
Extensions to Version 5 of the Icon Programming Language*

Ralph E. Griswold

Robert K. McConeghy

William H. Mitchell

TR84-10c

June 27, 1984; Revised August 4, 1984, January 23, 1985, and March 15, 1985

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

•This work was supported by the National Science Foundation under Grants MCS81-01916 and DCR-
8401831.

Extensions to Version 5 of the Icon Programming Language

1. Introduction
The standard features of Version 5 of Icon are described in Reference \. Since Icon is the byproduct of a

research effort that is concerned with the development of novel programming language facilities for process­
ing nonnumeric data, it is inevitable that some extensions to the standard language will develop.

Some of these extensions are incorporated as features of new releases. Others are available as options that
can be selected when the Icon system is installed [2]. This report describes the extensions that are included in
Version 5.9 of Icon.

All the extensions are upward-compatible with standard Version 5 Icon. Their inclusion should not inter­
fere with any program that works properly under the standard version.

2. New Version 5.9 Features

2.1 The Link Directive
Version 5.9 contains a link directive that simplifies the inclusion of separately translated libraries of Icon

procedures. If icont(l) [3] is run with the -C option, source files are translated into intermediate ucode files
(with names ending in .u1 and .u2). For example,

icont -c libe.icn

produces the ucode files libe.ul and Iibe.u2. The ucode files can be incorporated in another program with the
new link directive, which has the form

link libe

The argument of link is, in general, a list of identifiers or string literals that specify the names of files to be
linked (without the .u1 or .u2). Thus, when running under UNIX*,

link libe, "/usr/icon/ilib/collate"

specifies the linking of libe in the current directory and collate in /usr/icon/ilib. Syntax appropriate to VMS
should be used when running under that system.

The environment variable IP A TH controls the location of files specified in link directives. IP A TH should
be have a value of the form pl:p2: ...pn where each pi names a directory. Each directory is searched in turn to
locate files named in link directives. The default value of IP A TH is'.', that is, the current directory.

2.2 Installation Options
When an Icon system is installed, various configuration options are specified [2]. The value of the keyword

&options is a string that contains the command line arguments that were used to configure Icon.

3. Optional Extensions
There are two extension options: sets (-sets in &options), and a collection of experimental features (-xpx

in &options).

'UNIX is a trademark of AT&T Bell Laboratories.

- 1 -

3.1 Sets

Sets are unordered collections of values and have the properties normally associated with sets in the
mathematical sense. The function

set(a)

creates a set that contains the distinct elements of the list a. For example,

set(["abc", 3])

creates a set with two members, abc and 3. Note that

set([])

creates an empty set. Sets, like other data aggregates in Icon, need not be homogeneous — a set may contain
members of different types.

Sets, like other Icon data aggregates, are represented by pointers to the actual data. Sets can be members
of sets, as in

s1 := set([1,2,3])
s2 :=set([s1, []])

in which s2 contains two members, one of which is a set of three members and the other of which is an empty
list.

Any specific value can occur only once in a set. For example,

set([1,2 (3,3,1])

creates a set with the three members 1, 2, and 3. Set membership is determined the same way the equivalence
of values is determined in the operation

x = y

For example,

set([[] , []])

creates a set that contains two distinct empty lists.
The functions and operations of Icon that apply to other data aggregates apply to sets as well. For exam­

ple, if s is a set,

*S

is the size of S (the number of members in it). Similarly,

type(s)

produces the string set and

s := set(["abc", 3])
write(image(s))

writes set(2). Note that the string images of sets are in the same style as for other aggregates, with the size
enclosed in parentheses.

The operation

Is

generates the members of S, but in no predictable order. Similarly,

?s

produces a randomly selected member of S. These operations produce values, not variables — it is not possi­
ble to assign a value to !s or ?s.

The function

copy(s)

produces a new set, distinct from s, but which contains the same members as S. The copy is made in the same
fashion as the copy of a list — the members themselves are not copied.

The function

sort(s)

produces a list containing the members of S in sorted order. Sets themselves occur after tables but before
records in the sorting order.

The customary set operations are provided. The function

member(s, x)

succeeds and returns the value of x if x is a member of S, but fails otherwise. Note that

member(s1, member(s2, x))

succeeds if x is a member of both s1 and s2.
The function

insert(s, x)

inserts X into the set S and returns the value of S (it is similar to put (a, x) in form). Note that

insert(s, s)
adds s as an member of itself.

The function

delete(s, x)

deletes the member x from the set S and returns the value of S.

The functions insert(s, x) and delete(S, x) always succeed, whether or not x is in S. This allows their use
in loops in which failure may occur for other reasons. For example,

s := set([])
while insert(s, readQ)

builds a set that consists of the (distinct) lines from the standard input file.

