
The Icon Program Library; Version 5.10*

Compiled by Ralph E. Griswold

TR 85-18

August 9,1985
Corrected September 3, 1985

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant DCR-8401831.

The Icon Program Library; Version 5.10

Preface

The Icon program library consists of Icon programs, procedures, C functions, and support material. The
library is distributed as part Version 5.10 of Icon [1-3].

The format of the library mimics the UNIX* Programmer's Manual [4]. Section 1 contains application
programs. Section 2 contains collections of Icon procedures. C functions, which can be used to augment the
repertoire of built-in Icon functions, are contained in Section 3. Sections 4 and 5 are reserved for future use.
Section 6 contains demonstration programs and games. Section 7 contains miscellaneous material, while Icon
program library maintenance information is included in Section 8. See the table of contents for details.

1. Using the Library

See i-hier(7) for the structure of the Icon system. The program material in the library is divided into three
components. Two of the components consists of Icon source code. The third consists of C source code. The
prefix /- is used to identify programs in the library that are related to Icon program development. Some pro­
cedures in the Icon program library depend on particular UNIX environments. Such dependencies are note in
the REQUIREMENTS sections of the manual pages.

Application Programs and Games

The programs in Sections 1 and 6 are on a par with programs in the corresponding sections of the UNIX
manual. The fact that the programs in the Icon library are written in Icon is irrelevant to the user; Icon appli­
cation programs and games can be moved to a local library without modification.

Procedures

The procedures in Section 2 can be linked into an Icon program in two ways: by specifying them with their
.u1 suffix on the icont(l) command line when the program is translated [5], or by including an appropriate
link directive in the program itself [2]. See the library manual page for i-hier(7) for the path that is needed.

Some procedures have global symbols in addition to the procedures names themselves. There is, therefore,
the possibility of collisions between names in user programs and names in the library procedures.

C Functions

C functions can be added to the built-in repertoire of Icon by building a personalized interpreter [6]. Alter­
natively, they can be incorporated into Icon directly [3]. Some of the C functions require the loading of
libraries. Check the library manual pages on specific functions.

2. The UNIX Manual Versus the Library Manual

Library manual pages, as included in this report, are slightly different from UNIX manual pages in their
head and foot formats. See lman(8) for the production of such manual pages. Library manual pages with
head and foot formats in the style of the UNIX manual can be obtained as described in uman(8).

Reference to manual pages that are not in the library, such as ed(l), apply to the UNIX manual.

'UNIX is a trademark of AT&T Bell Laboratories.

3. Bug Reports and Submissions of New Material

Bug reports should be mailed to

Icon Project
Department of Computer Science
The University of Arizona
Tucson, Arizona 85721
U.S.A.

or send electronic mail to

icon-project.arizona@csnet-relay (CSNET or ARPANET)
arizonalicon-project (Usenet and uucpnet)

There are currently uucp connections to Arizona through noao, mcnc, ihnp4, and utah-cs.

New material for the library is welcome, although the final decision on inclusion in the Icon library is at
the discretion of the Icon Project. Submissions should be sent in machine-readable form, including documen­
tation, either on tar-format magnetic tape or via electronic mail.

Acknowledgements

Several persons have contributed material to the Icon program library, as noted by the attributions on the
manual pages. In order to make program material easier to read, contributions have been reformatted to pro­
vide a degree of uniformity. Program layout therefore does not necessarily reflect the author's preference.

In addition to contributing material to the library, Tom Hicks, Bill Mitchell, and Steve Wampler have
made numerous helpful suggestions about the library and its documentation.

References

1. Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey. 1983.

2. Griswold, Ralph E. and William H. Mitchell. Version 5.10 of Icon. Technical Report TR 85-16, Depart­
ment of Computer Science, The University of Arizona. August 1985.

3. Griswold, Ralph E. and William H. Mitchell. Installation and Maintenance Guide for Version 5.10 of
Icon. Technical Report TR 85-15, Department of Computer Science, The University of Arizona, Tucson,
Arizona. August 1985.

4. UNIX Programmer's Manual; Seventh Edition, Volume 1. Bell Laboratories, Murray Hill, New Jersey.
1979.

5. Griswold, Ralph E. and William H. Mitchell. ICONT(l), manual page for UNIX Programmer's Manual,
Department of Computer Science, The University of Arizona. August 1985.

6. Griswold, Ralph E. and William H. Mitchell. Personalized Interpreters for Version 5.10 of Icon. Techni­
cal Report TR 85-17, Department of Computer Science, The University of Arizona. August 1985.

- n -

CONTENTS

1. Application Programs

cppp cp preprocessor
csgen context-sensitive sentences
delam delaminate a file using column positions
delamc delaminate a file using separator characters
edscript generate script for ed(l)
fset perform set operations on UNIX file specifications
gcomp global complement of file names
groupsort sort groups of lines using the first line as the key
i-psort sort procedures in Icon program
i-split split Icon program into separate files
i-trfil Icon trace filter
i-xref Icon program cross reference
labels format labels
lam laminate files
11 line length
loadmap detail the symbols in a compiled file
parens produce strings of balanced parentheses
roffcmds usage of nroff/troff commands and defined strings
rsg generate random sentences
shuffile shuffle file
tabic tabulate characters
tablw tabulate words
trim trim lines
zipsort sort labels by zip code

2. Procedures

bitops operations on bit strings
bold boldface and underscored text
collate collate and decollate strings
complex arithmetic on complex numbers
escape interpret Icon literal string
gener generators
gpack graphics package for the Chromatics CG 3999
image generalized string image of Icon value
lmap list map
patterns SNOBOL4-style pattern matching
pdae programmer-defined argument evaluation
pdco programmer-defined control operations
radcon radix conversion procedures
segment segment string
seqimage produce string image of result sequence
shuffle shuffle string or list
size size of Icon object
snapshot snapshot of state of string scanning
structs structure operations
strutil string utilities
ttyinit initialize predefined terminal control attributes

3. C Functions

getenv get value for environment variable
iscope examine Icon internals
math miscellaneous math functions

Version 5.10 - iii - August 1985

Contents

seek seek to position in stream
trig trigonometric functions
ttyctl primitive control of terminal attributes

4. Special Files

(reserved for future use)

5. File Formats

(reserved for future use)

6. Games

cross intersection of words
deal deal bridge hands
farb produce random farberism
queens solutions to n-queens problem
worm display random worm on the Chromatics CG 3999

7. Miscellaneous

i-hier Icon hierarchy

8. Library Maintenance

lman format manual page in library style
uman format manual page in UNIX manual style

August 1985 - iv - Version 5.10

PERMUTED INDEX

graphics package for the Chromatics CG
display random worm on the Chromatics CG

programmer-defined

sort groups of lines using the first line
primitive control of terminal

initialize predefined terminal control
produce strings of

operations on

deal
sort labels

graphics package for the Chromatics
display random worm on the Chromatics

delaminate a file using separator
tabulate

graphics package for the
display random worm on the

sort labels by zip

delaminate a file using
usage of nroff/troff

detail the symbols in a
global

arithmetic on

initialize predefined terminal
primitive

programmer-defined
radix

Icon program

collate and
usage of nroff/troff commands and

generate script for
get value for

programmer-defined argument

produce random
detail the symbols in a compiled

shuffle
global complement of

perform set operations on UNIX
delaminate a
delaminate a

split Icon program into separate
laminate

Icon trace
usage of

sort groups of lines using the

miscellaneous math
trigonometric

sort
deal bridge

Icon

examine
interpret

3999 gpack(2)
3999 worm(6)
argument evaluation pdae(2)
arithmetic on complex numbers complex(2)
as the key groupsort(I)
attributes ttyctl(3)
attributes ttyinit(2)
balanced parentheses parens(l)
bit strings bitops(2)
boldface and underscored text bold(2)
bridge hands deal(6)
by zip code zipsort(I)
CG 3999 gpack(2)
CG 3999 worm(6)
characters delamc(l)
characters tablc(l)
Chromatics CG 3999 gpack(2)
Chromatics CG 3999 worm(6)
code zipsort(l)
collate and decollate strings collate(2)
column positions delam(l)
commands and defined strings roffcmds(l)
compiled file loadmap(l)
complement of file names gcomp(I)
complex numbers complex(2)
context-sensitive sentences csgen(l)
control attributes ttyinit(2)
control of terminal attributes ttyctl(3)
control operations pdco(2)
conversion procedures radcon(2)
cp preprocessor cppp(l)
cross reference i-xref(l)
deal bridge hands deal(6)
decollate strings collate(2)
defined strings roffcmds(l)
delaminate a file using column positions delam(l)
delaminate a file using separator characters delamc(l)
detail the symbols in a compiled file loadmap(l)
display random worm on the Chromatics CG 3999. . . . worm(6)
ed(l) edscript(I)
environment variable getenv(3)
evaluation pdae(2)
examine Icon internals iscope(3)
farberism farb(6)
file loadmap(l)
file shuffile(l)
file names gcomp(l)
file specifications fset(l)
file using column positions delam(l)
file using separator characters delamc(l)
files i-split(l)
files lam(l)
filter i-trfil(I)
nroff/troff commands and defined strings roffcmds(l)
first line as the key groupsort(l)
format labels labels(l)
format manual page in library style lman(8)
format manual page in UNIX manual style uman(8)
functions math(3)
functions trig(3)
generalized string image of Icon value image(2)
generate random sentences rsg(l)
generate script for ed(l) edscript(I)
generators gener(2)
global complement of file names gcomp(l)
graphics package for the Chromatics CG 3999 gpack(2)
groups of lines using the first line as the key groupsort(l)
hands deal(6)
hierarchy i-hier(7)
Icon hierarchy i-hier(7)
Icon internals iscope(3)
Icon literal string escape(2)

