Understanding Pattern Matching —
A Cinematic Display of String Scanning*

Ralph E. Griswold

TR 83-14a

October 22, 1983; Revised February 28, 1984

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant MCS81-01916.

Understanding Pattern Matching —
A Cinematic Display of String Scanning

1. Introduction

String pattern matching in the style of SNOBOLA4 is easy to understand in a general, intuitive way. This
accounts for the ease with which it can be learned and used. However, the actual process by which pattern
matching takes place is generally poorly understood. Consequently. the implementation of pattern matching
traditionally has been ad hoc and generalizations and extensions to it have been inhibited.

There have been numerous approaches to describing pattern matching, including “bead diagrams™ [1],
cursor-position transformations [2], formal algebraic models [3). denotational semantics [4, 5]. axiomatic
semantics [6], as well as implementation models [7-10].

These approaches have been useful in explicating pattern matching, but none of them has been entirely
successful in providing the programmer or implementor with a clear understanding of the pattern-matching
process.

The report describes a program that produces a “cinematic” display of pattern matching in which the user
can watch the process as it takes place, step by step, and observe both the details and the dynamics of the pro-
cess.

This program supports Icon string scanning and SNOBOL4-style pattern matching. It adds a new dimen-
sion to Icon with unanchored string scanning, in which the scan need not start at the beginning of the subject.
A number of extensions are provided to the standard SNOBOL4 repertoire. In addition, all of the control
structures of Icon can be used in conjunction with pattern matching. Thus this program can be used for the
experimental development of new pattern-matching facilities.

The internals of this program are also described, showing how pattern matching is implemented.

The specific focus for this material is string scanning in Icon rather than pattern matching in SNOBOLA4.
Icon string scanning is somewhat more general that SNOBOL4 pattern matching, and SNOBOL4 pattern
matching is easy to model in Icon [11-13). The reader should be familiar with SNOBOL4[1]and Icon[14]in
order to understand the material that follows.

2. String Scanning States
A string scanning expression has the form

expr, ? expr,
P P,

where expr, provides a subject that is processed by expr,. The order of evaluation can be expressed in terms of
a state diagram:

In this diagram, E is the initial state, corresponding to the initiation of evaluation of the scanning expression,
el and e2 represent the evaluation of expr, and expr,, respectively, and s and f indicate the success and failure
of evaluation, respectively. F indicates a terminal state in which the scanning expression has failed, while S
indicates a quasi-terminal state in which the scanning expression has succeeded and produced a value. Sisa
state of suspension. The dashed arrow indicates that the scanning expression may be resumed by an enclosing
expression in order to produce another result. Note that 1 and €2 can be resumed to produce additional
results.

Consider the following simple example:
“abc” ? move(2)

The evaluation of expr, succeeds and produces abc. The evaluation of expr, also succeeds and produces ab.
The state sequence is E-e1-e2-S.

On the other hand. the expression
“abc” ? move(4)

fails. with the state sequence E-e1-e2-e1-F. Note that when e2 fails, e1 is resumed. It then fails, since "abc”
can produce only one result.
These two examples represent the commonest situations in pattern matching: the success or failure of
expr,. There are many other possibilities. For example, expr, may fail initially. as in
("ABC"” >> "abc"”) ? move(2)

which has the state sequence E-e1-F. A more interesting situation occurs if expr, can produce more than one
result, as in

("abc” | "defgh”) ? move(4)
The state sequence here is E-e1-e2-e1-2-S, since the resumption of expr, produces defgh. which is matched
by move(4).
The significance of an expression that encloses a scanning expression is illustrated by

("abc” ? move(2)) == "de”

Here the left argument of the comparison is the same as for the first example in this section. The state
sequence is E-e1-e2-S-e2-e1-F, since the comparison of ab with de fails, causing expr, to be resumed. ulti-
mately leading to the failure of the entire expression.

Failure of a scanning expression does not necessarily mean that the expression does no useful computa-
tion. Consider

every write("abc” ? move(1 to 3))

This expression writes a. ab, and abc. Its state sequence is E-e1-2-S-e2-S-e2-S-e2-e1-F.

