
An Overview of the Icon Programming Language*

Ralph E. Griswold

TR 83-3g

May 13,1983; last revised June 20,1988

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant DCR-8401831.

An Overview of the Icon Programming Language

1. Introduction
Icon is a high-level programming language with extensive facilities for processing strings and lists. Icon has

several novel features, including expressions that may produce sequences of results, goal-directed evaluation that
automatically searches for a successful result, and string scanning that allows operations on strings to be formulated
at a high conceptual level.

Icon emphasizes high-level string processing and a design philosophy that allows ease of programming and
short, concise programs. Storage allocation and garbage collection are automatic, and there are few restrictions on
the sizes of objects. Strings, lists, and other structures are created during program execution and their size does not
need to be known when a program is written. Values are converted to expected types automatically; for example,
numeral strings read in as input can be used in numerical computations without explicit conversion.

Examples of the kinds of problems for which Icon is well suited are:

• text analysis, editing, and formatting

• document preparation

• symbolic mathematics

• text generation

• parsing and translation

• data laundry

• graph manipulation

Version 7 of Icon, the most recent version, is implemented in C [2]. There are UNIX* implementations for many
computers, including the Amdahl 580, the AT&T 3B series, the HP 9000, the IBM PC/XT/AT, the IBM RT PC, the
Pyramid 90x, the Ridge 32, the Sun Workstation, the UNIX PC, and the VAX-11. There also are implementations
for VAX/VMS, MS-DOS, the Amiga, the Atari ST, and the Macintosh. Other implementations are in progress.

A brief description of some of the representative features of Icon is given in the following sections. This descrip­
tion is not rigorous and does not include many features of Icon. See [2] for a complete description and [3] for a
description of recent changes to the language.

2. Strings
Strings of characters may be arbitrarily long, limited only by the architecture of the computer on which Icon is

implemented. A string may be specified literally by enclosing it in double quotation marks, as in

greeting := "Hello world"

which assigns an 11-character string to greeting, and

address := ""

which assigns the zero-length empty string to address. The number of characters in a string S, its size, is given by
*s. For example, *greeting is 11 and *address is 0.

Icon uses all 256 characters of the extended ASCII character set. There are escape conventions, similar to those
of C, for representing characters that cannot be keyboarded.

UNIX is a trademark of AT&T Bell Laboratories.

Strings also can be read in and written out, as in

line := read()

and

write(line)

Strings can be constructed by concatenation, as in

element := "(" II read() || ")"

If the concatenation of a number of strings is to be written out, the write function can be used with several argu­
ments to avoid actual concatenation:

writeC'C'.readO,")")

Substrings can be formed by subscripting strings with range specifications that indicate, by position, the desired
range of characters. For example,

middle := line[10:20]

assigns to middle the string of characters of line between positions 10 and 20. Similarly,

write(line[2])

writes the second character of line. The value 0 is used to refer to the position after the last character of a string.
Thus

write(line[2:0])

writes the substring of line from the second character to the end, thus omitting the first character.

An assignment can be made to the substring of string-valued variable to change its value. For example,

line[2] := "..."

replaces the second character of line by three dots. Note that the size of line changes automatically.

There are many functions for analyzing strings. An example is

find(s1, s2)

which produces the position in s2 at which s1 occurs as a substring. For example, if the value of greeting is as
given earlier,

findfor", greeting)

produces the value 8. See Section 4.2 for the handling of situations in which s1 does not occur in s2, or in which it
occurs at several different positions.

3. Character Sets
While strings are sequences of characters, csets are sets of characters in which membership rather than order is

significant. Csets are represented literally using single enclosing quotation marks, as in

vowels := 'aeiouAElOU'

Two useful built-in csets are &lcase and &ucase, which consist of the lowercase and uppercase letters, respec­
tively. Set operations are provided for csets. For example,

letters := &lcase ++ &ucase

forms the cset union of the lowercase and uppercase letters and assigns the resulting cset to letters, while

consonants := letters — 'aeiouAElOU'

forms the cset difference of the letters and the vowels and assigns the resulting cset to consonants.

- 2 -

Csets are useful in situations in which any one of a number of characters is significant. An example is the string
analysis function

upto(c, S)

which produces the position s at which any character in c occurs. For example,

upto(vowels, greeting)

produces 2. Another string analysis function that uses csets is

many(c, s)

which produces the position in S after an initial substring consisting only of characters that occur in s. An example
of the use of many is in locating words. Suppose, for example, that a word is defined to consist of a string of letters.
The expression

write(line[1 :many(letters, line)])

writes a word at the beginning of line. Note the use of the position returned by a string analysis function to specify
the end of a substring.

