
A Tour Through the C Implementation of Icon; Version 5.10" 

Ralph E. Griswold 

William H. Mitchell 

TR 85-19 

ABSTRACT 

This report documents the C implementation of Version 5.10 of the Icon programming 
language. This report concentrates on the major parts of the system — the translator, the 
linker, and the run-time system. 

August 31, 1985 

Department of Computer Science 

The University of Arizona 

Tucson, Arizona 85721 

•This work was supported by the National Science Foundation under Grant DCR-8401831. 





A Tour Through the C Implementation of Icon; Version 5.10 

Introduction 
This report describes the C implementation of Version 5.10 of the Icon programming language [1]. Most 

of the system is coded in C [2] and is designed to be run under UNIX . In addition to the C portion of the sys-
tem, there is some assembly language code. To date, the C implementation has been adapted to the AT&T 
3B20, PDP-1T, Ridge 32, Sun Workstation, and VAX-11. This implementation is intended to be portable to 
other computers running under UNIX, but portability is not a primary design goal. Reference 3 describes the 
process of transporting this implementation and contains detailed descriptions of the assembly language rou-
tines for the VAX implementation. 

The implementation of the Icon system consists of three parts: a translator, a linker, and a run-time sys-
tem. The translator converts an Icon source program into an intermediate form, called ucode. The linker 
combines separately translated ucode files, binds inter-procedure references, and produces interpretable 
binary output, called icode. The run-time system loads and executes an icode file. 

The reference language for this report is Version 5.10 of Icon [4]. This report is intended to be used in con-
junction with the source listings for Version 5.10, although a general overview of the system can be obtained 
from this document alone. 

The Icon hierarchy is rooted in the directory v5. Source code is in the subdirectory v5/src. This directory 
in turn has a number of subdirectories, each of which contain a component of the implementation. In the sec-
tions that follow, the names of directories, such as tran, are subordinate to src. 

1. The Translator 
Code for the Icon translator is in the directory tran. The Icon translator is written entirely in C. The 

translator builds a parse tree for each Icon procedure, then traverses the tree to generate code. Three of the 
source files in the translator contain only data initialization and are automatically generated from specifica-
tion files. In addition, the LALR(l) parser is automatically generated by the Yacc parser generator [5]. 

The ucode output from the translator consists of two files. One file, with the suffix .u1, contains inter-
mediate code corresponding to the procedures in the program. The second file, with the suffix .u2, contains 
global symbol table information. 

The following sections discuss the four parts of the translator: the lexical analyzer, the parser, the code 
generator, and the symbol table manager. 

1.1 The Lexical Analyzer 
The lexical analyzer reads the Icon source program, breaks it into tokens, and delivers the tokens to the 

parser as requested. A token is the basic syntactic unit of the Icon language; it may be an identifier, a literal, a 
reserved word, or an operator. 

The lexical analyzer consists of four source files: lex.c, char.c, optab.c, and toktab.C. The latter two of 
these files contain operator and token tables, respectively, and are automatically generated from operator and 
token specification files, described below. The file char.c contains character mapping tables and the file lex.c 
contains the lexical analyzer itself. 

The parser requests a token by calling yylex, which finds the next token in the source program and deter-
mines its token type and value. The parser bases its actions on the token type: if the token is an operator or 
reserved word, the token type specifically identifies the operator or reserved word; otherwise, the token type 

UNIX is a trademark of AT&T Bell Laboratories. 
'PDP and VAX are trademarks of Digital Equipment Corporation. 



indicates one of the six "primitive" types: identifier, integer literal, real literal, string literal, cset literal, or 
end-of-file. The token value is a leaf node of the parse tree, which, for the primitive types, contains the source 
program representation of the token. The token value node also contains the source-program line and column 
numbers where the token starts. A pointer to this node is placed in the global variable yychar, and yylex 
returns the token type. 

The lexical analyzer finds the next token by skipping white space, including comments. The first character 
of the new token indicates which of the classes it belongs to. A letter or underscore begins an identifier or 
reserved word, a digit begins an integer or real literal, a double quote begins a string literal, a single quote 
begins a cset literal, and any other character is assumed to begin an operator. An identifier or reserved word is 
completed by gathering all subsequent letters, digits, and underscores. The reserved word table is consulted to 
determine if the token is an identifier or a reserved word. Numeric literals are recognized by a finite-state 
automaton, which distinguishes real from integer literals by the presence of a decimal point or the letter "e". A 
quoted literal is completed by reading until the opening delimiter is repeated, converting escapes in the process 
and continuing to new lines as necessary. A table-driven finite-state automaton, described below, recognizes 
operators. 

An important task of the lexical analyzer is semicolon insertion. The grammar requires that semicolons 
separate expressions in a compound expression or procedure body, so they must be inserted into the token 
stream where they are omitted in the source program. This process is table driven. Associated with each 
token type are two flags, BEGINNER and ENDER. The BEGINNER flag is true if a token may legally begin 
an expression (i.e., if it may follow a semicolon). Similarly, the ENDER flag is true if a token may legally end 
an expression (i.e., if it may precede a semicolon). When a newline appears between two tokens, the ENDER 
flag of the first is true, and the BEGINNER flag of the second is true, then a semicolon is inserted between the 
two tokens. 

The file toktab.C contains the initialization for the token table. The table is divided into three sections: 
primitive types, reserved words, and operators. The primitive types are fixed in the first six slots in the table, 
and must not be changed, since they are referenced directly from the code. The reserved words follow and 
must be in alphabetical order. The operators follow in no special order. The last entry merely marks the end 
of the table. 

Also in toktab.C is an index to reserved words. To speed up the search for reserved words, this table 
hashes the search using the first letter as the hash value. The reserved words that begin with that letter then 
are examined linearly. 

The operator table, in optab.C, describes a finite-state automaton that recognizes each operator in the 
language. Each state is represented by an array of structures. Each structure in the array corresponds to a 
transition on the input symbol. The structure contains three fields: an input symbol, an action, and a value 
used by the action. The recognizer starts in state 0; the current input symbol is the first character of the opera-
tor. In a given state with a given input symbol, the recognizer searches the array associated with the current 
state for an entry that matches the current input symbol. Failing a match, the last entry of the array, with the 
input symbol field of 0, is used. The recognizer then performs one of the following actions, depending on the 
value of the action field: 

• Goes to the new state indicated by the value field and gets the next input character. 
• Issues an error. 
• Returns the value field as a pointer to the token table entry for the operator. 
• Returns the value field, but pushes the current input character back onto the input. 

The difference between the last two actions is that some operators are recognized immediately (e.g., ";"), while 
others are not recognized until the character following the operator is read (e.g., "="). 

The token table and operator table are constructed by the Icon program mktoktab.icn. This program 
reads the specification file tokens and builds the file toktab.C. The file tokens contains a list of all the 
tokens, their token types (given as defined constants), and any associated flags. This list is divided into the 
three sections detailed above. The program then reads the specification file optab and builds the file optab.C. 
The former is a skeleton for the operator table; it contains the state tables, but the program fills in the pointers 
to the token table entries. 

2 -



1.2 The Parser 
The parser, in the file parse.c, is automatically generated by Yacc. The grammar and semantic actions are 

contained in the file icon.g. From these specifications, Yacc generates parser tables for an LALR(l) parser. 
In addition to the grammar, icon.g contains a list of all the token types in the language and declarations 

necessary to the actions. Yacc assigns an integer value to each token type, and generates define statements, 
which are written to the file token.h. These defined constants are the token types returned by the lexical 
analyzer. 

The grammar is context-free, with actions associated with most of the rules. An action is invoked when 
the corresponding rule is reduced. The actions perform two duties: maintaining the symbol tables and con-
structing the parse tree. The parse tree is built from the bottom up — the leaves are supplied by the lexical 
analyzer and the actions build trees from the leaves and from smaller trees with each reduction. 

The parser requests tokens from the lexical analyzer, building a parse tree until it reduces a procedure. At 
this point, it passes the root of the parse tree to the code generator. Once the ucode has been generated, the 
parse tree is discarded, and a new tree is begun for the next procedure. 

Record and global declarations affect only the symbol table and do not generate parse trees. Files named 
in link directives produce link instructions in the ucode output. 

A complete parse tree is rooted at a proc node, which identifies the procedure and points to the subtrees 
for the initial clause (if any) and the body of the procedure. Each node in the parse tree represents a source 
program construction or some implicit semantic action. A node can contain up to six fields, the first of which 
is the node type. The second and third fields are always line and column numbers that are used for error mes-
sages and tracing. Any additional fields contain information about the construction, and possibly pointers to 
subtrees. Appendix A contains a description of all the node types. 