3. A Cinematic Display

State sequences only describe part of string scanning. What is lacking is the subject, the position in it at
which matching is taking place, and the value that is produced. This information. together with the state, is
referred to as the sratus of string scanning. While this information can be presented in a linear or tabular
form, the dynamics of the process are easier to grasp if the information is displayed pictorially, with the status
changing as string scanning process takes place.

The program Cinema executes an Icon program and produces a display of string scanning. The display is
two-dimensional and screen-oriented, with windows as shown below:

scanning status

program text

input;output

The text of the program itself is displayed on the left side of the screen. Because of the limited space available,
program lines are truncated at 50 characters and only the first 24 lines are shown.

The top right portion of the screen is a status window, which contains of five pieces of information:
I. the state of expression evaluation
2. the subject of scanning
3. the initial cursor position
4. the scanning cursor position
5. the portion of the subject that has been matched.

The initial cursor position is always | in Icon, but may change in SNOBOL4 in the unanchored mode of pat-
tern matching (See Section 4.1). The initial cursor position is included here to allow Cinema to be used for
studving SNOBOL 4 pattern matching.

The portion of the subject that has been matched is between the initial and scanning cursor positions. and
is highlighted in the status window®. The initial cursor is shown as |, while the scanning cursor is shown as A.
For example, in the expression

"abc” ? move(2)
the status when state S is reached is shown as

*The method used for highlighting is dependent on terminal characteristics. In this report. it is shown as underlining,
which 1s the highlighting method used for the DataMedia 3045,

S "abc”

| A

Note that the cursors are displayed to the left of corresponding characters in the subject. There is no practical
way to display them between the characters of the subject on a terminal screen. For example, the screen at the

completion of

"abc” ? move(2)

procedure main() S "abc”
"abc” 7 move(2) P oA
end

The lower right portion of the screen is reserved for user input and output. For example, the screen at the
completion of

"abc" ? write(move(2))

procedure main() S ‘“gbe”
“"abc” ? write(move(2)) [A
end

ab

Since there may be many scanning operators in a program, it is important to be able to determine the
operator that is currently being evaluated. This is done by highlighting the active scanning operator in the
program display on the left side of the screen. Consider

"test” ? (move(2) ? tab(upto('aeiou’)))

_Evaluating expr, for the left scanning operator involves evaluating the right scanning operator. At the comple-
tion of move(2) , the display is

procedure main() el “test”
"test” ? (move(2) 2 tab(upto('aeiou’))) A
end
e2 "te"

Note that in nested scanning such as this, there is a status window for each scanning operator that is active or
suspended.

When Cinema is running, the screen changes as string scanning progresses, providing a “motion picture”
of the dynamically changing status. This gives an overall view of the dynamics of string scanning and is partic-
ularly useful for observing backtracking and the combinatorial nature of many scanning expressions.

To study a particular aspect of pattern matching. however, a “slow motion” single-step mode is provided.
If the value of identifier Single is 1, the display stops every time the state changes and proceeds only after a
carriage return by the user. The value of Single can be changed during program execution, as in

every expr, ? (Single <— 1, expr,, Single <— 0, expr;)

which single steps during the evaluation of expr, but not during the evaluation of expr;.

4. SNOBOLJ Pattern Matching

In earlier work [13], SNOBOL4 patterns were implemented using lcon procedures. For example, the
SNOBOLA4 pattern ARB is implemented by an Icon procedure Arb(). and so on. Initial uppercase letters are
used to distinguish these procedures from the actual patterns of SNOBOL4. Using these procedures, a SNO-
BOL4 pattern-matching statement such as

s ? LEN(3) BAL $ OUTPUT

can be castin Icon as

s ? Len(3) || write(Bal())

The complete collection of pattern-matching procedures is contained in the Icon program library [15]. These
procedures are available in Cinema. A library manual page that describes these procedures is included as
Appendix A to this report and a listing of the relevant procedures is given in Appendix B.

