
The Implementation of an Experimental Language for
Manipulating Sequences*

Ralph E. Griswold

TR 83-20

December 31, 1983

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

•This work was supported by the National Science Foundation under Grant MCS81-01916.

The Implementation of an Experimental Language for
Manipulating Sequences

1. Introduction
Seque [1] is an experimental programming language for manipulating sequences as data objects. Such

sequences are designed to be used in both storage-oriented and production-oriented modes. In the storage-
oriented mode, sequences resemble vectors and are accessed by position, as in

X!i

which produces the ith element of the sequence X. In the production-oriented mode, sequences are character­
ized by values that are generated successively by a computation, as in

gen{1 to 10}

which is a sequence consisting of the integers from 1 to 10.

This report describes the implementation of Seque, which is embedded in Icon [2]. When a Seque pro­
gram is run, it first is translated into a standard Icon program. This Icon program is translated and linked with
a run-time library of Icon procedures. The implementation makes extensive use of co-expressions [3]. Code
for Seque is given in appendices.

2. Seque Language Features
Sequences are data objects of type Sequence. In the sections that follow, identifiers that begin with

uppercase letters indicate sequence-valued expressions.
The following global identifiers have predefined sequences as values:

Phi
Izero
Iplus

* = { }
&={0, 1,2,3,.
& 5{i,2,3,4,.

••}
••}

The following expressions are available for manipulating sequences:

feature

explicit sequence
concatenation
subsequence
pre-truncation
post-truncation
generator
sequence length
element selection
reduction

formal notation

l * l » x2> -*3> •

x e Y
Xi:J
X \i
X M
[I:W)X]

\x\
X\i
Redp{X)

• }

Seque syntax

seq{x1,x2, x3 , . . . }
Cat(X, Y)
Subseq(X,i, j)
X %% i (%X is equivalent to X %% 1)
X AA i
g e n [: I: lambda(j) X]
Length (X)
X!i
Red(X, p)

The following procedures related to sequences also are available in Seque:

Compress(X) converts a sequence containing sequences as elements to a sequence of scalar values.

Copy(X) creates a copy of the sequence X.

Empty (X) succeeds and produces X if X is an empty sequence but fails otherwise.

I mage (X, i) produces a string image of the first i values of X.

Read(f) produces a sequence of values resulting from reading file f.

Trace(X, i) writes the result of lmage(X, i) and produces the value of X.

Write(X) writes all the elements of X with separating linefeeds.

Writes(X) writes all the elements of X without separating linefeeds.

In addition, gen{expr) produces a sequence corresponding to the Icon result sequence for expr.

To differentiate gen[expr] from gen{expr}, the former is referred to as a Seque generator, while the latter
is referred to as an Icon generator.

Seque also has recurrence declarations that allow recurrence relations to be specified concisely. See Refer­
ence 1 for the details of recurrence declarations and their use.

There are two kinds of expression evaluation available in Seque programs: ordinary Icon evaluation with
the usual operations and functions, and Seque evaluation, in which expressions are limited to at most one
result and operations and functions are extended to apply to values of type Sequence. The type of evalua­
tion used depends on the context, which is determined as follows:

• Seque evaluation applies in procedures that are declared with the reserved word procedure. Such
procedures are called Seque procedures.

• Within a Seque procedure, Seque evaluation applies in all expressions with operator syntax and in
function and procedure calls in which the function or procedure is given by an identifier that begins
with an initial lowercase letter.

• Icon evaluation applies in procedures that are declared with the reserved words icon procedure.
Such procedures are called Icon procedures. For example,

icon procedure mainQ

end

declares the main procedure to be an Icon procedure. The main procedure need not be an Icon pro­
cedure.

• Icon evaluation applies in recurrence declarations.

• Seque evaluation applies in explicit sequences and Seque generators, regardless of the context in
which such expressions occur.

• Icon evaluation applies in Icon generators, regardless of the context in which such expressions occur.

• Icon evaluation applies all assignment operations, regardless of where they occur.

• Control structures behave in the way they do in Icon, regardless of the context in which they appear.

3. The Representation of Sequences

Since sequences are designed to be used in both storage and production paradigms, a hybrid implementa­
tion is used. Lists are used to store values that are produced by the activation of co-expressions.

A sequence is a record of type Sequence, as given by the declaration

record Sequence (a, e)

The a field is a list and the e field is a co-expression. For example, the sequence I plus is given by

Iplus := Sequence([], create seq())

where seq() is a function in the experimental extensions to Icon [4] that produces the positive integers in

-2 -

sequence. Similarly,

Tens := gen{10 to 1000 by 10}

assigns

Sequence^], create 10 to 1000 by 10)

to Tens.

An essential aspect of every newly created sequence is that its a field contains an empty list, while its e field
contains a newly created co-expression. Thus a newly created sequence has no stored elements but has the
capability for producing them.

When an element of a sequence is needed, as in

Tens!2

the list is first examined to see if it contains the specified element. If it does, that element is returned. In this
example, that amounts to

if x := (Tens.a)!2 then return x

If the element is not in the list, the co-expression is activated to produce values, which are put in the list until
the desired element has been produced. The expression that "transfers" values from the co-expression for a
sequence X to its list has the form

while expr do
put(X.a, @X.e) | fail

where expr is an expression that controls the transfer.

As a sequence is referenced with progressively larger indices, its list increases in size and its co-expression is
depleted. This is essentially a value-on-demand strategy that keeps the use of storage to a minimum, subject to
the constraint that a value that is once produced is not discarded. Note that there is no way to compute the /th
element in a sequence without computing the values for 1,2,..., /'—1.

Because a co-expression produces a value every time that it is activated, that value must be stored for pos­
sible future reference. In addition, the same co-expression cannot be used in two different sequences. For
example, if a sequence X were copied by

Y := Sequence(copy(X.a), X.e)

there would be potentially disastrous consequences, since both X and Y would share the same co-expression;
the production of a result in one of these sequences would cause that result to be skipped in the other
sequence. Instead, the form of the copy is

Y := Sequence^], AX.e)

Note that AX.e creates a co-expression that is physically distinct from X.e and is reset to the beginning of the
result sequence. Icon has no mechanism for producing a physically distinct copy of a co-expression with its
state intact.

4. Code Generated by the Translator
The translator converts Seque programs to standard Icon programs. The specific tasks of the translator

are:
Insert a link declaration so that the Seque run-time library is automatically included when the
translated program subsequently is run.
Produce code to assign initial values for the built-in procedures and global identifiers that are used in
the run-time library.