The grammar, shown in Appendix B, has several ambiguities. The well-known "dangling else" problem 
exists not only in the if-then-else expression, but also in the while-do, until-do, every-do, and to-by 
expressions. In each of these expressions, the last clause is optional, so that when the parser sees an else, for 
example, it does not know whether to shift the token (associating it with the most recent if), or to reduce the 
preceding if-then expression (leaving the else "dangling"). The latter choice is obviously incorrect, since the 
else would never be shifted, and Yacc correctly resolves such conflicts in favor of the shift. Thus, each else is 
paired with the most recent unpaired if. All the control structures (except case) have an additional ambi-
guity: they do not have a closed syntax, yet they may appear in an expression at the highest precedence level. 
For example, the expression 

x := y + if a = b then z else -z * 3 
could parse in either of two ways: 

x := y + (if a = b then z else (-z * 3)) 
x := y + (if a = b then z else -z) * 3 

This problem, too, is resolved in favor of the shift, such that the first parse is always used. Thus, in the 
absence of parentheses, the entire expression to the right of a control structure is part of the control structure. 

Little attention has been paid to error recovery. A few error productions have been placed in the grammar 
to enable Yacc to recover from syntax errors; the technique for doing so is described by Aho and Johnson [6]. 
The parser is slightly modified by the editor script pscript so that the parser state is passed to the routine 
yyerror. This routine prints an error message from the file synerr.h that is associated with the current parser 
state. This error table currently is constructed by hand from the y.output file obtained by running Yacc with 
the -v option. 

1.3 The Code Generator 
The parser calls the code generator upon recognition of each Icon procedure, giving it the root of the parse 

tree. The code generator traverses the parse tree recursively, emitting ucode. Appendix C contains a descrip-
tion of ucode. 

The file code.C contains both the tree node allocation and the code generation routines. The header file 
COde.h contains macros and definitions used by the code generator, while tree.h defines the tree nodes and 



the macros that allocate them. Thus, the macros in tree.h provide the interface between the parser and the 
code generator. 

The tree traversal routine, traverse, is a recursive procedure with one argument, a pointer to the root of a 
tree or subtree for which code is to be generated. The routine examines the type field of the root and, through 
a switch statement, generates a sequence of ucode instructions as determined by the type. If the node has sub-
trees, traverse calls itself recursively at the appropriate point to generate code for the subtree. For example, 
the code generated for a binary operator first generates code for its two subexpressions, then emits the code 
that calls the appropriate run-time library routine. 

The returned value of the traversal routine is used for counting elements of expression lists. If the root of 
the tree being traversed is an elist (expression list) node, traverse returns the sum of the returned values of its 
two subtrees. Otherwise, it returns 1. This count is used when generating code for procedure calls and lists 
with explicit elements, which need to know the number of arguments to be pushed onto the stack. 

When generating code for loops, the code generator needs to save three pieces of information for each 
nested loop: the break label, the next label, and the expression nesting level. This information is kept on the 
loop stack. The break label is a label placed just past the end of the loop; it is the place where control is passed 
when the loop is finished. The next label is placed near the end of the loop, at a point where the next iteration 
of the loop can be started. The code for break and next expressions branches to these labels, but in either 
case, any incomplete expression frames (see Section 3.2) within the loop must first be popped from the stack. 
The expression nesting level counts the number of currently active expression frames within the current loop; 
an unmark instruction is generated for that many expression frames (less one for a next expression). 

The possibility of nested case expressions requires that certain information be kept on a case stack. For 
each case expression, the code generator allocates a label for the end of the expression and pushes it onto the 
case stack. When a default clause is encountered, its subtree is placed on the top of the case stack to delay 
code generation for it until the end of the case expression. 

1.4 The Symbol Table Manager 
The symbol table manager consists of the symbol table data structures and routines that operate upon 

these data structures. The source code for the symbol table manager is contained in two files. The file 
keyword.c contains only the keyword name table and is automatically constructed from a keyword specifica-
tion file discussed below. The remainder of the symbol table manager is located in the file sym.C. 

The symbol table manager operates with two logical data structures, the symbol table proper and the 
string space. When the lexical analyzer identifies a token as either an identifier or a literal, the lexical analyzer 
requests the symbol table manager to enter the token into the string space. The symbol table manager returns 
a pointer into the string space for that string. The lexical analyzer then places this pointer in the token value 
node. To help keep the size of the string space small, all entries are hashed, and only one copy of any string is 
kept. This has the added benefit that two strings can be compared by checking only the pointers into the 
string space. 

The parser determines the context of the token and requests the symbol table manager to enter the token 
into the symbol table proper. It is the responsibility of the symbol table manager to verify that the use of the 
token is consistent with prior use. Appropriate diagnostics are issued if the use is inconsistent. 

The symbol table proper is physically divided into three separate structures: the global, local, and literal 
tables. Each of these tables is hashed, using the pointer into the string space as the key. Since this pointer is 
an offset into the string space, hashing is simply and effectively performed by taking the rightmost n bits of the 
offset (where 2" is the size of the hash vector for the table). 

The global table contains identifiers that have been declared as globals, procedures, or records. The local 
table holds all identifiers declared as locals, formal parameters for procedure declarations, field names for 
record declarations, and all other identifiers referenced in the procedure (including those declared as global 
elsewhere). The literal table contains entries for literal strings and csets, integers, and floating-point constants. 

Both the local and literal tables are associated with the current procedure being parsed and are written to 
the .u1 file when the procedure has been successfully parsed. If a record declaration has been parsed, then the 
local table, containing only the field name identifiers, is written to the .u2 file. After all procedure, record, 
and global declarations in a Icon source file have been parsed, the global table is written into the global 

- 4 -



declarations file. 
An entry into any of the three symbol table sections is a structure with three fields: a link, a name, and a 

flag. The link field holds the pointer to the next entry in the same hash bucket. The name is the pointer to the 
identifier or literal name in the string space. The flag field contains the type {formalparameter, static local, 
procedure name, etc.) of the entry. Global table entries have a fourth field, an integer providing the number of 
formal parameters for a procedure declaration, or the number of fields in a record declaration. 

Lookup in the local and global tables is merely the process of following a hash chain until an entry of the 
same name is found or until the hash chain is exhausted. If a previous entry is found, the flags of the existing 
and new entries are compared, and diagnostics are printed if the use of the new entry conflicts with the previ-
ous usage. The new entry is ignored whenever such an inconsistency is found. 

The literal table uses the same lookup procedure, except the search down the hash chain stops when an 
entry is found with the same textual form and flag fields. Thus the string literal "123" and the integer literal 
123 have separate entries in the literal table, even though they have the same string representations. A conse-
quence of this technique is that the integer literals 123 and 0123 have separate entries in the literal table, even 
though they have the same numeric value. Since most programmers use a reasonably consistent style when 
expressing literals, this technique usually does not produce many duplicate constants. 

A final task of the symbol table manager is the identification of keyword names. (Note that keywords are 
of the form &name.) The symbol table manager maintains a list of the legal keyword names and, upon 
request, returns a numeric identification for a keyword name to the parser. An automatic procedure exists for 
creating the keyword name table: the Icon program mkkeytab.icn reads the specification file keywords and 
produces the keyword name table in key word.C. The file keywords is simply a list of the keyword names and 
a numeric identification for each. Since the number of keyword names is small, and only a few references to 
keywords are typical in an Icon program, lookup in the keyword name table is done using a linear search. 

The sizes of the respective portions of the symbol table may be altered with command line arguments to 
the Icon translator. 

2. The Linker 
Code for the Icon linker is in the directory link. The Icon linker is written entirely in C. The linker per-

forms three tasks: combining the global symbol tables from one or more runs of the translator, resolving 
undeclared identifiers, and translating ucode to icode. The resulting combined global symbol table is used for 
determining the scope of undeclared identifiers during the second task. The second and third tasks are done 
during a single pass over each ucode file. A single icode file is produced. 

The symbol table module, in the file Isym.C, is similar to the symbol table module of the translator, except 
that there is an additional table for storing field names of records. The input module, in the file llex.c, recog-
nizes the instructions in ucode files. The global symbol tables are merged by the routine globals in glob.C, 
and the icode file is produced by the routines in Icode.C. Of the remaining source files, ilink.cand Imem.c 
contain the main program, miscellaneous support routines, and memory initialization. The files builtin.C and 
opcode.C contain table initializations for the list of built-in functions and the ucode operations, respectively. 

The first phase of the linker reads global symbol information from each .u2 file and enters all the global 
symbols into one combined table. The format of a global symbol table file is described in Appendix C. This 
phase also builds the record/field table that cross-references records and field names, and sets the trace flag 
for execution-time tracing if any of the files being linked were translated with the -t option. As records are 
entered into the global symbol table and the record/field table, they are numbered, starting from 1. These 
record numbers are used to index the record/field table at run-time when referencing a field. 

