines on the target machine.

This document is a companion document of the Icon "tour"[l] and should be studied with the source code
for Version 5.10 of Icon at hand. In particular, the porter should be familiar with the information contained
in the tour.

The sections of this document that describe the VAX assembly language code attempt to explain the
operation of instructions when the operation is not obvious. However, this document does assume that the
porter has a rudimentary familiarity with the basic concepts of the VAX-11 architecture [2].

2. Software Requirements

Icon has been ported to about a half-dozen systems thus far and for those ports the C compilers encoun­
tered have been able to accommodate the system source code without difficulty. A "production quality" C
compiler is the basic requirement.

In addition to fundamental reliability, the compiler must support both assignment and call-by-value for
structures.

An implicit assumption in this implementation of Icon is that C integers and pointers are of the same size.
This is because the algorithms that access run-time data structures were designed with the assumption that
these data structures are composed of a number of words, some of which may hold integer values and some
that may hold pointer values. It may be possible to port this implementation of Icon using such a C compiler,
but no serious investigation of the feasibility of such has been made.

Machines whose stacks grow upward rather than downward (that is, toward larger memory addresses)
present additional complications that are explained later on.

Machines that have non-conventional stacks, for example, those that map the top of the stack into a regis­
ter bank, may present a considerable challenge.

In light of the increasing popularity of the C language and the availability of C compilers for non-UNIX
environments, ports of Icon to non-UNIX environments may be attempted. Because the matter of porting a
UNIX program to a non-UNIX environment is a problem in itself, it is not addressed in this document.
Rather, this document assumes that the target environment is UNIX. This is not to say that porting Icon to a
non-UNIX environment is not feasible. Icon is not strongly bound to UNIX, the primary association being
that Icon is written in C. Most C systems that are available for non-UNIX environments provide most of the

UNIX is a trademark of AT&T Bell Laboratories.
'VAX is a trademark of Digital Equipment Corporation.

- 1 -

UNIX-independent C standard functions as part of a library. If such a library is available, it should be possi­
ble to port Icon without great difficulty.

3. Porting Overview

Porting Icon starts out in the same way as installing an existing implementation of Icon. Read the docu­
mentation on the installation process [3] before beginning a port.

It is important to understand the organization of the Icon system. See the Appendix, which shows the
major components of the Icon file hierarchy. The portions related to source code (src) are particularly impor­
tant.

At a point in the installation process, the installer becomes a porter and provides the code needed for the
new computer. The porter then becomes an installer again and completes the port by completing the installa­
tion. The instructions in [3] should be carried out up to Section 1.4 {Configuring the Icon System). At this
point, select a name associated with the computer to which the port is being made. This name should be brief,
suitable for a file name and for a cpp symbol. For example, the VAX-11 implementation uses vax and the
Ridge 32 implementation uses ridge. In the root directory, referred to as v5, configure Icon using

make Setup-port HOSJ=name

where name is selected name in lowercase.

This command runs Icon-setup with appropriate parameters. One of the actions taken by Icon-setup is
to copy prototypes of machine-dependent files from src/proto to src/sys. The porter's work is basically con­
fined to the files in src/sys. In lieu of qualification, references to source files in this document refer to files
located in the sys directory.

In addition to assembly-language code that has to be provided for every port, some additional assembly-
language support routines may be needed in the run-time system. The file src/sys/special.s, which initially is
empty, is provided as a place to put such routines. Routines in src/sys are automatically included by files in
the run-time system.

Although most of the work of porting is conducted in src/sys, it may be necessary to make some modifi­
cations to source files for the components of Icon that are generally machine-independent. For example, it
may be necessary to include port-specific code for checking division by zero in src/ops/div.c, the routine that
implements Icon division. Any modifications to a source code file that is not in src/sys should be done under
control of conditional preprocessor commands. One of the byproducts of

make Setup-port HOSJ=name

is to define the uppercase version of name to be 1 in a header file that is included by all source-code files.
Thus, if name is ibm370, code specific to this implementation might be included as

#if IBM370
! code specific to the IBM 370

#endif IBM370

If this convention is used carefully, such modifications will not corrupt the source code in non-sys direc­
tories and the resulting code from the port can be merged into the central version of the source that is main­
tained at the University of Arizona. This offers several advantages: the code for the port can be maintained at
a central location, copies of the port can be made available to other sites, and modifications of the central
source code will not obsolete the port.

There are a number of Makefiles in src directories that are used to build various parts of the Icon system.
These Makefiles are parameterized so that they can be adapted to the needs of specific systems. The shell
script sys/Setup edits these files in a non-destructive way, so that parameters in Makefiles can be changed in
the local environment. If the parameters supplied in sys/Setup are not satisfactory for the port, they can be
changed as needed. Look at Setup scripts in existing implementations, such as vax, for examples. Do not edit
existing Makefiles by hand, if at all possible, since this will make it more difficult to incorporate the port as
part of the central source maintained at the University of Arizona.

- 2 -

Because files in the src/sys directory are used for development, inadvertently running Icon-setup and
thus destroying the files in src/sys would be disastrous. To protect against this, the file src/sys/.protected is
created and Icon-setup does not perform the set-up tasks if this file exists.

4. Macro Definitions

The first step in the porting process is to supply a number of C preprocessor definitions. The file
params.h contains these per-system definitions. The porter edits this file to define constant definitions and
macro expansions as described below. Some definitions can not be determined until preliminary work on the
port has taken place. Information on supplying the definitions for these macros is deferred until the appropri­
ate time. In some cases, there are recommended definitions or definitions that will prove to be correct on most
systems. In such cases, the value is pre-supplied in params.h.

4.1 Data Structure Sizing

A number of data structures used throughout the translator, linker, and run-time system are sized by
means of constants whose values vary between implementations. Experience has indicated that for the pur­
poses of the Icon system, machines can be characterized as having a small memory or a large memory.
Machines such as the PDP-11, which has a 64K data space, clearly need conservatively sized structures, while
machines such as the VAX, which has a virtual address space, can easily accommodate larger data structures.

The porter may characterize the target system as having a large or small memory by a single #define and
this in turn selects a set of appropriate constants. The large memory model is selected by

#define LargeMem

in params.h, while

#define SmallMem

selects the small memory model. If for some reason neither the definitions selected by LargeMem or
SmallMem are suitable, the porter may select appropriate values for the constants defined in h/memsize.h.
Note that if this route is taken, the porter must define values for all of the constants in h/memsize.h. In this
case, the definitions for the constants below should be at the end of params.h, replacing the inclusion of
../h/memsize.h.

The following constants are defined in h/memsize.h. Unless otherwise noted, the values are used by the
run-time system.

TSIZE
The size of the translator's parse tree space.

SSIZE
The size of the translator's string space.

MaxCode
The maximum number of bytes code that can be generated by the linker for a single procedure.

MaxAbrSize
The initial size in bytes of the allocated block region.

MaxStrSpace
The initial size in bytes of the string space.

StackSize
The size, in words, of co-expression stacks.

MaxStacks
The number of co-expressions stacks initially allocated.

NumBuf
The number of i/ o buffers available. When a file is opened, a buffer is assigned to the file if one is avail­
able.

SSIots and TSIotS
The number of hash table slots for sets and tables respectively. These values should be prime numbers
that are not close to a power of 2.

MaxListSize
The largest list element block that can be made. This value is only applicable on machines with address
spaces of 64 kbytes and the value in h/memsize.h should be used.

4.2 Machine Characteristics
These definitions describe aspects of the target system that are related to the properties of the CPU.

IntSize
The number of bits in an int.

Log IntSize
The base 2 log of IntSize. That is, Log IntSize answers the question "What power of 2 is IntSize?".

LONGS
Icon has an integer data type whose range of values is from -2 to 2 - 1 . On the VAX, C ints and longs
are both 32 bits wide. On the PDP-11, C ints are 16 bits wide while longs are 32 bits wide. The PDP-11
Icon system makes an internal distinction between integers that "fit" in 16 bits and integers that require 32
bits. The former are stored in two-word descriptors (the actual value being in the second of the two 16-bit
words), while the latter have a value descriptor that points to a block in the heap that holds the two-word,
32-bit value. On the other hand, the VAX uses two 32-bit words for descriptors and thus the second word
of a descriptor can hold the largest possible integer value used by Icon. Rather than having an internal dis­
tinction between integer types on the VAX, integers are always represented by two-word integer descrip­
tors. There are places in the code where special provisions are made if C ints are not the same size as C
longs.

If sizeof(int) != sizeof(long) for the C compiler in use, define LONGS. (LONGS need not be given a
value, #define LONGS is sufficient.) If LONGS must be defined, the minimum and maximum values
that can be represented by an int must also be defined. Define MinShort to be the smallest value that an
int can hold and define MaxShort to be the largest value that an int can hold.

MaxLongand MinLong
The largest and smallest values representable by a long.

LogHuge
The highest base-10 exponent plus 1 representable by afloat. For example, on the VAX, the highest
number representable by afloat is about 1.7x10 . Thus, LogHuge is 39 on the VAX.

WordSize
The size in bytes of a word. This should be defined as sizeof(int).

Descriptor Flags
The symbols F_Nqual, F_Var, F_Tvar, and F_Ptr should be defined as a set of bit masks with one bit set
in each. F_Nqual should have the leftmost bit set; F_Var should have the second bit from the left set,
F_Tvar the third, and F_Ptr the fourth. For example, on the VAX, these are:

#define F_Nqual
#define F_Var
#define F_Tvar
#define F_Ptr

0x80000000
0x40000000
0x20000000
0x10000000

•bit machine they should be:

#define F_Nqual
#define F_Var
#define F_Tvar
#define F_Ptr

0x8000
0x4000
0x2000
0x1000

- 4

4.3 Procedure and Operator Declarations

The macro definitions in the section of params.h denoted by the comment Procedure and Operator
Declarations are entwined with procedure frame layouts and appropriate values for these definitions are dis­
cussed in Section 7.2 {Procedure Frame Layout).

4.4 Source Code Tailoring Definitions
cset-display

This is a rather complicated macro that is used to initialize the values of csets such as &cset and &lcase.
If the target machine has ints with 32 or 16 bits, then one of the definitions of cset_displayin params.h
may be used. If this is not the case, cset_display will have to be hand-crafted and the various uses of it
will have to be altered for the machine in question. Briefly, cset_display specifies which of the 256 bits
that comprise a cset are to be set to 1. For example, the cset_display for &cset has all the bits set to 1,
while &ascii has the first 128 bits set to 1. Csets are accessed using the setb and tstb macros, which are
also defined in params.h. Uses of cset-display appear in iconx/init.c, fncs/bal.c, and fncs/trim.c. In
certain cases, for example on a machine with 36-bit words, it may be necessary to modify the definitions of
CsetSize, setb, and tstb.

SetBoundand ClearBound
See Section 7.4.2 (Boundary Setting and Clearing) to determine the correct values for these definitions.

Return
This macro provides a "hook" at the return point of built-in Icon functions. In most circumstances this
macro should be defined as return, but if for some reason the porter needs an action performed when
built-in functions are ready to return, an alternate definition for Return can be used.

Del Save
This definition is used in an elaborate way in some earlier implementations. This document describes
implementation techniques that render this macro obsolete and it should be defined as /* */.

VarArgs
This is another "hook" macro. A call of this macro appears as the first executable statement in
fncs/stop.c, fncs/write.c, and fncs/write.c This can be used to perform an operation when one of these
functions is called. Under usual circumstances however, it should be defined as /* */.

UpStack
At certain points, supposedly machine-independent C code must deal with values on the stack. Defining
UpStack causes such code to assume that the stack grows up rather than down. Porters on such systems
should examine the various points in the source code where UpStack is used to be sure that the supplied
code will work on the target system.

Arg(n), ArgType(n), and ArgVal(n)
See Section 7.2 (Procedure Frame Layout) to determine appropriate definitions.

4.5 Miscellaneous Definitions
PFMarkerHigh, GFMarkerHigh, EFMarkerHigh

This is the offset in words from procedure, generator, and expression frame pointers (respectively) to the
high word of the associated frame. These values are dependent on frame design and should be specified
when the frame layout has been completed.

GranSize
The granularity of memory allocations. Calls to sbrk(2) are used to expand the main memory that is being
used. When sbrk is given an address to expand to, it rounds it to a multiple of a certain number. That
value should be used for GranSize. The man page for sbrk(2) should state what value is used on the tar­
get system.

St k Base
This value represents the approximate base of the stack when execution begins. One machines such as the
VAX, where the stack grows down from high memory, StkBase should have a high value, where on the
machines where the stack grows up from low memory, StkBase should have a low value. The man page

- 5 -

for exec(2) usually specifies the initial value for the stack pointer where program execution begins. If
uncertain, be extreme with this value.

MaxHdr
This value specifies the maximum expected size of bin/iconx.hdr. Do make iconx.hdr in src/icont.
Round the size of iconx.hdr (in bytes) up to the next multiple of 1024 and use this value for MaxHdr.
This value is not used on systems that support direct execution of interpretable icode files as described in
[3].

OpSize
See Section 6 {Porting the Linker) to determine this value.

OpndSize

This value specifies the size in bytes of icode operands. This should be defined to be WordSize.

5. Porting the Icon Translator

5.1 Overview
The Icon translator, known as itran, is the first logical component of the Icon system. The translator

takes Icon source files as input and produces two ucode output files for each input file. The Icon program in
the file hello.icn may be translated by:

itran hello.icn

This produces two ascii files, hello.ul and hello.u2. hello.ul contains instructions and data in a printable
format, hello.u2 contains information about global symbols and scope.

The translator is written entirely in C and is the most machine independent major system component of
Icon. No serious problems should be encountered in porting it. If difficulties are encountered, they probably
indicate that there are serious deficiencies in the C compiler being used.

5.2 Porting Procedure
The only system-specific material in the translator is related to the sizing of data structures and specifica­

tion of SmallMem or LargeMem in params.h causes these structures to be sized appropriately. Thus, the
translator may be compiled by changing to the v5 directory and issuing the command:

make tran

5.3 Testing The Translator
Once the translator has been successfully constructed with make, change to v5 (if not already there) and

test it by

make Test-tran

This runs the translator on a number of Icon programs, produces ucode output in .u1 and .u2 files, and uses
diffio compare the results to output that is known to be correct. Since the translator is machine-independent
and written entirely in C, there should be no differences.

6. Porting the Icon Linker

6.1 Overview
The Icon linker, known as ilink, is the second logical component of the Icon system. The linker takes .u1

and .u2 files produced by the translator and binds them together to form an icode file. The icode file serves as
input for the Icon run-time system.

For example,

ilink hello.ul

reads hello.ul and hello.u2 and produces a file hello, which can be executed by the run-time system.

- 6 -

The linker is written entirely in C and is a comparatively small and simple program. However, the inter-
pretable files produced by the linker are not machine independent. Because of this, the porter must make
some decisions.

Icode files contain two distinct types of data: opcodes and associated operands that the interpreter "under­
stands", and data that is directly mapped into run-time data structures. By "mapping", it is meant that the
data is loaded into memory and then C structure references are used to access elements of the object at a cer­
tain location in memory. The formats of the opcodes and operands must conform to what the interpreter is
expecting. The data that is directly mapped must conform to the format of the C data structures used by the
run-time system.

The opcodes, operands, and mapped data are accumulated in memory during the linking process. This
conglomerate is referred to as the code section. Several routines are used to add data to the code section.
These routines are parameterized so that porting the linker to a new machine is merely a matter of setting the
parameters correctly. Four primitive data units compose the code section. These are opcodes, operands,
words, and blocks.

opcodes
are instructions for the interpreter. An opcode may direct the interpreter to push a value on the stack,
branch to a location, perform an arithmetic operation, etc. The size of opcodes is specified by the porter.

operands
are associated with some opcodes. For example, the goto instruction has a location to branch to as its sin­
gle operand. Operands are defined to be WordSize bytes in length.

words
compose mapped data structures. For example, the data blocks for Icon procedures are a series of words.
Obviously, words are WordSize bytes in length.

blocks
are merely some number of bytes. For example, a cset constant is loaded into the code section as a block
of sizeof(struct b_cset) bytes.