4. Expression Evaluation

4.1 Conditional Expressions
In Icon there are conditional expressions that may succeed and produce a result, or may fail and not produce any

result An example is the comparison operation

i > j
which succeeds (and produces the value of j) provided that the value of i is greater than the value of j , but fails oth­
erwise. Similarly,

i > j > k

succeeds if j is between i and k.
The success or failure of conditional operations is used instead of Boolean values to drive control structures in

Icon. An example is

if i > j then k := i else k := j

which assigns the value of i to k if the value of i is greater than the value of j , but assigns the value of j to k
otherwise.

The usefulness of the concepts of success and failure is illustrated by find(s1, s2), which fails if S1 does not
occur as a substring of S2. Thus

if i := find("or",line) then write(i)

writes the position at which or occurs in line, if it occurs, but does not write a value if it does not occur.
Many expressions in Icon are conditional. An example is read(), which produces the next line from the input

file, but fails when the end of the file is reached. The following expression is typical of programming in Icon and
illustrates the integration of conditional expressions and conventional control structures:

while line := read() do
write(line)

This expression copies the input file to the output file.

If an argument of a function fails, the function is not called, and the function call fails as well. This "inheri­
tance" of failure allows the concise formulation of many programming tasks. Omitting the optional do clause in
while-do, the previous expression can be rewritten as

- 3

while write(read())

4.2 Generators
In some situations, an expression may be capable of producing more than one result. Consider

sentence := "Store it in the neighboring harbor"
find("or", sentence)

Here or occurs in sentence at positions 3,23, and 33. Most programming languages treat this situation by selecting
one of the positions, such as the first, as the result of the expression. In Icon, such an expression is a generator and
is capable of producing all three positions.

The results that a generator produces depend on context. In a situation where only one result is needed, the first
is produced, as in

i := find("or", sentence)

which assigns the value 3 to i.
If the result produced by a generator does not lead to the success of an enclosing expression, however, the gen­

erator is resumed to produce another value. An example is

if (i := findfor", sentence)) > 5 then write(i)

The first result produced by the generator, 3, is assigned to i, but this value is not greater than 5 and the comparison
operation fails. At this point, the generator is resumed and produces the second position, 23, which is greater than 5.
The comparison operation then succeeds and the value 23 is written. Because of the inheritance of failure and the
fact that comparison operations return the value of their right argument, this expression can be written in the follow­
ing more compact form:

write(5 < find("or", sentence))

Goal-directed evaluation is inherent in the expression evaluation mechanism of Icon and can be used in arbi­
trarily complicated situations. For example,

findfor", sentence-!) = find("and",sentence2)

succeeds if or occurs in sentencel at the same position as and occurs in sentence2.

A generator can be resumed repeatedly to produce all its results by using the every-do control structure. An
example is s

every i := find("or", sentence)
do write(i)

which writes all the positions at which or occurs in sentence. For the example above, these are 3,23, and 33.

Generation is inherited like failure, and this expression can be written more concisely by omitting the optional
do clause:

every write(find("or", sentence))

There are several built-in generators in Icon. One of the most frequendy used of these is

i to j

which generates the integers from i to j . This generator can be combined with every-do to formulate the traditional
for-style control structure:

every k := i to j do
square(k)

Note that this expression can be written more compactly as

- 4 -

every square(i to j)

There are a number of other control structures related to generation. One is alternation,

expn | expn

which generates the results of expn followed by the results of expn- Thus

every write(find("or",sentence1) | findfor", sentence2))

writes the positions of or in sentencel followed by the positions of or in sentence2. Again, this sentence can be
written more compactly by using alternation in the second argument of find:

every write(find("or", sentencel | sentence2))

Another use of alternation is illustrated by

(i I j I k) = (0 | 1)

which succeeds if any of i, j , or k has the value 0 or 1.

5. String Scanning

The string analysis and synthesis operations described in Sections 2 and 3 work best for relatively simple opera­
tions on strings. For complicated operations, the bookkeeping involved in keeping track of positions in strings
becomes burdensome and error prone. In such cases, Icon has a string scanning facility that is analogous in many
respects to pattern matching in SNOBOL4. In string scanning, positions are managed automatically and attention is
focused on a current position in a string as it is examined by a sequence of operations.