The operations

S1 ++ s2
s1 ** s2
s1 — s2

create the union, intersection, and difference of s1 and S2, respectively. In each case, the result is a new set.
The use of these operations on csets is unchanged. There is no automatic type conversion between csets

and sets; the result of the operation depends on the types of the arguments. For example,

'aeiou' ++ 'abcde'

produces the cset abcdeiou, while

set([1,2,3]) ++ set([2,3,4])

produces a set that contains 1, 2, 3, and 4. On the other hand,

set([1,2,3]) ++ 4

results in Run-time Error 119 (set expected).

- 3 -

Examples

Word Counting:

The following program lists, in alphabetical order, all the different words that occur in the standard input
file:

procedure main()
letter := &lcase ++ &ucase
words := set([])
while text := read() do

text ? while tab(upto(letter)) do
insert(words, tab(many(letter)))

every write(!sort(words))
end

The Sieve of Eratosthenes:

The follow program produces prime numbers, using the classical "Sieve of Eratosthenes":

procedure main(a)
local limit, s, i
limit := a[1] | 5000 # limit to 5000 if not specified
s := set(D)
every insert(s, 1 to limit)
every member(s, i := 2 to limit) do

every delete(s, i + i to limit by i)
primes := sort(s)
write("There are ", *primes, " primes in the first ", limit, " integers.")
write("The primes are:")
every write(right(lprimes, *limit +1))

end

4. Expermental Features

4.1 PDCO Invocation Syntax
The experimental features include the procedure invocation syntax that is used for programmer-defined

control operations [4]. In this syntax, when braces are used in place of parentheses to enclose an argument
list, the arguments are passed as a list of co-expressions. That is,

p{expr]t expr2 exprn)

is equivalent to

p([create expr]t create expr2, create exprn])

Note that

P0
is equivalent to

P([])

4.2 Invocation Via String Name
The experimental features allow a string-valued expression that corresponds to the name of a procedure or

operation to be used in place of the procedure or operation in an invocation expression. For example,

- 4 -

"image"(x)

produces the same call as

image(x)

and

is equivalent to

i - J

In the case of operations, the number of arguments determines the operation. Thus

"-"(i)

is equivalent to

-i

Since to-by is an operation, despite its reserved-word syntax, it is included in this facility with the string name
.... Thus

"..."(1,10,2)

is equivalent to

1 to 10 by 2

Similarly, range specifications are represented by ":", so that

":"(s,i,j)

is equivalent to

s[i:j]

Defaults are not provided for omitted or null-valued arguments in this facility. Consequently,

"..."(1,10)

results in a run-time error when it is evaluated.

The subscripting operation also is available with the string name []. Thus

"[]"(&lcase,3)

produces C.
String names are available for the operations in Icon, but not for control structures. Thus

"\"(expr]texpr2)

is erroneous. Note that string scanning is a control structure. In addition, conjunction is not available via
string invocation, since no operation is actually performed.

Field references, of the form

expr . fieldname

are not operations in the ordinary sense and are not available via string invocation.
String names for procedures are available through global identifiers. Note that the names of functions,

such as image, are global identifiers. Similarly, any procedure-valued global identifier may be used as the
string name of a procedure. Thus in

- 5

global q

procedure main()
q := P
"q"("hi")

end

procedure p(s)
write (s)

end

the procedure p is invoked via the global identifier q.

4.3 Conversion to Procedure

The experimental features include the function proc(x, i), which converts X to a procedure, if possible. If
x is procedure-valued, its value is returned unchanged. If the value of x is a string that corresponds to the
name of a procedure as described in the preceding section, the corresponding procedure value is returned. The
value of i is used to distinguish between unary and binary operators. For example, proc("A", 2) produces the
exponentiation operator, while proc("A", 1) produces the co-expression refresh operator. If x cannot be con­
verted to a procedure, proc(x, i) fails.

4.4 Integer Sequences

To facilitate the generation of integer sequences that have no limit, the experimental features include the
function seq(i, j). This function has the result sequence {i, i+j, i+2j, ... }. Omitted or null values for i and j
default to 1. Thus the result sequence for seq() is {1, 2, 3 , . . . } .

Acknowledgements

The design of sets for Icon was done as part of a class project. In addition to the authors of this paper, the
following persons participated in the design: John Bolding, Owen Fonorow, Roger Hayes, Tom Hicks,
Robert Kohout, Mark Langley, Susan Moore, Maylee Noah, Janalee O'Bagy, Gregg Townsend, and Alan
Wendt.

References

1. Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey. 1983.

2. Griswold, Ralph E. and William H. Mitchell. Installation and Maintenance Instructions for Version 5.9 of
Icon, Technical Report TR 84-13, Department of Computer Science, The University of Arizona. August
1984.

3. Griswold, Ralph E. and William H. Mitchell. ICONT(l), manual page for UNIX Programmer's Manual,
Department of Computer Science, The University of Arizona. August 1984.

4. Griswold, Ralph E. and Michael Novak. "Programmer-Defined Control Operations", The Computer Jour­
nal, Vol. 26, No. 2 (May 1983). pp. 175-183.

