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Unifying List and String Processing in Icon 

Icon, like its ancestor SNOBOL4, has extensive facilities for string processing but only limited facilities for 
list processing. Furthermore, except for a few elementary operations, Icon's list and string processing facilities 
are dissimilar. There are, however, many problems in which data is best represented with a combination of 
strings and lists [1]. 

Both strings and lists are sequences of values, providing the basis for a set of operations that apply to either 
type. One approach, of course, is to consider strings to be lists of characters. This simplifies the problem at 
the expense of relinquishing the concept of a string as a data object in its own right — a concept that is the 
basis for much of the usefulness of languages like SNOBOL4 and Icon. 

This report describes an alternative approach in which strings and lists are retained as separate data types 
but with a set of operations that is defined over values of both types. The resulting language is designated as 
Icong in this report to distinguish it from standard Icon. 

The reader should be generally familiar with Version 5 of Icon [1]. 

1. Basic Design Decisions 

The most basic decision to be made is whether to have separate but similar operations for strings and lists. 
The goal of unification strongly suggests that the operations on strings and lists be the same, but polymor­
phous. This also avoids an excessively large vocabulary of operations. 

Icon already has several polymorphous operations that apply to strings and lists, as well as to other types. 
For example, the element generation operator 

!x 

generates the 'elements' of either a string or a list. The elements of a string are its characters, or more pre­
cisely, its one-character substrings. For example, 

!"Hello" 

generates the values "H", "e", "I", "I", "o". The elements of a list consist of its values. Thus 

!["Hello", "world"] 

generates the values "Hello" and "world". 

In Icon, concatenation is not polymorphous and there are separate operations for string and list concate­
nation: 

s1 | | s2 

and 

a1 Ml a2 

In Icong, these two operations are fused into a single polymorphous operation: 

x1 | | x2 

The letter S is used in this report to indicate an expression whose value is a string, while a is used to indicate an 
expression whose value is a list. The letter x is used to indicate an expression whose value may be either a 
string or a list. 

One way to handle lists in polymorphous operations is to consider lists to be of a 'higher type' to which 
strings can be converted in the fashion that integers are converted to real numbers. The natural conversion of 
a string S to a list would be [s]. In this interpretation 
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a || s 

would be equivalent to 

a II [s] 

However, if strings were converted to lists automatically, then in general 

(a || s1) || s2 * a || (s1 || s2) 

Consequently, concatenation would not be associative. In order to preserve useful properties of several opera­
tions on strings and lists, there is no type conversion between strings and lists in Icon^-. Thus 

a | | s 

is erroneous in Icong. 

There are several problems with existing polymorphous operations on strings and lists in Icon. Consider 

s[i] 

which references the ith character of S, and 

a[i] 

which references the ith value of a. Although both reference the ith element, there is a difference when an 
assignment is made to such a reference. In the case of strings, 

s1[i] := s2 

is essentially an abbreviation for 

si := s1[1:i] || s2 || s l [ i + 1:0] 

In other words, one element can be replaced by any number of elements. (Only positive position specifications 
are considered in this report. Computations with nonpositive specifications apply in all cases, but it simplifies 
the presentation to consider only positive specifications.) On the other hand, 

a[i] := x 

changes the value of the ith element in a. This is quite different from the string case. For example, if 

a := ["three", "bad", "apples"] 

then 

a[2] := "good" 

changes the value of a to 

["three", "good", "apples"] 

more significantly 

a[2] := ["very", "good"] 

changes the value of a to 

["three", ["very", "good"], "apples"] 

not to 

["three", "very", "good", "apples"] 

which would be the case for list concatenation. The different interpretations of s[i] and a[i] result from the 
fact that strings are homogenous sequences of characters (even though there is no character data type in Icon), 
while list elements are arbitrary. String operations are applicative in this sense; a string operation may pro­
duce another string but it cannot change the value of the string on which it operates. Some operations on lists 
are not applicative, however. 