Version 5.10 August 1985

Permuted Index

size of
sort procedures in

split

generalized string image of
generalized string

produce string

examine Icon

sort groups of lines using the first line as the
format

sort

line
format manual page in

sort groups of lines using the first

trim
sort groups of

shuffle string or

interpret Icon
format
format

format manual page in UNIX
list

SNOBOL4-style pattern
miscellaneous

global complement of file
solutions to

arithmetic on complex
size of Icon

programmer-defined control
structure

perform set
format manual
format manual

produce strings of balanced
SNOBOL4-style

seek to
delaminate a file using column

initialize
cp

solutions to n-queens
radix conversion

sort

sort procedures in Icon
Icon

split Icon

produce
generate

display
Icon program cross

produce string image of
snapshot of state of string

generate

context-sensitive
generate random

split Icon program into
delaminate a file using

produce string image of result

Icon object size(2)
Icon program i-psort(l)
Icon program cross reference i-xref(l)
Icon program into separate files i-split(l)
Icon trace filter i-trfil(1)
Icon value image(2)
image of Icon value image(2)
image of result sequence seqimage(2)
initialize predefined terminal control attributes ttyinit(2)
internals iscope(3)
interpret Icon literal string escape(2)
intersection of words cross(6)
key groupsort(l)
labels labels(l)
labels by zip code zipsort(1)
laminate files lam(l)
length 11(1)
library style lman(8)
line as the key groupsort(l)
line length 11(1)
lines trim(l)
lines using the first line as the key groupsort(l)
list shuffle(2)
list map lmap(2)
literal string escape(2)
manual page in library style lman(8)
manual page in UNIX manual style uman(8)
manual style uman(8)
map lmap(2)
matching patterns(2)
math functions math(3)
miscellaneous math functions math(3)
names gcomp(l)
n-queens problem queens(6)
numbers complex(2)
object size(2)
operations pdco(2)
operations structs(2)
operations on bit strings bitops(2)
operations on UNIX file specifications fset(I)
page in library style lman(8)
page in UNIX manual style uman(8)
parentheses parens(l)
pattern matching patterns(2)
perform set operations on UNIX file specifications. . . . fset(l)
position in stream seek(3)
positions delam(l)
predefined terminal control attributes ttyinit(2)
preprocessor cppp(l)
primitive control of terminal attributes ttyctl(3)
problem queens(6)
procedures radcon(2)
procedures in Icon program i-psort(l)
produce random farberism farb(6)
produce string image of result sequence seqimage(2)
produce strings of balanced parentheses parens(l)
program i-psort(l)
program cross reference i-xref(l)
program into separate files i-split(l)
programmer-defined argument evaluation pdae(2)
programmer-defined control operations pdco(2)
radix conversion procedures radcon(2)
random farberism farb(6)
random sentences rsg(l)
random worm on the Chromatics CG 3999 worm(6)
reference i-xref(l)
result sequence seqimage(2)
scanning snapshot(2)
script for ed(l) edscript(l)
seek to position in stream seek(3)
segment string segment(2)
sentences csgen(1)
sentences rsg(l)
separate files i-split(1)
separator characters delamc(1)
sequence seqimage(2)

August 1985 Version 5.10

Permuted Index

perform

key.

perform set operations on UNIX file

snapshot of
seek to position in

interpret Icon literal
segment

generalized
produce

shuffle
snapshot of state of

operations on bit
collate and decollate

usage of nroff/troff commands and defined
produce

format manual page in library
format manual page in UNIX manual

detail the

primitive control of
initialize predefined

boldface and underscored
Icon

boldface and
perform set operations on

format manual page in
strings.

delaminate a file
delaminate a file

sort groups of lines
string

generalized string image of Icon
get

get value for environment
intersection of

tabulate
display random

sort labels by

set operations on UNIX file specifications fset(l)
shuffle file shuffile(l)
shuffle string or list shuffle(2)
size of Icon object size(2)
snapshot of state of string scanning snapshot(2)
SNOBOL4-style pattern matching patterns(2)
solutions to n-queens problem queens(6)
sort groups of lines using the first line as the groupsort(l)
sort labels by zip code zipsort(l)
sort procedures in Icon program i-psort(l)
specifications fset(l)
split Icon program into separate files i-split(l)
state of string scanning snapshot(2)
stream seek(3)
string escape(2)
string segment(2)
string image of Icon value image(2)
string image of result sequence seqimage(2)
string or list shuffle(2)
string scanning snapshot(2)
string utilities strutil(2)
strings bitops(2)
strings collate(2)
strings roffcmds(l)
strings of balanced parentheses parens(I)
structure operations structs(2)
style lman(8)
style uman(8)
symbols in a compiled file loadmap(l)
tabulate characters tablc(l)
tabulate words tablw(I)
terminal attributes ttyctl(3)
terminal control attributes ttyinit(2)
text bold(2)
trace filter i-trfil(l)
trigonometric functions trig(3)
trim lines trim(l)
underscored text bold(2)
UNIX file specifications fset(l)
UNIX manual style uman(8)
usage of nroffjtroff commands and defined roffcmds(l)
using column positions delam(l)
using separator characters delamc(l)
using the first line as the key groupsort(l)
utilities strutil(2)
value image(2)
value for environment variable getenv(3)
variable getenv(3)
words cross(6)
words tablw(l)
worm on the Chromatics CG 3999 worm(6)
zip code zipsort(l)

Version 5.10 VII August 1985

CPPP (1) Icon Program Library CPPP (1)

NAME
cppp - cp preprocessor

SYNOPSIS
CPPP [_d identifiers] [-u identifiers]

DESCRIPTION
Cppp filters standard input to standard output, processing the C preprocessor control lines #ifdef,
#ifndef, and #else. If the controlling identifier is in the arguments following the -d option, the
corresponding lines are included, while if the controlling identifier is in the arguments following
the -u option, the corresponding lines are deleted. Otherwise, the preprocessor control lines are
included. The control lines #define and #undef are deleted if the identifier is in either list.

For example, suppose that a program contains code for 8-bit, 16-bit, and 32-bit processors under
control of the identifiers BIT8, BIT16, and BITB2. A version of the program for 16-bit proces­
sors only can be obtained by

cppp -d BIT16 -u BIT8 BIT32

LIMITATION
Cppp assumes the input file is syntactically correct with respect to control lines.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 8/14/84

CSGEN (1) Icon Program Library CSGEN (1)

NAME
csgen - context-sensitive sentences

SYNOPSIS
csgen [-t]

DESCRIPTION
Csgen accepts a context sensitive production grammar from standard input and generates ran­
domly selected sentences from the corresponding language.

Uppercase letters stand for nonterminal symbols, -> indicates the lefthand side can be rewritten
by the righthand side. Other characters are considered to be terminal symbols. Lines beginning
with # are considered to be comments and are ignored. A line consisting of a nonterminal sym­
bol followed by a colon and a nonnegative integer i is a generation specification for i instances of
sentences for the language defined by the nonterminal (goal) symbol. An example is:

a(n)b(n)c(n)
Salomaa, p. 11. Attributed to M. Soittola.

X
X->abc
X->aYbc
Yb->bY
Yc->Zbcc
bZ->Zb
aZ->aaY
aZ->aa
X:10

A positive integer followed by a colon can be prefixed to a production to replicate that produc­
tion, making its selection more likely. For example,

3:X->abc

is equivalent to

X->abc
X->abc
X->abc

The -t option writes a trace of the derivations to standard error output.

LIMITATIONS
Nonterminal symbols can only be represented by single uppercase letters and there is no way to
represent uppercase terminal symbols.

There can be only one generation specification and it must appear as the last line of input.

Generation of context-sensitive strings is a slow process. It may not terminate, either because of a
loop in the rewriting rules of the grammar or because of the progressive accumulation of nonter­
minal symbols. Csgen, however, avoids deadlock, in which there are no possible rewrites for a
string in the derivation.

Version 5.10 The University of Arizona - 6/28/83

CSGEN (1) Icon Program Library CSGEN (1)

SEE ALSO
Salomaa, Arto. Formal Languages, Academic Press, New York, 1973.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 6/28/83

DELAM (1) Icon Program Library DELAM (1)

NAME
delam - delaminate a file using column positions

SYNOPSIS
delam fieldspec {input file | -} {output file | - } . . .

DESCRIPTION
Delam delaminates an input file into several output files according to the specified fields. Delam
reads the input file and writes the fields in each line to the corresponding output files as indivi­
dual lines. If no data occurs in the specified position for a given input line an empty output line is
written. This insures that all output files contain the same number of lines as the input file.

If ' - ' is used for the input file, the standard input is read. If'-' is used as an output file name, the
corresponding field is written to the standard output.

The fields are defined by a list of field specifications, separated by commas, colons, or semicolons,
of the following form:

n the character in column n
n-m the characters in columns n through m
n+m m characters beginning at column n

where the columns in a line are numbered from 1 to the length of the line.

The use of delam is illustrated by the following examples.

delam 1-10,5 foo x y

reads file foo and writes characters 1 through 10 to file x and character 5 to file y.

delam 10+5:1-10:1-10:80 - middle leftl Ieft2 end

reads the standard input and writes characters 10 through 14 to middle, 1 through 10 to leftl
and Ieft2, and character 80 to end.

delam 1-80;1-80

copies the standard input to the standard output, replicating the first eighty columns of each line
twice.

NOTES
The functionality of the Software Tools delam has been divided. The Icon version of delam uses
an extended fieldlist syntax.

SEE ALSO
lam(l), delamc(l)

Hanson, David R. Software Tools User's Manual, Technical Report TR 81-20, Department of
Computer Science, The University of Arizona. 1981.