• Translate Seque expressions that have special syntax into standard Icon syntax.

• Convert recurrence declarations into standard Icon procedure declarations.

Function calls, such as Cat(X, Y) and Empty(X), are passed through unchanged by the translator.

The insertion of the link declaration and the generation of code to initialize global identifiers is done when
the main procedure is encountered by the translator. The declaration

procedure main()
body

end

is translated into

link "/usr/icon/ibin/seqlibe"

procedure main()
Undef_ := Undef()
X _ : = []
Iplus := Sequence^], create seq(1))
Izero := Sequence^], create seq(O))
Phi := Sequence^], create &fail)
body

end

The identifiers Undef_and X_are used in the run-time library; see Sec. 6.2.

The code generated for Seque expressions depends on the type of the expression, as follows:

Built-in Sequences:

In order to avoid catastrophic effects that might result from changing the value of Phi, Izero, or Iplus
during program execution, the explicit dereferencing operation is prepended to references to them. For exam­
ple, Phi is translated into .Phi.

Explicit Sequences:

The expression

seq {exprj,expr2 exprn}

is translated into

Sequence^] ,crea te (exprj) \ 1 | (expr2) \ 1 | ... | (exprn) \ 1)

The expressions are limited to one result, since Seque evaluation applies in explicit sequences.

Pre-Truncal ion:

The expression

exprl °/o% expr2

is translated into the procedure call

ShifUfc*/")) \ 1, (expr2) \ 1)

while

°/oexpr

is translated into

4-

Sh\1t-((expr) \ 1, 1)

Post- Truncation:

The expression

expr} A A expr2

is translated into

Um-((exprj) \ 1, (expr2) \ 1)

Element Selection:

The expression

expr} \expr2

is translated into

Ref-((exprj) \ "l^exprj \ 1)

Seque Generators:

The expression

gen [: expr} : lambda(j) expr2]

is translated into

Sequence^] , create (Pp_() & j := Gen_(*>xpr7) & "\{Geri-(expr2), Qq_())))

The procedures Pp_ and Qq_ are used by the heuristic for terminating generation and are described in Sec.
6.2. Gen_ is a procedure in the run-time library that generates the results from the sequence X. Note that the
outcome of activating the co-expression in a Seque generator is the outcome of Ger\-{expr2).

The bound variable j usually appears in expr2, so the effect of the expression

j := Gen-iexprj)

is to assign successive values from the generation sequence to the bound variable, which in turn controls the
successive values generated from expr2. The entire expression produces the results from Ger)-(expr2).

In case lambda(j) is omitted, i is provided by default. Similarly, Iplus is supplied in case exprl is omitted.
Thus

gen[expr]

is translated into

Sequence^], create (Pp_() & i := Gen_(lplus) & 1(Gen_(<?;t/>r), Qq_())))

Icon Generators:

The expression gen{expr} is translated into

Sequence([] , create expr)

Operations in Seque Evaluation Contexts:

In Seque evaluation contexts, operations and function calls are translated into calls on procedures in the
run-time library. For example, the expression

exprj + expr2

is translated into

5-

Binop_("+",expr/ \ \,expr2 \ 1)

and the expression

expr {exprj, expr2)

is translated into

P-([expr, exprv expr2^ \ 1)

See Sec. 6.3 and Appendix B for a description of Binop_and P_.

It is an essential characteristic of such procedures that they produce at most one result. The explicit limita­
tion to one result in the arguments prevents control structures, such as alternation, from introducing more
results.

5. Recurrence Declarations

Recurrence declarations have the form

recur name (generation variable ', [parameters] ; [constant] ; [initial values])
expr

end

A recurrence declaration is translated into an Icon procedure that is a generator for the values in the sequence
for the recurrence. The procedure consists of three parts:

• a preamble

• expressions that generate the initial values

• an expression that generates the rest of the values

The generation variable is declared to be local and is assigned the initial value 0. The identifier m_, which
is also local, is assigned a table whose default assigned value is the constant specified in the recurrence declara­
tion. For example, the recurrence declaration

recur Fibs(j;; ""; "a", "b")
Fibs(j - 1) || Fibs(j - 2)

end

produces the preamble

procedure Fibs()
local j , m_
j : = 0
m_ := tab le f ")

Each initial value, expr^ is translated into an expression of the form

suspend m_[j +:= 1] := expr{

where j is the generation variable. For example, the recurrence declaration given above produces

suspend m_[j +:= 1] := "a"
suspend m_[j +:= 1] := "b "

The translation of the expression given in the recurrence declaration into an expression to generate the rest of
the values is more complicated. The general form is

suspend m_[j +:= 1] := expr'

where expr' is derived from expr by replacing calls to the recurrence by corresponding references to the table
m_. Thus, for Fibs, the expression

6-

Fibs(i - 1) || Fibs(i - 2)

produces

suspend m_[j +:= |1] := m_[j - 1] || m_[j - 2]

Note that if an entry value for m_has not been previously computed, the constant value is produced.

The complete procedure for Fibs is

procedure FibsQ
local j , m_
j : = 0
m_ := tab le f ")
suspend m_[j +:= 1] := "a"
suspend m_[j +:= 1] := " b "
suspend m_[j +:= |1] := m_[j - 1] || m_[j - 2]

end

The situation is more complicated if a recurrence declaration has parameters. Such parameters become
formal parameters of the corresponding Icon procedure and calls of this procedure provide values for the
parameters in the recurrence. The complication occurs in the reference to the table m_, which in this case
involves not only the value of the generation variable, but also the values of the parameters. This problem is
handled by converting these values into a single value, using the procedure C_ in the run-time library. For
example, the recurrence declaration

recur Gk(i; k; 0;)
i - Gk(Gk(i - k,k),k)

end

is translated into

procedure Gk(k)
local i, m_
i := 0
m_ := table(O)
suspend m_[C_([i +:= |1,k])] := i - m_[C_([m_[C_([i - k, k])], k])]

end

The procedure C_ is

procedure C_(a) # identifying "subscript" for
local s # recurrence lookup
s := a[1]
every s ||:= "." || image(a[2 to *a])
return s

end

For example, C_([1 ,"a"]) produces the string

1."a"

The value produced by C_ is intended to be a unique representation of the values of the generation variable
(which is an integer) and the parameters (which may be of any type). This procedure can be defeated by
parameters whose values are structures. If this becomes a problem in practice, a more sophisticated technique
may be needed.

-7

6. The Run-Time Library
The run-time library is divided into three sections: basic operations, Seque evaluation, and user pro­

cedures. The basic operations and Seque evaluation procedures lie at the heart of Seque and ordinarily are not
of interest to the Seque programmer.