When the linker encounters a link instruction, the named file is added to the end of a linked list of files to 
be linked. The list initially consists of the files named as arguments. Names are not added to the list if they are 
already on it. 

The second phase reads each .u1 file in sequence, emitting icode as each procedure is encountered. Appen-
dix C describes the ucode instructions. The .u1 files contain a prologue for each procedure, beginning with a 
proc opcode, followed by a series of loc opcodes describing the local symbol table, a series of con opcodes 
describing the constant table, and a declend opcode terminating the prologue. The local symbol table 



contains not only local symbols, but all identifiers referenced in the procedure — global, local, or undeclared. 
When an undeclared identifier is entered into the local symbol table, its scope is resolved by the following 
steps: 

• If the identifier has been entered in the global symbol table, it is entered into the local symbol table 
as a global identifier. 

• If the identifier matches the name of a built-in function, it is entered into the local symbol table as 
such. 

• Otherwise it is entered as a local identifier and a warning is issued if the linker is run with the -U 
option. 

The constant table contains an entry for each literal used in the procedure. 
The linker outputs icode in several regions. The first region contains icode instructions and procedure 

blocks, as well as blocks for cset and real literals. The next region contains the record/field table and pro-
cedure blocks for record constructors. The next four regions contain the values of the global identifiers, the 
names of the global identifiers, the values of the static identifiers, and strings. 

An icode instruction consists of an opcode and, in some cases, operands. The sizes of opcodes and 
operands depend on the machine architecture and the implementor's judgement. On the VAX-11, opcodes are 
one byte long and operands are four bytes long. Most instructions correspond exactly to instructions in the 
ucode that is output by the translator. The opcode values are those used internally by the linker (defined in 
the file link/opcode.h). 

Fields are provided in the global symbol and literal tables for associating an icode location with each entry. 
As the prologue is being read, each cset, real, or long-integer literal entered into the literal table is output 
immediately and its location is stored in the literal table. Thus, the locations of all literals are known before 
their reference. 

The same is true of references to procedures, since these references only occur in the initialization for glo-
bal identifiers, which is not output until all procedures have been output. When the prologue for a procedure 
has been completely processed, the procedure block is output, and its location is noted in the global symbol 
table. 

References to program labels require backpatching, since there often are forward references. Because pro-
gram label references are always local to the current procedure, the linker buffers the output code for a pro-
cedure. A table of values for all program labels is initialized to zero at the beginning of each procedure. When 
a label is referenced and its table entry is zero, the location of the reference is negated and stored in the table 
entry and a zero is output for the operand. If a label's table entry is negative, the location of the reference is 
negated and stored in the table entry as before, but the previous value of the table entry is output for the 
operand. This forms a linked list of references to the as-yet-undefined label. When a label is defined, each 
reference on the linked list is replaced with the correct value of the label. 

References to global and static identifiers are determined at run-time. The global and Static instructions 
have an integer operand referring to the identifier by position in the global or static identifier array. When one 
of these instructions is interpreted, the actual address is calculated from the position and the known address of 
the global or static identifier array. References to functions are also resolved at run-time. Each function is 
assigned an integer index (its position in the table of functions in builtin.c). When the global identifier initial-
ization for a function is output, the negated index is output instead of an address. The interpreter fills in the 
correct address during program initialization. 

Once the prologue has been processed, a procedure block (see Section 3.1) is emitted. Opcodes following 
the prologue represent execution-time operations, and cause code to be emitted. 

The record/field table is a two-dimensional matrix, first indexed by a field number assigned to each iden-
tifier that is used as a field name, next by a record number assigned to each record type. The value at the 
selected position in the table is the index of the field in a record of the given type, or -1 if the given record type 
does not contain the given field. 

The initial value for global and static identifiers is the null value unless the global identifier is a procedure, 
function, or record constructor, in which case the initial value is a descriptor of type procedure that points to 
the appropriate procedure block. The values output use the data representations described in Section 3.1. 

- 6 -



The names of global and static identifiers are output as qualifiers (see Section 3.1) and are used by the 
function display. All qualifiers contained in the generated procedure blocks and global and static names 
point into a section of the icode file that contains character data. String literals also point to this section of the 
icode. 

3. The Run-Time System 
The run-time system consists of an interpretive loop and a collection of routines that collectively provide 

support for the execution of an Icon program. 
Three directories contain routines relating directly to source-language operations: src/fncs, src/ops, and 

src/lib. The first two directories contain one routine per function or operator, respectively. The lib directory 
contains routines relating to Icon control structures. A fourth directory, rt, contains routines for performing 
common operations needed by many routines in the other three directories. In particular, rt contains routines 
that handle storage allocation and reclamation, type conversion, data comparison, integer arithmetic with 
overflow checking, generator suspension, and tracing. The directory iconx contains initialization and the 
interpreter. Code in these directories is largely machine-independent. Corresponding machine-dependent 
code is contained in src/sys. The object files in these directories are loaded together to form the run-time sys-
tem, which is named iconx. 

Most of the run-time system is coded in C, but some of the routines are coded in assembly language. The 
interpretive loop and startup routines are written in assembly language, as is integer arithmetic with overflow 
checking (C does not provide this), as well as routines concerned with stack management. All assembly-
language code is contained in src/sys. 

Before iconx begins executing an Icon program, it reads in the icode file generated by the linker. The first 
eight words of this file contain header information indicating the total size of the rest of the file, the initial 
value of &trace, and the relative offsets from the beginning of the file to the various sections. These offsets are 
converted to actual addresses by adding the base address of the icode region. Several pointers in the icode 
must also be relocated. The interpreter sweeps through the global identifiers, looking for procedures, func-
tions, and record constructors. For each function, it supplies the address of the appropriate procedure block. 
For each procedure, it relocates pointers from its procedure block to the procedure entry point, as well as to 
strings representing the procedure and local identifier names in the identifier table. For each record construc-
tor, it supplies the address of mkrec, the routine that constructs new records, as the entry point in the pro-
cedure block. 

The interpreter then begins execution by invoking the value of the first global identifier, which 
corresponds to the procedure main. If there is no main procedure, the first global identifier has the null value 
and a run-time error is reported. The routine invoke sets the interpreter program counter (ipc) to the entry 
point, and branches to interp, which is contained in src/sys/interp.s. 

The routine interp is the main interpreter loop. It fetches the next opcode, and branches to the appropri-
ate processing routine through a jump table. 

3.1 Data Representations 
Icon has two elementary forms of data objects — values and variables. Values often can be converted 

from one data type to another. When this is done automatically, it is called coercion. The process of obtain-
ing the value referred to by a variable is called dereferencing. 

Every data object is represented by a two-word descriptor, which may, depending on the type of the object, 
contain a value or refer to some other area of memory for the actual value. The first word of the descriptor, 
referred to as the d-word, contains flags, a type code, or other similar information. The second word, referred 
to as the v-word, either contains the value or a pointer to it. There are six descriptor formats, shown in 
Appendix D: qualifier, null, integer, pointer, variable, and trapped variable. These formats are distinguished 
from one another by the four high-order bits of the d-word. In integer, pointer, and trapped variable descrip-
tors, the least-significant six bits of the d-word identify the type of object represented, while the most signifi-
cant bits in the d-word are flags that classify the object (for example, whether the second word contains a 
pointer — historically, a "floating address" [7]). 



A qualifier represents a string, and contains the length of the string and a pointer to the first character of 
the string. The null descriptor represents the null value. An integer descriptor represents an integer small 
enough to fit in the second word of the descriptor. This includes all integers on computers whose C ints are 
the same size as C longs (such as the VAX-11). All data types other than integer, string, and null are 
represented by pointer descriptors. A pointer descriptor contains a pointer to a block of appropriate format 
for a value of the given type. On computers whose C longs are longer than C ints (such as the PDP-11), an 
integer that requires more bits than there are in an int is contained in a long integer block. The block formats 
for each data type are shown in Appendix D. 

The v-word of a variable descriptor either points to a fixed location (in the case of global and static identif-
iers), a location on the stack (in the case of local identifiers), or it points to a descriptor in a block, which is the 
case for list elements, for example. A variable that points to a descriptor in a block also contains an offset that 
indicates the distance (in words) from the beginning of the block to the referenced descriptor. This offset is 
used during the marking phase of garbage collection, which is discussed in Section 3.3. 

A trapped variable [8] descriptor represents a variable for which special action is necessary upon dere-
ferencing or assignment. Such variables include substrings, non-existent elements of tables, and certain key-
words. Each type of trapped variable is distinguished by a type code in in its d-word. 