AUTHOR
Thomas R. Hicks

Version 5.10 The University of Arizona - 8/12/85

DELAMC (1) Icon Program Library DELAMC (1)

NAME
delamc - delaminate a file using separator characters

SYNOPSIS
delamc [-tchars] {input file | -} {output file | -} ...

DESCRIPTION
Delamc delaminates an input file into several output files according to the separator characters
specified by the string following the -t flag. Delamc writes the fields in each line to the
corresponding output files as individual lines. If no data occurs in the specified position for a
given input line an empty output line is written. This insures that all output files contain the same
number of lines as the input file.

If '-1 is used for the input file, the standard input is read. If'-' is used as an output file name, the
corresponding field is written to the standard output. If the -t flag is not used, an ascii horizontal
tab character is assumed as the default field separator.

The use of delamc is illustrated by the following examples.

delamc tst.asm labels opcodes operands

reads the file tst.asm and writes the fields, each of which is separated by a tab character, to the
output files labels, opcodes, and operands.

delamc -t: scores names matric ps1 ps2 ps3

reads the file scores and writes the fields, each of which is separated by a colon, to the indicated
output files.

delamc -t,:; oldata f1 f2

reads the file oldata and separates the fields using either a comma, a colon, or a semicolon.

NOTES
The functionality of the Software Tools delam has been divided. Delamc differs from the Tools
syntax by allowing a set of separation characters to be specified.

SEE ALSO
lam(l), delam(l)

Hanson, David R. Software Tools User's Manual, Technical Report TR 81-20, Department of
Computer Science, The University of Arizona. 1981.

AUTHOR
Thomas R. Hicks

Version 5.10 The University of Arizona - 8/12/85

EDSCRIPT(1) Icon Program Library EDSCRIPT(1)

NAME
edscript - generate script for ed(l)

SYNOPSIS
edscript

DESCRIPTION
Edscript takes specifications for global edits from standard input and outputs an edit script for
ed(l) to standard output. Edscript is primarily useful for making complicated literal substitutions
that involve characters that have syntactic meaning to ed(l) and hence are difficult to enter in
ed(l).

Each specification begins with a delimiter, followed by a target string, followed by the delimiter,
followed by the replacement string, followed by the delimiter. For example

1****11

specifies the replacement of all occurrences of three consecutive periods by two asterisks, followed
by the deletion of all occurrences of four consecutive asterisks. Any character may be used for
the delimiter, but the same character must be used in all three positions in any specification, and
the delimiter character cannot be used in the target or replacement strings.

DIAGNOSTICS
Any line that does not have proper delimiter structure is noted and does not contribute to the edit
script.

SEE ALSO
ed(l)

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 3/27/83

FSET (1) Icon Program Library FSET (1)

NAME
fset - perform set operations on UNIX file specifications

SYNOPSIS
fset argument

DESCRIPTION
The UNIX shell provides for the specification of filenames using "wildcards". Each wildcard
specification may be thought of as defining a set of names (that is, those that match the specifica­
tion). Fset allows the user to apply the set operations of intersection, union, and difference to
these filename sets. The resultant list may then be used as an argument to other shell commands.

Fset's argument is an expression composed of legal UNIX file specifications, parenthesis, and the
following set operators:

&& intersection
++ union

difference

Because characters that have special meaning to the shell occur frequently in the arguments used
for fset, it is advisable to quote the arguments consistently.

The use offset is illustrated by the following examples:

fset 'g*—*.icn'

produces the list (set) of filenames for files beginning with g, excluding those ending with Jen.

Similarly,

fset '*'

produces all files in the current directory excluding the . and .. files.

fset '((*—*.icn)++c*)'

and

fset '(*—*.icn)++c*'

produces the complement of all filenames ending with .icn in addition to all filenames beginning
with C.

fset '(((c? && c*)))'

is a redundant, but legal, specification for all two-character filenames that begin with C, while

fset '.*'

Version 5.10 The University of Arizona - 8/15/84

F S E T (l) Icon Program Library F S E T (l)

produces the set of filenames for all hidden files, excluding the . and .. files.

LIMITATIONS
Multiple command line arguments, formed by omitting the quotes around the file set expression,
are permitted. Their use is limited, however, since parentheses do not get past the shell's
command-line expansion.

Almost any legal file specification will work when enclosed in quotes except that the simple gram­
mar that is used cannot handle blanks adjacent to parentheses.

File names that begin or end in "questionable" characters such as *, ?, +, -, and &, probably will
not work.

A file specification that, when interpreted by the shell, produces no matching filename will be
placed (unchanged) in the result.

SEE ALSO
gcomp(l)

AUTHOR
Thomas R. Hicks

Version 5.10 The University of Arizona - 8/15/84

GCOMP (1) Icon Program Library GCOMP (1)

NAME
gcomp - global complement of file names

SYNOPSIS
gcomp files

DESCRIPTION
Gcomp produces a list of the files in the current directory that do not appear among the argu­
ments. For example,

gcomp *.c

produces a list of files in the current directory that do not end in .C. As another example, to
remove all the files in the current directory that do not match Makefile, *.C, or *.h, the following
can be used:

rm ' gcomp Makefile *.c *.h*

The files . and .. are not included in the output, but other 'dot files' are.

BUGS
Gcomp reads the current directory as a file and assumes that all directory entires are 16 bytes in
length.

SEE ALSO
fset(l)

AUTHOR
William H. Mitchell

Version 5.10 The University of Arizona - 8/10/85

GROUPSORT(1) Icon Program Library GROUPSORT(1)

NAME
groupsort - sort groups of lines using the first line as the key

SyNOPSIS
groupsort [-o] [separator string]

DESCRIPTION
Groupsort sorts standard input containing "records" defined to be groups of consecutive lines.
Output is written to standard output. Each input record is separated by one or more repetitions
of a demarcation line (a line beginning with the separator string). The first line of each record is
used as the key.

If no separator string is specified on the command line, the default is the empty string. Because all
input lines are trimmed of whitespace (blanks and tabs), blank lines are default demarcation lines.
The separator string specified can be an initial substring of the string used to demarcate lines, in
which case the resulting partition of the input file may be different from a partition created using
the entire demarcation string.

The -o flag sorts the input file but does not produce the sorted records. Instead it lists the keys
(in sorted order) and line numbers defining the extent of the record associated with each key.

The use of groupsort is illustrated by the following examples. The command

groupsort "catscatscatscatscats" <x >y

sorts the file X, whose records are separated by lines containing the string
"catscatscatscatscats", into the file y placing a single line of "catscatscatscatscats" between
each output record. Similarily, the command

groupsort "cats" <x >y

sorts the file x as before but assumes that any line beginning with the string "cats" delimits a new
record. This may or may not divide the lines of the input file into a number of records different
from the previous example. In any case, the output records will be separated by a single line of
"cats". Another example is

groupsort -o <Bibliography >Bibkeys

which sorts the file Bibliography and produces a sorted list of the keys and the extents of the
associated records. Each output line is of the form:

[s-e] keystring

where

S is the line number of the key line,
e is the line number of the last line,
keystring is the actual key of the record.

Version 5.10 The University of Arizona - 10/5/84

GROUPSORT(l) Icon Program Library GROUPSORT(l)

AUTHOR
Thomas R. Hicks

Version 5.10 The University of Arizona - 10/5/84

I-PSORT (1) Icon Program Library I-PSORT (1)

NAME
i-psort - sort procedures in Icon program

SYNOPSIS
i-psort

DESCRIPTION
I-psort reads an Icon program from standard input and writes an equivalent program to standard
output with the procedures sorted alphabetically. Global, external, and record declarations come
first in the order they appear in the original program. The main procedure comes next followed
by the remaining procedures in alphabetical order.

Comments and white space between declarations are attached to the next following declaration.

LIMITATIONS

I-psort only recognizes declarations that start at the beginning of lines.

Comments and interline white space between declarations may not come out as intended.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 6/28/83

I-SPLIT (1) Icon Program Library I-SPLIT (1)

NAME
i-split - split Icon program into separate files

SYNOPSIS
i-split [-g file]

DESCRIPTION
I-split reads an Icon program from standard input and writes each procedure to a separate file.
The output file names consist of the procedure name with .icn appended. If the -g option is
specified, any global, external, and record declarations are written to that file. Otherwise they are
written in the file for the procedure that immediately follows them.

Comments and white space between declarations are attached to the next following declaration.

LIMITATIONS
I-split only recognizes declarations that start at the beginning of lines.

Comments and interline white space between declarations may not come out as intended.

If the -g option is not specified, any global, external, or record declarations that follow the last
procedure are discarded.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 5/28/83

I -TRFIL(l) Icon Program Library I -TRFlL(l)

NAME
i-trfil - Icon trace filter

SYNOPSIS
i-trfil [options]

DESCRIPTION

I-trfil filters standard input using user-designated strings as keys.

The following options may appear more than once and in any order:

+string Consider only lines containing string; otherwise all lines are considered.
^string Remove lines containing string from consideration (except those containing a string

specified by the ! option).

Istring Retain lines containing string.

-en Print n context lines before (if n is negative) or after (if n is positive). Nonsequential
context lines are separated by a blank line. The default is 0.

LIMITATIONS
Trace output from Icon programs goes to standard error output, which cannot be piped directly
into i-trfil. This problem can be circumvented by combining output streams. In sh(l), this can be
accomplished by

prog 2>&1 | i-trfil ...

while in csh(l), it can be accomplished by

prog |& i-trfil ...

BUG
If the environment variable TRACE is set to a nonzero value when i-trfil is running, one line of
tracing is produced from i-trfil in addition to any other tracing.