6.1 Basic Operations
The basic operations are listed in Appendix A. A few of the procedures deserve special note and are

described here.
In many situations it is necessary to coerce a value to a Sequence. This is done by coercing the value to a

co-expression, which is then used in the construction of a sequence. The procedure used is

procedure Expr_(X) # return refreshed co-expression for X
if type(X) = "Sequence" then return AX.e
else if /X then return Phi.e
else return create X

end

If the value of X is a sequence, a refreshed copy of its co-expression is produced. If X is not a sequence, but is
null-valued, the co-expression for Phi is produced. This corresponds to coercing the null value to the empty
sequence. Note that it is not necessary to produce a refreshed copy of this co-expression, since it can never
produce a value. For any other value, a corresponding co-expression is produced.

The pre- and post-truncation operations illustrate the use of co-expressions. Both of these operations con­
struct sequences that contain co-expressions in which procedures control the production of results:

procedure Shift_(X, i)
local e
e := Expr_(X)
return Sequenced], create Pre_(e, i))

end

X %% i

procedure Lim_(X, i)
local e
e := Expr_(X)
return Sequence([], create Post_(e, i))

end

The procedures Pre_and Post-do the actual truncation:

procedure Pre_(e, i)
e := Ae
every 1 to i

do @e | fail
suspend |@e

end

X AA i

skip first i values of X

procedure Post_(e, i)
e := Ae
suspend |@e \ i

end

limit X to at most i values

6.2 The Termination Heuristic

A termination heuristic is used in Seque generators to prevent nontermination in situations like

gen[l!i = 0]

where generation sequence is infinite and no value of I may be zero. In the absence of some termination

-8

mechanism, such a generator would never produce a value and evaluation would continue within it endlessly.
To avoid this possibility, a Seque generator terminates if an element selection expression, X!i, fails during
evaluation of the generator.

As described in Sec. 4, the code produced for a Seque generator contains a co-expression within which the
order of evaluation is

Pp_() & ... Qq_()

The procedures Pp_ and Qq_ serve to maintain a stack with respect to Seque generation. On this stack a state
is maintained for each Seque generator, indicating whether or not an element selection operation in the gen­
erator has failed. The expression Pp_() is evaluated when generation begins:

procedure Pp_() # push/pop undefined marker
push(X_ &null)
suspend
pop(X_)
fail

end

X_ is a list that is created in the initialization code for the main procedure (see Sec. 4). Pushing the null value
corresponds to establishing a new level of generation in which element selection has not failed. Pp_ then
suspends, and the generation code is evaluated. Should the generation fail, Pp_is resumed, the current level is
popped, and Pp fails, transmitting the failure of the generation.

If the generation succeeds, the last expression evaluated is Qq_():

procedure Qq_() # pop/push undefined marker
pop(X_)
suspend
push(X_ &null)
fail

end

Qq_ is the inverse of Pp_: it pops the current state and suspends, transmitting the success of the generator.
The desired result is produced by embedding Qq_in

1(Gen_(ex/>r2),Qq_())

so that the result is the result of Ger\-(expr2).

The selection operator changes the current level of X_to a unique nonnull value if it fails:

procedure Ref_(X, i) # X!i
local x
if i < 1 then {

X_[1] := Undef_ # termination heuristic
fail
}

if not S_(X) then return \ X | Phi
if i > *X.a then

every 1 to i - *X.a do
put(X.a, @X.e) | {

X_[1] := Undef_ # termination heuristic
fail
}

return .X.a[i]
end

Gen_, in turn, checks the top of stack for this nonnull value:

9-

procedure Gen_(X) # generate elements of X
local i, x
if X_[1] = Undef_ then fail # termination heuristic
if not S_(X) then return \ X # fails if X is null-valued
every i := seq() do {

if x := X.a[i] then # produce stored values first
suspend x

else { # transfer remaining values
put(X.a, @X.e) | fail
if x := X.a[i] then suspend x else fail
}

if X_[1] = Undef_ then fail # termination heuristic
}

end

Note that any nonnull value would suffice for these tests. Undef_, which is initialized in the main procedure,
is used to allow possible elaboration of the heuristic.

6.3 Seque Evaluation
In Seque evaluation contexts, all operations are translated into procedures in the run-time library that

serve to simulate the operation. These procedures have two purposes: the production of sequences if at least
one argument is a sequence, and the limitation of the operation to at most one result. A typical procedure is

procedure Binop_(op, X1.X2) # op(X1,X2)
local e1, e2
if not S_(X1 | X2) then return op(X1,X2)
else {

e1 := Expr_(X1)
e2 := Expr_(X2)
return Sequence([], create |op(@e1, @e2))
}

end

Note that if neither argument is a sequence, the operation is performed using

op(X1,X2)

in which the value of op is a string representing the binary operator (see Sec. 4). The string invocation facility
of the experimental extensions to Icon [4] invokes the corresponding binary operation, and the value is
returned (suspension would allow the operation to produce more than one result). If either argument is a
sequence, a sequence is produced in which the operation is embedded in a co-expression.

Function calls are handled by

procedure P_(a) # limited evaluation
return case *a of {

2 : Unop_(a[1], a[2])
3 : Binop_(a[1], a[2], a[3])
4 : Trlop_(a[1], a[2], a[3], a[4])
5 : Quadop_(a[1], a[2], a[3], a[4], a[5])
default : stop("Too many arguments in parallel evaluation")
}

end

Unop_, Triop_, and Quadop_are similar in structure to Binop_. See Appendix B. Because of the way that
the Icon translator operates, function calls always have at least one (possibly null-valued) argument, so the list
a always has at least two elements. Function calls with more than four arguments are not supported in Seque
evaluation contexts; to do so would only require additional procedures.

10-

6.4 User Procedures

User procedures are generally straightforward, relying on the basic operations and the use of co-
expressions in the manner already described. Cat(X, Y) is typical:

procedure Cat(X1,X2) # concatenation of X1 and X2
local e1, e2
e1 := Expr_(X1)
e2 := Expr_(X2)
return Sequence([], create |@e1 | |@e2)

end

Note that alternation is used to produce the concatenation of result sequences.