6.2 Porting Procedure

The per-system parameterization required for the linker is almost completely specified by the definitions
made earlier in params.h, but the porter must define the opcode size, which is specified by OpSize in
params.h.

The interpreter treats opcodes as unsigned quantities. One byte (8 bits) is large enough to accommodate
all opcodes and a value of 1 is strongly recommended for OpSize. It is possible to use larger opcodes; two or
four bytes may prove to be a convenient choice on a machine that requires memory accesses to be on two- or
four-byte boundaries. It should be noted, however, that there is no way to put the extra bytes to use. The
outop routine in Icode.c assumes that opcodes are one byte; if a larger size is used, outop must be recoded.

The constant OpndSize, which defines the size of interpreter operands is defined to be WordSize in
params.h and this value should not be changed under normal circumstances.

Compile the linker by changing to v5 and

make link

6.3 Testing the Linker

When the linker is successfully compiled, change to v5 and build the Icon command processor:

make icont

Then test the linker by

make Test-link

which runs the Icon linker on the files produced by the translator during the preceding test and produces
linker debugging output in .ux files. This process is comparatively slow because of the generation of

- 7 -

debugging output. The format of .ux files is somewhat dependent on computer and operating system details.
Consequently, there are likely to be differences — even extensive ones — between the locally generated .ux
files and the distributed ones. Differences are not checked by make Test-link, but they can be determined
separately by

make Test-linkcheck

If extensive differences are encountered, it may be necessary to examine the output in v5/port/local manu­
ally.

7. Porting the Icon Run-Time System

The run-time system, known as iconx, is the third major logical component of the system. The run-time
system takes an icode file produced by the linker and "executes" it. A program is run by:

iconx hello

where hello has been produced by the linker.

The run-time system has four logical components:

start-up code
an interpreter
primary routines
support routines

The start-up code initializes the run-time system and passes control to the interpreter. The interpreter fetches
icode instructions and executes them. An icode instruction may be entirely performed by the interpreter or
the interpreter may call a primary routine to perform the operation. In turn, a primary subroutine may call a
number of support routines that in turn may call other support routines. Each primary routine has a direct
correspondence to a source language construct of some type. Primary routines are also referred to as top-level
routines.

7.1 Overview of the Porting Process

The following steps are to be followed when porting the run-time system:

(1) Determination of layout of procedure, generator, and expression markers and selection of associ­
ated frame pointers.

(2) Definition of remaining macros in params.h and definition of macros in defs.s.

(3) Complete system compilation.

(4) Coding of a "basis" of routines for the run-time system, consisting of start.s, invoke.S, interp.s,
efail.s, pfail.s.

(5) Testing of the basis routines for the run-time system.

(6) Coding and testing of

arith.s
fail.s
pret.s
esusp.s
Isusp.s
psusp.s
suspend.s
display.c

in an incremental fashion. Test programs are provided to test the system after adding each routine.

- 8

(7) Coding of gcollect.s and sweep.c. Testing of garbage collection.

(8) Complete system testing.

This document does not explain how to port the sections of the system that are related to co-expressions.
The files involved are coact.s, cofail.s, coret.s, create.C, and refresh.c. Icon works properly with these
sections of code left unimplemented, provided no attempt is made to use co-expressions, in which case the
system notes it as a run-time error.

7.2 Porting Procedure

Determining Frame Layouts

This implementation of Version 5 of Icon shares the stack between the C and Icon run-time environments.
The essential ramification of this is that the system contains code that is intimately entwined with both the
machine itself and with the C run-time environment. This requires that the porter be familiar with the archi­
tecture of the target machine and with various aspects of code generated by the C compiler being used.

The first step is to determine the frame layout and call/return protocol used by C functions. Occasionally,
the reference material for a system will contain this information, but usually this information must be gath­
ered empirically.

In one form or another, the following actions (perhaps in a slightly different order) comprise the
call/return protocol used by most C compilers:

Argument Set-Up
This typically involves pushing the various argument values on a stack of some sort. This is usually done
in an accumulative fashion, i.e., the argument expressions are evaluated in turn (typically from right to
left) and while the evaluations may use the stack, the end result of each is a value on the top of the stack
that is not disturbed until the routine is called.

Routine Entry
This is the machine-level transfer of control from the series of instructions comprising the call to the rou­
tine to the routine itself. On many machines, this is nothing more complicated than pushing the current
program counter value on the stack and then branching to the first instruction of the routine being called.

Register Save
Most machines have one or more general-purpose registers that are available for use by the programmer
(and hence, code generated by the C compiler). By convention, certain registers are preserved across sub­
routine calls, i.e., these registers are guaranteed to have the same value when a subroutine returns that they
had when a subroutine was called. The subroutine and subsequently-called routines may use the registers,
but each routine ensures that when it is finished, the register values are what they were when the routine
was called.

C compilers save either a fixed or variable number of registers. Saving a fixed number of registers is usu­
ally more straightforward, but on a machine with many registers, it is obviously inefficient to save many
more registers than necessary. Methods of accomplishing the register save are diverse, but the registers
usually end up on the stack.

Note that if a variable number of registers are saved, this must be done under the control of the routine
being entered since in general, the caller cannot know which registers are used by the callee. If a fixed set
of registers are saved however, it is possible for the caller to save the registers.

Local Space Allocation
Local C variables that are dynamically allocated usually lie on the stack above the saved registers. Allocat­
ing space for the locals is simply a matter of making space on the stack by subtracting from, or adding to
the stack pointer as appropriate.

- 9 -

Routine Execution
This is simply the execution of the routine being called.

Register Restoration
This step restores the registers that were saved when the routine was entered. If the number of registers
saved is variable, there is obviously coordination of some type that ensures that the registers saved are
those that are restored.

Routine Exit
This is the machine-level transfer of control back to the point of call. This is often as simple as popping a
previously-pushed program counter value and jumping to it.

Post-Call Cleanup
This takes place in the routine that initiated the call and typically consists of nothing more than the adjust­
ing the stack pointer to pop the arguments the routine was called with. Note that this can only be done by
the caller because, while not recommended, a C routine can be called with more or fewer arguments than it
is expecting.

An Example — The Sun Workstation's MC68000
The porter must familiarize himself with the above steps as instantiated on the target machine. The

MC68000 C compiler used by the Sun Workstation provides a good example of empirically determining a
call/return protocol for a particular machine. Consider the following program:

fd.2);

main()
{

}
f(a,b)
int a, b;
{

register int i = 1;
register char *p = 0;
int x, y;

x = a;
y = b;

}
Compiling this with CC -S on the Sun yields a .S file that is similar* to:

The actual compiler output is somewhat stylized; for pedagogical purposes, the text shown here is a sanitized version.
Also note that the Sun assembler uses an unusual syntax for operands involving register displacements and these
operands have been rewritten in a more commonly used format.

- 1 0 -

_main:

[1]
[2]
[3]
[4]

_f:
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

pea
pea
jbsr
addqw

link
moveml
moveq
movl
movl
movl
moveml
unlk
rts

2
1
_f
#8,sp

a6,#-16
#0x2080, (sp)
#1,d7
#0,a5
8(a6),-4(a6)
12(a6),-8(a6)
-16(a6),#0x2080
a6

The first point of interest is the evaluation of the expression f(1,2). In this C compiler, argument evalua­
tion is from right to left. At lines 1 and 2 respectively, the constants 2 and 1 are pushed on the stack using
peas (push effective address).

Line 3 enters f with the jbsr instruction. This instruction pushes the pc value on the stack and transfers
control to the address named by the operand, _f in this case.

Execution proceeds with line 5. link pushes a6 on the stack and points a6 at the word just pushed. This is
used to form a chain of frames. At any point during execution, a6 points to a word that contains the previous
value of a6. The second operand of link specifies a value to add to sp to make space for later use. In this case,
the value of-16 causes four words of space to be reserved.

The next action taken is to save the registers. The moveml instruction at line 6 does this, moveml accepts
two operands: a register mask and a starting address. The Sun has 16 general-purpose registers, a0-a7 and
d0-d7. The rightmost bit in the register mask corresponds to d0; the leftmost bit corresponds to a7. The
mask 0x2080 selects d7 and a5 (from right to left). The mask is scanned from right to left and the selected
registers are stored in successively higher words beginning at the starting address. Thus, d7 is stored at
-16(a6) and a5 is at -12(a6).

In this case, note that the registers are above the space allocated for the local variables and that the link
instruction created space for both.

At this point, the stack is

sp —

a6 —*

The declarations and accompanying assignments for i and p in the C source are present to force registers to
be used and thus, saved. Lines 7 and 8 perform the requested assignments.

Line 9 performs the assignment x = a. movl transfers the left operand into the right operand and thus x is
at -4(a6) and a is at 8(a6).

Similarly, line 10 performs y = b, and shows that y is at -8(a6) and that b is at 12(a6).

It is now time for f to return to its caller. A moveml is used to restore the appropriate registers. Note that
the operands are reversed from what was used to save the registers. In this case, the mask is again scanned

-11

16
12
-8
-4
0
4
8

12

Saved d7
Saved a5
Local y
Local x
Saved a6 value
Saved pc value
Formal parameter a (1)
Formal parameter b (2)

from right to left, but the selected registers are loaded from successive words beginning at the named address.

The unlk (unlink) instructions loads a6 from the word that a6 points at and then points the stack pointer
at the prior word, leaving the stack in the state it was in just before the link at the start of the routine was per­
formed.

At line 13, the return pc value is on the top of the stack and its (return from subroutine) pops this word
from the stack and branches to the addresses named by it.

Execution is now at line 4. The arguments for f (1 and 2) are still on the stack and the addqw instruction
adds 8 to the stack pointer, effectively removing them and leaving the stack in the same state it was in before
the evaluation of f (1,2) began.

In summary, the generated code shows the following about the call/return protocol:

(1) The frame pointer is a6. The previous a6 value is at 0(a6).

(2) Local variables start at -4(a6) and extend toward lower addresses.

(3) Arguments start at 8(a6) and extend toward higher addresses.

(4) The return pc is at 4(a6).

(5) A variable number of registers are saved and it not possible to determine which registers are present
in a frame without examining the code that created the frame.

Another Example — The VAX-11

Compiling the same program segment on a 4.2bsd VAX yields the assembly code:

_main:

[1]
[2]
[3]

_f:
[4]
[5]
[6]
[7]
[8]
[9]
[10]

pushl
pushl
calls

.word
SUDI2
movl
clrl
movl
movl
ret

$2
$1
$2,_f

OxcOO
$8,sp
$1,r11
MO
4(ap),-4(fp)
8(ap),-8(fp)

Evaluation of f(1,2) begins with line 1. As on the Sun, argument evaluation is right to left and pushls
(push longword) are used to push the constants 2 and 1 on the stack.

Entry to f is accomplished with the calls instruction. The first argument of calls is the number of words in
the argument list; the second is the location of the routine being called. The VAX calls instruction and its
counterpart, ret, entirely implement the call/return protocol.

The first action of calls is to push the word count of the argument list (the first operand of calls) onto the
stack. This word is often referred to as the nwords value.

The next step is to examine the half word (two bytes) at the start of the routine being called; this word is a
mask that indicates which registers should be saved. The VAX has twelve general-purpose registers, r0-r11,
and the lower twelve bits of the mask correspond to these with the rightmost bit representing rO. Thus, the
mask OxcOO indicates that r10 and r11 should be saved. The mask is scanned from left to right, in this case
pushing first M1 and then r10 onto the stack.

After the registers have been saved (note that in some cases, no registers are saved), the values of pc, fp
(frame pointer), and ap (argument pointer) are pushed on the stack in turn. Then a word containing the
current program status word and the register mask of the routine being entered is pushed on the stack.
Finally, a condition handler address, which is not used by the C compiler and is always zero, is pushed on the

12

stack.
fp is pointed at the word on the top of the stack, ap is pointed at the nwords word. On the Sun, both the

arguments and the locals lie at a fixed distance from the frame pointer. On the VAX, however, because the
registers are saved between the arguments and the rest of the frame, ap is used to reference the arguments and
fp is used for the other frame pointer duties.

At line 5, the stack pointer is decremented by 8 to make space for local variables. At this point, the stack
is:

sp —•

fp —>

ap - *

-8
-4
0
4
8

12
16
20
24
0
4
8

Local variable y
Local variable x
Condition handler
Program status word and register mask
Saved ap
Saved fp
Saved pc
Saved r10
Saved r11
Nwords value (2)
Argument a (1)
Argument b (2)

Lines 6 and 7 perform the assignments to i and p.

Line 8 performs the assignment x = a. movl transfers the left operand into the right operand and thus x is
at -4(fp) and a is at 4(ap).

Similarly, line 9 performs y = b, and thus y is at -8(fp) and b is at 8(ap).
f can now return to its caller, and this is entirely handled by the ret instruction. Values for ap, fp, and pc

are restored from the frame. The register mask saved in the frame is used to pop the saved registers from the
stack. This leaves the nwords value on top of the stack and this value is popped and then the number of words
in the argument list, as indicated by nwords, are popped. This leaves the stack in the state it was in before the
evaluation of f (1,2) began and execution continues after the calls at line 3.

In summary, the generated code demonstrates the following:

(1) The frame pointer is fp and due to the placement of the saved registers, a second register, ap, is used
to point at the argument list.

(2) Local variables start at -4(fp) and extend toward lower addresses.

(3) Arguments start at 4(ap) and extend toward higher addresses.

(4) Previous values of ap, fp, and pc are stored at 8(fp), 12(fp), and 16(fp) respectively.

(5) A variable number of registers are saved, but by examining the register mask present in the frame, it
is possible to determine which registers were saved and where they are located.

The porter should generate assembly-language output on the target system for the above C code and gain
an understanding of the code produced as has been described for the Sun and the VAX. Once the porter has
gained such an understanding, the run-time system frames for the target system can be determined.

Determining Register Preservation Conventions
The set of registers that the C compiler assumes are preserved across calls must be known by the porter.

Obviously, on a machine that saves a fixed set of registers, examining the assembly code for any routine
should provide this information. On machines that save a variable set of registers, this information can usu­
ally be determined by creating a routine that forces all available registers to be used. Assuming that the C
compiler in use heeds the register attribute of declarations, the assembly code generated for a routine that
contains a number of such declarations usually indicates which registers are preserved across calls. For exam­
ple, start with the code:

13

f()
{

register int M = 0;
}

Compile it and note which register was saved. Then add \2 =0, i3 = 0, and so forth until registers stop being
saved. In most cases, the registers being saved at this point comprise the set of registers that the C compiler
assumes is preserved across calls. On machines such as the Sun that have more than one type of register, a
series of declarations that use each of the register types is required. For example,

register char *s1 = 0, *s2 = 0, ...;

causes the Sun's address register to be used.

On the VAX, r6-r11 are preserved and on the Sun a2-a5 and d2-d7 are preserved.

Procedure Frame Layout

With one exception, the AT&T 3B, on all machines that Icon has been ported to, the C run-time stack
grows downward, from higher memory addresses to lower memory addresses. Furthermore, the argument
evaluation on these systems is such that for the function call f(a,b,C,d), the argument d is pushed first, and the
argument a is pushed last. Thus, in the routine f, the arguments from left to right lie in sequentially increasing
locations.