SEE ALSO
sh(l), csh(l)

AUTHOR
Allan J. Anderson

Version 5.10 The University of Arizona - 5/16/83

I-XREF (1) Icon Program Library I-XREF (1)

NAME
i-xref - Icon program cross reference

SYNOPSIS
i-xref [file] [options]

DESCRIPTION
I-xref provides a cross-reference facility for Icon programs. It lists the occurrences of each vari­
able by line number. Variables are listed by procedure or separately as globals. The options
specify the formatting of the output and whether or not to cross-reference quoted strings and
non-alphanumerics. Variables that are followed by a left parenthesis are listed with an asterisk fol­
lowing the name. If a file is not specified, then standard input is cross-referenced.

The following options change the format defaults. They may appear in any order:

-c n The column width per line number. The default is 4 columns wide.

-1 n The starting column (i.e. left margin) of the line numbers. The default is column 40.

-w n The column width of the whole output line. The default is 80 columns wide.

Normally only alphanumerics are cross-referenced. These options expand what is considered:

-q Include quoted strings.

-x Include all non-alphanumerics.

LIMITATION
This program assumes the subject file is a valid Icon program. For example, quotes are expected
to be matched.

AUTHOR
Allan J. Anderson

Version 5.10 The University of Arizona - 6/28/83

LABELS (1) Icon Program Library LABELS (1)

NAME
labels - format labels

SYNOPSIS
labels [options]

DESCRIPTION
Labels writes labels onto the standard output using coded information taken from standard input.
In the input, a line beginning with # is a label header. Subsequent lines up to the next header or
end-of-file are accumulated and output so as to be centered horizontally and vertically on pin-feed
label forms. Lines beginning with * are treated as comments and are ignored.

The following options may appear in any order:

-n Print n copies of each label.

-s string Select only those labels whose headers contain a character in string.

-t Format for curved tape labels (the default is to format for rectangular mailing labels).

-w n Limit line width to n characters. The default width is 40.

-I n Limit the number of printed lines per label to n. The default is 8.

-d n Limit the depth of the label to n. The default is 9 for rectangular labels and 12 for
tape labels (-t).

Options are processed from left to right. If the number of printed lines is set to a value that
exceeds the depth of the label, the depth is set to the number of lines. If the depth is set to a
value that is less than the number of printed lines, the number of printed lines is set to the depth.
Note that the order in which these options are specified may produce different results.

Label forms should be used with a pin-feed platen. For mailing labels, the carriage should be
adjusted so that the first character is printed at the leftmost position on the label and so that the
first line of the output is printed on the topmost line of the label. For curved tape labels, some
experimentation may be required to get the text positioned properly.

DIAGNOSTICS
If the limits on line width or the number of lines per label are exceeded, a label with an error
message is formatted onto standard error output. Thus, if standard output and standard error
output are directed to the same file, an erroneous label does not result in misformatting of the
other labels.

SEE ALSO
zipsort(l)

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 8/11/85

LAM (1) Icon Program Library LAM (1)

NAME
lam - laminate files

SYNOPSIS
lam file [file | - string] ...

DESCRIPTION
Lam laminates the named files onto the standard output. The resulting output is the line-by-line
concatenation of corresponding lines from each file named. If the files are different lengths,
empty lines are substituted for missing lines in the shorter files.

Each string argument is placed in the output line at the point that it appears in the argument list.
For example, lines from filel and file2 can be laminated with a colon between each line from filel
and the corresponding line from file2 by the command

lam filel -: file2

Filenames and strings may appear in any order in the argument list. If'-', is given for a filename
the standard input is read at that point. If a file is named more than once, each of its lines will
be duplicated on the output line, except that if standard input is named more than once, its lines
will be read alternately. For example, each pair of lines from standard input can be joined onto
one line with a space between them by the command

lam - "- " -

while the command

lam filel " - " fi lel

replicates each line from filel.

SEE ALSO
delam(l), delamc(l)

Hanson, David R. Software Tools User's Manual, Technical Report TR 81-20, Department of
Computer Science, The University of Arizona. 1981.

AUTHOR
Thomas R. Hicks

Version 5.10 The University of Arizona - 6/28/83

LL (1) Icon Program Library LL (1)

NAME
11 - line length

SYNOPSIS
11 [filename ...]

DESCRIPTION
LI prints the lengths of the shortest and longest lines in the named files. If no filename argument
appears, the standard input is used. ' - ' may be used to explicitly specify the standard input.

SEE ALSO
Hanson, David R. Software Tools User's Manual, Technical Report TR 81-20, Department of
Computer Science, The University of Arizona. 1981.

AUTHOR
Thomas R. Hicks

Version 5.10 The University of Arizona - 6/28/83

LOADMAP (1) Icon Program Library LOADMAP (1)

NAME
loadmap - detail the symbols in a compiled file

SYNOPSIS
loadmap [options] file

DESCRIPTION
Loadmap produces a formatted listing of selected symbol classes from a compiled file. The listing
is by class, and gives the name, starting address, and length of the region associated with each
symbol.

The options are:

-a Display the absolute symbols.

-b Display the BSS segment symbols.

-c Display the common segment symbols.

-d Display the data segment symbols.

-t Display the text segment symbols.

-u Display the undefined symbols.

If no options are specified, -t is assumed.

If the address of a symbol cannot be determined, ???? is given in its place.

DEFICIENCIES

The size of the last region in a symbol class is suspect and is usually given as rem.

Output is not particularly exciting on a stripped file.

SEE ALSO
nm(l), size(l)

AUTHOR
Stephen B. Wampler

Version 5.10 The University of Arizona - 8/12/84

PARENS (1) Icon Program Library PARENS (1)

NAME
parens - produce strings of balanced parentheses

SYNOPSIS
parens [-b ri] [-n n] [-1 s] [-r s] [-v]

DESCRIPTION

Parens produces parenthesis-balanced strings in which the parentheses are randomly distributed.

The following options may appear in any order:

-b n Bound the length of the strings to n left and right parentheses each. The default is 10.

-n n Produce n strings. The default is 10.

-I J Use s for the left parenthesis. The default is (.

-r s Use s for the right parenthesis. The default is) .

-v Randomly vary the length of the strings between 0 and the bound. In the absence of
this option, all strings are the exactly as long as the specified bound.

SEE ALSO
Arnold, D. B. and M. R. Sleep. "Uniform Random Generation of Balanced Parenthesis Strings",
ACM Transactions on Programming Languages and Systems, Vol. 2. No. 1 (1980), pp. 122-128.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 8/10/85

ROFFCMDS (1) Icon Program Library ROFFCMDS (1)

NAME
roffcmds - usage of nroff/troff commands and defined strings

SYNOPSIS
roffcmds

DESCRIPTION
Roffcmds processes standard input and writes a tabulation of nroffjtroff commands and defined
strings to standard output.

LIMITATIONS
Roffcmds only recognizes commands that appear at the beginning of lines and does not attempt
to unravel conditional constructions. Similarly, defined strings buried in disguised form in defini­
tions are not recognized.

SEE ALSO
Ossana, Joseph F. Nroff/Troff User's Manual, Bell Laboratories, Murray Hill, New Jersey.
October 11, 1976.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 6/14/83

RSG (1) Icon Program Library RSG (1)

NAME
rsg - generate random sentences

SYNOPSIS
rsg [-1 ri] [-1 ri] [-t]

DESCRIPTION

Rsg generates randomly selected sentences from a grammar specified by the user.

The following options may appear in any order:

-s n Set the seed for random generation to n. The default seed is 0.
-1 n Terminate generation if the number of symbols remaining to be processed exceeds n.

There is no default limit.

-t Trace the generation of sentences. Trace output goes to standard error output.

Rsg works interactively, allowing the user to build, test, modify, and save grammars. Input to rsg
consists of various kinds of specifications, which can be intermixed:

Productions define nonterminal symbols in a syntax similar to the rewriting rules of BNF with
various alternatives consisting of the concatenation of nonterminal and terminal symbols.

Generation specifications cause the generation of a specified number of sentences from the
language defined by a given nonterminal symbol.

Grammar output specifications cause the definition of a specified nonterminal or the entire
current grammar to be written to a given file.

Source specifications cause subsequent input to be read from a specified file.

In addition, any line beginning with # is considered to be a comment, while any line beginning
with = causes the rest of that line to be used as a prompt to the user whenever rsg is ready for
input (there normally is no prompt). A line consisting of a single = stops prompting.

Productions
Examples of productions are:

<expr>::=<term> | <term>+<expr>
<term>::=<element>|<element>*<term>
<element>::=x|y|z|(<expr>)

Productions may occur in any order. The definition for a nonterminal symbol can be changed by
specifying a new production for it.

There are a number of special devices to facilitate the definition of grammars, including eight
predefined, built-in nonterminal symbols:

symbol

<lb>
<rb>
<vb>
<nl>
<>
<&lcase>
<&ucase>
<&digit>

definition

<
>
|
newline
empty string
any single lowercase letter
any single uppercase letter
any single digit

Version 5.10 The University of Arizona - 5/16/83

RSG (1) Icon Program Library RSG (1)

In addition, if the string between a < and > begins and ends with a single quotation mark, that
construction stands for any single character between the quotation marks. For example,

<'xyz'>

is equivalent to

x|y|z

Finally, if the name of a nonterminal symbol between the < and > begins with ?, the user is
queried during generation to supply a string for that nonterminal symbol. For example, in

<expr>::=<term>|<term>+<expr>|<?expr>

if the third alternative is encountered during generation, the user is asked to provide a string for
<expr>.

Generation Specifications
A generation specification consists of a nonterminal symbol followed by a nonnegative integer.
An example is

<expr>10

which specifies the generation of 10 <expr>s. If the integer is omitted, it is assumed to be 1. Gen­
erated sentences are written to standard output.