Substring trapped variables, created by a section or subscripting operation, contain a pointer to a block 
that contains a variable descriptor identifying the value from which the substring was taken, an integer indi-
cating the beginning position of the substring, and an integer showing the length of the substring. With this 
information, assignment to a substring of a variable can modify the contents of the variable properly. Sub-
strings of non-variables do not produce substring trapped variables, since assignment to such substrings is 
meaningless and illegal; instead, forming the substring of a non-variable produces a qualifier. 

Table element trapped variables, formed by referencing elements of tables, similarly contain a pointer to a 
block that contains enough information for assignment to add the element to the referenced table or to supply 
the default table value. 

The keywords &pos, &random, &subject, and &trace are handled via keyword trapped variables. A 
keyword trapped variable points to a block that contains the value of the keyword as well as a pointer to a 
function that performs assignment to the keyword. A function is needed, since in the case of these keywords, 
assigned values must be checked for validity and possibly coerced to the expected type. 

Strings formed during program execution are placed in the allocated string region; qualifiers for these 
strings point into this region. Substrings of existing strings are not allocated again; instead, a qualifier is 
formed that points into the existing string. When storage is exhausted in the allocated string region, the gar-
bage collector (see Section 3.3) is invoked to reclaim unused space and compact the region; if enough space 
cannot be reclaimed, the region is expanded if possible. 

Data blocks formed during program execution are placed in the allocated block region. Data blocks have 
a rigid format dictated by the garbage collection algorithm. The first word of the block, referred to as its title, 
always contains a type code that identifies the structure of the rest of the block. Descriptors follow all non-
descriptor information in the block. If the size of the block is not determined by its type, the size (in bytes) is 
contained in the second word of the block. 

When storage is exhausted in the allocated block region, the garbage collector is invoked to reclaim 
unused space and compact the region; if enough space cannot be reclaimed, the region is expanded if possible. 

Co-expression stack blocks are allocated in a separate region that lies below the allocated string and block 
regions. Co-expression stacks are allocated and collected using a free-list strategy. 

3.2 Stack Organization 
The stack is the focus of activity during the execution of an Icon program. All operators, functions, and 

procedures find their arguments at the top of the stack, and replace the arguments with the result of their com-
putation. The values of arguments and local identifiers for Icon procedures are also kept on the stack. The 
arguments, local identifiers, and temporaries on the stack for an active Icon procedure are collectively called a 
procedure frame. This is one of several kinds of stack frames discussed in this section. See [3] for a detailed 
discussion of stack frames. Each co-expression also has a stack. For uniformity, the main stack is treated as 
the stack for the co-expression &main. 



On the PDP-11 and VAX-11 stacks start in high memory and grow downward. On these computers, a 
push causes the stack pointer to decrease and a pop causes the stack pointer to increase. Thus "above" and 
"below" refer, respectively, to "newer" and "older" information on the stack. Note that the top of the stack is 
the low word. The description of relative stack locations that follows is based on this kind of architecture and 
nomenclature. 

Before an Icon procedure calls another Icon procedure, the caller pushes the procedure to be called (a 
descriptor, since procedures are data objects in Icon) onto the stack. The caller then pushes each argument 
(also a descriptor) onto the stack, leftmost argument first. The caller then pushes one word onto the stack 
indicating the number of arguments supplied, which may be different from the number of arguments 
expected. The procedure is then invoked. Invocation checks that the first descriptor pushed above actually 
does represent an integer, procedure, or a variable whose value is an integer or a procedure. An integer indi-
cates the selection of one of the arguments resulting from mutual evaluation. A procedure, on the other hand, 
points to a procedure block, which contains various information about the called procedure, including the 
number of arguments expected, the number of local variables used, and the procedure's entry point address. 
Next, the number of arguments supplied to the procedure is adjusted to match the number expected, deleting 
excess arguments or supplying the null value for missing ones. This adjustment is performed by moving the 
portion of the stack below the arguments up or down, as appropriate. It then dereferences the arguments. A 
procedure marker is then pushed onto the stack, and the procedure frame pointer is set to point to the new 
procedure marker. The procedure marker contains, among other things, the return address in the calling pro-
cedure and the previous value of the procedure frame pointer. Next, the null value is pushed onto the stack as 
the initial value for each local identifier. Control then is transfered to the procedure's entry point, and execu-
tion of the Icon program resumes in the new procedure. 

When an Icon procedure is ready to return to its caller, it pushes its return value (a descriptor) on the 
stack. It then transfers control to pret, which moves the return value to the location occupied by the descrip-
tor that represented the called procedure. That is, the return value is stored in place of the first descriptor that 
was pushed at the beginning of the calling sequence described above. The return sequence then restores the 
state of the previous procedure from the current procedure marker (the procedure marker that the procedure 
frame pointer currently points to). This includes restoring the previous value of the procedure frame pointer, 
retrieving the return address, and popping the returning procedure's local variables, procedure marker, and 
arguments. Thus, when the calling procedure regains control, the arguments have been popped and the return 
value is now at the top of the stack. 

Functions and operators are written in C, and therefore obey the C calling sequence. By design, the Icon 
calling sequence described above is similar to the C calling sequence. When an Icon procedure calls a func-
tion, a boundary on the stack is introduced, where the stack below the boundary is regimented by Icon stan-
dards, and the stack above the boundary contains C information. This boundary is important during garbage 
collection: The garbage collector must ignore the area of the stack above the boundary, since the structure of 
this area is unknown, whereas the structure of the area below the boundary is well-defined. In particular, all 
data below the boundary is contained in descriptors or is defined by the structure of a frame, so that all 
pointers into the allocated string or block regions may be located during a garbage collection. 

Functions and operators are written to "straddle" the boundary. From below, they are designed to resem-
ble Icon procedures; from above, they are C procedures. An Icon procedure calls a function in the same way 
as it calls another Icon procedure; in fact, functions are procedure-typed data objects just as Icon procedures 
are. When invoke recognizes that a function is being called, it bypasses the argument adjustment if the field in 
the procedure block that indicates the number of arguments expected contains - 1 , which indicates that the 
function can take an arbitrary number of arguments. It also does not allocate stack space for local variables, 
since any such variables are C variables and are allocated by the C function itself. C routines have an entry 
sequence that creates a new procedure frame; since invoke has already done this, such routines are entered by 
branching to the first instruction past the entry sequence. 

For functions that take a fixed number of arguments, these arguments are names argl, arg2, . . . . For 
functions that can take an arbitrary number of arguments, there is a macro Arg(«) that accesses the nth argu-
ment Thus, Arg(1) accesses the first argument (as a descriptor), and Arg(nargs) accesses the last argument. 
Each function is responsible for supplying defaults for missing arguments. Because of the calling protocol, the 
returned value is in argO. Every function places its result there and then returns through normal C 



conventions. Each function also supplies a procedure block that contains the number of arguments expected 
(or -1), its entry point, and a qualifier representing its name. 

Operators are very similar to functions. The only difference is that operators are called directly (rather 
than being called through invoke) and must set the boundary themselves. 

When an operator or function fails to produce a result, it calls fail. This routine initiates backtracking as 
described below. 

Expressions are evaluated within an expression frame. When the evaluation of an expression is complete, 
whether it has produced a result or failed, the expression frame must be popped from the stack and the result 
of the expression must be pushed back onto the stack. The expression frame marks the stack height at the 
point that the expression began to be evaluated, so that the stack may be restored to its original state when the 
evaluation of the expression is complete. The stack normally would be restored to the original height (that is, 
the pops would match the pushes) except when an expression fails at some midpoint in its evaluation. The 
expression frame is also used to limit backtracking: backtracking is restricted to the current expression 
instance only. 

When evaluation of an expression begins, an expression marker is pushed on the stack, the expression 
frame pointer is set to point to it, and the generator frame pointer, discussed below, is cleared. The marker 
contains the previous values of the expression and generator frame pointers and a failure label. When an 
expression produces a result, that result, on the top of the stack, is popped and saved. Then the stack is 
popped to the expression marker, and the previous values of the two frame pointers are restored. The marker 
is popped and the result of the expression is pushed back onto the stack, now a part of the previous expression 
frame. If an expression fails to produce a result, efail pops the stack to the expression marker, restores the 
previous values of the two frame pointers, and branches to the failure label. In the special case that the failure 
label is zero, efail is effectively called again to indicate failure in the new expression frame. Thus the failure is 
propagated from one expression to an enclosing one. 

If an expression has any generators, then there is a generator frame within the current expression frame for 
each generator that is inactive (that is, that has produced a value but is not yet exhausted). A generator frame 
preserves the state of the stack at the point just before the generator (whether it be operator, function, or pro-
cedure) suspended (became inactive). If efail is called and there are inactive generators, then instead of exiting 
the current expression frame, the most recently inactivated generator is reactivated by restoring the stack to 
the state saved in the most recent generator frame. 