Similarly, 

s1[i:j] := s2 

is an abbreviation for 

s1 := s1[1:i] || s2 || si [j + 1:0] 

(Indices in range specifications are considered to be in non-decreasing order here to simplify the presentation.) 
On the other hand 

a1[i:j] := a2 

is erroneous in Icon, although it has a perfectly consistent interpretation as an abbreviation for list concatena­
tion. The decision to interpret this as an error in Icon was arbitrary and probably a mistake. Consequently, 

s[i] 

is equivalent to 

s[i:i + 1] 

but 

a[i] 

is not, in general, equivalent to 

a[i:i + 1] 

To remove these discrepancies, a new subscripting operation is included in Icon^: 

x!i 

which references the ith element of x. Thus 

a!i 

in Iconc is equivalent to 

a[i] 

in Icon. To assure consonant interpretations for lists and strings, in an expression such as 

s1!i := s2 

S2 must be a one-character string. That is, an assignment to a substring expression changes the value of that 
element but does not change the size of the string or list. On the other hand, 

a[i] 

in Iconc is equivalent to 

a[i:i + 1] 

in Icon. For compatibility 

a1[i:j] := a2 

in Iconc is an abbreviation for 

a1 := a1[1:i] || a2 || a1[j + 1:0] 

Thus subsection references are distinct from subscript references in Icon^ and both have consonant interpre­
tations for strings and lists. 
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2. Extending String Operations to Lists 

Since Icon has many more operations on strings than it has on lists, a major problem in the design of 
Icon^ is finding an interpretation of these operations for lists that is consistent with their use on strings. 
Operations that are strictly based on the order of elements in strings, such as reverse(s), can be trivially 
extended to lists. The string analysis functions, however, require more careful consideration. 

A function like 

find(s1,s2) 

can be characterized as finding a consecutive sequence of the elements of S1 in s2. There is an equivalent 
interpretation for lists, so that 

find(a1,a2) 

produces the position of sequence of the elements of a1 in a2. For example, 

find(["green", "apples"], ["three", "green", "apples"]) 

produces the value 2. 

The interpretations of 

find(s, a) 

and 

find(a,s) 

are based on element-by-element comparisons. For example, 

find("apples", ["green", "apples"]) 

produces 2, while 

find(["green", "apples"], "is 'greenapples' one word?") 

produces 5. 

The analysis functions in Icon.; are, of course, generators and may produce sequences of values. 

Several of Icon's string analysis functions depend on the characters that occur in a string without regard to 
their order. An example is 

upto(c, s) 

which produces the position in s at which any character in C occurs. The concept of a cset in Icon was intro­
duced because of contexts such as this in which membership in a set of characters is important. 

In generalizing string analysis functions to include lists, it is natural also to generalize csets to sets of arbi­
trary values. The notation 

{x1,x2 xn} 

denotes an Icon^ operation that constructs a set consisting of the values x1, x2 xn and is analogous to the 
list construction operation: 

[x1, x2, ...,xn] 

The use of braces to denote set construction conflicts with the use of braces to enclose a sequence of expres­
sions in the case where there is only one expression in the sequence. This difficulty is ignored here, but is dis­
cussed in Section 5.1. 

In order to integrate sets with the rest of Icon, two extensions are incorporated in Icon^. The function 

set(a) 

produces a set consisting of the elements of the list a, and 



sort(c) 

produces a sorted list of the elements of the set c. (The letter c is used here for sets — 'collections'.) 

sort({"bad", "apples", 3}) 

produces the list 

[3, "apples", "bad"] 

To avoid the proliferation of types and operations, sets subsume csets in Icon^. Thus 

set(s) 

replaces 

cset(s) 

and produces a set consisting of the elements of the string s. For example, 

set("apple") 

is equivalent to 

{"a", "p", " I " , "e"} 

and produces the same set as the literal 'apple'. The other cset operations of Icon can be incorporated in an 
upward-compatible fashion in Icong, with the cset complement ~C being interpreted as &cset — C. 