Grammar Output Specifications
A grammar output specification consists of a nonterminal symbol, followed by ->, followed by a
file name. Such a specification causes the current definition of the nonterminal symbol to be writ­
ten to the given file. If the file is omitted, standard output is assumed. If the nonterminal symbol
is omitted, the entire grammar is written out. Thus,

->

causes the entire grammar to be written to standard output.

Source Specifications
A source specification consists of @ followed by a file name. Subsequent input is read from that
file. When an end of file is encountered, input reverts to the previous file. Input files can be
nested.

DIAGNOSTICS
Syntactically erroneous input lines are noted, but ignored.

Specifications for a file that cannot be opened are noted and treated as erroneous.

If an undefined nonterminal symbol is encountered during generation, an error message that iden­
tifies the undefined symbol is produced, followed by the partial sentence generated to that point.
Exceeding the limit of symbols remaining to be generated as specified by the -1 option is handled
in similarly.

Version 5.10 The University of Arizona - 5/16/83

RSG (1) Icon Program Library RSG (1)

CAVEATS
Generation may fail to terminate because of a loop in the rewriting rules or, more seriously,
because of the progressive accumulation of nonterminal symbols. The latter problem can be iden­
tified by using the -t option and controlled by using the -1 option. The problem often can be cir­
cumvented by duplicating alternatives that lead to fewer rather than more nonterminal symbols.
For example, changing

<expr>: :=<term> | <term>+<expr>

to

<expr>::=<term>|<term>|<term>+<expr>

increases the probability of selecting <term> from 1/2 to 2/3. See the second reference listed
below for a discussion of the general problem.

SEE ALSO
Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1983. pp. 211-219, 301-302.

Wetherell, C. S. "Probabilistic Languages: A Review and Some Open Questions", Computer Sur­
veys, Vol. 12, No. 4 (1980), pp. 361-379.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 5/16/83

SHUFFILE (1) Icon Program Library SHUFFILE (1)

NAME
shuffile - shuffle file

SYNOPSIS
shuffile [-s ri]

DESCRIPTION
Shuffile reads a text file from standard input and writes a version with the lines shuffled to stan­
dard output.

The option -s n sets the seed for random generation to n. The default seed is 0.

LIMITATIONS
Shuffile is designed to handle text files only.

Shuffile stores the input file in memory and shuffles pointers to the lines; there must be enough
memory available to store the entire file.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 5/13/83

TABLC (1) Icon Program Library TABLC (1)

NAME
tabic - tabulate characters

SYNOPSIS
tabic [-a] [-n] [-u]

DESCRIPTION
Tabic tabulates the characters in standard input and writes a summary to standard output in
which each character and the number of times it occurs is listed. Characters are written using
Icon's escape conventions.

The following options may appear in any order:

-a Write the summary in alphabetical order of the characters. This is the default.

-n Write the summary in numerical order of the counts.

-u Write only the characters that occur just once.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 8/11/84

TABLW (1) Icon Program Library TABLW (1)

NAME
tablw - tabulate words

SYNOPSIS
tablw [-a] [-i] [-n] [-s n] [-u]

DESCRIPTION
Tablw tabulates the words in standard input and writes a summary to standard output in which
each word and the number of times it occurs is listed. A word is defined to be a string of consecu­
tive upper- and lowercase letters with at most one interior occurrence of a dash or apostrophe.

The following options may appear in any order:

-a Write the summary in alphabetical order of the words. This is the default.

-i Ignore case distinctions among letters (uppercase letters are mapped into correspond­

ing lowercase letters on input).

-n Write the summary in numerical order of the counts.

-s n Tabulate only words longer than n characters. The default value for n is 0.

-u Write only the words that occur just once.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 8/11/84

TRIM (1) Icon Program Library TRIM (1)

NAME
trim - trim lines

SYNOPSIS
trim [n] [-f]

DESCRIPTION
Trim copies lines from standard input to standard output, truncating the lines at n characters and
removing any trailing blanks. The default value for n is 80.

The -f option causes all lines to be n characters long; otherwise shorter lines are left as is.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 6/28/83

ZIPSORT (1) Icon Program Library ZIPSORT (1)

NAME
zipsort - sort labels by zip code

SYNOPSIS
zipsort [-d ri\

DESCRIPTION
Zipsort sorts labels produced by labels{\) in the order of their postal zip codes.

The option -d n sets the number of lines per label to n. The default is 9. This value must agree
with the value used to format the labels; see labels{\).

The zip code must be the last nonblank string at the end of the label. It may consist of digits
with an embedded dash for extended zip codes.

DIAGNOSTICS
If a label does not end with a legal zip code, the label is printed to standard error output, but it
also is included in standard output after all labels with legal zip codes.

SEE ALSO
labels(l)

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 8/11/85

BITOPS (2) Icon Program Library BITOPS (2)

NAME
bitops - operations on bit strings

DESCRIPTION
These procedures perform operations on characters strings of zeros and ones ('bit strings')

SYNOPSIS
and(b1,b2) logical 'and' of b1 and b2
bitstring(i) convert integer i to bit string
bsum(b1,b2) arithmetic sum of b1 and b2 (used by other procedures)
decimal(b) convert b to integer
exor(b1,b2) 'exclusive-or' of b1 and b2
neg(b) negation of b
or(b1,b2) logical 'or' of b1 and b2

NOTE
If i in bitstring(i) is negative, the value produced is the corresponding unsigned 32-bit bit string.

BUGS
Integer values that exceed those allowable in Icon may produce bogus results or spurious diagnos­
tics.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 6/28/83

BOLD (2) Icon Program Library BOLD (2)

NAME
bold - boldface and underscored text

DESCRIPTION
These procedures produce text with interspersed characters suitable for printing to produce the
effect of boldface (by overstriking) and underscoring (using backspaces).

SYNOPSIS
bold(s) bold version of S
uscore(s) underscored version of s

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 6/28/83

COLLATE (2) Icon Program Library COLLATE (2)

NAME
collate - collate and decollate strings

DESCRIPTION
These procedures collate (interleave) respective characters of two strings and decollate by selecting
every other character of a string.

SYNOPSIS
COllate(s1,s2) produce a string consisting of interleaved characters of s1 and s2. For

example, collate("abc","def") produces "adbecf".

decollate(s, i) produce a string consisting of every other character of S. If i is odd, the
odd-numbered characters are selected, while if i is even, the even-
numbered characters are selected.

DIAGNOSTICS
Run-time error 208 occurs if the arguments to collate are not of the same size.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 8/12/84

COMPLEX (2) Icon Program Library COMPLEX (2)

NAME
complex - arithmetic on complex numbers

DESCRIPTION
These procedures perform operations on complex numbers.

SYNOPSIS
complex(r,i)
cpxadd(x1,x2)
cpxdiv(x1,x2)
cpxmul(x1,x2)
cpxsub(x1,x2)
cpxstr(x)
strcpx(s)

create complex number with real part r and imaginary part i
add complex numbers x1 and x2
divide complex number x1 by complex number x2
multiply complex number x1 by complex number x2
subtract complex number x2 from complex number x1
convert complex number X to string representation
convert string representation s of complex number

to complex number

SEE ALSO
Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1983. pp. 60, 285-286.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 7/27/83

ESCAPE (2) Icon Program Library ESCAPE (2)

NAME
escape - interpret Icon literal string

DESCRIPTION
The procedure escape(s) produces a string in which Icon quoted literal escape conventions in s
are replaced by the corresponding characters.

LIMITATIONS
Octal and hexadecimal literal specifications cannot be abbreviated by omitting leading zeros.

SEE ALSO
Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1983. p. 232.

AUTHOR
William H. Mitchell

Version 5.10 The University of Arizona - 8/17/84

GENER (2) Icon Program Library GENER (2)

NAME
gener - generators

DESCRIPTION
These procedures generate sequences of results.

SYNOPSIS
hex() sequence of hexadecimal codes for numbers from 0 to 255
label (s,i) sequence of labels with prefix s starting at i
octal () sequence of octal codes for numbers from 0 to 255
Star(s) sequence consisting of the closure of s starting with the

empty string and continuing in lexical order as given in S

SEE ALSO
Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1983. pp. 145.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 5/28/83

GPACK (2) Icon Program Library GPACK (2)

NAME
gpack - graphics package for the Chromatics CG 3999

SYNOPSIS
bckgrnd(colr) set background color
_char() switch to character mode
clip(mode) turn clip mode ON/OFF
Clipped (object) clip an object to window size (internal)
color(colr) set foreground color
curcol(colr) set cursor color
draw(object) display object
enable(colr) enable particular color guns
eraseQ clear the screen
_fill() turn on fill mode
ginit() initialize graphics package
mode(newmode) set plot submode (internal)
movcur(x,y) position cursor (internal)
_nofill() turn off fill mode
_noroll() turn off roll mode
_number(n) output number (n) (internal)
_plot() switch to plot mode
_point(x,y) output point (x,y) (internal)
_restore() reset terminal windows
_roll() turn on roll mode
setscale(xmin, ymin, xmax, ymax, colmin, rowmin, colmax, rowmax)

scaling
scale(pt) scale a point
_scale(mode) turn ON/ OFF scaling
text(x,y,s) output string s at point (x,y)
window(w) switch to window w (1 to 4)
wsize(xmin, ymin, xmax, ymax)

set window size
xfit(x) scale x-coordinate (internal)
_xydel(xdelta,ydelta) output incremental motion (internal)
yfit(y) scale y-coordinate (internal)

Gpack is a package designed to interface to the Chromatics CG 3999 Color Graphics Terminal.
The user must be familiar with the Chromatics terminal and its capabilities. Gpack maintains
information on the state of each hardware window and avoids the transmission of redundant
commands. The following objects, defined as records, are known to gpack:

point(x.y)
dot(x.y)
line(a.b)
box(a.b)
circle(center, radius)
arc(center, radius, start, stop)
points(pts) a collection of points.
lines(pts) a collection of points, joined by vectors
polygon (pts) a collection of points, joined and closed by vectors
incdots(start, motions) start point and list of motions
motion(xdel,ydel) an incremental motion

Version 5.10 The University of Arizona - 8/12/84

GPACK (2) Icon Program Library GPACK (2)

The procedure draw can display any of these objects, with or without scaling. Additionally,
draw accepts a co-expression that generates these objects.