The execution of Icon programs is stack-based and computations use one or more operands on the top of
the stack and leave a result on the top of the stack. C routines that implement Icon primitives are declared as:

routine-name(isb, nargs, argn, arg0)

isb is the istate block; it is discussed in more detail later, nargs is simply an int. The various arg/are Struct
descrips.

For the calculation 1 + 2 + 4 in Icon, the generated icode does the following:

push a null value
push a null value
push the constant 1
push the constant 2
call the routine plus to perform addition
push the constant 4
call the routine plus to perform addition

plus is declared as

plus(isb, nargs, arg2, arg l , argO)

When plus is first called, argO has the null value, argl has the value 1, and arg2 has the value 2. Note that
one of the actions taken when plus is called is to push values for nargs and isb. plus performs the addition
and places the result, 3, in argO, replacing its null value (the second null value pushed), plus was called from
the interpreter loop and when it returns, isb, nargs, arg2, and argl are popped from the stack, leaving argO,
with the value 3 on top of the stack.

Next, the constant 4 is pushed on the stack, and plus is called again. This time in plus, argO has the null
value, argl has the value 3 and arg2 has the value 4. plus performs the addition and places the result, 7, in
argO, replacing the first null value pushed. When plus returns, all but argO is popped from the stack, leaving
it on the top.

This simple paradigm is used for all computations and interacts perfectly with the code generated by the C
compiler.

Now consider the case of the AT&T 3B, where the call f(a,b,C,d) causes a to be pushed first and d to be
pushed last. Conversely, the arguments are popped from the stack one at a time, a is the last argument to
come off. Considering the example again, it is obvious that in this case, the routine should be declared as

14

plus(argO, argl, arg2, nargs, isb)

Assuming this, then things proceed as before: The null value of argO is replaced by the sum of the value of
argl (1) and arg2 (2). plus returns and argl through the isb, which lie at higher memory locations than argO
are popped, leaving argO on the top of the stack.

To cope with the problem of needing two different argument list forms, macros are used to generate the C
routine declarations. There are several different top-level macros to deal with the various classes of C routines
that implement Icon primitives:

ProcDcl(name, nargs)
Declare built-in function name with nargs arguments. Also declare a procedure data block for name.

ProcDclV(name, nargs, var)
Same as ProcDcl, but with var as a dummy parameter.

OpDcl(name, nargs, print-name)
Declare operator name with nargs arguments, print-name is the special character representation of the
operator. For example, the print-name of plus is +. Also declare a procedure data block for name.

OpDclV(name, nargs, print-name, var)
Same as OpDcl, but with var as a dummy parameter.

LibDcl(name, nargs)
Declare library routine name with nargs arguments.
On machines with down-growing stacks, the definitions of these macros and sub-macros that are used on

the VAX should work and appear in pararns.h. On other machines, the porter must supply appropriate alter­
native definitions.

A problem related to argument ordering is that of argument access in built-in routines such as write that
accept a variable number of arguments but have no declarations for the arguments themselves. (Since the
number of arguments to such functions is arbitrary, it is not practical to supply a sufficient number of formal
arguments.) For example, on the VAX, write is declared as

write(isb, nargs)

The macro

Arg(n)

is used to access the value (not the address) of the rcth argument. Because it is known that the arguments lie in
ascending locations directly after nargs, Arg(n) is defined as:

*((struct descrip *)(&nargs+1)+(nargs-n))

Two other argument-access macros, ArgType(n) and ArgVal(n), are used to access the first and second
words, respectively, of the indicated argument. As with the declaration macros, the VAX values are supplied
in pararns.h; appropriate values will need to be supplied for machines with stacks that grow up.

Note that on machines with up-growing stacks, the routines fncs/stop.C, fncs/write.C, fncs/writes.C,
and lib/llist.C will probably need to be declared (via appropriate macro definitions) as

routine(argO)

with the argument access macros using argO instead of nargs as the point of reference.

Continuing with the procedure frame layout, the istate block is a three-word structure that is used to hold
the istate register values present in the callers environment. (Selection of the istate registers is explained
below.) The VAX uses

struct isb_b {
int isb_ipc, isb_gfp, isb_efp;
};

No machine-independent code uses this structure, so the porter can order the words as desired or add words,
but the above structure should prove adequate except under unusual circumstances.

15

The first task is to determine the layout of Icon procedure frames. The basic structure of a procedure
frame is:

Icon local variables
_file
_line
C routine frame
istate register block
nargs

argj
arSo

The exact frame format chosen depends on the target system, and while various permutations of the above
are possible, it is highly recommended that this format be used. Note that the same basic layout holds for both
machines with down- and up-growing stacks; in the former, the local variables are at lower memory addresses,
while in the latter, they are at higher memory addresses. On the VAX, the frame format is:

Icon local variables
-8 saved value of file
-4 saved value of _line

fp —* 0 0 (condition handler address)
4 program status word and register mask
8 saved ap

12 saved fp
16 saved pc

ap —*• 0 number of words in argument list (nwords)
4 saved ipc (r9)
8 saved gfp (MO) }• istate block

12 saved efp (r11)
16 number of arguments (nargs)

arguments

}
The first argument is at 20(ap) and the first local is at -16(fp).

Procedure frames on the Sun look like:

a6 —•

-8
-A
0
4
8

12
16
20

Icon local variables
saved value of file
saved value of J ine
saved a6
saved pc
saved ipc (a3)
saved gfp (a4)
saved efp (a5)
number of arguments (nargs)
arguments

}' istate block

The first argument is at 24(a6) and the first local is at -16(a6).

As can be seen, determining the frame layout for the target machine is largely a matter of building around
C routine frames.

Selection of Istate Registers

The porter must select which general-purpose registers are to be used as the Icon interpreter program
counter (ipc), generator frame pointer (gfp), and expression frame pointer (efp). Any three registers that are
preserved across subroutine calls should do. By convention, the registers are consecutive and the lowest

16

numbered register is used as the ipc, but this is not required. These registers are collectively referred to as the
istate registers.

If the target machine does not have enough registers, one or more of the istate "registers" can be located in
memory. This of course requires special actions on the part of the porter that will become apparent upon
reading the descriptions of the routines.

The VAX uses r9 for the ipc, liO for the gfp, and M1 for the efp. The Sun uses a3for the ipc, a4for the
gfp, and a5 for the efp.

C Routine Frames

The frame format used by C routines that implement built-in procedures and operators is a subset of the
Icon procedure frame. These frames do not include the saved values for _line and file, and obviously do not
include the region of Icon local variables. Not surprisingly, these frames are created by performing a subset of
the operations used when activating an Icon procedure.

Generator Frame Layout

While procedure frames provide part of the execution environment for Icon procedures, generator frames
provide a means to reactivate execution. There are two types of generators: Icon and C. Icon generators reac­
tivate execution in an Icon context while C generators reactivate execution in a C context.

Generator frames contain saved values for file, _line, _k_level, and -boundary. Also included are
machine-specific values such as the frame pointer and program counter. Values of general-purpose registers
are also contained in the generator frames. In Icon contexts, the only register values that need to be restored
are those of the istate registers, while in C contexts, the registers that the C compiler preserves across calls
must be restored.

Generator frames should be designed to contain the registers necessary to restore a C context. This results
in wasted frame space for Icon generators, but the simplicity realized by this approach outweighs the unutil­
ized space.

On the VAX, the convenient variable-sized frames allow generator frames to contain only the necessary
registers, i.e., frames for Icon generators contain only the istate registers (r9-r11) while C generator frames
contain r6-M 1. The exact frame format is:

gfp —•

-12
-8
-A
0
4
8

12
16
20

-24
-20
-16
-12
-8
-A
0

saved value of -file
saved value of -line
saved value of _k_level
saved value of -boundary
condition handler address
program status word and register mask
saved ap
saved fp
saved pc
saved r6
saved r7
saved r8
saved ipc
saved gfp
saved efp

ap —•

The routines that create Icon generator frames, esusp, Isusp, and psusp, have entry masks that direct the
istate registers to be saved while the routine that creates C generator frames, suspend, has an entry mask that
directs r6-r11 to be saved.

On the Sun, this format is used:

- 1 7 -

-52
-AS
-A4
-40
-36
-32
-28
-24
-20
-16
-12

-8
-4
0
4
8

saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved

value
value
value
d2
d3
d4
d5
d6
d7
a2
a3
a4
a5
value
a6
pc

of
of
of

of

_file
J ine
_k_level

-boundary gfp

Expression Frame Markers
Expression frame markers are essentially machine-independent. The format is:

•8
A
0

failure address
saved gfp
saved efp efp —•

On some machines (the Ridge-32 is a case in point), the stack must be always aligned on an 8-byte boundary.
In such cases, an extra word should be added to the marker at -12(efp).

At this time, values for PFMarkerHigh, GFMarkerHigh, and EFMarkerHigh in params.h should be
defined. On the VAX, these values are 2, 3, and 2, respectively. On the Sun, they are 2, 13, and 2, respectively.
Note that these values are word counts. For example, the high word of a generator frame marker on the Sun is
-52(gfp) and this corresponds to the Sun's GFMarkerHigh value of 13 (words).

Assembly-Language Macro Definitions
The file defs.s contains a set of definitions that are used by assembly language source files. While it is not

strictly necessary that the porter use any of these definitions, they do help with readability and the sections of
this document that deal with the VAX-specific code often refer to these definitions. Of course, the porter may
add other definitions that are of use.

WordSize
The size in bytes of an int.

DescSize
The size in bytes of a descrip structure.

Isb-Size
The size in bytes of an isb_b structure.

fp
The name of the register used by C as the frame pointer.

ipc, gfp, and efp
The names of the registers selected to serve as the interpreter program counter, the generator frame
pointer, and the expression frame pointer.

There are a number of values in procedure frames that are accessed at different times. On the VAX, a set of
macros are used to name the appropriate location. Most instruction sets have an operand form that names a
location in terms of a register value and an offset from that location. For example, on the VAX, the nargs
word is the fourth word below the word ap points at and there is the definition:

18-

#define NargsJoc (4*WordSize)(ap)

Similarly,

- #define LineJoc (-1*WordSize)(fp)

indicates that the word of the procedure frame that contains the saved value of _line is the word below the
word pointed at by fp. These values are defined as follows:

FileJoc saved -file value
LineJoc saved -line value
Ap_loc saved value of ap
FpJoc saved value of fp
PcJoc saved value of pc (the return pc)
lpc_loc saved value of ipc
GfpJoc saved value of gfp
Efp_loc saved value of efp
NargsJoc location of nargs word
ArgnJoc location of first word of descriptor for ar^

In addition to the name—\OC values, which have a register associated with them, there are corresponding defin­
itions for name-Off values. For example, Nargs_off is (4*WordSize). These values are just offsets and are
used when another register holds the fp value (or on the VAX, ap value) of interest. As a simple example, to
put the value of the nargs word in rO, one might use

movl

or equivalently,

movl
movl

NargsJoc.rO

ap, r2
Nargs_off(r2),r0

Ep_Off
The offset in bytes from the address of a routine to the first instruction after the routine's entry sequence.
See the section on invokes for details on the use of this value.

Arg_desc, Arg_dword, and Arg_vword
See the section on CallCtl in interp.s to determine these definitions.

The Icon keywords &trace, &pos, and &subject are represented as trapped variables, but their actual
values are used in the assembly language routines. Since these values lie at a fixed location in b_tvkywd
structures, rather than explicitly naming the location, values are defined for _k_trace, _k_pos, and
_k_subject _k_trace and _k_pos are expected to have integer values and thus the second word of the
descriptor bJvkywd.kyval is the desired word. Thus, defining _k_trace and J c p o s as (respectively)

_tvky_trc+(3*WordSize)
_tvky_pos+(3*WordSize)

should work on all machines. _k_subject should name b_tvkywd.kyval itself and thus is defined as

_tvky_subject+(2*WordSize)

Several definitions in defs.s expand into one or more instructions:
Push Null

This should expand into one or more instructions that push a null value on the stack. On the VAX, this
could be written as:

movq _nulldesc,-(sp)

but because it is done very often, a more efficient two-instruction sequence is used:

19

pushl $0
pushl $D_Null

Push_isb
This should push the istate registers on the stack, forming the istate block. On the VAX, this could be
written as:

pushl
pushl
pushl

efp
gfp
ipc

but the pushr instruction is used instead, pushr takes a register mask as its operand and pushes words
onto the stack containing the values of the registers indicated by the mask. For example,

pushr $0x0005

pushes r2 and then pushes rO. Push_isb is defined as

pushr $StdSv

where StdSv is defined as OxeOO to select r9-r11.

Pop_isb
This is a companion of Push_isb that is used to pop registers that were pushed by Pop_isb. The popr
instruction is the counterpart of pushr and pops registers according to a mask. On the VAX, Pop_isb is

popr $StdSv

Call Push (nargs, add ress)
This is a subordinate macro that is the front-end of Call and CallName and is used to create a procedure
frame and enter a routine. Obviously, the actions of this macro must be coordinated with the desired pro­
cedure frame layout. On the VAX, this pushes nargs (always a constant) on the stack, follows that with the
istate block, and then calls the routine at address. The exact code is:

pushl $nargs
Push_isb
calls $0,address

A zero-length argument list is used for calls to allow the istate block to be left on the stack. If this were
not done, there would be no way to restore the istate registers.

CallPush_R(reg, address)
This is identical to Call Push with the exception that the register reg contains the number of arguments
rather than it being specified by a constant value. Thus,

pushl reg

is used rather than

pushl $nargs

Call Pop
This routine is the back-end of the various call macros. It restores the istate registers and then pops the
appropriate number of arguments from the stack, leaving the result value produced by the routine on top
of the stack. On the VAX, it is:

Pop_isb
movl (sp)+,rO
movaq (sp)[rO],sp

Pop_isb restores the istate registers and removes them from the stack. This leaves the nargs word on top
and it is popped and moved into rO. Finally, movaq performs the calculation:

20-

sp = sp + (nargs * DescSize)

to pop the arguments from the stack.

CallName(nargs, name)
On the VAX, this expands to:

CallPush(nargs, name)
Call Pop

CallName_R(reg, name)
On the VAX, this expands to:

CallPush_R(reg, name)
CallPop

DummyFcn(name)
Initially, each of the assembly language routines that must be filled in consist of a single line of the form
Dummy Fen (name). Dummy Fen should be defined to generate assembly language statements that form
a dummy routine with the label name. This can be as simple as a label and a global declaration. It is
advisable to include as part of the definition something that will cause a program abort. A halt instruction
usually does the job. Thus, the system can be built and will function normally unless an incomplete rou­
tine is called.

DummyDcl(x)
A macro that should expand into an assembly language declaration that allocates a word of storage for a
variable named x.

DummyRef(x)
A macro that should expand into an assembly language reference to the symbol x. That is, the desired
effect is to have x referenced in a particular routine so that the loader considers it to be a symbol that needs
to be resolved.

Global(x)
A macro that should expand into an assembly language declaration of x as a global symbol.

A number of values that are defined in params.h must also be defined in defs.S. These values are F-flagtype,
1-typename, TypeMask, and MaxStrLen.

defs.S also contains macro calls to Global for the various global symbols that expected to be used in the
assembly language routines. If the porter needs additional global declarations, they can be added in defs.S or
in the file containing the reference.

7.3 Complete System Compilation

In order to determine if there are serious C compiler problems with the run-time system source, the entire
system should be made at this point. Do a

make iconx

in v5. The entire system should compile without any problems. The resulting interpreter will be disfunc-
tional, but if it is built without any problems, it provides further evidence that the C compiler is up to the task.