4.1 The Unanchored Mode

In the unanchored mode of pattern matching in SNOBOLA4, if evaluation of expr, fails, the initial cursor
position is incremented and expr, is evaluated again. This adds another state to the state diagram for pattern
matching:

Evaluation in state m fails if the initial cursor position is at the end of the subject.
The unanchored mode of pattern matching is set by assigning the value 0 to Anchor®. For example,

Anchor =0
s ? Len(3) || write(Bal())

performs the previous pattern match in the unanchored mode. The unanchored mode also can be used in con-
junction with Icon string scanning, as in

Anchor ;= 0
every "abc” ? write(move(2))
which writes ab and bc.

The default mode is anchored (which is different from the default in SNOBOQL4). The value of Anchoris
tested at the first evaluation of expr, and remains in effect for subsequent resumptions of expr,. If its value is
changed, the change does not take effect until the next evaluarion of expr,.

5. Running Cinema
Cinemais run by
Cinema [options] file
where file is the name of an lcon program (ending in .icn).

Cinema translates. links, and executes file, producing the cinematic display described in the preceding sec-
tions.

“This 1s slightly different from the technique used if the procedures are used outside of Cinema. The pattern-matching
procedures in the library can be used without modification, however.

The available options are:
-u Set Anchor to 0 initially (unanchored mode)
-s Set Singleto | initially (single-step mode)

The defaults are anchored and not single stepped.

6. Suggested Exercises

The following short programs are suggested as exercises. None of them performs any significant computa-
tion and some of them are pathological, but they test understanding of the pattern-matching process. The
reader should examine each program first to determine what it does and then run it under Cinema. It is
instructive to run the programs in both the anchored and unanchored modes.

Program 1:

procedure main()

s = "This is a test”
s ? (tab(1 to 10) & tab(any('aeiou’)))
end

Program 2:

procedure main()

s = "This is a test”

s 7 (tab(1 to 10) & tab(upto(‘aeiou’)))
end

Program 3:

procedure main()

s = "This is a test”

every s ? (tab(1 to 10) & tab(any('aeiou’)))
end

Program 4:

procedure main|{)

s ;= "This is a test”

every s ? (tab(1 to 10) & tab(upto(‘aeiou’)))
end

Program §:

procedure main()
s ;= "This is a test”
every s ? tab(1 to 4) ?
tab(1 to 4)
end

Program 6:

procedure main()

s ;= "This is a test”
every s ? (tab(upto('aeiou’)) & move(1 to 3))
end

Program 7:

procedure main()

s = "This is a test”
every s ? (tab(upto(‘aeiou’)) ? move(1 to 3))
end
Program 8:
procedure main()
s := "This is a test”
every s ? Break('aeiou’)
end
Program 9:

procedure main()
s = "This is a test”
every s 7 Breakx(‘aeiou’)
end

Program 10:

procedure main()
s = "This is a test”
every s ? Arb()

end

Program 11:

procedure main()
s = "This is a test”
every (s 7 Arb()) ? Arb()
end

Program 12:

procedure main()
§ = "(x+y)eZ”
every s ? Bal()
end

Program 13:

procedure main()

5 = "(x+y)s2"”

every (s 7?7 Bal()) ? Bal{()
end

Program 14:

procedure main()

§ = "(x+y)s2"
every s ? (Bal() ? Bal())
end

7. The Implementation of Cinema

7.1 String Scanning

There are two parts to the implementation of string scanning: the scanning control structure itself and
scanning operations that apply to the subject at the scanning cursor position. These two parts are treated
separately in the following sections.

7.1.1 The Scanning Control Structure
The expression
expr; ? expr,

is a control structure and its evaluation differs from that of functions and operations. In particular, &subject
is set to the value produced by the evaluation of expr, before expr, is evaluated. Consequently, the scanning
control structure cannot be modeled simply by a procedure call. Instead. the scanning control structure is
implemented as a programmer-defined control operation [16]. A preprocessor converts all instances of

expr; ? expr,
into
Scan(create expr,, create expr,)

Consequently, when Scan is invoked, expr, and expr, are not evaluated before the procedure gains control.