A function or operator suspends itself by calling suspend. This routine preserves the state of the stack by 
duplicating the current expression frame, bounded on one end by the most recent generator frame or by the 
current expression frame, if there are no inactive generators, and bounded on the other end by the beginning 
of the argument list of the suspending function or operator. A generator marker is pushed onto the stack, fol-
lowed by the duplicate expression frame. The routine suspend then causes the suspending function or opera-
tor to return to its caller, instead of itself returning. 

When reactivated by efail, the stack is restored to the generator marker, which is used to restore the vari-
ous frame pointers. Then the marker is popped. The stack is then in the same state that it was in when 
suspend was called. The routine efail then returns to the generator as if the original call to suspend had 
returned. Thus the following schema is typical of operators and functions that generate a sequence of values. 

initialize; 
while (not exhausted) { 

compute next value] 
store return value', 
suspend() 
} 

fail(); 

The effect of resuming an expression containing generators is that suspend actually causes the generator to 
return. If alternatives are needed, backtracking occurs, and the apparent effect is that suspend has returned. 
The generator computes the next result, and suspends with it. When the generator is exhausted, it merely fails 
without suspending, which just passes the failure back to the next most recently inactivated generator, if any. 

10 



Just as functions and operators can return normally, suspend, or fail, so can Icon procedures. The 
mechanics are essentially the same, but the differences in stack layout require different primitive operations. 
When Icon procedures return normally, the return value is presumed to be at the top of the stack and pret is 
called. Similarly, Icon procedures call psusp to suspend. Both of these routines also dereference the return 
result if it is a local variable. The routine pfail causes an Icon procedure to return with no result. 

The same three primitives are also needed at the expression level: eret, esusp, and efail. eret is not a 
library routine, but is generated as in-line code. Both cause an exit from the current expression frame; but 
eret supplies a result to the enclosing expression, while unmark does not. The routine esusp creates a inac-
tive generator before supplying a result to the enclosing expression; it is used by the alternation control struc-
ture. The routine efail simply causes backtracking within the current expression frame. In fact, fail and pfail 
merely exit their procedure frame before branching to efail. 

3.3 Storage Allocation and Reclamation 
During program execution, storage is allocated as necessary when data objects are created. The three 

primitive routines allocate, alcstr, and alcestk allocate storage in the block, string, and co-expression stack 
regions, respectively. All three routines return pointers to the beginning of newly allocated space. None of the 
routines is responsible for ensuring that enough space remains in the data regions. Ensuring that enough 
space remains in the data regions is the responsibility of a predictive need strategy described below. 

In the allocated block region, allocate(n) returns a pointer to n contiguous bytes of storage. Because a 
wide variety of objects may reside in the allocated block region, a number of support routines are provided to 
simplify the storing of various objects. There is a specific routine to allocate a block for each datatype in the 
block region. Where appropriate, these routines have the actual values to be stored as their arguments. All of 
the routines call allocate to obtain storage for the object. 

In the string region, alcstr(s, I) allocates room for a string of length I and copies the string pointed to by s 
into this space. Since some routines such as left, right, and center need room in the string space in which to 
construct a string, a call to alcstr with the defined constant NULL as the first argument results in the alloca-
tion of storage without attempting to copy a string. 

In the co-expression stack region, alcestk() allocates a new co-expression stack. 
Source code for all of the allocation routines is contained in rt/alc.C. 
As mentioned earlier, a predictive need strategy is employed to ensure that enough room remains for data 

storage. Simply put, predictive need states that it is the responsibility of any routine that calls an allocation 
routine both to ensure that enough room remains in the proper data region and to maintain the validity of any 
temporary pointers into the data regions, should a garbage collection be necessary to free storage space. 

Since the check for storage space only needs to occur before the allocation takes place, each routine may 
perform this check at its convenience. This approach permits the minimization of the number of temporary 
pointers that must be protected during garbage collection. 

Routines to ensure space are provided for each of the three storage regions. The routine Strreq(n) ensures 
that at least n bytes of storage remain in the string space, and blkreq(n) performs the same function in the 
allocated block region. stkreqQ ensures that there is a co-expression stack available. If any of these routines 
finds that there is insufficient storage remaining, it invokes the garbage collector in an attempt to obtain that 
storage. If that fails, then program execution is aborted with an appropriate diagnostic. 

Garbage collection is a process that identifies all valid allocated data. In the string and block regions, valid 
data is compacted in order to provide a contiguous area of unused storage. In the co-expression stack region, 
unused co-expressions are returned to a free list. The algorithm used for identifying valid data is based upon 
the algorithm described by Hanson [7]. Only the more novel features are discussed here. 

Whenever a predictive need request discovers that insufficient storage remains in one of the regions, the 
garbage collector is invoked to reclaim unused space in all regions. This approach is more efficient in situa-
tions where all regions are heavily allocated and only slightly less efficient otherwise. 

The approach is to sweep through the static data regions and the stack, looking for qualifiers that point 
into the allocated string region and descriptors that point into the allocated block region. When a qualifier is 
found, a pointer to that qualifier is saved in a temporary data region at the end of the allocated block region. 

11 



If the descriptor is a pointer into the allocated block region, then that block contains valid information. The 
block is marked as valid, the descriptor is placed on a back chain headed in the block, and the marking process 
is called recursively on any descriptors within that block. Blocks that are already marked as valid are not pro-
cessed a second time. To simplify the marking of blocks, all blocks have been designed so that all descriptors 
within them exist as a contiguous section at the end of the block. Thus, to sweep through the descriptors 
within a block, the marking algorithm need only know the size of the block and the location of the first 
descriptor. Information concerning a block's size, as well as the offset for the first descriptor is in the file 
rt/dblocks.c. 

Valid co-expression stacks also may contain qualifiers and pointers to other valid data; such stacks are 
included in the marking phase. 

After the marking phase is completed, the string region is compacted. The algorithm used is described by 
Hanson [9]. The pointers to the qualifiers are sorted so that the order of all valid strings within the string 
space is identified. The qualifiers are then processed in order, and modified as the valid strings are compacted. 
If this compaction does not free enough space within the string region to satisfy the request, the allocated 
block region must be moved in order to provide more room in the string region. An attempt is also made to 
provide some additional "breathing room" in the string region to permit future allocation. 

The allocated block region cannot be moved until after the valid pointers into it are adjusted and the 
storage is compacted. The pointer adjustment and compaction phases are two linear passes through the allo-
cated block region. The only difference when the allocated block region is to be moved is that the adjusted 
pointers point to where that data will be after the region has been moved. If not enough breathing room is 
freed in the allocated block region, then more space is requested from the operating system. As a last step, if 
the string region needs more room, the block region is relocated. 

A shortcoming of the implementation is the absence of a process for decreasing the size of a data region, 
should it become too large. It is also possible that insufficient room would be available for storing the 
pointers to the qualifiers, even though enough storage would become available if the block region were col-
lected separately. In practice, this has not been a problem. The source code for the garbage collector is con-
tained in the files sys/gcollect.s, rt/gc.c, and sys/sweep.c. 

3.4 Coding Conventions 
The calling conventions for functions and operators have been mentioned earlier. Several other aspects of 

the run-time system are explained here. 
All header files for the run-time system are in the directory h. The file h/rt.h is included by every source 

file in the run-time system, and contains machine-independent defined constants, run-time data structure 
declarations, and defined constants and macros for flags, type codes, argument accessing, and bit manipula-
tions. The file sys/params.h contains corresponding machine-dependent information. 

During the execution of an Icon program, many type conversions are done on temporary values, where 
data storage is not required beyond the bounds of the current operation. For this reason, the type conversion 
routines all operate with pointers passed to them that reference buffers in the calling routine. Any routine cal-
ling for type conversion must determine if space is needed in the block or string regions, and perform the allo-
cation. Most of the conversion routines return the type of the result or NULL if the conversion cannot be per-
formed. One exception is cvstr which, in addition to NULL, returns 2 if the object was already a string, and 1 
if the object had to be converted to a string. This distinction makes it possible to avoid a large number of 
predictive-need checks. The second exception is cvnum, which returns either real numbers or integers and 
makes no attempt to distinguish between short and long integers. 

The garbage collector knows about the descriptors argO, argl , . . . that are the arguments of C routines for 
functions and operators. These descriptors are "tended" during garbage collection. The garbage collector 
does not know about other descriptors that may be declared in C routines and does not tend them. All 
pointers to data in allocated storage regions must be tended when a garbage collection occurs. Since a gar-
bage collection can occur only during a call to strreq, blkreq, or stkreq, or between suspension and reactiva-
tion, the only places where C routines need to ensure that all pointers into the allocated block and string 
regions are tended are just before calls to strreq, blkreq, stkreq, or suspend. 