Two record types are used internally:

wind(pmode, smode, cmode, fmode, rmode, psubmode, fc, be, lowerleft, upperright)
scaling(xslope,xinter,yslope,yinter)

where

pmode is ON if window is in plot mode.
smode is ON if scaling is active.
cmode is ON if clipping is active.
fmode is ON if fill is active.
rmode is ON if roll is active.
psubmode is the plot submode.
fc is the foreground color.
be is the background color.
lowerleft, upperright are the window bounds.
xslope, xinter are the x-coordinate scaling constants
yslope, yinter are the y-coordinate scaling constants

The defaults for all windows are:

wind(OFF, OFF, OFF, OFF, ON,"" , NOCOLOR, NOCOLOR, point(0,0), point(XMAX, YMAX))
scaling(1,0,1,0)

The following values are predefined globals, and should not be reassigned:

MODE, ESC used internally
ON, OFF mode settings
XMAX, YMAX maximum screen addresses
DOT,VECTOR,RECTANGLE,CIRCLE,ARC,CONCVECT,INCDOT

plot submodes
BLACK,BLUE,GREEN,CYAN,RED,MAGENTA,YELLOW,WHITE,BLINK

colors

The following globals are used internally:

_wno current window (1 to 4), initially 1
window list of window attributes
wscale list of window scaling factors

The procedure ginitQ must be called to initialize global constants and set window attributes at the
start of any program using gpack. Procedures that are marked 'internal' are intended primarily
for internal use by gpack. Some procedures are generators that reverse their effects.

SEE ALSO
worm(6)

DEFICIENCIES
Object clipping has not been implemented, radius is not scaled for circle and arc.

Version 5.10 The University of Arizona - 8/12/84

GPACK (2) Icon Program Library GPACK (2)

AUTHOR
Stephen B. Wampler

Version 5.10 The University of Arizona - 8/12/84

IMAGE (2) Icon Program Library IMAGE (2)

NAME
Image - generalized string image of Icon value

SYNOPSIS
Image(x)
Imagex(x)

DESCRIPTION
The procedure Image(x) produces a string image of the value x. The value produced is a general­
ization of the value produced by the Icon function image(x), providing detailed information
about structures.

Tags are used to uniquely identify structures. A tag consists of a letter identifying the type fol­
lowed by an integer. The tag letters are L for lists, R for records, and T for tables. The first time
a structure is encountered, it is imaged as the tag followed by a colon, followed by a representa­
tion of the structure. If the same structure is encountered again, only the tag is given.

An example is

a := ["x"]
push(a.a)
t := table()
push(a,t)
t[a] := t
t ["x"] := []
t[t] := a
write(lmage(t))

which produces

T1:["x"->L1:[],L2:[T1,L2,"x"]->T1,T1->L2]

Note that a table is represented as a list of entry and assigned values separated by ->s.

The procedure Imagex(x) is similar to Image(x), except that newlines and spaces are inserted to
that the printed result is displayed on multiple lines with indentation. There are other formatting
details that differ between the two procedures. For the example given above, the result of

write(lmagex(t))

is

T1:{
"x"

L1:[]
]

L2:[
T1
L2

Version 5.10 The University of Arizona - 6/28/83

IMAGE (2) Icon Program Library IMAGE (2)

"x"
]

T1

T1

L2

}

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 6/28/83

LMAP (2) Icon Program Library LMAP (2)

NAME
lmap - list map

SYNOPSIS
Imap(a1,a2,a3) map elements of a1 according to a2 and a3.

DESCRIPTION
This procedure is the analog for lists of the built-in string-mapping function map(s1,s2,s3). Ele­
ments in a1 that are the same as elements in a2 are mapped into the corresponding elements of
a3. For example, given the lists

a1 := [1,2,3,4]
a2:=[4,3,2,1]
a3:=["a","b","c","d"]

then

Imap(a1,a2,a3)

changes a1 to

[n-in II — II itL.ii ii— ii-i d , c , b , a]

Note that the value of a1 is modified. Lists that are mapped can have any kinds of elements. The
operation

x = = = y

is used to determine if elements x and y are equivalent.

All cases in lmap are handled as they are in map, except that no defaults are provided for omit­
ted arguments. As with map, lmap can be used for transposition as well as substitution.

SEE ALSO
Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1983. pp. 37-38, 181-186.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 8/12/85

http://itL.ii

PATTERNS(2) Icon Program Library PATTERNS(2)

NAME
patterns - SNOBOL4-style pattern matching

DESCRIPTION
These procedures are adapted from TR 80-25 and TR 81-6. They provide procedural equivalents
for most SNOBOL4 patterns and some extensions.

SYNOPSIS
AnchorQ
Any(s)
Apply(s.p)
Arb()
Arbno(p)
Arbx(i)
Bal()
Break (s)
Breakx(s)
Cat(p1,p2)
Discard(p)
Exog(s)
Find(s)
Float()
Len(i)
Limit(p,i)
Locate(p)
Marb()
Mode()
Notany(s)
Pos(i)
Replace(p.s)
Rpos(i)
Rtab(i)
Span(s)
String (s)
Succeed()
Tab(i)
Xform(f,p)

&ANCHOR = 1 if Mode := Anchor
ANY(S)
S ? P
ARB
ARBNO(P)
ARB(I)
BAL
BREAK(S)
BREAKX(S)
P1 P2
IP
\ S
FIND(S)
&ANCHOR = 0 if Mode := Float
LEN(I)
P \ i
LOCATE(P)
longest-first ARB
Anchored or unanchored matching (see Anchor and Float)
NOTANY(S)
POS(I)
P = S
RPOS(I)
RTAB(I)
SPAN(S)
S
SUCCEED
TAB(I)
F(P)

In addition to the procedures above, the following expressions can be used:

P1() I P2()
v <- p()
v := P()
fail
=s
PK) IIP2()

P1 | P2
P . V (approximate)
P $ V (approximate)
FAIL
S (in place of String(s))
P1 P2 (in place of Cat(p1,p2))

Using this system, most SNOBOL4 patterns can be satisfactorily transliterated into Icon pro­
cedures and expressions. For example, the pattern

SPAN("0123456789") $ N "H" LEN(*N) $ LITERAL

can be transliterated into

Version 5.10 The University of Arizona - 7/29/84

PATTERNS (2) Icon Program Library PATTERNS (2)

(n <- Span('0123456789')) || ="H" || (literal <- Len(n))

Concatenation of components is necessary to preserve the pattern-matching properties of SNO-
BOL4. See the documents listed below for details and limitations.

CAVEATS
Simulating SNOBOL4 pattern matching using the procedures above is inefficient.

SEE ALSO
Ralph E. Griswold. Pattern Matching in Icon, TR 80-25, The University of Arizona, 1980.

Ralph E. Griswold. Models of String Pattern Matching, TR 81-6, Department of Computer Sci­
ence, The University of Arizona, 1981.

Ralph E. Griswold. "Implementing SNOBOL4 Pattern Matching in Icon", Computer Languages,
Vol. 8, No. 8 (1983), pp. 77-92.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 7/29/84

PDAE (2) Icon Program Library PDAE (2)

NAME
pdae - programmer-defined argument evaluation

DESCRIPTION
These procedures are taken mainly from TR 82-16, which describes how co-expressions can be
used to model the built-in argument evaluation regime of Icon and also provide new ones. Some
procedures have been corrected or improved.

SYNOPSIS
Allpar{e1,e2, ...} parallel evaluation with last result used for short sequences
Call (a) utility procedure to call functions
Extract{e1,e2, ...} extract results of even-numbered arguments according to

odd-numbered values
Lifo{e1,e2, ...} models standard Icon iifo' evaluation
Parallel{e1,e2, ...} parallel evaluation terminating on shortest sequence
Reverse(e1,e2, ...} left-to-right reversal of lifo evaluation
Rotate{e1,e2, ...} parallel evaluation with shorter sequences re-evaluated
Simple{e1,e2, ...} simple evaluation with only success or failure

BUGS AND LIMITATIONS
Because of the handling of the scope of local identifiers in co-expressions, expressions in
programmer-defined argument evaluation regimes cannot communicate through local identifiers.
Some constructions, such as break and return, cannot be used in arguments to programmer-
defined argument evaluation regimes. See TR 82-8 for details of these problems.

At most 10 arguments can be used in the invocation of a programmer-defined argument evalua­
tion regime. This limit can be increased by modifying Call.

SEE ALSO
pdco(2)

Griswold, Ralph E. and Michael Novak. "Programmer-Defined Control Operations", The Com­
puter Journal, Vol. 26, No. 2 (1983), pp. 175-183.

Novak, Michael and Ralph E. Griswold. Programmer-Defined Argument Evaluation Regimes,
TR 82-16, Department of Computer Science, The University of Arizona, 1982.

AUTHORS
Ralph E. Griswold and Michael Novak

Version 5.10 The University of Arizona - 8/11/85

P D C 0 (2) Icon Program Library P D C O (2)

NAME
pdco - programmer-defined control operations

DESCRIPTION
These procedures are taken mainly from TR 82-8, which describes how co-expressions can be
used to model the built-in control structures of Icon and also provide new ones. Some procedures
have been corrected or improved and there are additions.