The interpretation of the elements in a set depends on the context in which the set is used. Consider, for 
example, 

upto(c, x) 

If x is a string, the Icon interpretation of C applies. This raises the issue of how to handle values in C that are 
not one-character strings. There are several possibilities, two of which fit into the framework of Icon: to 
ignore such values or to treat them as errors. Icon^ takes the former approach. Thus, if 

vset := {"x", "y", "z", "delta"} 

the value delta in vset is ignored in 

uptO(c, s) 

This is consistent with the interpretation that the element delta does not occur in any string. Therefore 

upto(vset, "3+delta") 

fails. On the other hand 

upto(vset, [3,"+", "delta"]) 

produces the value 3. 

3. Scanning 

The disparity between the string and list processing facilities of Icon is most apparent in scanning. 
Nonetheless 

S ? expr 

may produce a value of any type — whatever expr produces. For example, 
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s ? { 
a := [ ] 
while put(a, move(1)) 
a 
1 

produces a list of the one-character substrings of s. (The result produced by the compound expression is the 
result of the last expression, a.) 

By making the scanning operation polymorphous, lists can be scanned. 

a ? expr 

The interpretation of &subject and &pos for lists is obvious. 

If the subject is a list, the matching functions move(i) and tab(i) return a list of the elements between the 
previous and new values of &pos. For example, 

a ? tab(3) 

produces a list of the first three values in a, but fails if the size of a is less than 3. The string analysis functions 
have the same interpretation for scanning as they do in Icon: omitted trailing arguments default to &subject 
and &pos. 

Consider the following scanning expression that produces a string consisting of the odd-numbered charac­
ters (elements) of a string s: 

s ? { 
s i := "" 
while s1 ||:= move(1) do 

move(1) 
s1 
} 

A similar scanning operation can be formulated to produce a list of the odd-numbered elements of a list a: 

a ? { 
a1 := [ ] 
while a1 ||:= move(1) do 

move(1) 
a1 
} 

Although string and list scanning have the same form in this example, the fact that list elements can be of any 
type introduces complexities and the need for additional features. For example, the following scanning opera­
tion might be formulated to write all the even-numbered elements of a list: 

a ? while move(1) do write(move(1)) 

This formulation is erroneous, however. The expression move(1) does not produce the next element of a, but 
rather a one-element list that contains the next element. Of course, the value can be obtained by subscripting, 
as in 

a ? while move(1) do write(move(1)!1) 

but this is cumbersome. Since the need to access individual elements of a list occurs frequently in practice, the 
keyword &element is included in Icon^ as a synonym for 

&subject!(&pos) 

The scanning operation above then can be reformulated as 



a ? while move(2) 
do write(&element) 

Note that this formulation requires only one use of move for each evaluation of the loop. 

The keyword &element applies equally well to string subjects, although its use in this case is less frequent, 
since strings usually are not processed on a character-by-character basis. 

In Icon a list is a pointer (reference) to the structure that contains the elements of the list. Thus 

a := [3, "green", "apples"] 

assigns a pointer to a. Consequently, a list of lists can be used to represent a tree. For example, 

tree := ["+", ["a", ["*", ["b"j\ ["c"]]]] 

represents a tree in which the strings are node values and subtrees are represented by lists. This tree can be 
visualized as 

Assignment in Icon copies pointers, not structures. Since any kind of value may occur in a list, structural 
loops can be constructed. A simple example is 

loop := ["x"] 
put(loop, loop) 

which produces a loop that can be visualized as 

loop 

Thus arbitrarily complicated structures can be built using lists. 