12 



Acknowledgements 
This report is a revision of earlier descriptions of the C implementation of Icon [10, 11, 12], which were 

co-authored by Cary Coutant, Rob McConeghy, and Steve Wampler. Much of the material in this report is 
taken from the earlier ones. 

Many features of the current implementation of Icon are based upon the original Ratfor implementation 
by Dave Hanson, Tim Korb, and Walt Hansen [13, 14]. 

References 
1. Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language. Prentice-Hall, Inc., 

Englewood Cliffs, New Jersey, 1983. 
2. Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. Prentice-Hall, Inc., 

Englewood Cliffs, New Jersey, 1978. 
3. Mitchell, William H. Porting the UNIX Implementation of Icon; Version 5.10. Technical Report TR 

85-20, Department of Computer Science, The University of Arizona, Tucson, Arizona, August 1985. 
4. Griswold, Ralph E. and William H. Mitchell. Version 5.10 of Icon. Technical Report TR 85-16, 

Department of Computer Science, The University of Arizona, Tucson, Arizona, August 1985. 
5. Johnson, Stephen C. "Yacc: Yet Another Compiler-Compiler" Unix Programmer's Manual, Seventh 

Edition. Bell Telephone Laboratories, Inc., Murray Hill, New Jersey, 1979. 
6. Aho, A. V., and S. C. Johnson. "LR Parsing" Computing Surveys 6, 2 (June 1974), 99-124. 
7. Hanson, David R. "Storage Management for an Implementation of SNOBOL4", Software—Practice 

and Experience 7,2 (March 1977), 179-192. 
8. Hanson, David R. "Variable Associations in SNOBOL4", Software—Practice and Experience 6, 2 

(April 1976), 245-254. 
9. Hanson, David R. The Manipulation of Variable-Length String Data in Fortran IV. Technical Report, 

Department of Computer Science, The University of Arizona, Tucson, Arizona, May 1975. 
10. Coutant, Cary A. and Stephen B. Wampler. A Tour Through the C Implementation of Icon; Version 5. 

Technical Report TR 81-1 la, Department of Computer Science, The University of Arizona, Tucson, 
Arizona, December 1981. 

11. Griswold, Ralph E., William H. Mitchell, and Stephen B. Wampler. The C Implementation of Icon; A 
Tour Through Version 5. Technical Report TR 83-1 la, Department of Computer Science, The Univer-
sity of Arizona, Tucson, Arizona. December 1983. 

12. Griswold, Ralph E., Robert K. McConeghy, and William H. Mitchell. A Tour Through the C Imple-
mentation of Icon; Version 5.9. Technical Report TR 84-11, Department of Computer Science, The 
University of Arizona, Tucson, Arizona. August 1984. 

13. Korb, John Timothy. The Design and Implementation of a Goal-Directed Programming Language. 
Ph.D. Dissertation, Technical Report TR 79-11, Department of Computer Science, The University of 
Arizona, Tucson, Arizona, June 1979. 

14. Hanson, David R., and Walter J. Hansen. Icon Implementation Notes. Technical Report TR 79-12a, 
Department of Computer Science, The University of Arizona, Tucson, Arizona, February 1980. 

-13 



Appendix A — The Parse Tree 

The parse tree is a collection of nodes, described below, rooted at a proc node. Nodes have a common for-
mat: the first field contains the node type, the second and third fields contain a line and column number relat-
ing the node to the source program, and the next zero to four fields contain node-dependent information. The 
line and column numbers are usually those of the first token or the primary token of the construct; for exam-
ple, in binop nodes, they are the location of the operator; in if nodes, they are the location of the if token. 

The following list of node types gives a brief description of the node and a list of the node-dependent fields 
and their uses. The fields are named val if they contain an integer value, str if they contain a pointer to a 
string, or tree if they contain a pointer to another node (a leaf or subtree). A digit between 0 and 3 is appended 
indicating its position in the node. 

Seven of the nodes — cset, id, int, op, real, res, and str — are leaf nodes. These nodes, allocated and 
returned by the lexical analyzer, represent source program tokens. The remaining nodes contain one or more 
pointers to other nodes, either leaves or subtrees. 

activat A transmission expression {el @ e2). 
treeO The operator (an op node). 
tree! el. 
tree2 e2. 

alt An alternation expression (el \ e2). 
treeO el. 
treel e2. 

augop An augmented assignment expression (el 0 := e2). 
treeO The operator. 
treel el. 
tree2 el. 

bar A repeated alternation expression (\e). 
treeO e. 

binop A binary operation (el O e2). 
treeO The operator. 
treel el. 
tree2 e2. 

break A break expression (break [e]). 
treeO e. 

case A case expression (case e of {...}). 
treeO e. 
treel The list of case clauses. If there is only one case clause, this field points to the eels node; if 

there are more, it points to a clist node. 
eels A case clause (el: el). 

treeO el. For a default clause, this field points to a res node that contains the reserved word de-
fault. 

treel e2. 
clist A list of case clauses. The list is represented as a binary tree, with left branches pointing to case 

clauses and right branches pointing to a list of the remaining case clauses. The right branch of the 
last clist node points directly to a eels node. 

treeO A case clause (pointer to a eels node). 
treel Pointer to another clist node, or to the last eels node in the list. 

conj A conjunction expression (el & e2). 
treeO el. 
treel e2. 

-14 



create A create expression (create e). 
treeO e. 

cset A leaf node representing a cset literal. 
strO The string equivalent of the literal. 
vail The length of the string. 

elist An expression list, as in a list construction or the argument list in a procedure call. An expression 
list, like a list of case clauses, is represented as a binary tree. 

treeO An expression. 
treel Pointer to another elist node, or to the last expression in the list. 

empty This node is used as a placeholder for missing expressions in control structures and expression lists. 
field A field reference to a record (e . ident). 

treeO e. 
treel Pointer to an id node, containing the field name ident. 

id A leaf node representing an identifier. 
strO The name of the identifier. 

if An if expression (if el then e2 [else e3]). 
treeO el. 
treel e2. 
treel e3. 

int A leaf node representing an integer literal. 
strO The string representation of the literal. 

invok A procedure call or mutual evaluation expression (e (args )). 
treeO e. 
treel The argument list args. If there is one argument, this field points to the expression; if there 

are more, it points to an elist node. 
key A keyword reference (&ident). 

valO The index of the keyword ident, defined in the file tran/keyword.h. 
limit A limitation expression {el \ el). 

treeO el. 
treel e2. 

list A list ([el,e2,...]). 
treeO The list of elements. If there is one element, this field points to the expression; if there are 

more, it points to an elist node. 
loop A loop expression (loop el [do e2]). 

treeO The style of loop. This field points to a res node, which identifies the reserved word that in-
troduced the loop. 

treel el. 
tree2 e2. 

next A next expression. 
not A not expression (not e). 

treeO e. 
op A leaf node representing an operator. 

valO The token type of the operator. 

15 



proc A procedure. This node is always at the root of the parse tree. 
treeO The procedure name. This field points to an id node containing the name. 
treel The initial clause. 
tree2 The procedure body. If there is one expression in the procedure body, this field points to 

it; if there are more, it points to an elist node. 
tree3 A node containing the end token. This field is used to supply a line number for the implicit 

return at the end of a procedure. 
real A leaf node representing a real number literal. 

strO The string representation of the literal. 
res A leaf node representing a reserved word. 

valO The token type of the reserved word. 
ret A return or fail expression. 

treeO The type of return. This field points to a res node, which contains the reserved word re-
turn or fail. 

treel The expression following return, or a pointer to an empty node. 
scan A scanning expression (el ? e2). 

treeO The operator. 
treel el. 
tree2 e2. 

sect A section expression (el [e2: e3]). 
treeO el. 
treel e2. 
tree 2 e3. 

slist A list of expressions separated by semicolons, as in a procedure body (a statement list). This list, like 
expression lists and case lists, is represented as a binary tree. 

treeO An expression in the list. 
treel A pointer to another slist node, or to the last expression in the list. 

str A leaf node representing a string literal. 
strO The string value of the literal. 
vail The length of the string, necessary because the string may contain the ASCII null character, 

which would otherwise terminate the string. 
susp A suspend expression (suspend [>]). 

treeO e. 
toby A to-by expression (el to e2 by e3). 

treeO el. 
treel e2. 
tree2 e3. 

to A to expression (el to e2). 
treeO el. 
treel e2. 

unop A unary operation (O e). 
treeO The operator. 
treel e. 