In order to understand string scanning, it is instructive to look at a simple model first. This model shows
how the state diagram for string scanning is reflected in a procedure, but it does not save the valdes of &sub-
ject and &pos. Therefore it can be used for simple string scanning but not for nested scanning expressions.
The procedure Scan for this simple model is:

procedure Scan(el, e2)

local value
state E
while &subject = @e1 do { # state el
&pos = 1
while value = @e2 do # state e2
suspend value # state S
e2 = Ae2
}
fail # state F

end

where Scan is called as shown above. Thus. e1is a co-expression for expr;. This co-expression is repeatedly
activated to produce new values for &subject. For each new value of &subject. &pos is set to 1. This is
redundant, since assignment to &subject in Icon automatically sets &pos to 1, but it is included for clarity.
Next €2, the co-expression for expr,. is refreshed. This is unnecessary the first time through the loop. but is
required for subsequent iterations. In the inner loop, the co-expression for expr, is repeatedly activated to per-
form the scanning. The procedure suspends for each value produced When activation of the co-expression for
expr, fails, the outer loop continues by activating the co-expression for expr,. When this loop terminates,
Scan fails.

In order to allow nested scanning, it is necessary to add code to this procedure to save and restore the
values of &subject and &pos at appropriate places. This requires a thorough understanding of string scan-
ning and what may occur in complex nested scanning expressions, The procedure is:

procedure Scan(el, e2)
local nsubject, value
local subjectl, posi
local subject2, pos2, xpos
while nsubject ;= @e1 do {

subject1 := &subject
pos1 = pos2 = &pos
&subject := nsubject
&pos = 1
repeat {
subject2 := subject1
pos2 .= pos1

value = @e2 | break
Xpos = &pos
&subject :=: subject2
pos2 :=. xpos
&pos = xpos
suspend value
&subject := subject2
&pos = pos2
e2 = ne2
}

&subject = subjecti

&pos = pos1

}

fail
end

H* N R

* %

get a new subject

save &subject

and &pos

now set the new values

save &pos before changing &subject
swap subject values

swap cursor values

now set &pos

restore &subject

and &pos

restore &subject for outer loop
and &pos

It is important to note that the evaluation of expr, may change &subject and &pos outside the scanning

expression. This occurs in situations such as

text ? (tab(many(wchar)) ? write(tab(upto(vowel))))

where expr, for the right scanning expression is obtained by scanning the subject in the left scanning expres-
sion. On the other hand. evaluation of expr, must not change &subject or &pos in an outer scanning expres-
sion. Consequently, &subjectand &pos must be saved before €2 is activated and restored after it returns.

A dodge is necessary in saving and restoring &pos in the inner loop. since assignment to &subject
automatically sets &posto . The local identifier Xxpos is used as an alternate value for &pos.

" Introducing the unanchored mode adds another loop. The general version of Scan that supports unan-
chored pattern matching follows. Additions for handling the initial cursor are marked by #s.

-10-

global Anchor #

procedure Scan(el, e2)

local nsubject, value

local subject1, pos1

local subject2, pos2, xpos

while nsubject := @e1 do |
subject1 = &subject
post = &pos
&subject := nsubject

every &pos = 1 to maxpos() do { #
repeat {
subject2 := subject1
pos2 = pos1i

value = @e2 | break
Xpos = &pos
&subject :=: subject2
pos2 :=: xpos
&pos = xpos
suspend value
&subject := subject2

&pos = pos2
}
e2 = Ae2
} #
&subject ;= subject
&pos = posi
}
fail
end
procedure maxpos() #
return if Anchor == 0 then =&subject + 1 else 1 #
end #

General object comparison is used for testing the value of Anchor in maxpos. This allows Anchor not to be
set at all by programs that operate in the anchored mode.

7.1.2 Displaying Scanning

In order to display scanning, it is necessary to add calls to procedures that maintain the windows of the
display to the scanning procedure. There are eight procedures involved:

decrl() decrement display level

incri() increment display level

init() initialize the display

newwin() create a new status window

state(s) write the state s in the current status window

snapshot() write &subject. &pos. and the initial cursor position in the current status window and
highlight the portion of &subject between initial cursor position and &pos

mark(loc) highlight the scanning operator at the location loc

-1 -

unmark(loc) remove highlighting from the scanning operator at the location loc

The location of the current scanning operator is given by the global identifier Loc, which is a list contain-
ing the row and column positions of the operator in the program. This information is provided by the prepro-
cessor, which translates

expr, 7 expr,
into
{Loc := [i,j]: Scan(create expr, create expn)}

where i and j are the column and line numbers. Thus, when Scan is called. Loc has the required position
information.