To simplify the systematic processing of such structures, the keyword &visit is included in Icon^. If the 
subject is a list, &visit generates all its elements in preorder, but each one only once. If the subject is a string, 
however, &visit simply produces the subject. For example, if tree is a list representing a tree as given in the 
earlier example, then 

tree ? every x := &visit do 
if type(x) = "string" then write(x) 

writes all the node values in tree: 



+ 

a 
* 
b 
c 

On the other hand, if loop is a list with a loop as given above, 

loop ? every write(image(&visit)) 

writes 

list(2) 

4. Examples 

4.1 String and List Representations of Trees 

One situation in which both strings and lists are useful is in processing trees. On input, a tree is represented 
by a string. For processing, this string is converted to a list structure such as the one shown in Section 3. For 
output, this list structure is converted back into a string. Consequently, string-to-list and list-to-string conver­
sion procedures are needed. 

In string-to-list conversion, the subject of scanning is a string and the value produced is a list. A procedure 
is: 

procedure ltree() 
local a 
if a := [tab(upto('('))] then { 

move(1) 
while put(a,tab(bal(',)')) ? ItreeQ) do 

move(1) 
} 

else a := [tab(O)] 
return a 

end 

This procedure is used in the form 

a := (s ? Itree()) 

If S contains a left parenthesis, the substring up to that character is the node value and becomes the first value 
in the evolving list. The subtrees are then added by applying Itree recursively. If S does not contain a left 
parenthesis, it is a leaf node and is returned as a one-element list. 

List-to-string conversion is similar, but slightly complicated by the fact that the string representation of a 
tree is not as homogeneous as the list representation. A procedure is: 



procedure stree() 
local s 
s := &element 
move(1) 
if pos(O) then return s else s ||:= " ( " 
repeat { 

s ||:= (&element ? streeQ) || "," 
move(1) | break 
} 

return s[1:-1] || " ) " 
end 

For example, the following program segment writes out all the subtrees of a: 

a ? every x := &visit do 
if type(x) = "list" then write(x ? stree()) 

4.2 Graphs 

String representations of trees and other structures without loops usually can be processed with relative 
ease, so that list scanning does not offer substantial advantages over string scanning. On the other hand, 
string representations of structures with loops often are awkward to process and list scanning can be used to 
advantage. An example follows. 

Molecules can be represented by graphs in which the atoms are node and the bonds are edges. Two exam­
ples are 

glycine furan 

In order to process such molecules, different atoms of the same element are distinguished by integer prefixes. 
String representations of these molecules, in which the edges are given in parentheses are: 

glycine := "N1(H1,H2,C1)H1()H2()C1(C2,H4,H3)H3()H4()C2(02)01(C2,C2)02(H5)H5()" 
furan := "01(C1,C4)C1(C2IC2,H1)H1()C2(C3,H2)H2()C3(C4>C4IH3)H3()C4(H4)H4()" 

The representation of molecules in the program consists of a list for each atom, in which the name of the atom 
is the first value and subsequent values represent the bonds by pointing to adjacent atoms. In addition, there 
is a table in which there is an entry value for each atom whose corresponding assigned value is the list for the 
atom. The following procedure, adapted from a general graph-construction procedure in [I], builds the list 
representation of a molecule: 
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procedure graph(s) 
local nodes, arcs, a, name 
nodes := table() 

# start with the name of the node 
s ? while nodes!(name := tab(upto('('))) := a := [name] do { 

move(1) 
arcs := tab(bal(')') + 1) 
arcs ? while put(a, "" ~ = tab(upto(',)'))) do 

move(1) 
} 

every a := Inodes do # change the names to their lists 
every i := 2 to *a do 

a!i := nodes!(a!i) 
return nodes 

end 

The following procedures scan for patterns in molecules, which are limited to alcohols, ethers, amines, 
nitriles, and molecules containing acyl groups and double and triple bonds between carbon atoms. 

procedure analyze(mol) 
local node, A, neighbor 
every node := !mol do { 

node ? ( 
A := atom(), 
neighbor := move(1), 
case A of { 

"C" : { # check for double & triple bonds 
if (found(neighbor, 3)) then 

write("molecule contains a triple bond") 
else if found(neighbor, 2) then 

write("molecule contains a double bond") 
} 

"O" : { # check for alcohols, ethers, & acyl 
if found(neighbor, 2) then 

write("molecule contains an acyl group") 
else if ((neighbor!"!) ?:= atom()) = " H " then 

write("molecule contains an alcohol group") 
else writef'molecule is an ether") 
} 