16 



Appendix B — Icon Grammar 

The following grammar describes the Icon language. Reserved words and operators are shown in a sans-
serif type face; nonterminals are in italics. The nonterminals ident, literal, strliteral, and empty are left unde-
fined in the syntax. 

program 

decls 

— decls 

empty 
decls decl 

decl — record 
— proc 
— global 
— link 

link 

Inklist 

— link Inklist 

Inkfile 
—• Inklist , Inkfile 

Inkfile —• ident 
— strliteral 

global — global idlist 

record —• record ident ( arglist ) 

proc — prochead ; locals initial procbody end 

prochead — procedure ident ( arglist ) 

arglist — empty 
— /<#«/ 

/V///5/ — /Vfe/ir 
— W/isf , it/en/ 

/ofa/s — empty 
— /oca/5 retention idlist ', 

retention — local 
— static 
— dynamic 

initial — empty 
— initial expr ; 

procbody —• empty 
— nexpr ; procbody 

nexpr — empty 

ex/?r — exprla 
— ex/v & exprla 

exprla —• e.x/W 
— exprla ? expr/ 

- 17 -



exprl — expr2 
—• exprl opl exprl 
— expr2 opla exprl 
— expr2 ?:= expr/ 
— exprl &:= expr/ 
— exprl @:= fxpr7 

op/ - := | :=: | < - | <-> 

o p l a - + : = I - : = | * : = | / : = | % : = | A : = | + + : = | — • = | * * : = | I I : = 

— «:= | «=:= | = := I »=:= | » := | ~=:= 

exprl — expr3 
-* exprl to expr3 
-* exprl to expr3 by expr3 

expr3 —• expr4 
— expr4 I expr3 

expr4 — exprS 
— expr4 op4 expr5 

op4 — < | <= | = | >= | > | ~= 
— « I « = | = I » = | » 

exprS — expr6 
— exprS op5 expr6 

op5 - II | III 

expr6 — expr7 
— expr6 op6 expr7 

op6 - + | - | -H- | -

expr? — expr8 

— expr7 op7 expr8 

op7 - * | / | % | ** 

expr8 — expr9 
— expr9 A expr8 

expr9 — expr 10 
— expr9 \ expr 10 
— expr9 @ exprlO 

expr 10 — exprl 1 
— not exprlO 
— @ exprlO 
— I exprlO 
— op/0 exprlO 

oplO - . | l | + | - | ~ | = | * | / | \ 

18 



exprll 

while 

until 

every 

repeat 

if 

case 

caselist 

cclause 

return 

section 

sectop 

exprlist 

npound 

— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
—• 
— 
— 
— 
— 

— 
— 

-
—* 
— 

— 
—' 

-

— 
— 

— 
—* 
— 
— 
— 

— 

— 

-
—* 
— 
— 

idem 
literal 
& ident 
exprll . ident 
exprll [ nexpr ] 
exprll ( exprlist ) 
exprll { exprlist } 
[ exprlist ] 
( exprlist ) 
{ compound } 
while 
until 
every 
repeat 
next 
break nexpr 
create expr 
if 
case 
return 
section 

while expr 
while expr do expr 

until expr 
until expr do expr 

every expr 
every expr do expr 

repeat expr 

if expr then expr 
if expr then expr else expr 

case expr of { caselist } 

cc/ause 
caselist ; cclause 

default : expr 
expr : expr 

fail 
return nexpr 
suspend nexpr 

exprll [ expr sectop expr ] 

: 1 +: 1 -: 
nexpr 
exprlist , nexpr 

nexpr 
nexpr ; compound 

19-



Appendix C — Ucode 

The intermediate ucode generated by the Icon translator resembles a stack-oriented assembly language. A 
ucode program is a sequence of labels and instructions. A label marks a location in the program to which 
other instructions may transfer control. Labels are of the form "lab L«", where n is a decimal number. A 
ucode instruction either describes an imperative operation or communicates information to the Icon linker. 
Instructions consist of an opcode followed by zero or more arguments. Arguments can be decimal or octal 
integers, names, or label references. 

The intermediate language operates exclusively on the stack. There are several kinds of objects that can 
appear on the stack: descriptors, which represent Icon values and variables; procedure frame markers, which 
mark the beginning of a new procedure frame; expression frame markers, which delimit expression instances; 
and generator frame markers, which mark inactive generators. For more details about the stack, refer to Sec-
tion 3.2. 

The opcodes and their arguments are described in three groups below. The global symbol table file has a 
similar format. The opcodes used there are described in the fourth group. 

Imperative Instructions 
The instructions below, together with the operators described in the next section, represent run-time 

actions for which code is executed. 
bscan 

Save the values of &subject and &pos on the stack and establish values for them. This operation is re-
versible. 

cease 
Duplicate the value on the stack just below the current expression frame. Used in case expressions. 

chfail lab 
Change the failure label for the current expression frame to lab. Used for repeated alternation. 

coact 
Switch co-expression evaluation. Create a procedure frame on the current co-expression stack. 
Transfer the result from old stack to new stack, dereferencing if necessary. Set the activator field in new 
stack block to point to old co-expression stack block. Return from procedure frame on new co-
expression stack. 

cofail 
Fail from current co-expression to activating co-expression. Create a procedure frame on current co-
expression stack. Fail from procedure frame on activator's co-expression stack. 

coret 
Increment the result count field in the current co-expression stack block. Switch evaluation to activat-
ing co-expression. Create a procedure frame on current co-expression stack. Transfer the result from 
old stack to activator's stack, dereferencing it if the result is on the old stack. Return from the pro-
cedure frame on new co-expression stack. 

create 
Create a co-expression. Allocate co-expression stack and heap blocks. Copy the arguments and locals 
variables from the current procedure frame into the heap block. Create a procedure frame in the new 
co-expression stack using the arguments and other locals from current procedure frame. Create a pro-
cedure frame for dummy call to coact on the new co-expression stack. Push a descriptor representing 
the new co-expression onto current co-expression stack. 

cset n 
Push a descriptor representing the cset literal at constant table location n onto the stack. 

- 2 0 -



dup 
Push a descriptor representing the null value onto the stack, and then duplicate the value that was the 
previous top of the stack. Used in most augmented assignments. 

efail 
Signal failure in the current expression. If there are any inactive generators, reactivate the most recent 
one. If there are none, branch to the failure label for the current expression frame. If the failure label is 
null, exit the current expression frame, and signal failure in the enclosing one. 

eret 
Return a value from an expression. Save the value on top of the stack, exit the current expression 
frame, and push the value onto the stack as part of the enclosing expression frame. 

escan 
Restore &subject and &pos from the stack. This operation is reversible. 

esusp 
Suspend a value from an expression. The value on the top of the stack is saved, and a generator frame 
hiding the current expression frame is created. The surrounding expression frame is duplicated, and 
the value is pushed onto the stack as part of that expression frame. When reactivated, esusp in turn 
reactivates any inactive generators in the suspended expression. 

field name 
Access the field name of the record on the top of the stack. 

file name 
Set the file name to name for use in error messages and tracing. Used at the beginning of each pro-
cedure. 

goto lab 
Transfer control to the instruction following label lab. 

init lab 
If the initialization statement for the current procedure has already been executed once, go to lab. 

int n 
Push a descriptor representing the integer literal at constant table location n onto the stack. 

invoke n 
Invoke a procedure or create a record. The number of arguments or fields on the stack is given by n. 
The procedure (which may be a record constructor) is on the stack, just beyond the arguments. After 
invocation, the arguments are popped from the stack, and the returned value is pushed (see pret). 

keywd n 
Push a descriptor representing a value or trapped variable representing keyword n onto the stack. (See 
tran/keyword.h for keyword numbers.) 

limit 
Check the value on the top of the stack for a legal limitation value. If the value is zero, failure is sig-
naled in the current expression (see efail). 

line n 
Set the line number to n for use in error messages and tracing. 

Hist n 
Create a list of n values. The values are popped from the stack and the created list is pushed back onto 
the stack. 

Isusp 
Decrement the limitation counter for the current expression frame. If the counter becomes zero, then 
return a value from the current expression frame (see eret); otherwise, suspend a value from the current 
expression frame (see esusp). 