The identifier ipos, whose value is the initial cursor position, is added for use by the display procedures.

The procedure Scan with calls to hte display procedures follows. Additions for handling the display are
marked by #s.

global Anchor
global Loc, ipos #

procedure Scan(el, e2)
local nsubject, value
local subjectl, pos2, ipos1
local subject2, pos2, ipos2
local loc, ipos2
initial {
init()
ipos = 1
}
incri()
loc = Loc
newwin()
mark(loc)
state("E")
repeat {
state("e1”)
unmark(loc)
nsubject ;= @e1 | break
mark(loc) #
subject1 ;= &subject
posl = &pos
ipos1 = ipos #
&subject := nsubject
snapshot() #
state("m"”) #

B I R N A

* #®

-12-

every &pos = ipos := 1 to maxpos() do { #

snapshot() #
repeat {
state("e2") #
unmark(loc) #
subject2 := subject1
pos2 = pos1

ipos2 := ipost
value = @e2 | break

mark(loc) #
state(”S") #
snapshot() #
decri() #
Xpos = &pos
&subject :=: subject2
pos2 :=: xpos
ipos2 :=: ipos #
&pos = xpos
unmark(loc) #
suspend value
mark(loc) #
&subject = subject2
&pos = pos2
ipos = ipos2 #
incrl() #
}
e2 = Ae2
}
&subject = subject1
&pos := posi
ipos = ipost #
}
state("F") #
decri() #
unmark(loc) #
fail
end

Note the preponderance of programs lines related to the display.

The display procedures themselves have no direct relation to string scanning, but they are listed in Appen-
dix Cfor reference. The Cinema program itself is listed in Appendix D.

7.2 Scanning Operations

The built-in scanning operations do not participate in the display and can be used without modification in
Cinema. Appendix A illustrates programmer-defined scanning operations cast in the style of SNOBOLJ. See
[12] for examples of other programmer-defined scanning operations. Most of these are simple and use the
built-in matching functions of Icon. Thus Len(i) is simply

procedure Len(i)
suspend move(i)
end

The screen display is not affected by the evaluation of a scanning operation such as move(i). Instead.
move(i) changes the value of &pos and this is reflected in the display when Scan gets control again — only
Scan updates the display. This normally provides enough detail, but the display procedures also can be called

-13-

from programmer-defined scanning operations. The two relevant procedures are state(s) and snapshot().

For example, calls to display procedures could be added to Len(i) as follows:

procedure Len(i)
local s
s := State
suspend 2(state("Len"), move(i), snapshot(), state(s))
state(s)
end

The state display is changed to Len and if move(i) succeeds. snapshot() reflects its effect on &pos. The glo-
bal identifier State contains the last displayed state. It is saved in the procedure above so that it can be restore
before Len(i) returns.

Display states are truncated at three characters because of the limited space in the status window.

Acknowledgement

Dave Hanson, Bill Mitchell. and Steve Wampler made a number of helpful suggestions on the presenta-

tion of the material in this report.

References

1.

Griswold, Ralph E., James F. Poage and Ivan P. Polonsky. The SNOBOL4 Programming Language,
second edition, Prentice-Hall. Englewood Cliffs, New Jersey, 1971.

Gimpel, James F. *A Theory of Discrete Patterns and Their Implementation in SNOBOL4™, Communi-
carions of the ACM, Vol. 16, No. 2 (February 1973), pp. 91-100.

Fleck, Arthur C. “Formal Models for String Patterns”, in Current Trends in Programming Methodol-
ogyv, Vol. IV, Dara Siructuring, Raymond T. Yeh, ed., Prentice-Hall, Englewood Cliffs, New Jersey,
1978, pp. 216-240.

Tennent, R. D. “Mathematical Semantics of SNOBOL4", Proceedings of the ACM SIGACT-
SIGPLAN Symposium on the Principles of Programming Languages, 1973, pp. 95-107.