" N " : { # check for amines & nitriles 
if (found(neighbor, 3)) then 

write("molecule contains a nitrile group") 
else write("molecule contains an amine group") 
} 

} 
) 

} 
end 

procedure atom() 
local s 
s := ((move(1)!1) ? tab(upto('0123456789'))) 
return s 

end 
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procedure found(L, n) # look for n occurrences of L 
local i 
i : = 1 
every find(L) do i +:= 1 
if i = n then return 
else fail 

end 

For glycine, the output is 

molecule contains an amine group 
molecule contains an acyl group 

For furan, the output is 

molecule is an ether 
molecule contains a double bond 
molecule contains a double bond 

This program can be extended to cover more functional groups and to include positional considerations (for 
example, alpha, para, ortho, and also rings). While analyze simply writes the configurations that are found, it 
could be extended to set a flag or to note the position in the molecule. 

5. Implementation of a Portion of Icon,-

A portion of Icon^ has been implemented. The majority of this implementation consists of a library of 
Icon procedures that overload the built-in functions and operations of Icon that have been changed in Icon^. 
The library procedures are described in Section 5.2. A preprocessor and the programmer-defined control 
operation extension to Icon [2] are used as well. 

5.1 Preprocessing 

The preprocessor translates Iconc syntax into standard Icon syntax wherever possible. The preprocessor 
is based on the Icon translator [3], but emits translated program text instead of the usual intermediate code 
that is the input to the Icon linker. Since this preprocessor uses the same grammar as the Icon translator, 
except for specific changes made for Iconc, it is faithful to the rest of the Icon syntax. Where no direct trans­
lation is possible, the preprocessor produces calls of library procedures. 

To provide polymorphous concatenation, the preprocessor performs the following translations: 

s1 
a1 
S1 
a1 
s1 
a1 
s1 
a1 

II s2 
III a2 
ll:= s2 
Ill:=a2 
@ s2 
% a2 
@:= s2 
%:= a2 

Cat(s1,s2) 
Cat(a1,a2) 
S1 
a1 
s1 
a1 
S1 
a1 

:= Cat(s1,s2) 
:= Cat(a1,a2) 
II s2 
III a2 
M : = s 2 

III:- a2 

Thus both list and string concatenations are translated into calls of the support procedure Cat. The types of 
the arguments are, of course, presumed. The translation of the infix operators @ and %make the built-in con­
catenation operations available to Cat. The preempted transmission and remaindering operations are unavail­
able in this implementation of Iconc. 

To provide the Icon^ distinction between subscripts and subsections, the preprocessor performs the fol­
lowing translations: 

x!i — x[i] 
x[i] — x[i:Poseq(i,x) + 1] 

where Poseq is a library procedure that produces the positive equivalent of position i in x. The translation of 
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x[i] to a range specification with upper and lower bounds prevents assignments to list subsection references in 
Icong. Such expressions cannot be used as abbreviations for list concatenation in this implementation. This 
problem cannot be handled by the preprocessor, since it is not possible to detect all subsection references syn­
tactically. For example, a procedure call may return a subsection reference. The one-character restriction on 
assignment to s!i is not supported. 

To provide for the set construction operation, the preprocessor performs the following translation: 

{x1 x2} - set([x1 x2]) 

where set is a library procedure that constructs a set from a list. The ambiguity involving sets and compound 
expressions is resolved by the translation 

{X} - {X} 

Consequently, one-element sets cannot be constructed directly. However, 

{x,x} 

can be used to circumvent this problem. 