21 



mark lab 
Save the current expression and generator frame pointers on the stack, then create a new expression 
frame, with failure label lab. Control is transferred to lab if failure occurs in the expression frame and 
there are no suspended generators to reactivate (see efail). The failure label LO indicates that control is 
to be transferred to the failure label in the enclosing expression. 

pfail 
Return from the current procedure, and signal failure (see efail). 

pnull 
Push a descriptor representing the null value onto the stack. 

pop 
Pop the top element off of the stack. 

pret 
Return from the current procedure with the result that is on top of the stack. 

psusp 
Suspend from the current procedure with the result that is on top of the stack. 

pushl 
Push a descriptor representing the integer 1 onto the stack. 

pushnl 
Push a descriptor representing the integer -1 onto the stack. This is used as default in mutual goal-
directed evaluation. 

real n 
Push a descriptor representing the real literal at constant table location n onto the stack. 

refresh 
Allocate space for a new co-expression stack. Create a procedure frame in new co-expression stack us-
ing arguments and other locals from entry block for co-expression operand. Create a procedure frame 
for dummy call to coact on new co-expression stack. Push a descriptor representing the new co-
expression onto current co-expression stack. 

sdup 
Duplicate the descriptor on the top of the stack. Used in assignment augmented with string scanning. 

str n 
Push a descriptor representing the string literal at constant table location n onto the stack. 

untnark n 
Exit from n expression frames. No value is pushed onto the stack in their place. 

var n 
Push the descriptor for the variable at location n in the local symbol table onto the stack. 

Operators 
The instructions below perform the functions corresponding to the indicated Icon operator. The operands 

are evaluated and pushed onto the stack from left to right, so that the topmost element of the stack is the right-
most operand. The operands are popped before the result of the operation is pushed onto the stack. All 
operations dereference their operands as necessary, but only after all operands have been evaluated and 
pushed onto the stack. All operations attempt to convert their operands to an appropriate type. If this impli-
cit conversion fails, an error is issued. Relational tests fail if the specified condition is not met; the result of a 
successful comparison is the value of the right-hand operand. Arithmetic operations cause an error to be 
issued if the result overflows or underflows. If an operation cannot be performed for some other reason, it 
fails. 

22 



asgn 
bang 
cat 
compl 
diff 
div 
eqv 
inter 
lconcat 
lexeq 
lexge 
lexgt 
lexle 
lexlt 
lexne 
minus 
mod 
mult 
neg 
neqv 
nonnull 

X 
!x 
x 

:= y 

II y 
~x 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

- y 
/ y 
— y 
** y 
III y 
= y 
» = y 
» y 
« = y 
« y 
~ = y 
- y 
% y 
* y 

-X 
X ~-—-
\ x 

null 
number 
numeq 
numge 
numgt 
numle 
numlt 
numne 
plus 
power 
random 
rasgn 
rswap 
sect 
size 
subsc 
swap 
tabmat 
toby 
unions 
value 

/x 
+x 
x = y 
x >= y 
x > y 
x <= y 
x < y 
x ~= y 
x + y 
x A y 
?x 
x <- y 
x <-> y 
x[y:z] 
*x 
x[y] 
x :=: y 
=x 
x to y by z 
x ++ y 
.X 

Non-Imperative Instructions 
The following instructions generate no executable code. Instead, they communicate various information 

to the linker each procedure and its symbol table. An Icon procedure is translated into a sequence of ucode 
instructions beginning with a proc instruction, followed by a sequence of local instructions, a sequence of con 
instructions, a declend instruction, then the imperative instructions describing the procedure body. An end 
instruction terminates the procedure. 

proc name 
Begin a new procedure with the indicated name. The local and constant tables are initialized. The pro-
cedure block is not generated at this time, since the local identifiers have not yet been declared. 

local n, flags, name 
Enter name into the current procedure's local symbol table at location n. The symbol's flags indicate 
information about the symbol, its scope, and its retention. All identifiers referred to in a procedure ap-
pear in the local symbol table. If an identifier is undeclared, its scope is determined by consulting the 
global symbol table and a list of functions. 

con n, flags, value 
Enter value into the current procedure's constant table at location n in the table. The type of the con-
stant (integer, real, or string) is indicated by flags. For integer and real literals, value is an 11-digit octal 
number; for string and cset literals, it is a comma-separated list of 3-digit octal numbers, each 
representing one byte in the string. 

declend 
Signal the end of the procedure prologue. The procedure block is generated at this point. 

end 
Signal the end of a procedure. 

Global Symbol Table Instructions 
A global symbol table file is output during each translation. Record declarations appear first in the file; 

they are output as they are encountered in the Icon source program. The first instruction following the record 
declarations is impl, which may be followed by a trace instruction, then by the global declarations. The global 

-23 



declarations are output at the end of translation. 
record name.n 

Declare a record with the indicated name and n fields. One line for each field follows this line, each 
containing the field number and name. 

impl scope 
Declare the implicit scope as indicated. Scope can be either local or error. If the implicit scope is error, 
undeclared identifiers are flagged as warnings during linking; otherwise, they are made local variables. 
The implicit scope is error if the -u option was given on the translator command line, otherwise it is lo-
cal. 

trace 
Enable run-time tracing. This instruction is present if the -t option was given on the translator com-
mand line, and causes the keyword &traceto be initialized to - 1 . 

global n 
Begin the global symbol table. There are n global declarations following, one per line. Each global de-
claration contains a sequence number, the flags, the identifier name, and the number of formal parame-
ters (for procedures) or fields (for records). 

link name 
Search each directory named in the I PA TH environment variable for a file named name.ul. If the file 
is located, it is added to the list of files to link. 

-24 



Appendix D — Data Representations 

Descriptor Formats 
The figures below depict each of the six descriptor types mentioned in Section 3.1. Each descriptor is two 

words long. The first word, or d-word, contains flags in the most significant bits. The least significant bits 
contain a type code, except in the case of qualifiers and variable descriptors. 

Qualifier length 
address of string 

Null 0 0 0 type = 0 

Integer type = 1 
integer 

Pointer 0 0 1 type 
address of data block 

Variable 0 1 offset 
address of descriptor 

Trapped Variable type 
address of data block 

Note: The offset in a variable descriptor is the number of words from the top of the block in which the descrip-
tor that is pointed to occurs. 

2 5 -



Data Block Formats 
The data blocks used by the Icon system are pictured below. The first word of a block, known as its title, 

contains a data type code, shown as both a mnemonic and an integer, which is the same as the type code in the 
d-word of the descriptor that points to it. 

Long Integer Block T_Longint = 2 

32-bit integer 

Note: Long integers are used only on computers for which sizeof (int) != sizeof (long). 

Real Block T_Real = 3 

double-precision real 

Cset Block T_Cset = 4 
size of cset 

256-bit character set 

File Block T_File = 5 
UNIX file descriptor 

file status 

file name 

26 



Procedure Block T_Proc = 6 
size of block 

entry point address 
number of arguments 

number of dynamic locals 
number of static locals 

index of first static local 

procedure name 

— name of first identifier 

— name of last identifier 

Notes: Identifiers include arguments as well as local identifiers. Similar blocks are used for built-in functions; 
in this case the word for the number of dynamic locals contains - 1 . For functions, there are no argument 
names. Functions like write, which have an arbitrary number of argument, are indicated by the value -1 in 
place of the number of arguments. Record constructors are distinguished from other functions by the value -2 
in place of the number of dynamic locals. Each record declaration is distinguished by a unique record identifi-
cation number, which appears in place of the number of static locals. 

List Block T_List = 7 
size of list 

— first list element block — 

— last list element block 

27-



List Element Block T_Lelem = 11 
size of block 

number of slots in this block 
index of first slot used 
number of slots used 

— previous list element block — 

— next list element block — 

first slot 

last slot 

Table Block T_Table = 8 
size of table 

default value 

first slot 

last slot 

Table Element Block 

— next table element block — 

TJTelem = 10 
hash number 

entry value 

assigned value 

-28 



Table Element Trapped Variable Block T_Tvtbl = 14 
hash number 

table block 

entry value 

Note: The last descriptor in a table element trapped variable block is not used until the element is inserted in 
the table, at which time the table element trapped variable is converted into a table element block. 

Set Block T_Set = 20 
size of set 

first slot 

last slot 

Set Element Block T_Selem = 21 
hash number 

— next set element block — 

value 

Record Block 

— record constructor — 

T_Record = 9 
size of block 

— first field of record — 

— last field of record — 

- 2 9 -



Keyword Trapped Variable Block T_Tvky wd = 13 
assignment function 

value of keyword — 

— name of keyword 

Substring Trapped Variable Block TJTvsubs = 12 
length of substring 

relative position of substring 

— variable containing substring — 

stack 

Co-Expression Stack Block T_Estack = 18 

most recent activator — 

stack base 
stack pointer 

address pointer 
Icon/C boundary 

number of results produced 

refresh block 

Note: On computers with downward growing stacks, the stack precedes the title of the block, as indicated. 

30 



Refresh Block T_Refresh = 19 
size of block 

entry point address 
number of arguments 

number of locals 

procedure block 

— value of first identifier — 

— value of last identifier — 

Note: Identifiers include arguments as well as local identifiers. 

-31 