The string scanning operation has the form

S ? expr

where S is the subject string to be examined and expr is an expression that performs the examination. A position in
the subject, which starts at 1, is the focus of examination.

Matching functions change this position. The matching function move(i) moves the position by i and produces
the substring of the subject between the previous and new positions. If the position cannot be moved by the specified
amount (because the subject is not long enough), move(i) fails. A simple example is

line ? while write(move(2))

which writes successive two-character substrings of line, stopping when there are no more characters.

Another matching function is tab(i), which sets the position in the subject to i and also returns the substring of
the subject between the previous and new positions. For example,

line ? if tab(10) then write(tab(0))

first sets the position in the subject to 10 and then to the end of the subject, writing line[10:0]. Note that no value is
written if the subject is not long enough.

String analysis functions such as find can be used in string scanning. In this context, the string that they operate
on is not specified and is taken to be the subject. For example,

line ? while write(tab(find("or")))
do move(2)

writes all the substrings of line prior to occurrences of or. Note that find produces a position, which is then used by
tab to change the position and produce the desired substring. The move(2) skips the or that is found.

Another example of the use of string analysis functions in scanning is

line ? while tab(upto(letters)) do
write(tab(many(letters)))

which writes all the words in line.

As illustrated in the examples above, any expression may occur in the scanning expression. Unlike SNOBOL4,
in which the operations that are allowed in pattern matching are limited and idiosyncratic, string scanning is com­
pletely integrated with the rest of the operation repertoire of Icon.

6. Structures

Icon supports several kinds of structures that consist of aggregates of values with different organizations and
access methods. Lists are linear structures that can be accessed both by position and by stack and queue functions.
Sets are collections of arbitrary values with no implied ordering. Tables provide an associative lookup mechanism.

6.1 Lists
Lists in Icon are sequences of values of arbitrary types. Lists are created by enclosing the lists of values in

brackets. An example is

carl := ["buick", "skylark", 1978,2450]

in which the list carl has four values, two of which are strings and two of which are integers. Note that the values in
a list need not all be of the same type. In fact, any kind of value can occur in a list — even another list, as in

inventory := [carl, car2, car3, car4]

Lists also can be created by

a := list(i,x)

which creates a list of i values, each of which has the value x.

The values in a list can be referenced by position much like the characters in a string. Thus

carl [4] := 2400

changes the last value in carl to 2400. A reference that is out of the range of the list fails. For example,

write(car1 [5])

fails.

The values in a list a are generated by !a. Thus

every write(!a)

writes all the values in a.
Lists can be manipulated like stacks and queues. The function push(a, x) adds the value of x to the left end of

the list a, automatically increasing the size of a by one. Similarly, pop(a) removes the leftmost value from a,
automatically decreasing the size of a by one, and produces the removed value.

A list value in Icon is a pointer (reference) to a structure. Assignment of a structure in Icon does not copy the
structure itself but only the pointer to it. Thus the result of

demo := carl

causes demo and carl to reference the same list Graphs with loops can be constructed in this way. For example,

nodel := ["a"]
node2 := [nodeVb"]
push(node1, node2)

constructs a structure that can be pictured as follows:

- 6

nodel

node2

6.2 Sets
Sets are collections of values. A set is obtained from a list by set(a), where a contains the members of the set.

For example,

s := set([1)"abc",[]])

assigns to s a set that contains the integer 1, the string "abc", and an empty list. The operations of union, intersec­
tion, and difference can be performed on sets. The function member(s, x) succeeds if x is a member of the set s
but fails otherwise. The function insert(s, x) adds x to the set s, while delete(s, x) removes x from s. A value only
can occur once in a set, so insert(s, x) has no effect if x is already in s. The operator !s generates the members of
s.

A simple example of the use of sets is given by the following segment of code, which lists all the different words
that appear in the input file:

words := set()
while line := read() do

line ? while tab(upto(letters)) do
insert(words, tab(many(letters)))

every write(Iwords)

63 Tables
Tables are sets of pairs of values, a key and a corresponding value. The keys and values may be of any type.

The value for any key can be looked up automatically. Thus, tables provide associative access in contrast with the
positional access to values in lists.

A table is created by an expression such as

symbols := table(x)

which assigns to symbols a table that has the default value x. Subsequently, symbols can be referenced by any
key, such as

symbols["there"] := 1

which associates the value 1 with the key there in symbols.