The care that must be taken in handling empty sequences is illustrated by Empty(X):

procedure Empty(X) # is X an empty sequence?
if /X then return Phi
if not(S_(X)) | (*X.a > 0) | put(X.a, @X.e) then fail
else return Phi

end

The reduction of a sequence over an operation illustrates other aspects of manipulating sequences:

procedure Red(X, op) # reduction of X over op
local x, y, i
x := Ref_(X, 1) | fail
i : = 1
while y := Ref_(X, i +:= 1) do

x := op(x, y) # op(x, y) may fail, not changing x
X_[1] := &null # undo spurious heuristic
return x

end

Note that Red removes the spurious setting of the termination heuristic that inevitably results from the use of
element selection.

7. Translator Details
The translation of a Seque program into an Icon program is accomplished by a variant of the source-to-

source Icon translator described in Reference 5. The specification of this variant translator consists of four
parts:

• modifications to the lexical analyzer

• modifications to the Yacc grammar

• macro definitions for semantic actions in the parser

• functions for semantic actions in the parser

The modifications to the lexical analyzer consist of two new operators, AA and %%, and five new reserved
words, gen, icon, lambda, recur, and seq. These modifications are straightforward; see Reference 5 for
details.

The syntax of Seque is essentially upward compatible with that of Icon. The additions to the Yacc gram­
mar are extensive, however, because of the number of details involved. Appendix D lists the grammar for the
Seque translator, with changes to the Icon grammar identified by comments of the form /* Seque */in the
right margin.

Aside from generating code for Seque constructions, the major additions relate to determining Seque and
Icon evaluation contexts and producing appropriate translations accordingly. The context switch tswitch is
set to SEQUEV or ICONV, depending on the evaluation context. This switch is kept on a stack, since evalua­
tion contexts can be nested.

11

Within recurrence relations, rswitch is set to LOOKUP, indicating that calls on the recurrence name, rec-
name, are to be translated into table references. The argument to a table reference depends on whether or not
the recurrence has parameters (see Sec. 5) and is determined by the value of xargs.

The specification of code generated by the parser is split between macro definitions (for simple code) and
parser functions (for more complex code). See Appendices E and F.

Acknowledgements
Dave Hanson, Bill Mitchell, and Steve Wampler provided a number of helpful suggestions concerning

the presentation of the material in this report.

References
1. Griswold, Ralph E. Seque: An Experimental Language for Manipulating Sequences, Technical Report TR
83-16, Department of Computer Science, The University of Arizona. 1983.
2. Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language. Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey. 1983.
3. Wampler, Stephen B. and Ralph E. Griswold. "Co-Expressions in Icon", The Computer Journal, Vol. 26,
No. 1 (February 1983). pp. 72-78.

4. Griswold, Ralph E. and William H. Mitchell. Experimental Extensions to Version 5.8 of Icon, technical
report, Department of Computer Science, The University of Arizona. 1983.

5. Griswold, Ralph E. The Construction of Variant Translators for Icon, Technical Report TR 83-19, Depart­
ment of Computer Science, The University of Arizona. 1983.

-12

Appendix A — Run-Time Library; Basic Operations

link "/usr/ icon/ibin/uops"
link "/usr/ icon/ibin/cal l"

record Sequence(a, e)
record Undef()

global Phi, Iplus, Izero, Undef_, X_

procedure C_(a)
local s
s := a[1]
every s ||:= "." || image(a[2 to *a])
return s

end

user operations
Seque evaluation

sequence data type
for unique "undefined" value

identifying "subscript" for
recurrence lookup

procedure Collapse_(X)
if S_(X) then

suspend Collapse_(Gen_(X))
else return X

end

generate scalers from X

procedure Expr_(X)
if type(X) = "Sequence" then return AX.e
else if /X then return Phi.e
else return create X

end

procedure Gen_(X)
local i, x
if X_[1] = Undef_ then fail
if not S_(X) then return \ X
every i := seq() do {

if x := X.a[i] then
suspend x

else {
put(X.a, @X.e) | fail
if x := X.a[i] then suspend x else fail

return refreshed co-expression for X

if X_[1]

}

Undef_ then fail

generate elements of X

termination heuristic

fails if X is null-valued

produce stored values first

transfer remaining values

termination heuristic

end

procedure Generic_(p, X)
if /X then fail
return if S_(X) then every p(Gen_(X)) else p(X)

end

apply p to X

procedure Lim_(X, i)
local e
e := Expr_(X)
return Sequence([], create Post_(e, i))

end

X AA i

procedure Post_(e, i)
e := Ae
suspend |@e \ i

end

limit X to at most i values

- 1 3 -

procedure Pp_()
push(X_ &null)
suspend
pop(X_)
fail

end

push/pop undefined marker

procedure Pre_(e, i)
e := Ae
every 1 to i

do @e | fail
suspend |@e

end

skip first i values of X

procedure Qq_()
pop(X_)
suspend
push(X_, &null)
fail

end

pop/push undefined marker

procedure Ref_(X, i)
local x
if i < 1 then {

X_[1] := Undef_
fail

Xli

termination heuristic

if not S_(X) then return \ X
if i > *X.a then

every 1 to i - *X.a do
put(X.a,@X.e) | {

X_[1] := Undef_
fail

Phi

termination heuristic

return .X.a[i]
end

procedure S_(x)
return type(x)

end
"Sequence"

is X a sequence?

procedure Shift_(X, i)
local e
e := Expr_(X)
return Sequence^, create Pre_(e, i))

end

X %% i

14

Appendix B — Run-Time Library; Seque Evaluation

procedure Unop_(op, X) # op(X)
local e
if S_(X) then {

e := Expr_(X)
return Sequence([], create op(|@e))

}
else return op(X)

end

procedure Binop_(op, X1.X2) # op(X1,X2)
local e1, e2
if not S_(X1 | X2) then return op(X1,X2)
else {

e1 := Expr_(X1)
e2 := Expr_(X2)
return Sequence([], create |op(@e1,@e2))
}

end

procedure Triop_(op, X1, X2, X3) # op(X1, X2, X2)
local e1, e2, e3
if not S_(X1 | X2 | X3) then return op(X1,X2,X3)
else {

e1 := Expr_(X1)
e2 := Expr_(X2)
e3 := Expr_(X3)
return Sequenced], create |op(@e1,@e2, @e3))
}

end

procedure Quadop_(op, X1, X2, X3, X4) # op(X1, X2, X3, X4)
local e1, e2, e3, s4
if not S_(X1 | X2 | X3 | X4) then return op(X1, X2, X3, X4)
else {

e1 := Expr_(X1)
e2 := Expr_(X2)
e3 := Expr_(X3)
e4 := Expr_(X4)
return Sequence([], create |op(@e1,@e2, @e3, @e4))
}

end

procedure P_(a) # limited evaluation
return case *a of {

2 : Unop_(a[1],a[2])
3 : Binop_(a[1], a[2], a[3])
4 : Triop_(a[1], a[2], a[3], a[4])
5 : Quadop_(a[1], a[2], a[3], a[4], a[5])
default : stop("Too many arguments in parallel evaluation")
}

end

15

Appendix C — Run-Time Library; User Procedures

procedure Cat(X1,X2)
local e1, e2
e1 := Expr_(X1)
e2 := Expr_(X2)
return Sequence(Q, create |@e1

end
I@e2)

concatenation of X1 and X2

procedure Compress(X)
return Sequence([], create Collapse_(Copy(X)))

end

compression of X to scalar sequence

procedure Copy(X)
local e
e := Expr_(X)
return Sequenced], e)

end

copy X

procedure Empty(X)
if /X then return Phi
if not(S_(X)) | (*X.a > 0) | put(X.a, @X.e) then fail
else return Phi

end

is X an empty sequence?