7.4 Porting the Assembly-Language Routines

The porting of the assembly language routines is the most difficult part of porting Icon. This document
has a section for each assembly language routine and each routine is described in three ways:

overview
generic operation
the routine on the VAX

The overview section briefly describes the action of the routine and how the routine may be encountered
during the course of execution. The generic operation section tells what steps the routine takes to perform its

21

given task. Each major step that the routine takes is described. These steps should be very similar from
machine to machine. The section about the routine on the VAX details the operation of the routine on the
VAX. This section complements the comments contained in the source code for the routine and should be
read with the source code at hand. This section is very machine specific.

Each routine must be formulated for the target machine. For the most part, the best approach is to take
the same steps that are taken on the VAX. It is important to select the right level for modeling the VAX rou­
tines. Try to recognize the steps that are made rather than following the operations on a per-instruction basis.
The most important thing is to have a good understanding of what actions are performed and how these can
be done on the target machine.

A Simple Program

The first goal is to get a very simple Icon program working. This first program is v5/port/hello.icn. It is
quite short:

procedure main()
write("Hello world")

end

The basis of routines mentioned above (s tar ts , invoke.s, interp.s, efail.s, and pfail.s) must be imple­
mented for even a very simple Icon program to work. However, all these routines do not need to be written to
make hello begin to work.

Translate and link hello by running the translator and the linker:

bin/itran hello.icn
bin/ilink hello.u1

This creates an interpretable file named hello. Just to get the feel of things, execute the run-time system with
the file:

bin/iconx hello

A message of some type and a core dump should be produced.

As s t a r t s et al. are written, try stepping through them with a debugger to be sure the correct actions are
being performed. Most of the assembly language source files are straight-line code with a branch or two, and
it is possible to do a large amount of verification of the assembly code by single stepping through it.

When a routine has been completed, it may be added to the run-time system by:

make iconx

in v5.

7.4.1 starts

Overview

When the Icon interpreter is executed, the C routine main passes control to mstart, merely serving as a
front-end for it. The routine mstart in s t a r t s is used to get Icon started.

Generic Operation

(1) Call the routine init with the name of the file to interpret as its argument.

(2) Make an Icon list out of the command line arguments using the Mist function.

(3) Invoke the main procedure of the Icon program.

22

mstart on the VAX

There is a short main program in iconx/main.c that calls mstart with two arguments:

main(argc, argv)
int argc;
char **argv;
{
mstart(argc, argv);
}

The number of command line arguments is in argc, and argv is a pointer to an array of pointers to strings
representing the arguments. argv[0] is the command used to invoke the interpreter and argv[1] is the name
of the file being interpreted. Additional command line arguments are passed along to the main procedure of
the Icon program. When mstart gets control, 4(ap) is the argc value and 8(ap) is the argv value.

The first action taken by mstart is to call init to initialize the Icon run-time system, init loads the header
and code portions of the interpretable file into memory, so init needs the name of the interpretable file. The
word at 8(ap) is loaded into r9, pointing it at argv[0]. Then the name of the file to interpret (argv[1]), resid­
ing at 4(r9), is pushed on the stack as the argument for init, which is then called.

A troublesome point is the deactivation of the main procedure. This occurs when the Icon procedure main
fails, suspends, or returns. One of these always happens unless a run-time error is encountered.

The case of failure is handled by creating an expression frame for the main procedure. An expression
frame marker is pushed on the stack. This marker has efp and gfp values of 0 and a failure address of mterm.
mterm is the address of a quit opcode (just a 0) for the interpreter. Thus, if main fails, the marker is removed
and icode execution continues with the execution of the quit opcode at mterm and this terminates execution
of the program. The handling of return and suspend by main is described below.

The next task is to push the descriptor for the procedure main on the stack for later use by invoke. The
variable _globals contains the address of the list of Icon global identifier descriptors. The first global identif­
ier descriptor is always the one for the main procedure; if no procedure named main was found when the pro­
gram was linked, the descriptor has the null value. The value of _globals is loaded into rO and the word then
referenced by rO is checked to see if it is equal to D_Proc. (The first word of a descriptor for a procedure is
always equal to D_Proc.) If the word is not equal to D_Proc, a branch is made to nomain, which generates
the appropriate run-time error. Otherwise, the descriptor for main is pushed onto the stack with

movq (rO),-(sp)

which moves 8 bytes (the size of a descriptor on the VAX) starting at the address referenced by rO to the 8
bytes referenced by the sp after subtracting 8 from the sp.

The main procedure is to be invoked with a list consisting of the command line arguments (if any). The
Icon run-time routine Hist is used to make the list that is passed to the main procedure. Hist stores the descrip­
tor for the list that it creates in the descriptor above its first argument descriptor, so to accommodate the
result, a null descriptor is pushed on the stack using Push Null.

At the beginning of mstart, r9 was set to point at the first word of the argument list. Neither the name of
the Icon interpreter nor the name of the interpretable file should appear in the argument list passed to main,
so 8 is added to added to r9 to point it at argv[2], the first actual argument.

The next step is to construct the argument list for Hist. For each command line argument, the address of
the string and then its length (determined by a call to strlen()) is pushed on the stack. The length and address
pairs form string descriptors that I list makes an Icon list from. A count of the arguments is maintained in r8.
After a descriptor has been pushed for each command line argument, Hist is called with

CallNameR(r8,_llist)

When Hist returns and the istate block and arguments have been popped (recall that CallNameR does all
this), the stack looks like this:

- 2 3 -

sp —*• descriptor for list of command line arguments
descriptor for main procedure

Note that the null descriptor pushed earlier received the result of the Hist function.

Because Hist allocates storage, it sets and clears the boundary. Thus, it is not possible to execute all of
mstart at this stage of the port until a means of managing the boundary has been determined. This is
described in the next section.

At this point, the main procedure is ready to be invoked. The descriptor for the main procedure is arg^ and
the descriptor for the list of command line arguments is argj. Before invoking the main procedure, the pro­
cedure frame pointer and the generator frame pointer are cleared.

A bit of hackery is used to invoke the main procedure. For all other procedure invocations, the code at the
op_invoke case of interp is used and it is neither suitable to enclose this code in a subroutine or duplicate the
necessary code in mstart. Instead, control branches to the _invk_^start label in the op_invoke case of interp.
The code at _invk_start assumes that the number of arguments supplied to the procedure is in interp's Op
register and that the arguments are on the stack. On the VAX, r1 is used for the Op register. The porter
should consult the section on interp to determine a suitable register to use for Op.

Before the branch to _invk_start is made, ipc is loaded with the address of mterm. Thus, if main returns
or suspends, execution will continue with the icode opcode at mterm, which is a qui t

There is a block of code labeled nomain that is executed when no main procedure is found. This calls the
routine runerrto produce an error message. The actual call is runerr(117,0).

The last portion of executable code in Starts is the subroutine _C_exit The routine cleanup is then
called to shut down the i/o system. Finally, _exit is called with the argument of _C_exit to terminate execu­
tion of the Icon interpreter.

There are several data declarations in start.s. The first data declaration is a .space 60. This is an accom­
modation for the garbage collector. It insures that enough of the start of the data section is used up to force
the addresses of other data objects to be greater than the defined constant MaxType in params.h.

Some assorted declarations are next, mterm is referenced by the interpreter if the main procedure ter­
minates normally. It should be OpSize bytes in length and have a 0 value, -boundary must be a word long
and contain a 0. _environ must be a word long; its contents are unimportant as it is written into at the begin­
ning of s t a r t s .

The - tended array is also used in conjunction with garbage collection. It must declare space for five
descriptors (two words per descriptor) that are initialized to 0. The label _etended is used to mark the end of
the - tended array.

7.4.2 Boundary Setting and Clearing

Overview

As described in [1], when a C routine is active, i.e., when execution is in a C context, -boundary holds the
value of the frame pointer for the top-level C routine originally entered from the Icon context. Conversely,
when execution is in an Icon context, -boundary should be 0.

The source code for various primary routines contains calls to the macro SetBound at points where the
boundary should be set and ClearBound at points where the boundary should be cleared. It is the task of the
porter to define appropriate expansions for SetBound and ClearBound.

Clearing the boundary is easily accomplished by boundary = 0 and this is predefined as the value of
ClearBound in params.h.

It is usually necessary to resort to assembly language to set the boundary. On the VAX, this can be accom­
plished by

#define SetBound {asm(" movl fp_boundary");}

The asm statement causes its operand to be placed directly in the assembly code; the braces are necessary to
avoid a bug in some C compilers that causes incorrect placement of the assembly language text.

24

If the C compiler in use does not support the asm statement, a subroutine can be used instead. For exam­
ple,

#define SetBound setbound()

and setbound itself would just move the fp value saved in the frame for setbound into -boundary. Using
an asm is preferable because it is much faster, but a subroutine call works as well.

7.4.3 interp.s

Overview

interp.s is the main loop for the interpreter. As the interpreter executes an Icon program, it fetches
instructions and accompanying operands out of the instruction stream of the interpretable file. Operands for
interpreter instructions are pushed on the stack and results accumulate on the stack as operands for other
instructions. In addition to simple incremental and decremental stack changes, the expression evaluation
mechanism may cause portions of the stack to be duplicated and may also cause the top portion of the stack to
be removed.

Generic Operation

An Icon program is executed by interpreting the interpretable file produced by the linker. The interpreta­
tion process itself is fairly simple, ipc points at the next icode instruction to be executed. (Recall that the
interpretable file is loaded into memory.) The opcode of the instruction is fetched and the corresponding
word in a jump table is taken as the address of a sequence of instructions that perform the desired operations.
A branch is taken to the referenced location and the operation is performed. The operation may require
operands; if so, they appear in the instruction stream following the opcode. The segment of code that per­
forms a particular operation is responsible for fetching the appropriate operands out of the stream. When the
operation is complete, a jump is taken to the top of the interpreter loop and the process continues.

Interpreter operations are of two types. Operations of the first type call a routine to perform a task.
Operations of the second type are executed entirely by the interpreter; no subroutine call is necessary.

Operations that require a call to be made call routines in the ops or lib directories. The routine being
called may require one or more arguments. If arguments are required, they appear on the stack. When the
routine returns, it removes any arguments that it was called with from the stack and leaves its result on the top
of the stack.

To facilitate the calling of routines, the table optab parallels the jump table. An opcode of n references
the wth word of the jump table. If the operation designated by the opcode requires a call, the nih. word of
optab contains the address of the routine that should be called.

The interpreter saves space in its instruction stream by encoding operand information in some opcodes.
For example, the line instruction has one operand that is used to set the value of _line, the current source line
number. The linex instruction is an alternate form of line which encodes the line number as the low order bits
of the opcode. For example, the opcodes from 192 to 256 are linex opcodes and opcode 195 is equivalent to a
line opcode with an operand of 3. Other such instructions are: global, local, int, static, arg, and invoke.

Implementing the Interpreter Loop
interp.s stands alone among the assembly language files as one that is well suited to coding in a macro

fashion. Most of the interpreter loop is written in terms of C preprocessor macros and thus porting it is
largely a matter of writing the macros for the target machine. The porter should copy vax/interp.s to
sys/interp.s and work on it, changing VAX-specific sections to code appropriate for the target machine.

The following #def ines must be made.

Op
The operand register. Any general purpose register will do. The value of the register need not be preserved
between instructions; its lifetime is only from the time that an operand is fetched until the next opcode is
fetched or a routine is called.

- 2 5 -

GetOp
This must expand into code that fetches the next operand out of the instruction stream and places it in the
register Op. Recall that operand size is determined by the #define for OpndSize in params.h. On the
VAX, GetOp is merely

movl (ipc)+,Op

This is because operands are one word long and can begin on any byte boundary. If the VAX did not sup­
port word fetching from arbitrary boundaries, it would be necessary to get the bytes from the instruction
stream one at a time and make a word out of them using boolean operations. If such were the case, a pos­
sible alternative would be to make opcodes one word in size and thus all instruction stream objects
(opcodes, operands, and words), would be of the same size and lie on word boundaries.

A second alternative is to have a more elaborate GetOp. A subroutine could be used to fetch the next
operand, but the interpreter loop is a busy piece of code and incurring the overhead of a subroutine call for
each operand is not a good idea. The solution of course is to have GetOp expand into the required
instructions.

For example, on the Sun, the ipc is checked and if it is even, a simple word fetch into the Op register is
performed, but if it is odd, the operand is fetched in pieces and assembled in the Op register using bit-
manipulation operations.

PushOp
Push the Op register on the stack. The VAX uses

pushl Op

Push_R(x), Push_S(x), Push_K(x)
Push the value of x on the stack. To accommodate machines with non-orthogonal instruction sets,
Push_R is used to push a value contained in a register, and Push_S is used to push the contents of a
storage location. Push_K is used to push a constant value. The VAX uses

pushl x

for both Push_R(x) and Push_S(x), while

pushl $x

is used for Push_K(x).
PushOpSum_R(x) and PushOpSum_S(x)

PushOpSum_R(x) adds the value of the register x to Op and pushes the result on the stack.
PushOpSum_S(x) is similar, adding the value in the memory location x to Op and pushing the result.
On the VAX,

addl3 Op,x,-(sp)

is used for both.

Next Inst
Branch to the top of the interpreter loop. The VAX uses

jmp _interp

BitClear(m)
The constant value m designates bits in the Op register to leave on. All other bits in Op should be turned
off. That is, the complement of m is ANDed with the contents of Op and the result is placed in Op. This
is used to decode opcodes with encoded operands. The VAX uses

bicl2 $0!m,Op

26

Call(n)
This calls the routine corresponding to the current opcode with n arguments. On the VAX, the opcode
fetching segment loads r6 with a byte offset into the jump table. This same byte offset references the word
in optab that contains the address of the routine corresponding to the current opcode. On the VAX, this
expands to:

CallPush(n,*optab(r6))
Call Pop

CallCtl
This macro is used to call the routines esusp, Isusp, and psusp. These routines do not require an istate
block and the nargs word and CallCtl merely calls the appropriate routine. As with Call, the routine to
call is implicitly named by an optab offset in r6. On the VAX, this is

calls $2,*optab(r6)

The descriptor for the value being suspended is on the top of the stack.

Arg_desc, Arg_dword, and Arg_vword
These macros reference the argument descriptor in routines that are called by CallCtl. Arg_desc and
Arg_dword reference the first word of the descriptor and on the VAX are (1*WordSize)(ap).
Arg_vword references the second word of the descriptor with (2*WordSize)(ap) on the VAX.

DerefArg(n, lab)
This examines the nth descriptor from the top of the stack and calls _deref if the descriptor is a variable of
some sort. Such descriptors always have the F_Nqual and F_Var bits set. On the VAX (and other 32-bit
machines), a string would have to be over two billion bytes in length in order to have its length overflow
into the F_Var and thus, the presence of the F_Var is considered to be characteristic of a variable descrip­
tor. On the VAX, this code is used:

bitl
beql
pushal
calls

$F_Var,(n*8)(sp)
lab
(n*8)(sp)
$1_deref

lab:

The bitl instruction tests a set of bits. The two operand values are ANDed together and the condition
codes are set according to the value of the result. The result itself is discarded.

On a 16-bit machine such as the PDP-11, it is necessary to check for both F_Nqual and F_Var to identify a
variable descriptor.