To replace the built-in scanning control structure by a library procedure, the preprocessor provides the fol­
lowing translations: 

x1 ? x2 - Scan{x1,x2} 
x1 ?:= x2 - x1 := Scan{x1,x2} 

where Scan is a library procedure. Since scanning is a control operation in which the arguments are not 
evaluated according to the rules for evaluation of procedure arguments, the braces are used in the call to indi­
cate a programmer-defined control operation. 

Finally, the preprocessor provides the following translations for keywords: 

&pos — Pos 
&subject — Subject 
&element — Subject[Pos] 
&visit - Visit() 

Subject and Pos are global identifiers used by library procedures in place of the scanning keywords. Visit is a 
library procedure. 

5.2 Library Procedures 

The library procedures that are essential to Iconc are described in the following sections, along with exam­
ples of the full repertoire of the polymorphous string and list processing functions in Icong. The library pro­
cedures are written in Icon^. 

Polymorphous concatenation is performed by: 

procedure Cat(x1,x2) 
return (string(xl) @ string(x2)) | 

if type(x1) = type(x2) == "list" then (x1 % x2) | 
stop("string or list expected") 

end 

Cat illustrates the need for type checking and selection of the operation to be performed accordingly. The 
expression 

string(xl) @ string(x2) 

uses explicit conversion to combine checking with the actual operation of string concatenation. The operators 
@ and % are translated by the preprocessor into 11 and 111, respectively. 

Sets are implemented in Icon^ by tables. Since a table is a set of pairs, each containing an entry value and 
an assigned value, a convenient method of representing sets is to have the entry and assigned values be the 
same in each pair. That is, each entry in the table is assigned its own value. A record type with one field is used 
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to allow sets to be identified: 

record Set(t) 

procedure set(x) 
local t, y 
if type(x) = "Set" then return x 
t := table() 
every y := !x do 

t!y := y 
return Set(t) 

end 

If x is already a set, it is returned unchanged. Otherwise a table is constructed, each element of x is entered, 
and a record of type Set is returned. 

The equivalence among values in Icon^ is essential to list processing. While two strings in Icon are 
equivalent if they have the same elements in the same order, this is not true of lists. For example, the com­
parison operation 

["green", "apples"] = ["green", "apples"] 

fails, since the two list values do not point to the same structure, even though the two structures have the same 
elements. In order for Icon^ to work properly, equivalence comparison is needed. In this operation, two 
values are equivalent if they are the same or if their elements are equivalent. A procedure for determining the 
equivalence of objects is: 

procedure Eq(x, y, done) 
local i 
/done := table() # set up table on "outside" call 
if x === y then return y # equivalence test 
if string(x) = string(y) then return y # equivalent strings 
if type(x | y) ~ = "list" then fail 
if *x ~= *y then fail # check size first 
/donelx := table() # table for x if new 
if (done!x)!y === y then return y # if already compared, return 
else (donelx)!y := y # add new value compared to x 
every i := 1 to *x do # now compare elements 

if not Eq(x!i, y!i, done) then fail 
return y 

end 

General value comparison is made first. If x1 and x2 are lists, a recursive comparison is made of the first ele­
ments and then of the rest of the lists. The table done, which is nonnull only when Eq calls itself recursively, 
serves to mark lists already processed. Each entry value in done is a table of values for which x has been com­
pared. Thus, structures that contain loops are handled properly. A similar technique is used to extend the 
function image to produce a string representation of lists. In this representation, each list is labeled, and loops 
are treated by using only the labels. 

Given the operation for determining the equivalence of two values, a test for set membership can be formu­
lated quite compactly: 

procedure Member(x1, x2) 
return Eq(!x2.t, x1) 

end 

The expression x2.t produces the table for the set and 

!x2.t 

generates the values in the set as necessary until one is found that is equivalent to x1 or until there are no 
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more, in which case the membership test fails. 