procedure lmage(X, i)
local s, t, j
if S_(X) then {

/ i := 5
j : = 0
s := " { "
every t := (Gen_(X) \ i) do {

s ||:= Imaged, i) II ","
j +:= 1

image of X to i values

if j = 0 then return "{}"
if Ref_(X, i + 1) then s |
else X_[1] := &null
S [- 1] := "}"
return s

}
else return image(X)

end

undo spurious heuristic

procedure Length(X)
while put(X.a, @X.e)
return *X.a

end

length of X

procedure Read(f)
return Sequenced], create |read(f))

end

sequence from file f

-16-

procedure Red(X, op) # reduction of X over op
local x, y, i
x := Ref_(X, 1) | fail
i : = 1
while y := Ref_(X, i +:= 1) do

x := op(x, y) # op(x.y) may fail, not changing x
X_[1] := &null # undo spurious heuristic
return x

end

procedure Subseq(X, i, j) # subsequence of X from i to j
local e
e := Expr_(X)

return Sequence([], create Post_(create Pre_(e, i - 1),j - i + 1))
end

procedure Trace(X, i) # image of X, returning X
write(lmage(X, i))
return X

end

procedure Write(X) # write elements in X with linefeeds
return Generic_(write, X)

end

procedure Writes(X) # write elements in X without linefeeds
return Generic_(writes, X)

end

17-

Appendix D — Seque Grammar

/ • Seque Translator */

/ * primitive tokens * /

%token CSETLIT E0FX IDENT INTLIT REALLIT STRINGLIT

/ * Seque */

/ * reserved words * /

%token BREAK BY CASE CREATE DEFAULT DO DYNAMIC ELSE END EVERY EXTERNAL
FAIL GLOBAL IF INITIAL LINK LOCAL NEXT NOT OF PROCEDURE RECORD REPEAT
RETURN STATIC SUSPEND THEN TO UNTIL WHILE

/ * new Seque reserved words »/

%token GEN ICON LAMBDA RECUR SEQ

/* operators • /

/ * Seque */

/ * Seque * /

%token ASSIGN AT AUGACT AUGAND AUGEQ AUGEQV AUGGE AUGGT AUGLE AUGLT
AUGNE AUGNEQV AUGSEQ AUGSGE AUGSGT AUGSLE AUGSLT AUGSNE
BACKSLASH BANG BAR CARET CARETASGN COLON COMMA CONCAT
CONCATASGN CONJUNC DIFF DIFFASGN DOT EQUIV INTER INTERASGN LBRACE
LBRACK LCONCAT LCONCATASGN LEXEQ LEXGE LEXGT LEXLE LEXLT LEXNE
LPAREN MCOLON MINUS MINUSASGN MOD MODASGN NOTEQUIV NUMEQ NUMGE
NUMGT NUMLE NUMLT NUMNE PCOLON PLUS PLUSASGN QMARK RBRACE RBRACK
REVASSIGN REVSWAP RPAREN SCANASGN SEMICOL SLASH SLASHASGN STAR
STARASGN SWAP TILDE UNION UNIONASGN

/* new operators * /

%token CARETCARET MODMOD

%{
#define q(x) strcpy(malloc(strlen(x)+1),x)
#define Str(x) q(STR0(x))

extern int tswitch;
extern int rswitch;
extern char *xargs;
extern char *recname;
extern char *argname;

#include "tdefs.h"
#include "itran.h"
#include "sym.h"
#include "tree.h"
#define YYSTYPE nodeptr
#define YYMAXDEPTH 500
#define SEQUEV 0
#define ICONV 1
#define LOOKUP 1
#define NOLOOKUP 0
%}

%%

/ • evaluation context switch * /
/ * recurrence context switch * /
/* recurrence parameters */
/ * recurrence name * /
/ * recurrence variable * /

/* Seque evaluation */
/ * Icon evaluation */
/* recurrence table look up • /
/» no recurrence table look up * /

/» Seque */

/» Seque »/

/* Seque •/
/* Seque */
/» Seque •/
/* Seque »/
/* Seque */

/* Seque */
/* Seque •/
/* Seque */
/* Seque »/

18-

%{
int tswitch =
int rswitch =
int tstack[50]
int stacktop =

SEQUEV;
NOLOOKUP;

= 0;
char »recname;
char »argname;
char *xargs;
%)

program

decls

decl

link

: decls EOFX

: {$$ = Null;}
| decls decl ;

: record ;
1 proc ;
| recur ;
1 global ;
| link ;

: LINK Inklist

/ * Seque/lcon context stack * /

:

'•

{
Link($2);
free($2);
loc_init();
} ;

/* Seque •/
/* Seque */
/* Seque */
/» Seque */
/* Seque •/
/» Seque »/
/* Seque */

/ * Seque »/

Inklist

Inkfile

: Inkfile ;
| Inklist COMMA Inkfile {$$ = Linklist($1, $3);} ;

: IDENT {$$ = Linkident($1);} ;
| STRINGLIT {$$ = Linkstring($1);} ;

global : GLOBAL idlist {
Global ($2);
free($2);
} ;

I EXTERNAL idlist {
External ($2);
free($2);
} ;

record : RECORD IDENT LPAREN arglist RPAREN
Record ($2, $4);
free($4);
locJnit();
} ;

proc : prochead SEMICOL locals initial procbody END {
Proc($1,$3,$4, $5);
free($1);
free($3)
free($4)
free($5)
treeinit();
loc_init();
} ;

prochead : ptype IDENT LPAREN arglist RPAREN [$$ = Prochead($2, $4);}

ptype : PROCEDURE {tswitch = SEQUEV;} ;
I ICON PROCEDURE {tswitch = ICONV;} ;