Jump(lab)
Branch to the label lab. The destination label is close to the jump, so a short jump of some type may be
used. The VAX uses

jbr lab

LongJump(lab)
LongJump is like Jump with the exception that lab may be quite distant. The VAX uses

jmp lab

Label(lab)
Generate a label declaration for lab. The VAX uses

lab:

27

VAX Specific Sections of interp
Several sections of interp are machine specific and must be coded on a per-machine basis. The sections in

question are explained on an individual basis:

Jnterp
The next opcode is fetched and loaded into r6 with a movzbl which moves a byte and zero-extends it to a
word value. Because a byte was fetched, ipc is incremented by 1. The opcode is copied to Op in case it
contains an encoded operand. 1*6 is multiplied by 4 to turn it into a byte offset. A jump is made to the
address indexed by r6 in jumptab to perform the desired operation. Eventually, a jump returns control to
the label _interp to fetch and execute the next instruction.

op_bscan
A descriptor for _k_subject is pushed on the stack. Then the value of _k_pos is pushed, followed by the
constant D_lnteger. The routine corresponding to op_bscan, _bscan, is called with 0 arguments. (This
causes the descriptors for _k_jsubject and the value of _k_pos to be left on the stack.) When _bscan
returns, a branch is made to -interp.

op_ccase
A null descriptor is pushed on the stack. The word immediately below the current expression frame is then
pushed on the stack.

op_chfail
The operand of chfail is fetched into Op. Op and ipc are added together and the result replaces the failure
address in the current expression frame.

op_dup
A null descriptor is pushed on the stack. The value that was on top of the stack is now at 8(sp), and it is
pushed on the stack using a movq.

op_eret
eret saves the value on top of the stack, removes the current expression frame and puts the previous top of
stack value back on the top of the stack. First of all,

movq (sp)+,rO

moves the descriptor on the top of the stack into the r0-r1 register pair and increments the stack pointer by
8. The gfp is loaded with the gfp value stored in the expression frame marker, sp is loaded from efp,
bringing the expression marker to the top of the stack. The old efp value from the marker is loaded into
efp. Finally, the value stored in the rO-r1 pair is pushed on the stack.

op_file
The operand of file is loaded into Op. Op and the value of-identare added and the result in placed in
-file.

op_goto
The operand is loaded into Op and then added to ipc.

op_init
This one is tricky. The init instruction arises from the initial expression in Icon and is used to effect one­
time execution of a segment of code. The operand of init is the address of the first instruction after the seg­
ment that is to be executed once. The instruction

movb $59,-(ipc)

decrements ipc by 1 and then stores the constant 59 in the byte that ipc references, which is the init
opcode. The magic number 59 is the opcode for goto, so in effect, the init has been made into a goto that
skips a section of code. By adding 5 to ipc, it leaves ipc pointing at the first instruction of the initial code.
The constant 5 is derived from the width of the opcode and associated operand, i.e., OpSize+OpndSize.

op_int
This instruction has two entry points: op_int gets control if int has an operand, and opJntx gets control if
the operand is encoded in the opcode. If an operand is specified, it is fetched into Op. If the operand is
encoded, BitClear(15) is used to isolate the operand in Op. Control converges at intjmp. The Op value

- 2 8 -

is pushed on the stack and is followed by a D_lnteger word, forming an integer descriptor.
opJine

Like op_int, opJine has a secondary entry point. The operand value is obtained and then moved into
_hne.

op_mark
The operand is fetched into Op and ipc is added to it. efp is pushed on the stack and the new sp value is
put in efp. gfp is pushed on the stack and cleared. Op is pushed on the stack.

op_markO
Like op_mark, with an implicit operand value of zero.

op_pop
Two tstl instructions serve to add 8 to sp which removes the top value from the stack.

op-Sdup
The descriptor on the top of the stack is pushed on the stack, duplicating it.

op_unmark
The operand, the number of expression frames to remove from the stack, is fetched into Op. efp is
restored from the current expression frame. The instruction

sobgtr Op.unmkjmp

decrements Op and then branches to dounmark if Op is not zero. This chains through the number of
expression frames specified by the operand, gfp is restored from the current expression marker, efp is
loaded into sp to move the expression marker to the top of the stack. Finally, efp is restored from the
marker and sp is incremented to remove the last word of the marker.

op_unmk1-7

Similar to unmark, but uses a series of

movl (efp).efp

instructions rather than a loop.
op_global

Dual entry points are used to deal with possible operand encoding. The operand, which is a number of a
variable in the global region, is multiplied by 8 to provide a byte offset from the start of the global region.
The sum of Op and the value of globals is pushed on the stack to provide a descriptor address. The con­
stant D_Var is pushed on the stack to complete the descriptor for the global variable.

op-Static
Identical to op_global except that the array statics is used instead of the array globals.

opJocal
The operand value is the number of a local variable for which a variable descriptor is to be pushed on the
stack. Recall that the local variables lie below the procedure frame and, on the VAX, the descriptor for
the first one is at-16(fp). Op is negated. The instruction

pushaq -16(fp)[Op]

performs the calculation

-16+fp+(Op*DescSize)

which computes the address of the descriptor of the desired variable and pushes it on the stack. The vari­
able descriptor is completed by pushing D_Var on the stack.

op_arg
Like opJocal, but it uses Argn_loc as the base for the address calculation and the operand value is not
negated.

29

quit
Performs the call _c_exit(0). Push a 0 on the stack and call the routine _C_exit to terminate execution of
the Icon program.

err
err should never be encountered during normal execution. Reaching it indicates that an invalid opcode
was encountered. It need not do anything more than abort execution. On the VAX, it calls sprintf to
create a string containing the invalid opcode and the ipc where it was encountered and then calls syserr
(in iconx/init.c) with the string as an argument.

op_invoke

One of the more complex tasks required of the interpreter is called invocation and it arises from a source
expression of the form:

argQ{arg1 argn)

There are four distinct outcomes from the execution of this expression:

call a built-in function or operator
call an Icon procedure
create a record
perform mutual evaluation

The evaluation of an invocation expression includes the evaluation of each arg((in a strict left-to-right
order) and accumulation of the resulting values on the stack. After every argi has been evaluated, the code
implementing invocation takes control, examines argg and performs the appropriate actions.

Generic Operation

The code that implements invocation is clearly complex, and principles of software modularity suggest
that this code be implemented in the form of a subroutine. However, an often-performed task during invoca­
tion is the adjustment of argument lists for built-in functions and Icon procedures. Doing this while in the
frame context of the interpreter loop (as opposed to in a subroutine) facilitates a much simpler and efficient
implementation. The net result is that the majority of the invocation code is found at the op_invoke case of
interp, and a short subroutine named invoke assists in the final step.

When the op_invoke case is reached, the stack is:

sp —*• value from arg
•n

value from arg.

value from argl

value from argg

(1) argg is dereferenced and checked to see if it is a procedure. If so, execution continues with (4).

(2) Since argg is not procedure-valued, an attempt is made to convert argglo an integer. If this succeeds,
a mutual-evaluation is to be done and the appropriate argi replaces argg. The other arguments are
popped, leaving the selected value on top of the stack. For example, given

2(1,5,9)

argg is 2 and arg2, the value 5, is the result of the expression.

Execution continues at the top of the interpreter loop.

(3) argg is neither a procedure or an integer. An attempt is made to convert argg to a string. If this
succeeds, Strprc is called with the address of argg and the number of arguments to see if the string
names a procedure-valued object. If this is the case, argg is converted to a descriptor for the named
object and execution continues with (4).

30-

If the conversion to string and/or the subsequent conversion to procedure is unsuccessful, it is noted
as run-time error 106.

(4) At this point it is known that argQ is procedure-valued. Each argi in turn is dereferenced.

(5) If the procedure being invoked has a fixed number of arguments, the argument list is adjusted as
necessary. If too few arguments were supplied, null values are pushed on the stack. (Note that the
shortage is always at the right end of the argument list, which corresponds to the top of the stack.)
Conversely, if too many arguments were supplied, excess arguments are popped.

(6) The routine invoke is called to create the frame for the procedure being invoked and execution
proceeds therein.

(7) If a built-in procedure or operator is being invoked, that is, if the invocation will cause execution to
continue in C code, the boundary is set to the current frame pointer value and the appropriate rou­
tine is entered by a branch. Otherwise, an Icon procedure is being invoked and further actions are
required.

(8) If _k_trace has a non-zero value, the function ctrace is called with appropriate arguments, ctrace
produces output that includes the name of the procedure being called and the arguments that are
being passed to it.

(9) The remainder of the procedure frame (partially constructed by the call to invoke) is built. This
includes pushing values for file and _line on the stack. file is a pointer to a string that names the
source file from which the code currently being executed came. _line is the number of the source
line that is currently being executed. A null-valued descriptor is pushed on the stack for each
dynamic local identifier of the procedure.

(10) The generator frame pointer is cleared (because a new expression context is being entered), ipc is
loaded with the entry point of the procedure being called. Control is then passed back to the inter­
preter using a jump.

When the invoked routine returns, control returns to the point in the interpreter loop where invoke was
called. The boundary is cleared and a branch is taken to the beginning of the interpreter loop.

Record creation occurs when an object whose value is a record constructor is invoked. The data block
associated with this object is essentially a procedure block, but the routine associated with it is mkrec, which
handles the actual record creation in a machine-independent way.

invoke on the VAX

As with several other icode instructions, the operand of invoke is encoded in the opcode if possible. The
label invk_start begins the actual code for invoke.

When control reaches invk_start, the interpreter's Op register contains invoke's operand, the number of
arguments for the invocation. This value is transferred to r6.

invoke makes frequent use of argQ, but its address is not a fixed distance from any known point. Rather,
the address of argQ must be calculated using the address of the last argument and the number of arguments.
The VAX movaq instruction makes this calculation easy. The desired calculation is

fkargQ = sp+(number of arguments * DescSize)

and is performed by

movaq (sp)[r6], r7

argQ may be a variable and if so, it needs to be dereferenced. r7, which contains the address of argQ is pushed
on the stack and deref is called. The dereferencing is done "in place"; the previous value of argQ is replaced
with the dereferenced value. The dereferenced value is a descriptor whose first word contains type informa­
tion and whose second word (in some cases) contains the address of a data block which holds the actual value
of the object. Note that r7 points to the first word of this descriptor.

Recall that the first task of invoke is to determine what argQ is and to act accordingly. The simplest case is
when argQ is a procedure. That is checked for by comparing 0(r7) with D_Proc. If argQ is a procedure, a

31 -

forward jump is made to doderef.

It is more interesting if argg is not a procedure. The first alternative investigated is mutual evaluation.
Mutual evaluation is similar to a procedure call, but rather than argg being a procedure, it is an integer that
selects one of the argf. The selected argi is the outcome of the mutual evaluation. The routine cvint is used to
try to convert argg to an integer. If argg cannot be converted to an integer, a forward branch is taken to trystr
to explore another possibility. For mutual evaluation, a non-positive value of argg is acceptable and is con­
verted to a positive value using the cvpos routine. (Expressions in the argument list are indexed the same way
that characters in a string are indexed.) If the returned by cvpos is zero or is greater than the number of
expressions in the list, that is, if the reference is out of range, the mutual evaluation fails by branching to
efail. If the position is in range, the selected argi must be produced as the result of the invocation (and the
result of the mutual evaluation). The argj to return is selected by multiplying the position by the size of a
descriptor, producing the displacement of the desired argj from argg, which is then added to r7 with the result
being placed in rO. Thus, rO points at argj, r7 points at argg and

movq (r0),(r7)

moves the desired value into place. The result must be on the top of the stack; moving r7 into the stack
pointer accomplishes this. With the result on the top of the stack, a branch is taken to interp to execute the
next icode instruction.

If argg is not convertible to an integer, conversion to a procedure is attempted. (Note that this is an exten­
sion to standard Icon.) argg is first converted to a string using cvstr. If the conversion is successful, the rou­
tine Strprc is called to see if the string "names" a procedure. The conversion performed by Strprc is "in
place", i.e., argg becomes a descriptor for a procedure. If either the conversion in cvstr or strprc fails, argg is
uninvocable and this is noted by run-time Error 106.

At this point (the label doderef), argg is a descriptor for a procedure to be invoked and r7 points to argg.
The next step is to dereference the arguments. For procedures with no parameters, e.g., f(), the associated
icode does push a null value on the stack, as if the the expression had been f(&null). Thus there is always at
least one argument.

A copy of r7 is made in r8, which is used to point to each argument in turn. In a loop, r8 is decremented by
DescSize, and if the F_Var bit is set in the referenced descriptor, the value of r8 is pushed on the stack and
deref is called to dereference the descriptor. Since r8 starts at ar^and moves towards the top of the stack, the
loop continues until r8 is less than sp.

The next operation is to make the number of arguments supplied conform to the number of arguments
that the procedure is expecting. The number of arguments that a procedure expects is b_proc.nparam, the
fourth word of its procedure block. r8 is pointed at the block for the procedure being invoked and the
expected argument count is loaded into r1. If the value is negative, the number of arguments that the pro­
cedure expects is variable, and no argument adjustment is needed. If this is the case, the supplied argument
count in r6, is moved into r1 and a branch is taken to argsdone.

It is now known that the procedure requires a fixed number of arguments and the discrepancy is calculated
by subtracting r1, the expected argument count, from r6, the supplied argument count. If the two are equal,
no adjustment is required and a branch is taken to argsdone. Otherwise, if r6 is positive, too many argu­
ments were supplied and these can be deleted by pointing the sp to argj, where i is the expected number of
arguments. The instruction

movaq (sp)[r6],sp

performs the required calculation. A branch is taken to argsdone.
If the discrepancy value calculated in r6 is negative, too few arguments were supplied and a null value must

be provided for each missing argument. r6 is negated with a mnegl instruction and is used as the loop counter
for a sobgtr instruction, and the required number of null descriptors are pushed on the stack using successive
PushNull operations.

At this point (argsdone) the arguments have been dereferenced and the correct number of arguments are
present. The frame for the procedure being invoked is created by entering the invoke routine using

32-

CallName_R(r1 ^invoke)

The computational context is now that of the procedure being invoked.

The fifth word of the procedure block (b_proc.ndynam) contains the number of dynamic locals the pro­
cedure has. For built-in procedures or operators, this value is negative. If this is the case, control is
transferred to builtin, where -boundary is set using the value of fp. All that remains is to enter the C routine
itself. The second word of the procedure block (b_proc.entryp.CCOde) contains the address of the routine.
As described in the section on frame layout, execution of the routine must begin with the first instruction after
the prolog that would normally be used to establish the frame for the routine. The displacement of this
instruction from the address of the routine is represented by the constant Ep_off, and this value is added to
the routine address and a branch is taken to the resulting location. At this point, the C routine is active.

If an Icon procedure is being invoked, more actions are required before the procedure can be activated.

If tracing is on, (indicated by a non-zero value for _k_trace), a trace message must be produced at this
point. The routine ctrace does all the work. It needs to be called with the appropriate arguments. Ctrace
requires three arguments: procedure block address, number of arguments, and the address of the first argu­
ment. These are pushed on the stack and ctrace is called.

The portion of the stack from arg^ on down constitutes a partial Icon procedure frame and it must be com­
pleted. _line and -file are pushed on the stack. To complete the frame, the local variables must be pushed on
the stack. Local variables have an initial null value, and as above, a SObgtr loop of Push Nulls are used to
push the locals on the stack.

Because an Icon procedure is being invoked, the boundary is cleared and _k_level (the value of &level
keyword) is incremented. The entry point for the procedure (b_proc.entryp.icode) is loaded into ipc. Since
a new expression context is being entered, both gfp and efp are cleared using a Clrq instruction.

Control is passed back to the main loop of the interpreter by jumping to interp. At this point, the Icon
procedure is active.

When the invoked routine returns, control is transferred to the instruction following
CallName_R(r1,-invoke) in interp.s. -boundary is cleared and Nextlnst transfers control to _interp.

7.4.4 efail.s

Overview

efail handles the failure of an expression. When Icon evaluates an expression, it tries to produce a result
from it. If at some point in the evaluation of an expression the expression fails, Icon resumes inactive genera­
tors in the expression in an attempt to make the expression succeed, efail is at the heart of this activity, efail
has three distinct outcomes:

(1) Resumption of the newest inactive generator in the current expression frame.

(2) Failure of the current expression with execution continuing at the failure address contained in the
expression marker.