SYNOPSIS
Alt{e1,e2}
Colseq{e1,e2,...}
Comseq{e1,e2}
Cond{e1,e2, ...}
Every{e1,e2}
Galt{e1,e2,...}
Lcond{e1,e2,...}
Limit {e1,e2}
Ranseq{e1,e2,...}
Repalt{e}
Resume {e1,e2,e3}
Select {e1,e2}

models e1 | e2
produces results of e1 , e2, . . . alternately
compares result sequences of e1 and e2
generalized Lisp conditional
models every e1 do e2
generalized alternation: e1 | e2 | . . .
Lisp conditional
models e1 \ e2
produces results of e1, e2, ... at random
models |e
models every e1 \ e2 do e3
produces results from e1 by position according to e2

BUGS AND DEFICIENCIES
Because of the handling of the scope of local identifiers in co-expressions, expressions in
programmer-defined control operations cannot communicate through local identifiers. Some con­
structions, such as break and return, cannot be used in arguments to programmer-defined con­
trol operations. See TR 82-8 for details of these problems.

SEE ALSO
pdae(2)

Griswold, Ralph E. and Michael Novak. "Programmer-Defined Control Operations", The Com­
puter Journal, Vol. 26, No. 2 (1983), pp. 175-183.

AUTHORS
Ralph E. Griswold and Michael Novak

Version 5.10 The University of Arizona - 8/7/85

RADCON (2) Icon Program Library RADCON (2)

NAME
radcon - radix conversion procedures

DESCRIPTION
These procedures convert numbers from one radix to another. The letters from a to z are used for
'digits' greater than 9. All the conversion procedures fail if the conversion cannot be made.

SYNOPSIS
exbase10(i,j) convert base-10 integer i to base j
inbase10(s,i) convert base-i integer S to base 10.
radcon(s,i,j) convert base-i integer s to base j .

LIMITATION
The maximum base allowed is 36.

SEE ALSO
Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1983. pp. 67, 286.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 5/30/83

SEGMENT(2) Icon Program Library SEGMENT(2)

NAME
segment - segment string

DESCRIPTION
The procedure segment(s ,c) generates consecutive substrings of S consisting of characters that
respectively do/do not occur in C. For example,

segment("This is a sentence.", &lcase ++ &ucase)

generates

This"

is"
H

a"
II

sentence"

AUTHOR
William H. Mitchell

Version 5.10 The University of Arizona - 9/11/84

SEQIMAGE (2) Icon Program Library SEQIMAGE (2)

NAME
Seqimage - produce string image of result sequence

DESCRIPTION
The procedure Seqimage{e, i,j} produces a string image of the result sequence for the expression
e. The first i results are printed. If i is omitted, there is no limit. If there are more than i results
for e, ellipses are provided in the image after the first i. If j is specified, at most j results from the
end of the sequence are printed after the ellipses. If j is omitted, only the first i results are pro­
duced.

For example, the expressions

Seq image {1 to 20}
Seqimagejl to 20,10}
Seqimage{1 to 20,10,5}

produce, respectively,

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
{ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , . . . }
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10 16, 17, 18, 19, 20}

WARNING
If j is not omitted and e has a infinite result sequence, Seqimage does not terminate.

SEE ALSO
Griswold, Ralph E. and Michael Novak. "Programmer-Defined Control Operations", The Com­
puter Journal, Vol. 26, No. 2 (1983), pp. 175-183.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 8/12/85

SHUFFLE (2) Icon Program Library SHUFFLE (2)

NAME
shuffle - shuffle string or list

DESCRIPTION
The procedure shuffle(x) shuffles a string or list. In the case that x is a string, a corresponding
string with the characters randomly rearranged is produced. In the case that x is a list, the values
in the list are randomly rearranged.

DIAGNOSTIC
Run-time time error 102 occurs if X is not a list, a string, or a value that can be converted to a
string.

SEE ALSO
Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1983. p. 187.

AUTHORS
Ward Cunningham and Ralph E. Griswold

Version 5.10 The University of Arizona - 7/29/84

SIZE (2) Icon Program Library SIZE (2)

NAME
Size - size of Icon object

DESCRIPTION
The procedure Size(x) produces the size, in bytes, of X.

There is an optional second argument, which specifies the machine word size, in bits. For exam­
ple, Size(x,16) produces the size of x on a 16-bit machine. Only word sizes of 16 and 32 are sup­
ported; the default, in the absence of the second argument, is 32.

CAVEATS
The sizes given are approximate for many objects. The following interpretations are made in
determining sizes:

Strings are counted as distinct; no allowance is made for shared usage of storage.

The size of procedures may be underestimated.

The size of co-expressions is approximate and does not take into account space for the local
identifiers and related information.

The size of lists that are augmented by stack and queue functions may be underestimated.

Sizes are based on parameters as given in the Icon system as it is distributed; local changes
may affect the sizes of some objects.

SEE ALSO
Griswold, Ralph E. and William H. Mitchell. A Tour Through the C Implementation of Icon;
Version 5.10, Department of Computer Science, The University of Arizona, 1985.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 8/12/84

SNAPSHOT (2) Icon Program Library SNAPSHOT (2)

NAME
snapshot - snapshot of state of string scanning

DESCRIPTION
The procedure snapshotQ writes a snapshot of the state of string scanning, showing the value of
&subject and &pos. For example,

"((a+b)-delta)/(c*d))" ? (tab(bal('+-/*')) & snapshot())

produces

I
&subject = "((a+b)-delta)/(c*d))" |

Note that the bar showing the &pos is positioned under the &posth character (actual positions
are between characters). If &pos is at the end of &subject, the bar is positioned under the quo­
tation mark delimiting the subject. For example,

"abcdefgh" ? (tab(O) & snapshot())

produces

I I
| &subject = "abcdefgh" |
I I I

Escape sequences are handled properly. For example,

"abc\tdef\nghi" ? (tab(upto('\n')) & snapshot*))

produces

I &subject = "abc\tdef\nghi" |
I I I

AUTHOR
Ralph E. Griswold and Randal L. Schwartz

Version 5.10 The University of Arizona - 8/11/85

STRUCTS (2) Icon Program Library STRUCTS (2)

NAME
structs - structure operations

DESCRIPTION
These procedures for manipulating structures are taken from The Icon Programming Language.

SYNOPSIS
depth (a) compute maximum depth of tree a
eq(x,y) compare list structures x and y
ldag(s) construct a dag from the string s
Igraph(s) construct a graph from the string sgraph
Itree(s) construct a tree from the string s
stree(a) construct a string from the list a
tcopy(a) copy tree a
teq(a1,a2) compare trees a1 and a2
visit(a) visit, in preorder, the nodes of a

NOTE
The procedure Idag has a second argument that is used on internal recursive calls; a second argu­
ment must not be supplied by the user.

SEE ALSO
Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1983. pp. 170-180, 295.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 4/26/83

STRUTIL (2) Icon Program Library STRUTIL (2)

NAME
strutil - string utilities

DESCRIPTION
These procedures perform simple operations on strings.

SYNOPSIS
COmpress(s,c) compress consecutive occurrences of c in s.
delete(s, c) delete occurrences of C in s
rotate(s,i) rotate s i characters to the left (negative i produces

rotation to the right); the default value of i is 1.

SEE ALSO
Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1983. pp. 46, 283-284.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 7/16/83

TTYINIT (2) Icon Program Library TTYINIT (2)

NAME
ttyinit - initialize predefined terminal control attributes

DESCRIPTION
The procedure ttyinitQ initializes a number of global identifiers for terminal attributes:

TANDEM
CBREAK
LCASE
ECHO
CRMOD
RAW
ODDP
EVENP

These identifiers serve as useful attributes for stty in ttyctl(3.icon).

SEE ALSO
ttyctl(3.icon)

AUTHOR
Stephen B. Wampler

Version 5.10 The University of Arizona - 8/17/84

GETENV (3.icon) Icon Program Library GETENV (3.icon)

NAME
getenv - get value for environment variable

SYNOPSIS
getenv(s)

DESCRIPTION
getenv searches the environment list for a string of the form s=value and returns value if such a
string is present; otherwise, it fails.

SEE ALSO
getenv(3)

AUTHOR
Stephen B. Wampler

Version 5.10 The University of Arizona - 8/12/84

ISCOPE (3.icon) Icon Program Library ISCOPE (3.icon)

NAME
Descr, Indir, Wordl, Word2, Symbol, Efp, Gfp, Pfp - examine Icon internals

DESCRIPTION
These functions deal with Icon internals, producing values that exist in memory and registers as
Icon is executing. Internal values are represented as Icon integers. A knowledge of the implemen­
tation of Icon is needed to use these functions properly.

SYNOPSIS

Descr(i.j)

Indir(i)

Wordl (x)

Word2(x)

Symbol(s)

compose a descriptor whose first word is i and whose second word is j .

return an integer corresponding to the value where the descriptor at i points,

return Icon integer whose value is the first word of the descriptor x.

like Wordl, except that the value is for the second word of the descriptor x.

returns the address of the symbol S. The allowable values of S are:

globals address of the global vector
eglobals address of the end of the global vector
gnames address of the global name vector
strbase beginning of the allocated string region
strfree string region free pointer
blkbase beginning of the allocated block region
blkfree block region free pointer
stkbase beginning of the co-expression stack region
stkfree co-expression stack region free pointer

Symbol(s) fails if s is not one of these strings.

Efp() return the address of the expression frame pointer

Gfp() return the address of the generator frame pointer

Pfp() return the address of the frame pointer

CAVEATS
Iscope is inherently dangerous. For example, the composition of an arbitrary descriptor using
Descr may cause the Icon system to malfunction in mysterious ways.