/ * Seque »/

/» Seque »/
/ • Seque * /

19-

arglist

idlist

locals

retention

initial

p rocbody

rarg

recurh

xarglist

ispec

slist

rinit

nexpr

{$$ = Null;} ;
idlist ;

IDENT {$$ = ldent($1);} ;
idlist COMMA IDENT {$$ = ldlist($1,$3);} ;

{$$ = Null;} ;
locals retention idlist SEMICOL {$$ = Locals($1, $2, $3);} ;

LOCAL {$$ = Local;} ;
STATIC {$$ = Static;} ;
DYNAMIC {$$ = Dynamic;} ;

{$$ = Null;} ;
INITIAL expr SEMICOL {$$ = lnitial($2);} ;

{$$ = Null;} ;
nexpr SEMICOL procbody {$$ = Procbody($1, $3);} ;

recurh LPAREN rarg xarglist ispec SEMICOL expr SEMICOL END {
Recur($1,$3, $4, $5, $7);
free($4); /» free allocated strings */
free($5);
free($7);
treeinit();
locJnit();
tswitch = SEQUEV;
rswitch = NOLOOKUP;
recname = "";
argname = "";
xargs = "";
} ;

IDENT SEMICOL {
argname = Str($1);
$$ = $1;

} ;
RECUR IDENT {

tswitch = ICONV;
rswitch = LOOKUP;
recname = Str($2);
$$ = $2;

SEMICOL {$$ = Null;} ;
idlist SEMICOL {

xargs = $1;
$$ = $1;

} ;

nexpr SEMICOL slist RPAREN {$$ = lspec($1, $3);} ;

{$$ = Null;} ;
rinit ;
rinit COMMA slist {$$ = Slist($1, $3);} ;

expr {$$ = Rinit($1);} ;

{$$ = Null;} ;
expr ;

Seque
Seque
Seque
Seque
Seque
Seque
Seque
Seque
Seque
Seque
Seque
Seque
Seque

Seque
Seque
Seque
Seque
Seque
Seque
Seque
Seque
Seque
Seque

Seque
Seque
Seque
Seque
Seque

Seque

Seque
Seque
Seque

/ * Seque * /

expr exprla ;
expr CONJUNC exprla {$$ = Bamper($1, $3);} ;

-20-

expri a : expri ;
| exprla QMARK expri {$$ = Bques($1, $3);} ;

expri : expr2 ;
| expr2 SWAP expri {$$ = Bswap($1, $3);} ;
I expr2 ASSIGN expri {$$ = Bassgn($1, $3);} ;
| expr2 REVSWAP expri {$$ = Brswap($1,$3);} ;
| expr2 REVASSIGN expri {$$ = Brassgn($1,$3);} ;
| expr2 DIFFASGN expri {$$ = Bdiffa($1, $3);} ;
| expr2 UNIONASGN expri {$$ = Buniona($1, $3);} ;
| expr2 PLUSASGN expri {$$ = Bplusa($1, $3);} ;
| expr2 MINUSASGN expri {$$ = Bminusa($1,$3);} ;
| expr2 STARASGN expri {$$ = Bstara($1, $3);} ;
| expr2 INTERASGN expri {$$ = Bintera($1,$3);} ;
I expr2 SLASHASGN expri {$$ = Bslasha($1, $3);} ;
| expr2 MODASGN expri {$$ = Bmoda($1, $3);} ;
| expr2 CARETASGN expri {$$ = Bcareta($1,$3);} ;
| expr2 AUGEQ expri {$$ = Bauqeq($1, $3);} ;
| expr2 AUGEQV expri {$$ = Baugeqv($1, $3);} ;
| expr2 AUGGE expri {$$ = Baugge($1,$3);} ;
| expr2 AUGGT expri {$$ = Bauggt($1,$3);) ;
| expr2 AUGLE expri {$$ = Baugle($1, $3);} ;
I expr2 AUGLT expri {$$ = Bauglt($1, $3);} ;
| expr2 AUGNE expri {$$ = Baugne($1, $3);} ;
| expr2 AUGNEQV expri {$$ = Baugneqv($1,$3);} ;
I expr2 AUGSEQ expri {$$ = Baugseq($1, $3);} ;
| expr2 AUGSGE expri {$$ = Baugsge($1, $3);} ;
| expr2 AUGSGT expri {$$ = Baugsgt($1,$3);} ;
I expr2 AUGSLE expri {$$ = Baugsle($1,$3);] ;
| expr2 AUGSLT expri {$$ = Baugslt($1, $3);] ;
| expr2 AUGSNE expri {$$ = Baugsne($1,$3);j ;
| expr2 CONCATASGN expri {$$ = Baugcat($1, $3);} ;
| expr2 LCONCATASGN expri {$$ = Bauglcat($1, $3);}
| expr2 SCANASGN expri {$$ = Baugques($1, $3);} ;
I expr2 AUGAND expri {$$ = Baugamper($1, $3);} ;
| expr2 AUGACT expri {$$ = Baugact($1,$3);} ;

expr2 : expr3 ;
| expr2 TO expr3 {$$ = To2($1,$3);} ;
I expr2 TO expr3 BY expr3 {$$ = To3($1,$3, $5);} ;

expr3 : expr4 ;
| expr4 BAR expr3 {$$ = Alt($1,$3);} ;

expr4 : expr5 ;
I expr4 LEXEQ expr5 {$$ = Bseq($1, $3);} ;
I expr4 LEXGE expr5 {$$ = Bsge($1, $3);} ;
| expr4 LEXGT expr5 {$$ = Bsgt($1,$3);} ;
I expr4 LEXLE expr5 {$$ = Bsle($1, $3);} ;
I expr4 LEXLT expr5 {$$ = Bslt($1,$3);} ;
I expr4 LEXNE expr5 {$$ = Bsne($1,$3);} ;
I expr4 NUMEQ expr5 {$$ = Beq($1,$3);} ;
I expr4 NUMGE expr5 {$$ = Bge($1,$3);} ;
I expr4 NUMGT expr5 {$$ = Bgt($1,$3);} ;
I expr4 NUMLE expr5 {$$ = Ble($1,$3);} ;
I expr4 NUMLT expr5 {$$ = Blt($1,$3);} ;
I expr4 NUMNE expr5 {$$ = Bne($1,$3);} ;
I expr4 EQUIV expr5 {$$ = Beqv($1, $3);} ;
I expr4 NOTEQUIV expr5 {$$ = Bneqv($1, $3);} ;

expr5 : expr6 ;
| expr5 CONCAT expr6 {$$ = Bcat($1, $3);} ;
I expr5 LCONCAT expr6 {$$ = Blcat($1, $3);} ;