Tables grow automatically as new keys are added. For example, the following program segment produces a
table containing a count of the words that appear in the input file:

words := table(O)
while line := read() do

line ? while tab(upto(letters)) do
words[tab(many(letters))] +:= 1

Here the default value for each word is 0, as given in table(O), and +:= is an augmented assignment operation that
increments the values by one.

A list can be obtained from a table by the function sort(t, i). The form of the list depends on the value of i. For
example, if i is 3, the list contains alternate keys and values of t. For example,

- 7

wordlist := sort(words, 3)
while write(pop(wordlist)," : ",pop(wordlist))

writes the words and their counts from words.

7. Procedures
An Icon program consists of a sequence of procedures. An example of a procedure is

procedure max(i,j)
if i > j then return i else return j

end

where the name of the procedure is max and its formal parameters are i and j . The return expressions return the
value of i or j , whichever is larger.

Procedures are called like functions. Thus

k := max(*s1,*s2)

assigns to k the size of the longer of the strings s1 and s2.
A procedure also may generate a sequence of values by suspending instead of returning. In this case, a result is

produced as in the case of a return, but the procedure can be resumed to produce other results. An example is the
following procedure that generates the words in the input file.

procedure genword()
local line, letters, words
letters := &lcase ++ &ucase
while line := read() do

line ? while tab(upto(letters)) do {
word := tab(many(letters))
suspend word
}

end

The braces enclose a compound expression.
Such a generator is used in the same way that a built-in generator is used. For example

every word := genword() do
if findfor", word) then write(word)

writes only those words that contain the substring or.

8. An Example
The following program, which produces a concordance of the words from an input file, illustrates typical Icon

programming techniques. Although not all of the features in this program are described in previous sections, the
general idea should be clear.

fold to lowercase

skip short words
keep track of longest word
if it's a new word, start set
else add the line number

sort by words

build up line numbers

procedure main()

letters := &lcase ++ &ucase
words := table()
maxword := lineno := 0

while line := read() do {
lineno +:= 1
write(right(lineno,6)," ", line)
line := map(line)
i := 1
line ? while tab(upto(letters)) do {

word := tab(many(letters))
if *word < 3 then next
maxword <:= *word
/words [word] := set()
insert(words[word], lineno)
}

}
write ()
wordlist := sort(words,3)
while word := get(wordlist) do {

lines := ""
numbers := sort(get(wordlist))
while lines ||:= get(numbers) || ", "
write(left(word, maxword + 2),": ", lines[1 :-2])
}

end

The program reads a line, writes it out with an identifying line number, and the processes every word in the line.
Words less than three characters long are considered to be "noise" and are discarded. A table, words, containing
sets of line numbers is kept for each word. The first time a word is encountered, there is no set for it (tested by
/words[word]). In this case, a new set is created. The current line number is appended to the set for the word in any
event.

After the input file has been read, the table of words is sorted (the corresponding values are sets of line
numbers). For each word, its set is sorted and the word and line numbers where it occurs are written out.

For example, if the input file is

On the Future!-how it tells
Of the rapture that impells

To the swinging and the ringing
Of the bells, bells, bells-

Of the bells, bells, bells, bells,
Bells, bells, bells-

To the rhyming and the chiming of the bells!

the output is

- 9 -

1 On the Future!-how it tells
2 Of the rapture that impells
3 To the swinging and the ringing
4 Of the bells, bells, bells-
5 Of the bells, bells, bells, bells,
6 Bells, bells, bells-
7 To the rhyming and the chiming of the bells!

and : 3, 7
bells : 4, 5, 6, 7
chiming : 7
future : 1
how : 1
impells : 2
rapture : 2
rhyming : 7
ringing : 3
swinging : 3
tells : 1
that : 2
the : 1, 2, 3, 4, 5, 7

It is not difficult to make this program more sophisticated. For example, a dictionary of words to be ignored
could be added as a set. With a little more work, the output format could be made more attractive, and so on.

Acknowledgement
Many persons have contributed to the design and implementation of the Icon programming language. The origi­

nal design was done by the author in collaboration with Dave Hanson and Tim Korb. Subsequent contributions were
made by many persons, most notably Cary Coutant and Steve Wampler.

References

1. Griswold, Ralph E. and Madge T. Griswold. The Implementation of the Icon Programming Language. Princeton
University Press, Princeton, New Jersey. 1986.

2. Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey. 1983.

3. Griswold, Ralph E., Gregg M. Townsend, and Kenneth Walker. Version 7 of Icon, Technical Report TR 88-5,
Department of Computer Science, The University of Arizona. 1988.

10