(3) Failure of the current expression with propagation of failure to the enclosing expression frame.
This is similar to (2), but occurs when the failure address is 0. After the current expression fails,
control loops back to efail, serving to produce failure in the now-current expression frame.

efail is branched to rather than being called. This is because it serves as a "back-end" for several failure
actions that may occur during the course of execution:

(1) When a built-in procedure fails, it calls the routine fail, which in turn branches to efail.

(2) When an Icon procedure fails via the pfail routine, pfail terminates by branching to efail.

(3) When the efail opcode is executed by the interpreter, efail is branched to.

(4) The generator frames built by esusp and Isusp use efail as a return address. This is explained in
detail later.

33-

Generic Operation

efail is essentially a simple routine. There are two separate paths of execution that efail may take. The
first is to resume an inactive generator. The second is to cause failure of the expression in lieu of an inactive
generator.

If there is an inactive generator in the current expression frame, it must be resumed. If the generator is an
Icon procedure and tracing is on, atrace is called with appropriate arguments. _k_level, -line, and file are
restored from the generator frame. A return is performed and the net result is that the stack is restored to the
state that it was in before the suspension that created the generator.

If there are no inactive generators that can be resumed, the expression being evaluated must fail. This is
done by popping the stack back to the current expression frame and resuming execution at the point indicated
by the failure address in the expression marker. This is a two-step process. The first is to pop the frame and
the second is to resume execution. The failure address in the expression marker is saved before the frame is
popped. If this address is not zero, execution is continued by branching to the address. If the address is zero,
the failure is propagated to the enclosing expression by branching to efail.

Zero failure addresses are generated by the ucode instruction

mark LO

Thus, whenever efail pops an expression whose marker has a zero failure address, efail causes failure in the
enclosing expression.

efail on the VAX

The first action is to determine if there is an inactive generator that can be reactivated. If the generator
frame pointer is non-zero, it points to the inactive generator to activate. Note that whenever a new expression
frame is created, the generator frame pointer is zeroed. Thus, if gfp is non-zero, it points to a generator
frame contained in the current expression frame.

If there is an inactive generator, it must be reactivated. First, -boundary is restored from the generator
frame. The stack is popped back to the generator frame by loading fp from gfp. But, before fp is loaded, its
value is saved in rO for later use. f p now points at word 0 of the generator frame, but that is a word below the
actual stack frame that it should be pointing at, so fp is incremented by 4 using a tstl.

There are three types of generators that may be encountered by efail:

(1) An Icon procedure that did a suspend. In such cases, the routine psusp handled the suspension.

(2) A built-in procedure or operator that called the C function suspend ().
(3) A generator created by an esusp or Isusp instruction. Such generators arise from source code con­

structs like exprj | expr2, \expr, and expr1 \ expr2, which are referred to as control regimes.

All three types of suspensions create generator frames with identical formats, so the frames may be han­
dled identically as far as resumption is concerned. However, if an Icon procedure is being resumed, a tracing
message must be generated if _k_trace is not 0.

If the value of -boundary is not the same as f p, the generator is a built-in procedure or operator and trac­
ing is not done. If the fp saved in the current frame is the same as the fp was upon entry to efail (the value was
saved in rO), the generator was made by an esusp or an Isusp and tracing is not done.

Otherwise, the generator is an Icon procedure, and atrace must be called, atrace takes one argument,
the address of the procedure block for the procedure being resumed. Recall that arg^ on the stack is a descrip­
tor for the procedure block. The address of arg^ is calculated using

&argg = ap+Argn_off+(nargs*DescSize)

The resulting address is used as the single argument for atrace. Note that the ap and nargs values used in the
calculation are from the generator frame, i.e., from the context of the suspended Icon procedure.

The generator is now ready to be resumed. _k_level, -line, and -file are restored by popping them from
the generator frame. If the generator is a built-in procedure, -boundary is cleared. A return is performed to
activate the generator. The return has different effects depending on the type of generator being resumed.

34-

file:///expr

If the generator is a built-in procedure or operator, the return restores the stack to the state it was in before
suspend was called, and execution proceeds at the point just after suspend(). In this case the pc value being
returned to references the instruction following the call to suspend in the built-in function or operator.

If the generator is an Icon procedure, the stack is restored to the state it was in before the psusp icode
instruction was executed. The pc value being returned to references the instruction in the interpreter loop that
follows the call to psusp.

If the generator is a control regime, the stack is restored to the state it was in before the esusp or Isusp
that created the generator was performed. The return pc points to efail itself. Thus, when the return is done,
the stack is cleared, and an efail is performed. This has the effect of transferring control to the failure label in
the expression marker of the enclosing expression frame.

If there is no generator to reactivate, the expression must fail. This is handled at the label nogen. efp
points to the expression frame marker, ipc is loaded from -8(efp) which contains the address to go to in the
event that the current expression fails (as it has), gfp is restored from the expression marker, efp is restored
from the marker and the marker is popped off the stack.

If the failure address in ipc is non-zero, control is passed back to the interpreter via a branch and execu­
tion of the icode resumes at the failure address. If ipc is zero, the expression failure is transmitted to the sur­
rounding expression frame by branching to efail. (Recall that a zero failure address comes from a mark LO
instruction and that a failure that reaches a mark LO marker must be propagated to the next expression
marker.)

7.4.5 pfail.s

Overview
pfail handles the failure of an Icon procedure, pfail is entered via a branch when the interpreter encounters
the pfail instruction.

Generic Operation
The task of pfail is to signal failure in the expression instance that contains the procedure call being

evaluated. This is done by removing the Icon procedure frame from the stack, restoring appropriate registers
and values, and branching to efail. All pfail needs to do is to remove the procedure frame from the stack;
from then on things can be handled just like expression failure. Thus, efail does most of the work.

pfail calls ftrace to produce a trace message if tracing is on. pfail also decrements _k_level because a pro­
cedure is being exited.

Note that the procedure frame on the stack is a frame that was created by invoke.

pfail on the VAX
After _k_level is decremented, _k_trace is checked to see if a trace message should be produced. If trac­

ing is on, ftrace must be called, ftrace takes one argument, the address of the procedure block for the failing
procedure, argg is the descriptor for the procedure block, and the address of argg is calculated using

Suirgo = Argn_loc+(nargs*DescSize)

The resulting address is pushed on the stack and ftrace is called. Note that the context of the calculation is
that of the failing Icon procedure.

Execution continues at dofail to remove the procedure frame from the stack. The frame cannot be merely
popped because it contains pertinent state information. Values for _line, —file, ipc, gfp, efp, ap, and fp, are
restored from the frame. When fp is restored, it serves to remove the procedure frame (made by invoke) from
the stack. At this point, the stack is in the same state it was in before the interpreter performed the invoke
instruction. A branch is made to efail to cause failure in the enclosing expression.

35

7.5 Testing

Change to v5 and

make Test-basis

This runs a number of simple programs and compares the results to correct output.

Although mstart, interp, invoke, efail, and pfail are required for these tests, there are several unexercised
paths in these routines, and in particular, many interpreter opcodes are not encountered. Further testing of
the run-time system exercises all the execution paths, but the improper operation of a newly-coded may be due
to an error in a routine that has already checked-out.

There similar entries in v5/Makefile for testing each module that the porter needs to write. The entries
correspond directly to the module name, e.g.,

make Test-arith

tests arith.s. The other testing entries are:

Test-fail fail.s
Test-esusp esusp.s
Test-lsusp Isusp.s
Test-psusp psusp.s
Test-suspend suspend.s
Test-display display.c
Test-gc gcollect.s and sweep.c

After completing each module in turn, the porter should test it by make'mg the appropriate entry in
v5/Makefile.

7.6 Porting the Rest of the Run-Time System

7.6.1 arith.s

Overview

arith.s contains code for routines that add, subtract, and multiply long integers and check for overflow. If
overflow occurs, run-time error 203 is produced. These operations are performed by subroutines rather than
doing them in-line because C does not check for overflow.

The arguments to ckadd, cksub, and ckmul are two C long integers on which to operate. For example,
if ckadd were written in C, it would be declared

long ckadd(a.b)
long a,b;
{

}

The routines return the result of the operation using standard C return conventions.

arith on the VAX

The two arguments appear on the stack; a is at 4(ap) and b is at 8(ap). The appropriate 3-operand VAX
instruction is used to perform the operation and the result is placed in rO in accordance with C return conven­
tions. If overflow occurs during the operation, the overflow bit in the program status word is set.

After the operation is performed, the overflow bit is checked. If it is on, indicating that an overflow
occurred, a branch is taken to of low, where runerr(203,0) is called. If overflow did not occur, the routine
returns and the value in rO is the value returned to the calling expression.

arith.s is trivial on the VAX because the hardware supports operations on C long integers. This may not
be the case on the target machine. If so, arith.s will be considerably more complicated. However, it usually is

-36

not difficult to locate routines that perform these functions. It may be helpful to look at the code the C com­
piler generates for the various arithmetic operations on long integers.

7.6.2 fail.S

Overview

fail handles the failure of built-in procedures and operators. Built-in procedures and operators are imple­
mented by C routines and they signal failure by calling fail(). When a failure of this type occurs, the failure
must be transmitted to the Icon expression whose evaluation is in progress and that requires the services of an
assembly-language routine. In some cases, a subsidiary routine used by the function or operator may call
fail(); this is handled as if the top-level routine had failed.

Generic Operation

fail itself does very little, the real work is done by efail. fail restores the computational context at the time
of call to the top-level C routine and then branches to efail to make the enclosing expression fail.

fail is akin to pfail in that it pops the stack back to a state that it was in when an expression was being
evaluated and then causes failure of the expression. The differences in the two rises from the slightly different
formats of the two types of frames.

fail on the VAX

-boundary points to the procedure frame for the top-level C routine that was called from Icon, fp is
loaded from -boundary and this puts the stack back to the state that it was in when the top-level C routine
was entered. For a built-in procedure, the procedure frame now on the top of the stack (after loading fp from
-boundary) is the frame constructed in invoke. For an operator, the frame on the stack is the one con­
structed when the interpreter loop called the C routine for the operator.

The task at hand is to remove the procedure frame and restore the istate registers. Because the only infor­
mation directly available about the frame of the failing top-level routine is its fp (just restored from -boun­
dary), the location of the argument list (and thus, the istate block) is unknown. The variability of the location
of the arguments is caused by the presence of a variable number of saved registers in the frame for the routine.

The most expedient way to find the istate block is to pop the saved registers off the stack. The mask/psw
word of the frame is manipulated so that the mask portion of the word resides in bits 0:11 of rO and the
remaining bits of rO are 0.

The saved registers start at 20(fp) and sp is loaded with this address. Then popr rO restores the registers
that are saved in the frame. Note that the manipulations of the mask/psw are necessary because it is not
known a priori which registers were saved. In particular, popr $0x0fff would be disastrous.

When the saved registers have been restored, the nwords word is on the top of the stack and this is
popped, leaving the istate block on top. The istate registers are then restored with Pop_isb.

After the registers have been restored, ap and f p are restored from the saved ap and f p values in the frame.

At this point, the stack is as it was before the frame for the built-in procedure or operator was created. All
that remains is to signal failure in the expression being evaluated and this is done by branching to efail.

7.6.3 pret.s

Overview

pret handles the return of a value from an Icon procedure, pret is entered by a branch from the interpreter
loop. The descriptor on the top of the stack is the value being returned. The value is dereferenced if necessary.
If tracing is on, a trace message is produced. The return value is copied over argQ in the frame of the procedure
that is returning a value, pret does a return through the frame of the returning procedure and this is mani­
fested as a return from invoke, with execution continuing in the interpreter loop. The return leaves argQ on
the top of the stack as the result of the call.

37

Generic Operation

(1) _k_level is decremented because a procedure is being exited.

(2) The stack address where the return value is to be placed is calculated. Recall that when a procedure
is invoked, the return value (if any) ultimately replaces argg, the descriptor for the procedure return­
ing the value.

(3) The value being returned must be dereferenced if it is a local variable or an argument. This is
because local variables and arguments are on the stack and the portion of the stack associated with a
procedure "goes away" when a procedure returns. If the return value is a variable (its type word has
the F_Var bit set) and its address is between the base of the current expression stack* and the stack
pointer, it is dereferenced. If it is a substring trapped variable (is of type T_Tvar and points to a
block of type D_Tvsubs), and the address of the variable containing the substring is between the
base of the current expression stack and the stack pointer, it is dereferenced.

(4) If _k_trace is non-zero, rtrace is called with the address of the block for the returning procedure
and the address of the return value descriptor.

(5) fp, _line, and -file are restored from the frame of the returning procedure.

(6) pret returns from the Icon procedure by executing a return instruction. Because the current fp
points to the procedure frame for the Icon procedure, and the frame was built by invoke, the return
is effectively a return from invoke and the net result is that the return value is left on the stack.

pret on the VAX
_k_level is decremented because a procedure is being exited.

The address of arg^ is calculated via

Suirgo = Argn_loc+(nargs*DescSize)

and stored in r11 for later use.

As described, the value being returned needs to be dereferenced in certain cases. The return value is a
descriptor and is on the top of the stack. The first word of this descriptor lies at 0(sp) and contains type and
flag information. This word is placed in r1 for further examination.

The instruction

bitl $F_Nqual,r1

ANDs the type and flags word with the F_Nqual mask. The F_Nqual bit is set if a descriptor is not a string
qualifier. If the F_Nqual bit is not on, the result of the AND is a 0. The test is followed by

beql chktrace

Thus, if the return value is a qualifier, dereferencing is not required and a branch is taken to chktrace.

If the return value does have the F_Nqual attribute, it is checked to see if it is a variable. The F_Var bit is
tested. If it is not on, the return value is not a variable and does not have to be dereferenced. A branch is
made to chktrace if this is the case.

If a variable is in hand, the F_Tvar bit is checked to see if it is a trapped variable. If it is not a trapped vari­
able, the address field of the return value's descriptor is moved into li for further testing and a branch is taken
to chkloc.

If the return value is a substring trapped variable, it may reference a local variable or an argument. The
type bits of the descriptor are isolated by ORing it with TypeMask. If the type is not T_Tvsubs, no dere­
ferencing is needed and a branch is taken to chktrace. If it is a substring trapped variable, the address of the

For purposes of uniformity, the system stack is treated as if it were a co-expression stack. The global variable
_k_current is a pointer to the descriptor for the co-expression stack block for the current co-expression. Co-expressions
need not be implemented; it is only important that _k_current and the descriptor that it points to be initialized correctly.
This is done in iconx/init.c.

38-

variable containing the substring is obtained from the trapped variable's data block and is loaded into r1.

At this point (chkloc), M points to a descriptor that is directly or indirectly referenced by the return value.
If the descriptor is in the current expression stack, the return value must be dereferenced. r1 is first compared
to sp. If it is less than sp, the descriptor is not in the stack and a branch is made to chktrace. Otherwise, r1
is compared to the base address of the current expression stack. If r1 is greater than the base of stack, the
descriptor is not in the frame of the current procedure and a branch is made to chktrace.

If control has not branched to chktrace, it is now certain that the return value must be dereferenced, lest it
"disappear" when the portion of the stack it is in is re-used. The address of the return value is pushed on the
stack and deref is called. Note that deref completely handles dereferencing of substring trapped variables
and thus no special provisions need to be made.

At chktrace, the return value has been dereferenced if necessary and it is time to produce a tracing mes­
sage if _k_trace is non-zero, rtrace does the work and it requires two arguments: the address of the block for
the returning procedure, and the address of the return value. Earlier, the address of descriptor for the pro­
cedure block (argg of the now-returning procedure) was calculated and left in r11. The address of the return
value and the address of the block for the returning procedure are pushed on the stack as arguments for rtrace
and it is called.

pret "returns" the designated value by overwriting the procedure's descriptor with the descriptor of the
return value. r11 points at the descriptor for the procedure and the return value is still on the top of the stack,
so

movq (sp),(r11)

does the trick.