De Bruin, A. Operational and Denotational Semantics Describing the Maiching Process in SNOBOLA4,
Technical report. Afdeling Informatica. Mathematisch Centrum, Amsterdam, 1980.

Siegel, Morris M. Proving Properties of SNOBOL4 Paiterns, Ph.D. dissertation, Department of Com-
puter Science, Cornell University, 1980.

Waite, William M. Implementing Software for Non-Numeric Applications. Prentice-Hall. Englewood
Cliffs, New Jersey, 1973, pp. 238-307.

Druseikis, Frederick C. and John N. Dovle. *A Procedural Approach to Pattern Matching in SNO-
BOL4", Proceedings of the ACM Annual Conference, November 1974, pp. 311-317.

Doyle, John N. A Generalized Facility for the Analvsis and Synthesis of Strings and a Procedure- Based
Mode! of an Implemeniation. Master's Thesis, Department of Computer Science. The University of
Arizona, Tucson, February 1975.

Emanuelson. Par. Performance Enhancement in a Well-Structured Patiern Maicher Through Partial
Evaluarion, Ph.D. dissertation, Linkoping University, Sweden, 1980.

Griswold. Ralph E. Pattern Maiching in Icon. Technical Report TR 80-25, Department of Computer
Science, The University of Arizona, October 1980.

Griswold, Ralph E. Models of String Paitern Maiching, Technical Report TR 81-6, Department of
Computer Science. The University of Arizona, May 1981,

Griswold. Ralph E. “Implementing SNOBOL4 Pattern Matching in lcon™, Compurer Languages. in
press.

-14-

Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1983,

Griswold, Ralph E. The Icon Program Library, Technical Report TR 83-6, Department of Computer
Science, The University of Arizona, July 1983.

Griswold, Ralph E. and Michael Novak. “Programmer-Defined Control Operations in Icon™, The Coni-
puter Journal, Vol. 26, No. 2 (May 1983), pp. 175-183.

-15-

Appendix A — A Library of SNOBOL4 Pattern-Matching Procedures

NAME
patterns - SNOBOL4-style pattern matching

DESCRIPTION

These procedures are adapted from TR 80-25 and TR 81-6. They provide procedural equivalents for most
SNOBOLA4 patterns and some extensions.

SYNOPSIS
Any(s) ANY(S)
Arb() ARB
Arbno(p) ARBNO(P)
Arbx(i) ARB(l)
Bal() BAL
Break(s) BREAK(S)
Breakx(s) BREAKX(S)
Cat(p1, p2) P1P2
Discard(p) /P
Exog(s) \S
Find(s) FIND(S)
Len(i) LEN(I)
Limit(p, i) P\i
Locate(p) LOCATE(P)
Marb() longest-first ARB
Notany(s) NOTANY(S)
Pos(i) POS(I)
Replace(p, s) P=S
Rpos(i) RPQOS(I)
Rtab(i) RTAB(l)
Span(s) SPAN(S)
String(s) S
Succeed() SUCCEED
Tab(i) : TAB(!)
Xform(f, p) F(P)

In addition to the procedures above, the following expressions can be used:

p1() 1 P2() P1| P2

v<—p() P . V(approximate)

v:i=p() P $ V(approximate)

fail FAIL

=s S (in place of String(s))

p1{) 11 p2() P1 P2(in place of Cat(p1, p2))

Using this system, most SNOBOL4 patterns can be satisfactorily transliterated into lcon procedures and
expressions. For example, the pattern

SPAN("0123456783") § N "H" LEN(+N) $ LITERAL

can be transliterated into

- 16-

(n <— Span(’'0123456789')) || ="H" || (literal <— Len(n))
Concatenation of components is necessary to preserve the pattern-matching properties of SNOBOL4. See the
documents listed below for details and limitations.
CAVEATS

Simulating SNOBOL4 pattern matching using the procedures above is inefficient.

SEE ALSO
Ralph E. Griswold. Partern Matching in Icon, TR 80-25, The University of Arizona, 1980.

Ralph E. Griswold. Models of Siring Pattern Maiching, TR 81-6, Department of Computer Science, The
University of Arizona, 1981.