Addresses that are represented by integers are not relocated during garbage collection; such
addresses generally are invalidated by a garbage collection.

REQUIREMENTS
Efp, Gfp, and Pfp are only implemented for the PDP-11, Sun Workstation, and VAX-11 imple­
mentations of Icon.

SEE ALSO
Griswold, Ralph E. and William H. Mitchell. A Tour Through the C Implementation of Icon;
Version 5.10, Department of Computer Science, The University of Arizona. 1985.

Griswold, Ralph E. "A Portable Diagnostic Facility for SNOBOL4", Software—Practice and
Experience, Vol. 5 (1975), pp. 93-105.

Griswold, Ralph E. "Linguistic Extension of Abstract Machine Modelling to Aid Software
Development", Software—Practice and Experience, Vol. 10 (1980), pp. 1-9.

AUTHORS
Ralph E. Griswold and William H. Mitchell

Version 5.10 The University of Arizona - 9/3/85

MATH (3.icon) Icon Program Library MATH (3.icon)

NAME
exp, log, log 10, sqrt - miscellaneous math functions

SYNOPSIS
exp(x)
log(x)
Iog10(x)
sqrt(x)

DESCRIPTION
x

exp returns e .

log returns the natural logarithm of x.

Iog10 returns the base-10 logarithm of x.

sqrt returns the square root of x.

The C math library (-Im)must be loaded with these functions.

DIAGNOSTICS

Run-time error 251 occurs if x is zero or negative in log or log 10.

Run-time error 252 occurs for overflow in exp.

SEE ALSO
exp(3m)

AUTHORS
Ralph E. Griswold

Version 5.10 The University of Arizona - 8/12/84

SEEK (3.icon) Icon Program Library SEEK (3.icon)

NAME
seek - seek to position in stream

SYNOPSIS
seek(f ile, offset, ptrname)

DESCRIPTION
seek sets the position of the next input or output operation on file. The new position is at the
signed distance offset bytes from the beginning, the current, or the end of the file, depending on
whether ptrname is 0, 1, or 2. seek returns the current value of the offset relative to the begin­
ning of file.

SEE ALSO
fseek(3s)

AUTHOR
Stephen B. Wampler

Version 5.10 The University of Arizona - 8/12/84

TRIG (3.icon) Icon Program Library TRIG (3.icon)

NAME
sin, cos, tan, asin, acos, atan, atan2, dtor, rtod - trigonometric functions

SYNOPSIS
sin(x)
cos(x)
tan(x)
asin(x)
acos(x)
atan(x)
atan2(x,y)
dtor(x)
rtod(x)

DESCRIPTION
sin, cos, and tan return trigonometric functions of radian arguments. The magnitude of the argu­
ment should be checked by the caller to make sure that the result is meaningful.

asin returns the arc sin in the range -TT/2 to 7r/2.

acos returns the arc cosine in the range 0 to IT.

atan returns the arc tangent in the range -TT/2 to 7r/2.

atan2 returns the tangent of x/y in the range -n to n.

dtor converts degrees to radians, while rtod converts radians to degrees.

The C math library (-lm) must be loaded with these functions.

DIAGNOSTICS

Run-time error 251 occurs if the magnitude of the argument to asin or acos is greater than 1.

Run-time error 252 occurs for the singular points of tan.

BUGS
The value of tan for arguments greater than about 2 is garbage.

SEE ALSO
sin(3m)

AUTHORS
Ralph E. Griswold and Stephen B. Wampler

Version 5.10 The University of Arizona - 8/12/84

TTYCTL (3.icon) Icon Program Library TTYCTL (3.icon)

NAME
ttyctl - primitive control of terminal attributes

SYNOPSIS
stty(x1,x2 xn)
restty ()
keyin()

DESCRIPTION
Stty sets or clears the terminal attributes given as arguments. Positive attributes are set and nega­
tive attributes are cleared, restty attempts to restore terminal attributes to their original condi­
tion. A reasonable guess is made if the original attributes cannot be determined, key in succeeds
if there is any input waiting to be read from standard input but fails otherwise.

Attributes for stty may be any legitimate bit pattern. However, if the procedure ttyinit in
ttyinit(2) has been executed, the following global identifiers are available as arguments:

TANDEM
CBREAK
LCASE
ECHO
CRMOD
RAW
ODDP
EVENP

REQUIREMENTS
The function keyin assumes Berkeley extensions.

SEE ALSO
ttyinit(2)

AUTHOR
Stephen B. Wampler

Version 5.10 The University of Arizona - 8/16/84

CROSS (6) Icon Program Library CROSS (6)

NAME
cross - intersection of words

SYNOPSIS
cross

DESCRIPTION
Cross displays an intersection of words given one per line on standard input. Uppercase letters are
mapped into lowercase on input.

BUGS
Cross only produces one possible intersection and does not attempt to obtain the most compact
result.

DIAGNOSTICS
Cross objects if the input contains a nonalphabetic character.

AUTHOR
William P. Malloy

Version 5.10 The University of Arizona - 6/14/83

DEAL(6) Icon Program Library DEAL(6)

NAME
deal - deal bridge hands

SYNOPSIS
deal [-h n] [-s n]

DESCRIPTION

Deal shuffles, deals, and displays hands in the game of bridge.

The following options may appear in either order:

-h n Display n hands. The default is 1.

-s n Set the seed for random generation to n. The default seed is 0.

NOTE
The letter T is used to represent the 10.

AUTHOR
Ralph E. Griswold

Version 5.10 The University of Arizona - 5/13/83

FARB (6) Icon Program Library FARB (6)

NAME
farb - produce random farberism

SYNOPSIS
farb

NOTE
A few of the farberisms may be objectionable to some persons.

AUTHOR
Ralph E. Griswold (with compliments to David J. Farber)

Version 5.10 The University of Arizona - 6/28/83

QUEENS (6) Icon Program Library QUEENS (6)

NAME
queens - solutions to n-queens problem

SYNOPSIS
queens [n]

DESCRIPTION
Queens displays the solutions to the nonattacking queens problem. The number of queens is
given by n; the default is 6.

AUTHOR
Stephen B. Wampler

Version 5.10 The University of Arizona - 7/29/84

WORM (6) Icon Program Library WORM (6)

NAME
worm - display random worm on the Chromatics CG 3999

SYNOPSIS
worm [-bn -sn -in -In -rri]

DESCRIPTION
Worm displays the movement of a random worm on the Chromatics CG 3999 color graphics ter­
minal. The following options may be given in any order:

-bn set background color (0-7, default: 1 {blue})
-en set duration of display (default: 1000)
-In set foreground color (0-7, default: 7 {white})
-In set length of worm (default: 10)
-tn set random number seed (default: 0)

SEE ALSO
gpack(2)

AUTHOR
Stephen B. Wampler

Version 5.10 The University of Arizona - 8/12/84

I -HIER(7) Icon Program Library I -HIER(7)

NAME
i-hier - Icon hierarchy

DESCRIPTION
The following outline gives a sketch of the Icon hierarchy.

v5 root of the Icon system (location may vary from site to site)
/library Icon program library

/src source code for Icon library programs
/cmd source code for programs
/lib source code for procedure libraries

/ibin executable binaries for programs
/ilib linkable code for procedure libraries
/libtest Icon library test programs
/man manual

/manO front matter
/man1 application programs
/man2 procedures
/man3 C functions

/man7 miscellaneous
/man8 library maintenance
/catO formatted front matter for manual
/cat l formatted pages for application programs

/rtlib code for building personalized interpreters
/docs Icon documentation
/book source code for procedures from the Icon book
/bin executable binaries for Icon
/src source code for the Icon system

Aran source code for the Icon translator
/link source code for the Icon linker
/h header files for the Icon system
/fncs source code for built-in functions
/ops source code for operators
/rt source code for run-time support routines
/lib source code for routines called by the Icon interpreter
/iconx source code for the Icon interpreter
/icont source code for the Icon command processor
/ sys source code for target machine
/proto source code for prototype implementation
/att3b source code for AT&T 3B implementation
/pdp11 source code for PDP-11 implementation
/ridge source code for Ridge 32 implementation
/mc68000 source code for Sun Workstation implementation
/vax source code for VAX implementation
/pifncs source code for Icon library C functions

/pidem sample personalized interpreter
/samples Icon installation test programs
/test Icon test suite
/port Icon porting test suite

Version 5.10 The University of Arizona - 8/11/85

I-HIER (7) Icon Program Library I-HIER (7)

SEE ALSO
Griswold, Ralph E. and William H. Mitchell. Installation and Maintenance Guide for Version
5.10 of Icon, TR 85-15, Department of Computer Science, The University of Arizona, 1985.

Version 5.10 The University of Arizona - 8/11/85

LMAN (8) Icon Program Library LMAN (8)

NAME
lman - format manual page in library style

DESCRIPTION
The manual pages for the Icon Library can be produced with the head and foot format of the
Icon Library manual by using the macros in v5/library/man/tmac.an, as in

cd v5/library/man
troff tmac.an man1/rsg.1

NOTE
The text for the manual pages includes files in v5/library/man and must be formatted in this
directory.

Version 5.10 The University of Arizona - 8/11/85

UMAN (8) Icon Program Library UMAN (8)

NAME
uman - format manual page in UNIX manual style

DESCRIPTION
The manual pages for the Icon Library can be produced with the head and foot format of the
UNIX manual by using the standard UNIX manual macros, as in

cd v5/library/man
troff -man man1/rsg.1

NOTE
The text for the manual pages includes files in v5/library/man and must be formatted in this
directory.

Version 5.10 The University of Arizona - 8/11 /85