- 2 1 -

expr6

expr7

expr8

expr9

exprlO

expMOa

expr7 ;
expr6 PLUS expr7 {$$ = Bplus($1, $3);} ;
expr6 DIFF expr7 {$$ = Bdiff($1,$3);} ;
expr6 UNION expr7 {$$ = Bunion($1,$3);} ;
expr6 MINUS expr7 {$$ = Bminus($1, $3);} ;

expr8 ;
expr7 STAR expr8 {$$ = Bstar($1,$3);} ;
expr7 INTER expr8 {$$ = Binter($1, $3);} ;
expr7 SLASH expr8 {$$ = Bslash($1,$3);} ;
expr7 MOD expr8 {$$ = Bmod($1, $3);} ;
expr7 MODMOD expr8 {$$ = Shift2($1,$3);} ;

expr9 ;
expr9 CARET expr8 {$$ = Bcaret($1, $3);} ;
expr9 CARETCARET expr8 {$$ = Limit($1, $3);} ;

exprlO ;
expr9 BACKSLASH exprlO {$$ = Blim($1,$3);} ;
expr9 AT exprlO {$$ = Bact($1,$3);} ;

exprlOa ;
AT expMO {$$ = Uat($2);} ;
MOD exprlO {$$ = Shiftl ($2);} ;
MODMOD exprlO {$$ = Shiftl (Shiftl ($2));} ;
NOT exprlO {$$ = Not($2);} ;
BAR exprlO {$$ = Ubar($2);) ;
CONCAT expMO {$$ = Ubar(Ubar($2));} ;
LCONCAT exprlO {$$ = Ubar(Ubar(Ubar($2)));} ;
DOT exprlO {$$ = Udot($2);} ;
BANG exprlO {$$ = Ubang($2);} ;
DIFF exprlO {$$ = Uminus(Uminus($2));} ;
PLUS expMO {$$ = Uplus($2);} ;
STAR exprlO {$$ = Ustar($2);} ;
SLASH exprlO {$$ = Uslash($2);} ;
CARET exprlO {$$ = Ucaret($2);} ;
CARETCARET exprlO {$$ = Ucaret(Ucaret($2));} ;
INTER expMO {$$ = Ustar(Ustar($2));} ;
TILDE expMO {$$ = Utilde($2);} ;
MINUS exprlO {$$ = Uminus($2);} ;
NUMEQ exprlO {$$ = Ueq($2);} ;
NUMNE exprlO {$$ = Utilde(Ueq($2));} ;
LEXEQ expMO {$$ = Ueq(Ueq($2));} ;
LEXNE exprlO {$$ = Utilde(Ueq(Ueq($2)));} ;
EQUIV exprlO {$$ = Ueq(Ueq(Ueq($2)));} ;
UNION exprlO {$$ = Uplus(Uplus($2));} ;
QMARK expMO {$$ = Uques($2);} ;
NOTEQUIV exprlO {$$ = Utilde(Ueq(Ueq(Ueq($2))));
BACKSLASH exprlO {$$ = Ubacksl($2);} ;

expr11
exprlOa BANG expr11 {$$ = Refer($1,$3);} ;

/ • Seque »/

/ • Seque »/

/ * Seque * /

/ * Seque • /
/ * Seque »/

/ * Seque »/

/» Seque */
/» Seque * /

•22-

exprl1 : literal ;
| section ;
| return ;
I if ;
I case ;
| while ;
| until ;
I every ;
| repeat ;
| CREATE expr {$$ = Create($2);} ;
| IDENT {$$ = ldmap($1);} ;
I NEXT {$$ = Next;} ;
| BREAK nexpr {$$ = Break($2);} ;
| LPAREN exprlist RPAREN {$$ = Paren($2);} ;
I SEQ LBRACE RBRACE {$$ = Phi;} ;
| seqhead seqlist RBRACE {

$$ = Seq($2);
tswitch = pops();
rswitch = pops();
} ;

| LBRACE compound RBRACE {$$ = Brace($2);} ;
| LBRACK exprlist RBRACK {$$ = Bracket($2);} ;
| genhl expr RBRACE {

$$ = Seq($2);
tswitch = pops();
} ;

| genh2 xseq lambda expr RBRACK {
$$ = Gener($2, $3, $4);
tswitch = pops();
rswitch = pops();
} ;

| exprll LBRACK expr RBRACK {$$ = Subscr($1, $3);} ;
| exprl 1 LBRACE exprlist RBRACE {$$ = Pdco($1,$3);} ;
| exprll LPAREN exprlist RPAREN {$$ = lnvoke($1, $3);}
| exprll DOT IDENT {$$ = Field($1, $3);} ;
| CONJUNC FAIL {$$ = Kfail;} ;
I CONJUNC IDENT {$$ - Keyword($2);} ;

/* Seque */

/* Seque »/
/* Seque »/
/* Seque */
/» Seque »/
/» Seque «/
/* Seque «/

/* Seque */
/* Seque */
/» Seque */
/» Seque */
/* Seque */
/* Seque */
/• Seque »/
/* Seque */
/* Seque */

while WHILE expr {$$ = While1($2);} ;
WHILE expr DO expr {$$ = While2($2, $4);} ;

until : UNTIL expr {$$ = Until1($2);} ;
| UNTIL expr DO expr {$$ = Until2($2.$4);} ;

every : EVERY expr {$$ = Every1($2);} ;
I EVERY expr DO expr {$$ = Every2($2,$4);} ;

repeat : REPEAT expr {$$ = Repeat($2);} ;

return : FAIL {$$ = Fail;} ;
| RETURN nexpr {$$ = Return($2);} ;
I SUSPEND nexpr {$$ = Suspend($2);} ;

if : IF expr THEN expr {$$ = If2($2,$4);} ;

I IF expr THEN expr ELSE expr {$$ = If3($2, $4, $6);} ;

case : CASE expr OF LBRACE caselist RBRACE {$$ = Case($2, $5);

caselist : cclause ;
| caselist SEMICOL cclause {$$ = Clist($1, $3);) ;

cclause : DEFAULT COLON expr {$$ = Default($3);} ;
I expr COLON expr ($$ = Cclause($1, $3);} ;

•23-

exprlist

literal

section

compound

seqhead

snexpr

seqlist

genhl

genh2

xseq

lambda

nexpr (Null;) ;
exprlist COMMA nexpr {$$ = Exprlist($1,$3);} ;