As mentioned in Section 5.1, scanning is a control operation and cannot be implemented directly by a pro­
cedure. Instead, the programmer-defined control operation extension to Icon is used. In this extension, pro­
cedures that are called with braces instead of parentheses are control procedures that get the arguments in the 
call as a list of co-expressions. The arguments therefore are not evaluated before the control procedure is 
invoked, but rather are evaluated by the control procedure as required, by activating the co-expressions. See 
[2] for the details of this mechanism. 

In the case of scanning, the previous value of the subject and position must be saved before the arguments 
of scanning are evaluated. This allows the proper maintenance of these values for nested scanning. The global 
declaration and scanning procedure are: 

global Subject, Pos 

procedure Scan (a) 
local tsubject, tcursor 
suspend 6( 

tsubject := Subject, 
Subject < - |@a!1, 
tcursor := Pos, 
Pos < - 1, 
a!2 := Aa!2, 
|@a!2, 
Subject < - tsubject, 
Pos < - tcursor 

# Scan{x1,x2} 

# 6th expression is x2 
# save Subject 
# get new Subject from x1 
# save Pos 
# initial new Pos 
# refresh x2 for each evaluation 
# activate x2 
# restore Subject 
# restore Pos 

) 
end 

Subject and Pos take the place of &subject and &pos in Icon. Subject is necessary, since a list value cannot 
be assigned to &subject. This procedure is somewhat arcane, since it is necessary to save and restore Subject 
and Pos whether or not a scanning operation succeeds or fails and also to maintain their proper values if the 
scanning expression is resumed for additional results. A full explanation of the interaction of the scanning 
operation with other expressions is given in [4]. 

The matching functions move(i) and tab(i) are implemented as described in [4]: 

procedure move(i) 
suspend .Subject[.Pos:Pos < - Pos + i] 

end 

procedure tab(i) 
if i <= 0 then i := *Subject + i + 1 
suspend .Subject[.Pos:Pos < - i] 

end 

The analysis functions operate for strings and lists on the basis of the equivalence of elements as described 
in Section 5.2. A representative procedure is: 
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procedure upto(x1, x2, i, j) 
if /x2 := Subject then / i := Pos else / i := 1 
/ j := 0 
j := PoseqQ", x2) 
x1 := set(x1) 
if (x2 := string(x2)) | (type(x2) = "list") then { 

suspend Member(x2!(k := i to j), x1) & j > k 
} 

else stop("string or list expected") 
end 

The first part of this procedure establishes the proper default values in case the trailing arguments are omitted. 
The first argument, x1, is then converted to a set. If x2 is either a string or a list, it is processed element by ele­
ment until an element of x1 is found. Note that the procedure suspends with each position at which an ele­
ment is found. 

The generator &visit, which is translated into VisitQ by the translator, provides a way of visiting all the 
elements of a list only once, even if there are structural loops. The procedure is: 

procedure Visit(x, done) 
/x := Subject 
if string(x) then return x 
/done := tableQ 
if \done!x then fail 
donelx := x 
suspend x | Visit(!x, done) 

end 

The arguments that are passed to Visit are nonnull only when Visit calls itself recursively, as is the case with 
done in Eq. 

6. Conclusions 

The unification of list and string processing that is proposed here primarily is based on the development of 
polymorphous operations in a way that allows the two types to be treated similarly. In particular, the distinc­
tion between subsection and subscript references resolves a problem that is troublesome in the present version 
of Icon. 

The extension of string analysis functions to lists, which is based on the concept of elements, leads to the 
replacement of csets by sets. The generalization of scanning leads to new primitives that are needed to process 
the more complicated structure of lists. 

As illustrated in Section 5, most of Iconc can be implemented by a preprocessor and a library of pro­
cedures that replace or extend the built-in ones of Icon. This implementation is usable and easy to modify. 
Although a complete implementation of Iconc as a modification of the standard implementation of Icon is 
not a major project, more experience with the proposed facilities is needed before undertaking such a modifi­
cation. In particular, other uses of list scanning may suggest the need for additional facilities or for approaches 
to unifying and simplifying the present ones. 
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