_line and file are restored from the Icon procedure frame. A ret is executed. The return goes through
the procedure frame built by invoke. Thus, control is returned to the point just after the call to invoke and it
appears as if invoke itself had just returned.

7.6.4 esusp.s

Overview
esusp suspends a value from an expression, esusp is called from the interpreter loop and the value to
suspend appears as an argument. A generator frame hiding the current expression is created. The surround­
ing expression frame is duplicated, esusp leaves the value being suspended on the top of the stack.

The esusp operation arises from the alternation (expr} \ expr2) control structure. For example

P(5 | 10)

indicates that the call p(5) should be made and if it fails, then p(10) should be called.
The function of esusp is best explained using an example. The following ucode is generated for p(5 | 10)

mark
var
mark
int
esusp
goto

L1
0
L2
0

L3

(the variable p)

(constant 5)

lab L2

lab L3
int 1 (constant 10)

invoke 1
unmark 1

lab L1

When execution reaches esusp, the stack looks like

39

sp —* descriptor for constant 5
efp —• expression marker with L2 as failure address

descriptor for variable p
expression marker with L1 as failure address

gfp is zero at this point. After the esusp is performed, the stack is

sp - * descriptor for constant 5
descriptor for variable p } duplicated region

gfp —• generator frame built by esusp
descriptor for constant 5
expression marker with L2 as failure address
descriptor for variable p

efp —*• expression marker with L1 as failure address

A branch is taken to L3, where invoke 1 is performed. This invokes p with one argument, the constant 5 on
the stack. If p(5) succeeds, the unmark 1 is performed and the stack is popped back through the L1 expres­
sion frame, the current location of efp.

Suppose that instead of succeeding, p(5) fails, p fails by calling pfail, which removes the procedure frame
from the stack and then calls efail. The previous stack diagram shows what the stack looks like after the pro­
cedure frame has been removed, efail finds that gfp is not null and restores certain values that are saved in the
generator frame. The frame, which was created by esusp, contains a return address that points to efail.
Thus, when efail removes the frame by returning through it, control goes back to the start of efail and the
stack is

sp —• descriptor for constant 5
efp —• expression marker with L2 as failure address

descriptor for variable p
expression marker with L1 as failure address

This time around, gfp is zero, so efail must remove the current expression frame and branch to the failure
address in the frame's marker. When the expression frame is removed, the stack looks like

sp —+ descriptor for variable p
expression marker with L1 as failure address

The failure address in the expression frame was L2, so control is transferred to label L2 in the ucode. (Note
how much went on as the result of the invoke being executed.) The instruction int 1 is executed and a descrip­
tor for the constant 10 is pushed on the stack giving:

sp —*• descriptor for constant 10
descriptor for variable p
expression marker with L1 as failure address

invoke 1 is performed again, which does p(10).

If p(10) succeeds, the unmark 1 is executed, which removes the L1 marker and transfers control to L1. If
p(10) fails, the same thing happens, but efail does the work rather than unmark.

Generic Operation

(1) The frame created by the call to esusp partially forms the generator frame. The frame is completed
by pushing -boundary, _k_level, -line, and -file. The generator frame pointer is set to point at
the word of the frame which contains the boundary.

(2) The bounds of the expression frame to be duplicated are determined. The upper bound is the stack
word below the current expression frame marker. The lower bound is dependent on efp and gfp
values saved in the current expression marker. If the saved gfp is non-zero, the lower bound is the
first word above the generator frame marker. If the saved gfp is zero, the lower bound is the first
word above the expression frame marker referenced by the saved efp. In the example, this region
only contains the descriptor for the variable p. The region is copied to the top of the stack.

40

(3) The value being suspended is pushed on the stack.

(4) The return address in the new generator frame is replaced by the address of efail so that when efail
removes the frame by returning through it, efail regains control. The old return address is momen­
tarily retained. The procedure frame pointer is restored, -boundary is cleared because control is
returning to Icon code.

(5) efp in the current expression marker replaces the expression frame pointer. Thus, if an unmark is
performed, the entire expression frame is removed. In the example, this happens if p(5) or p(10)
succeeds.

(6) The return pc value that was saved earlier is jumped to. This is in effect a return from esusp, but
the stack is untouched.

esusp on the VAX

esusp is entered from the interpreter loop by a CallCtl and this partially constructs the generator frame.
The entry mask directs ipc, gfp, and efp to be saved in the frame, -boundary is set to the current fp value
and is pushed on the stack. The generator frame pointer is pointed at the word containing the boundary. The
frame is completed by pushing _k_level, _line, and -file on the stack.

The upper bound of the region to copy is the first word below the current expression frame marker. Recall
that an expression frame looks like

-8 failure address
-A old generator frame pointer

efp —• 0 old expression frame pointer

Thus,

addl3 $4,efp,r0

points rO at the upper end of the region to copy.

The lower bound of the region to copy is the high word of the marker for the enclosing generator or
expression frame. If gfp is non-zero the generator frame marker is used. Otherwise, the expression frame
marker is used. Recall that a generator frame looks like

gfp —*

12
-8
-A
0
4
8

12
16
20

saved -file
saved -line
saved _k_level
boundary
0
psw and register mask
saved ap
saved fp
reactivation address (saved pc)
saved registers

So, if the saved gfp is non-zero, the lower bound of the region to copy is

saved gfp - 12

Otherwise, it is

saved efp - 8

The appropriate calculation is performed and r2 pointed at the bounding word.

At this point, the stack looks something like

41

sp —

ap - *

efp —*•
rO —*

-12
-8
-4
0
4
8

12
16
20
24

-A
0
4

-8
^4
0
4

_file
_line
_k_level
boundary (fp at entry to esusp)
condition handler address
psw and register mask
saved ap
saved fp
reactivation address (saved pc)
saved r9 (ipc)
saved MO (gfp)
saved M1 (efp)
nwords (2)
descriptor for value to suspend
failure label
saved generator frame pointer
saved expression frame pointer
first word of region to copy

^v

» generator marker

} expression marker

last word of region to copy
r2 —• high word of expression or generator frame marker

The region starting at rO and extending to r2 is to be copied to the top of the stack. The length of the
region in bytes is calculated in r2. The value of r2 is subtracted from sp, moving sp up to accommodate the
region. The region is then copied using

movc3 r2,(r0),(sp)

which moves r2 bytes starting at 0(r0) to 0(sp).

The descriptor for the value to suspend is at Arg_desc and it is pushed on the stack using

movq Arg_desc,-(sp)

The stack now looks like

sp —* descriptor for value to suspend
first word of copied region

last word of copied region
gfp —*• generator frame marker

descriptor for value to suspend
efp -"•*• expression frame marker
rO ~~*• first word of region to copy

last word of region to copy
r2 —* high word of expression or generator frame marker

The return address that is saved in the generator frame is moved into r1 for later use. It is then replaced by
the address of efail so that when the frame is returned through, control will go to efail.

fp and ap are restored from the generator frame, -boundary is cleared because control is returning to
Icon code.

efp is pointed at the previous expression frame. That is, efp is moved back one link in the expression
frame chain.

Control is returned to the interpreter loop by branching to 0(r1), the reactivation address originally saved
in the generator frame.

-42

7.6.5 Isusp.S

Overview

Isusp suspends a value from a limited expression. A limited expression arises from a source code expres­
sion of the form

expr. \ expr2

This limits expr} to at most expr2 results (expr2 must have a non-negative integer value).

Isusp is just like esusp except that it has provisions for checking and decrementing the limit counter and
taking the appropriate action when the counter reaches zero. As a simple example, consider

P(x\2)

which generates the ucode

< L1
(variable p)
(constant 2)

(variable x)

mark
var
int
limit
mark
var
Isusp
invoke
unmark

L1
0
0

LO
1

1
1

When control reaches Isusp, the stack looks like

sp —*• descriptor for variable X
efp —* expression marker with LO as failure label

descriptor for integer with value of 2
descriptor for variable p
expression marker with L1 as failure label

The limit instruction insures that the value on the top of the stack (its argument) is a non-negative integer,
converting it if necessary. After Isusp, the stack is

sp —*• descriptor for variable x
descriptor for variable p } duplicated region

gfp —• generator frame built by Isusp
descriptor for variable x
expression marker with LO as failure label
descriptor for integer with value of 2
descriptor for variable p

efp - • expression marker with L1 as failure label

This is the same thing that esusp would do, with the exception that the limit counter, the integer descriptor,
is not part of the duplicated region.

Generic Operation

(1) The procedure frame created by the call to esusp partially forms the generator frame.

(2) The limit counter is decremented. If it is zero, no suspension is performed. Instead, the current
expression frame is removed and the limit counter is replaced by the value that would have been
suspended had the limitation not been in effect. Isusp returns, leaving the value on the top of the
stack.

43

(3) If the limit counter is not zero, execution proceeds exactly as it does for esusp with the exception
that the determination of the region to copy takes the limit counter into consideration and does not
include it in the region that is copied.

Isusp on the VAX

As with esusp, Isusp is entered from the interpreter loop by a CallCtl and this partially constructs the
generator frame.

The expression frame and associated limit counter have the following layout:

-8 failure label
-4 old generator frame pointer \ expression frame

efp —*• 0 old expression frame pointer
4 DJnteger
8 number of results left >• limit counter

The limit counter is decremented and if it is not zero, control passes to the label dosusp and from then on
execution proceeds exactly as it does in esusp. Specifically, the code beginning at dosusp is an exact dupli­
cate of that in esusp with the exception of the instruction that determines the upper bound of the region to be
duplicated, esusp uses

add 13 $4,efp,r0

which points rO at the word immediately below the expression frame. Isusp uses

addl3 $12,efp,r0

which points rO at the word below the limit counter that is in turn directly below the expression frame marker.
If the limit counter is zero, the counter is to be replaced with the value which was to be suspended. The

value appears as an argument to Isusp. This is accomplished with

movq Arg_desc,4(efp)

The value of gfp that is stored in the expression frame is restored.

The saved pc in Isusp's frame is moved into rO for later use.

The expression frame is removed by moving efp into sp, which leaves the expression frame marker word
that contains the old efp on the top of the stack. This word is popped off the stack and moved into efp, res­
toring efp and leaving the return value on the top of the stack.

ap and fp are restored from the procedure frame made upon entry to Isusp.

Isusp "returns" by jumping to 0(r0), the return point that was saved in the frame. The value that was to
be suspended, but instead was returned because of the limitation, is left on the top of the stack.

7.6.6 psusp.s

Overview

psusp suspends a result from an Icon procedure, psusp is called from the interpreter loop and the value
to suspend appears as an argument. A generator frame is created and the generator or expression frame
immediately containing the frame for the suspending procedure is duplicated on top of the stack, psusp
simulates a return from the suspending Icon procedure by restoring appropriate registers and values. The net
effect is that a generator frame is left on the stack and it appears that the suspending Icon procedure has
returned, i.e., the call to invoke seems to have returned.

The psusp operation arises from the

suspend expr

expression.

-44

psusp is conceptually similar to esusp, the difference being that a procedure frame is part of the expres­
sion frame being duplicated and that requires some extra work. To get a feel for what psusp does, consider a
simple example:

procedure main()
f(P(3))

end

procedure p(a)
suspend a

end

The generated ucode for main is

mark
var
var
int
invoke
invoke

lab L1

and the generated code for p is

mark
mark
var
psusp

L1
0
1
0
1
1

L2
LO
0

(the variable f)
(the variable p)
(the constant 3)

(the argument a)

lab L2

When control reaches the invoke instruction, the stack resembles

sp —*• descriptor for constant 3
descriptor for variable p
descriptor for variable f

efp —* expression marker with L1 as failure address

After p has been invoked, just before the psusp is executed the stack is

sp -—* descriptor for argument a
efp —*• expression marker with LO as failure address

expression marker with L2 as failure address
procedure frame for p (created by invoke)
descriptor for constant 3 (becomes argument a)
descriptor for variable p
descriptor for variable f
expression marker with L1 as failure address

Just before control returns from psusp, the stack is

- 4 5 -

sp —*• descriptor for variable f } duplicated region
gfp —• generator frame built by psusp

descriptor for constant 3 (argument a after dereferencing)
expression marker with LO as failure address
expression marker with L2 as failure address
procedure frame for p
descriptor for constant 3
descriptor for variable p
descriptor for variable f
expression marker with L1 as failure address

After psusp returns, the situation is

sp —• descriptor for constant 3 (the suspended value)
descriptor for variable f

gfp —* generator frame built by psusp
descriptor for constant 3 (originally argument a)
expression marker with LO as failure address
expression marker with L2 as failure address
procedure frame for p
descriptor for constant 3
descriptor for variable p
descriptor for variable f

efp —* expression marker with L1 as failure address

The return from psusp goes to the second invoke, which calls f with one argument, the constant 3 that
was suspended. If f (3) fails, the procedure frame for f is removed, efaii takes control and returns through the
generator frame built by psusp. This leaves the descriptor for a on top of the stack. Execution continues by
p failing, and then main failing.

Generic Operation

(1) The procedure frame created by the call to psusp partially forms the generator frame, -boundary
is set as the current location of fp and it is added to the generator frame.

(2) As in pret, the value being suspended must be dereferenced in certain cases. For example, if the
value is a local variable or an argument, it is dereferenced. The same code that handles dereferenc­
ing in pret appears in psusp as well. Note that while suspension leaves the local variables and argu­
ments of a procedure intact, if the enclosing expression frame were to be removed by an unmark,
the procedure frame would be destroyed, leaving undeferenced values pointing at meaningless data.

(3) The generator frame is completed by pointing gfp at the boundary value already in the frame and by
adding _k_level, -line, and-file.

(4) The bounds of the expression frame to be duplicated are determined. The upper bound is the word
below argg of the suspending procedure and the lower bound is the marker for the expression frame
or generator frame that is just prior to the procedure frame. As in esusp, if gfp is non-zero, the
marker it points to is used. Otherwise, the marker referenced by efp is used. The gfp and efp
values used are those found in the procedure frame of the suspending procedure. The region is
copied to the top of the stack. In the example, the duplicated region contains only the descriptor for
the variable f.

(5) If _k_trace is non-zero, strace is called to produce a trace message noting that the procedure is
suspending a value, strace requires the address of the block for the suspending procedure and the
address of the descriptor for the value being suspended.

(6) -line and -file are restored from the frame of the suspending procedure. This is done because when
psusp is finished, it is as if the Icon procedure had returned. Thus, the line number and file name
need to be what they were before the procedure was called.

- 4 6 -

(7) The duplicated region is now on the top of the stack and the value being suspended, Arg_desc, is
pushed on the stack. When psusp is done, this descriptor is left on the top of the stack.

(8) -boundary is cleared because control is returning to Icon code.
(9) A return from psusp is simulated by restoring ipc, efp, and other pertinent information from the

frame of the suspending procedure. The result is that it appears as if the invoke that originally
called the suspending procedure has returned.

A more straightforward but less efficient approach is to include, as the upper end of the duplicated region,
the procedure frame for the suspending procedure, psusp then returns through this frame, leaving the value
to be suspended on the top of the stack. This is not recommended, but is mentioned because it is used in some
implementations.

psusp on the VAX
psusp is entered from the interpreter loop by a CallCtl and this partially constructs the generator frame.

-boundary is set to the current value of fp and this value is pushed on the stack as part of the generator
frame.

The value being suspended is dereferenced if it is a local variable or an argument. This operation is the
same as is done in pret; consult the section on it for details of the actions taken.