INTLIT {$$ = lliter($1);} ;
REALLIT {$$ = Rliter($1);} ;
STRINGLIT {$$ = Sliter($1);} ;
CSETLIT {$$ = Cliter($1);} ;

expr l l LBRACK expr COLON expr RBRACK {$$ = Sect($1,$3, $5);} ;
expr l l LBRACK expr PCOLON expr RBRACK {$$ = Psect($1, $3, $5);} ;
expr l l LBRACK expr MCOLON expr RBRACK {$$ = Msect($1, $3, $5);} ;

nexpr ;
nexpr SEMICOL compound {$$ = Semi($1, $3);} ;

SEQ LBRACE { / * Seque • /
pushs(rswitch); /» Seque • /
pushs(tswitch); / * Seque »/
tswitch = SEQUEV; / • Seque */
rswitch = NOLOOKUP; / • Seque . /
} ; / . Seque * /

{$$ = Nullkey;} ; /» Seque »/
expr {$$ = Lone($1);} ; / * Seque »/

snexpr; / * Seque */
seqlist COMMA snexpr {$$ = Alt($1,$3);} ; /» Seque */

GEN LBRACE { / • Seque • /
pushs(tswitch); /» Seque * /
tswitch = ICONV; /» Seque * /
} ; /» Seque * /

GEN LBRACK { / • Seque */
pushs(rswitch); / * Seque */
pushs(tswitch); /» Seque »/
tswitch = SEQUEV; / * Seque * /
rswitch = NOLOOKUP; / * Seque »/
} ; / * Seque »/

{$$ = Defseq;) ; / * Seque */
COLON expr COLON {$$ = $2;} ; / * Seque * /

{$$ = Defvar;} ; / * Seque * /
LAMBDA LPAREN IDENT RPAREN {$$ = ldent($3);} ; / * Seque */

program
proc
expr
%%
#include "cater.c"
#include "ulibe.c"

error decls EOFX ;
prochead error procbody END
error ;

/ * string concatenation * /
/ * Seque parser functions »/ / * Seque */

24-

Appendix E — Specifications for Translator Macros

Proc(x, y, z, w)
lnvoke(x, y)

Defseq
Defvar
lspec(x, y)
Limit(x.y)
Lone(x)
Nullkey
Phi
Refer(x, y)
Rinit(x)
Seq(x)
Shift1(x)
Shift2(x, y)
Slist(x.y)
<bop>(x, y)
<uop>x

remove macro definitions in f avor of fun

new macro definitions for Seque

"Iplus"
" i "
"m_ := table("
"Lim_(("
"("
"&null"
".Phi"
"Ref_(("
"suspend m_["
"Sequence([], create "
"Shift_(("
"Shift_(("
x
Binop(x, <bop>, y)
Unop(<uop>, x)

X

X

X

X

Vrep()
X

X

X

" \ n "

ctions

") \ n "
") \ \ 1 , "
") \ \ 1"

") \ \ 1, "
"] := "

")"
") \ \ 1,1)"
") \ \ 1 , "
y

y
y

y
X

y

25-

Appendix F — Parser Functions

char *Binop(x, y,z) / • translate binary operation * /
char »x, »y, *z;
{
if (tswitch = SEQUEV)

return cat(q("Binop_(Y"').y.q("Y'. ("),x,q(") \ \ 1,("),z,q(") \ \ 1)"));
else return cat(x, q(" ") ,y, q(" "),z);
}

char *Gener(x, y, z) / * translate Seque generator * /
char *x, »y, *z;

{
return cat(q("Sequence(Q, create (Pp_() &\n") ,y ,q(" := Gen_("),

x,q(") & 1(Gen_("),z,q("),Qq_())))"));
}

char »ldmap(x) /* translate reference to identifier • /
{
char *s;
s = Str(x);
if (strcmp(s, "Iplus") = 0) return q(".lplus");
else if (strcmp(s, "Izero") = 0) return q(".lzero");
else if (strcmp(s, "Phi") = 0) return q(".Phi");
else return s;
}

char *lnvoke(x,y) / * translate function call */
char »x, *y;
{
if ((rswitch = LOOKUP) && (strcmp(x, recname) = 0) && (strcmp(xargs,"") = 0))

return cat(q("m_["), y, q("]"));
else if ((rswitch = LOOKUP) && (strcmp(x, recname) = 0) && (strcmp(xargs,"") != 0))

return cat(q("m_[C_(["), y, q(*'])]"));
else if ((tswitch = SEQUEV) && (x[0] >= 'a' && x[0] <= 'z'))

return cat(q("P_(["),x,q(", ") .y ,q("] \ \ 1)"));
else return cat(x,q("("),y,q(")"));

char »Proc(x, y,z, w) /* translate procedure declaration »/
char »x, »y, »z, »w;

{
if (strncmp(x, "procedure main(", 15) = 0) {

printf("link \ " /usr / icon/ ib in /seql ibe\" \n \n") ;
printf("%s;\n%s%s", x, y, z);
printf("Undef_ := Undef()\n");
printf("X_ := D\n");
printf("lplus := Sequence([], create seq(1))\n");
printf("lzero := Sequenced], create seq(0))\n");
printf("Phi := Sequence(Q, create &fail)\n");
printf("%send\n", w);

}
else printf("%s;\n%s%s%send\n", x, y, z, w);
}

26-

j char *Recur(x, y, z, u, v) /* translate recurrence declaration * /
char »x, *y, *z, »u, »v;

i «
t printf("procedure %s(%s)\n", x, z);

printf("local %s, m_\n",y);
printf("%s := 0\n", y);
printf("%s\n", u);
if (strcmp(z,"") = 0) printf("suspend m_[%s +:= |1] := %s\n", y, v);
else printf("suspend m_[C_([%s +:= |1,%s])] := %s\n",y, z, v);
printf("end\n");
}

char *Unop(x, y) /* translate unary operation * /
char *x, *y;
{
if (tswitch = SEQUEV) return cat(q("Unop-(\""),x,q("\", ("),y,q(") \ \ 1)"));
else return cat(x, y);
}

char *Vrep() /* translate recurrence initialization * /
{
if (strcmp(xargs,"") = 0) return cat(q(argname),q(" +:= 1"));

\ else return cat(q("C_(["),q(argname),q(" +:= 1, "),q(xargs),q("])"));
! }
i
I pushs(i) /* push i on evaluation context stack »/
i int i;

P {
I tstack[++stacktop] = i;

pops() /* pop value from evaluation context stack * /
i {

int i;
i = tstack[stacktop—];
return i;

f }
r
I
f

27-