The generator frame is completed by pointing gfp at the frame word containing the boundary value and by
adding _k_level, Jine, and file to the frame.

The region to be duplicated is determined. The high word to be copied is the word below arg^ of the
suspending procedure.

The low word to be copied is dependent upon the expression and generator environment present at the call
of the now-suspending procedure. If the gfp in the suspender's environment is not zero, the word just above
the generator frame marker is the lowest word to be copied. If gfp is zero, the word just above the expression
marker pointed at by efp in the suspender's environment is the lowest word to be copied.

The istate block of the suspending procedure contains the efp and gfp values of interest. As in esusp, if
the saved gfp is non-zero,

saved gfp - 12

is used for the lower bound, otherwise

saved efp - 8

is the lower bound. r4 is pointed at the appropriate word on the lower end. As in esusp, sp is moved up to
accommodate the region to be duplicated and the region is copied to the top of the stack using a movc3.

After _k_level is decremented, _k_trace is checked to see if a trace message should be produced. If so,
strace is called with pointers to the descriptors for the suspending procedure and the value being suspended.
The address of the value being suspended is named by Arg_desc and the address of the descriptor for the pro­
cedure is determined using the standard

&argQ = ap+Argn_off+(nargs*DescSize)

calculation.

The values of J ine and file are restored from the suspender's frame.

The descriptor for the value being suspended is pushed on the stack with

movq Arg_desc ,-(sp)

-boundary is cleared because control is going back into Icon code.

ap and fp are restored from the frame of psusp and then the ipc, efp, ap, and fp values are restored from
the suspender's frame, serving to mimic a return from the suspending procedure. The ipc now references the
icode instruction following the psusp instruction just executed. A branch to interp resumes execution of the
program with the suspended value on top of the stack.

•47-

Note that since the appropriate registers have been restored and the result is on the top of the stack, it is
not correct to branch to the instruction after the call to psusp as that code assumes that registers need to be
restored.

7.6.7 suspend.s

Overview

suspend suspends a value from a built-in procedure or operator, suspend is similar to psusp and
amounts to little more than a simplified version of it. Recall that built-in procedures and operators are imple­
mented by C functions; thus, suspend is directly called from C.

A generator frame is created and the generator or expression frame immediately containing the frame for
the suspending procedure is duplicated on the top of the stack. As in psusp, a return is simulated, and this
appears to be a return from the original call to the C routine.

For built-in procedures, the procedure frame is built by invoke, while for operators, the procedure frame
is built directly by the call to the appropriate function from the interpreter loop. The value being suspended by
the C function is represented by the argO descriptor in the argument list. When suspend is called, the value
to suspend is in place in argO. Note that suspend is only called from top-level routines.

Generic Operation

suspend can be considered as a "subset" of psusp. The actions of psusp that are not taken by suspend
are:

(1) The value being suspended is not dereferenced because the suspending routine created the value and
no further action is required.

(2) No tracing message is produced because tracing is only done for Icon procedures.

(3) The value being suspended does not need to be moved into the duplicated region because it is
already in place as argO of the suspending routine and this value is part of the duplicated region. In
psusp, argg is not part of the duplicated region and instead is pushed on the stack.

(4) _k_level is not decremented because it keeps track of Icon procedure calls and suspend is returning
from a C routine, -line, and file are not restored because they are not part of the procedure frame
of the C routine.

The operations that are performed by suspend are:

(1) The procedure frame created by the call to suspend partially forms the generator frame, -boun­
dary is set as the current location of fp and it is added to the generator frame.

(2) The bounds of the expression frame to be duplicated are determined, argg of the suspender's argu­
ment list lies at the upper end of the region to duplicate. The lower bound is the marker for the
expression or generator frame that is just prior to the procedure frame. As in the other suspension
routines, if gfp is non-zero, the marker it points to is used. Otherwise, the marker referenced by
efp is used. The gfp and efp values used are those found in the frame of the suspending routine.
The region is copied to the top of the stack.

(3) -boundary is cleared because control is returning to Icon code.

(4) A return from suspend is simulated by restoring ipc, efp, and other pertinent information from the
frame of the suspending routine. The result is that it appears as if the original call to the suspending
routine has returned.

suspend on the VAX

When suspend is entered, the generator frame is partially constructed as a result of the call, -boundary
is set to the current value of f p and this value is pushed on the stack as part of the generator frame. The gen­
erator frame is completed by pointing gfp at the frame word containing the boundary value and by adding
_k_level, -line, and-file to the frame.

48

The region to be duplicated is determined. The high word to be copied is the first word of argQ of the
suspending routine.

As in the other suspension routines, the low word to be copied is dependent upon the expression and gen­
erator environment present at the call of the now-suspending procedure. If the gfp in the suspender's environ­
ment is not zero, the word just above the generator frame marker is the lowest word to be copied. If gfp is
zero, the word just above the expression marker pointed at by efp in the suspender's environment is the lowest
word to be copied.

The istate block of the suspending procedure contains the efp and gfp values of interest. As in esusp, if
the saved gfp is non-zero,

saved gfp - 12

is used for the lower bound, otherwise

saved efp - 8

is the lower bound. r4 is pointed at the appropriate word on the lower end. As in esusp, sp is moved up to
accommodate the region to be duplicated and the region is copied to the top of the stack using a movc3.

-boundary is cleared because control is going back into Icon code.

ap and fp are restored from the frame of suspend and then the ipc, efp, ap, and fp values are restored
from the suspender's frame, serving to mimic a return from the suspending routine. The ipc now references
the icode instruction following the icode instruction that initiated the call of the now-suspending routine. A
branch to interp resumes execution of the program with the suspended value on top of the stack.

7.6.8 display.c

Overview

display.C implements the Icon function displayQ. display traces back through Icon procedure frames
printing various sorts of information.

Generic Operation

display makes one calculation that is machine dependent. The calculation is to take a frame whose
address is contained in the variable f p and calculate the address of the procedure descriptor in the frame that is
pointed at by the frame pointer value saved in the frame that fp references, display "walks" the arguments
and local variables, but code is conditionally compiled to handle the case of up-growing stacks.

display on the VAX

ap and f p are restored from the frame referenced by f p. The number of arguments to the procedure is con­
tained in ap[4]. This is loaded into the variable n. The address of the procedure descriptor {arg^) is calculated
using:

dp = ap+5+(2*n)

Note that this is the same computation that is made at several points in the assembly language routines.
Because the calculations are being made using int * variables and thus the constants represent word counts
instead of byte counts as they do in the assembly language routines.

7.6.9 gcollect.s

Overview

gcoMeet is a simple routine that insures that garbage collections are done using the stack for the main co-
expression. This done by saving certain values in the co-expression block of the current co-expression, restor­
ing values from the co-expression block for _k_main, calling the garbage collector, and then restoring the ori­
ginal values, gcollect takes a single argument that is passed directly to collect.

- 4 9 -

gcollectonthe VAX
rO is pointed at the heap block for the current co-expression, sp, ap, and -boundary are saved in the

appropriate words of the block.

rO is pointed at the heap block for _k_main, the co-expression that is initially active, sp is restored from
the block for _k_main. The argument to collect, at 4(ap), is pushed on the stack. Then, ap and -boundary
are restored. Note that the argument must be pushed after sp has been restored, but before ap is restored.

collect is called with one argument, which is the argument passed to gcollect.
rO is pointed at the heap block for the current co-expression and the sp, ap, and -boundary values saved

at the start of the routine are restored.

gcollect returns.

7.6.10 sweep.c

Overview
sweep is used during garbage collection to sweep a stack, marking all the descriptors in the stack, sweep

begins at the top of a stack and moves down through the stack, looking for descriptors and marking them. A
stack is composed of four kinds of objects: descriptors, and markers for procedure, generator, and expression
frames, sweep uses knowledge of frame marker formats to skip over markers and to process the intervening
descriptors.

Although sweep is written in C, the knowledge of frame formats that it employs requires that it be written
on a per-machine basis.

Generic Operation

There are three places that descriptors can appear on the stack: above an expression marker, in an argu­
ment list, and below an argument list. This can be considered as only two places because descriptors below
the argument list can be considered as part of the argument list.

sweep is called with a single argument that is the frame pointer value for the frame at the boundary. For
purposes of discussion assume that sp references the stack word of current interest, sweep has a loop and
each time through the loop, one of four actions is taken based on the word that sp is pointing at:

(1) If sp is pointing at the high word of a procedure frame marker, sp is moved to point at the low
word of the argument list of the procedure, efp, gfp, and fp are restored from the procedure frame.
The number of arguments to the procedure is placed in nargs.

(2) If sp is pointing at the high word of a generator frame marker, the boundary value in the generator
frame is examined to determine if the generator frame was made by suspend or if it was made by
one of esusp, Isusp, or psusp (i.e., an Icon generator). If the former, fp is restored from the boun­
dary word of the generator frame, and sp is pointed at the high word of the frame referenced by f p.
This skips the C portion of the stack contained in the generator frame and the remainder of the
frame can be processed as a procedure frame. The f p value assigned causes the next iteration of the
loop to select the procedure frame case.

If the frame is that of an Icon generator, efp, gfp, and fp are restored from the frame and sp is
pointed at the argument descriptor (i.e., Arg_desc) for the routine in question.

(3) If sp is pointing at the low word of an expression frame marker, gfp and efp are restored from the
marker and sp is pointed at the word above the marker.

(4) If none of the preceding conditions are true, the word that sp points at is assumed to be the low
word of a descriptor and that descriptor is marked, sp is incremented to move past the descriptor.
If nargs is not zero, it is decremented.

This process continues as long as fp and nargs are not both zero, nargs is used so that the arguments in
the very last frame are processed; the f p at that point is 0.

-50

sweep on the VAX
The routine getap is used by sweep, getap takes the address of a frame and returns the address of 0(ap)

in that frame. That is, it returns the address of the start of the argument list for the frame.

Note that the C code uses int * variables for the various calculations that are performed. Thus, a calcula­
tion such as x+2 is actually performing x+8. Similarly, x[-1] would be the address X-4.

sweep is called with a single parameter, fp. fp holds the address of the frame with which to start the
marking process. This address is a -boundary value, and thus it points to the condition handler address
word of a procedure frame.

sp is set to fp-PFMarkerHigh, so that the first time throughout the loop, the procedure frame on the top
of the stack is processed. This gets the ball rolling, so to speak.

sweep loops while fp and nargs are not both zero. It should be noted that the variables used in sweep
have no connection to actual registers other than having the same name.

If sp is equal to fp-PFMarkerHigh, it indicates that sp is pointing at a procedure frame marker.
When a procedure frame marker is encountered, efp and gfp values are restored using negative displace­

ments from ap. ap points at the nwords word of the frame, and sp is set to ap+2 so that it points at the
descriptor for the first argument, nargs is loaded from the argument list, ap and fp are restored from the
frame

A generator frame is indicated by sp being equal to gfp-GFMarkerHigh. fp is restored from the frame.
A new ap value is calculated from fp using getap. If fp is equal to gfp+1, a C generator (created by suspend)
is at hand, and sp is set to fp-PFMarkerHigh to cause recognition of a procedure frame the next time around.

Otherwise, efp and gfp are restored from ap[-1] and ap[-2] respectively. Then sp is pointed at
Arg_desc, the argument descriptor that lies at the word below the nwords word of the frame, ap and fp
values are restored from the frame and nargs is set to 1.

An expression frame marker is indicated by sp being equal to efp-EFMarkerHigh. efp and gfp are
restored from the marker, sp is incremented by 3 which leaves it pointing at the word above the marker,
which may be a descriptor.

If sp suits none of the preceding criteria, it is assumed to point at a descriptor, mark is called with the
value of Sp as its argument, sp is incremented by 2 to move past the descriptor just marked. If nargs is non­
zero, it is decremented.

8. Wrapping Up the Port

When the port is believed to be complete, the complete battery of tests can be run by

make Samples Testtest

in v5. See [3] for information on interpreting the results of these tests.
The porter may also wish to bring up the Icon program library [4] and personalized interpreters [5]. See [3]

for instructions for installing and testing these components of the Icon system.

To make the port part of the Icon system in the same manner that other implementations are included, it is
necessary to create a directory for it in src, since sys is overwritten in the normal course of installing Icon. To
do this, in v5

make Back-in SYS=name

where name is the host name used in the original Setup-port (see Section 3, Porting Overview).
At this point, the new port has the same status as the other implementations. A set-up entry for it can be

added to v5/Makefile, using existing entries as guidelines. Note that the -host option, which to this point has
been name, may need to be changed to something more appropriate for general use [3].

Once this is done, the new system can be set up, installed, and tested like any other implementation of
Icon.

5 1 -

Acknowledgements

Ralph Griswold patiently suffered through a number of drafts on the original version of this document and
made innumerable suggestions about grammar, form, and content. Ralph Griswold also served as editor for
this version of the document.

Steve Wampler graciously answered a number of questions about the internal workings of Icon and pro­
vided a number of comments on the original version of this document.

A number of persons involved with various Icon porting projects have contributed to knowledge about
porting this version of Icon that has in turn been incorporated into this document. Thanks go to Rick
Fonorow, Phil Kaslo, Mark Langley, Rob McConeghy, and Janalee O'Bagy for contributing in this way.

Special thanks go to Rick Fonorow, Rob McConeghy, and Janalee O'Bagy for using previous versions of
this document to successfully port Icon, showing the author that writing this document was worthwhile.

References

1. R. E. Griswold and W. H. Mitchell, A Tour Through the C Implementation of Icon; Version 5.10, Techni­
cal Report 85-19, Department of Computer Science, The University of Arizona, August 1985.

2. VAX Architecture Handbook, Digital Equipment Corporation, Maynard, Massachusetts, 1982.

3. R. E. Griswold and W. H. Mitchell, Installation and Maintenance Guide for Version 5.10 of Icon, Techni­
cal Report 85-15, Department of Computer Science, The University of Arizona, August 1985.

4. R. E. Griswold, The Icon Program Library; Version 5.10. Technical Report TR 85-18, Department of
Computer Science, The University of Arizona. August 1985.

5. R. E. Griswold and W. H. Mitchell, Personalized Interpreters for Icon; Version 5.10. Technical Report
TR 85-17, Department of Computer Science, The University of Arizona. August 1985.

- 5 2 -

Appendix — The Icon Hierarchy

v5 root of the Icon system (location is site-dependent)
/src source code for the Icon system

/tran source code for the Icon translator
/link source code for the Icon linker
/h header files for the Icon system
/f ncs source code for built-in functions
/ops source code for operators
/rt source code for run-time support routines
/lib source code for routines called by the Icon interpreter
/iconx source code for the Icon interpreter
/icont source code for the Icon command processor
/sys source code for target machine
/proto source code for prototype implementation
/att3b source code for AT&T 3B implementation
/pcix source code for IBM PC/IX implementation
/pdpl 1 source code for PDP-11 implementation
/ridge source code for Ridge 32 implementation
/mc68000 source code for Sun Workstation implementation"
/unixpc source code for AT&T UNIX-PC implementation
/vax source code for VAX implementation
/pifncs source code for Icon library C functions

/docs Icon documentation
/book source code for procedures from the Icon book
/bin executable binaries for Icon
/library Icon program library

/src source code for Icon library programs
/cmd source code for programs
/lib source code for procedure libraries

/ibin executable binaries for programs
/ilib linkable code for procedure libraries
/libtest Icon library test programs
/man manual

/manO front matter
/man1 application programs
/man2 procedures
/man3 C functions

/man7 miscellaneous
/man8 library maintenance
/catO formatted front matter for manual
/catl formatted pages for application programs

/rtlib code for building personalized interpreters
/pidem sample personalized interpreter
/samples Icon installation test programs
/test Icon test suite
/port Icon porting test suite

53