Appendix B — Listing of SNOBOL4 Pattern Matching Procedures

procedure Any(s) # ANY(S)
suspend tab(any(s))
end

procedure Arb() # ARB
suspend tab(&pos to s&subject + 1)
end

procedure Arbno(p) # ARBNO(P)
suspend " | (p() || Arbno(p))
end

procedure Arbx(i) # ARB(I)
suspend tab(&pos to »&subject + 1 by i)
end

procedure Bal() # BAL
suspend Bbal() || Arbno(Bbal)
end

procedure Bbal() # wused by Bal()
suspend (="(" || Arbno(Bbal) || =")") | Notany("()")
end

procedure Break(s) # BREAK(S)
suspend tab(upto(s) \ 1)
end

procedure Breakx(s) # BREAKX(S)
suspend tab(upto(s))
end

procedure Cat(p1, p2) # P1 P2
suspend p1() || p2()
end

procedure Discard(p) # /P
suspend p() & "
end

procedure Exog(s) # \S
suspend s
end

procedure Find(s) # FIND(S)

suspend tab(find(s) + 1)
end

- 18-

procedure Len(i)
suspend move(i)
end

procedure Limit(p, i)
local j
j = &pos
suspend p() \ i
&pos = |

end

procedure Locate(p)
suspend Arb() & p()
end

procedure Marb()

LEN(I)

P\

LOCATE(P)

max—first ARB

suspend tab(*&subject + 1 to &pos by —1)

end .

procedure Notany(s)
suspend tab(any(~s))
end

procedure Pos(i)
suspend pos(i + 1) & "
end

procedure Replace(p,s)
suspend p() & s
end

proéedure Rpos(i)
suspend pos(—i) & ""
end

procedure Rtab(i)
suspend tab(—i)
end

procedure Span(s)
suspend tab(many(s))
end

procedure String(s)
suspend =s
end

procedure Succeed()
suspend |""
end

NOTANY(S)

POS(l)

RPOS(l)

RTAB(l)

SPAN(S)

SUCCEED

-19-

procedure Tab(i)
suspend tab(i + 1)
end

procedure Xform(f, p)
suspend f(p())
end

-20-

TAB(l)

F(P)

Appendix C — Display Procedures for the DataMedia 3045

The implementation of the display procedures is dependent on terminal characteristics. Examples
of the procedures for the DataMedia 3045 follow. On the DataMedia 3045, the underscore is non-
destructive and is used for highlighting both the portion of &subject that is currently matched (see
snapshot()) and also the current scanning operation (see mark(loc) and unmark(loc)).

No attempt has been made to optimize cursor motion.

global row, col, cm, ce, scol, dcol, bar, slevel, Single, State

decri() decrements the status window display level.

#

procedure decrl()
slevel —= 1~
return

end

incrl() increments the status window display level.

#
procedure incri()
slevel +:= 1
return
end >

init() initializes variables used by the display procedures.
#
procedure init()

row = &cset[33+:24] # row offsets for cursor position
col := &cset[33+:80] # column offsets for cursor position
cm = "\A[Y” # cursor motion character
ce = "\A[K" # clear line character
dcol = 51 # screen division column

#

scol = dcol + 4 column for state information

bar := repl("-", 80 — dcol)

every xy(dcol — 1,1 to 24,"") # divide screen
xy(dcol, 19, bar) # mark off user i/o window
slevel ;= 0 # initial screen slevel
if \uset. then Anchor := 0 # set Anchor for —u
if \sset. then Single = 1 # set single stepping for —s
return

end

mark(loc) highlights the ? symbol at coordinates given by loc.
#
procedure mark(loc)
xy(loc{1], foc(2}, "-"
xy (dcol, 20)
return
end

min(i,) returns the minimum of i and j.
#
procedure min(i, j)
return if i < j then i else j
end

newwin() sets up a new scanning window.
#
procedure newwin()
every xy(scol,3 = slevel — (2 | 1),ce)
xy(dcol, 3 = slevel, bar)
return
end

snapshot() provides a snapshot of the state of scanning.
#
procedure snapshot()

xy(scol, 3 = slevel — 2, ce) # clear line and write subject
xy(scol, 3 = slevel — 2, image(&subject))
xy(scol,3 » slevel — 1, ce) # clear line for ipos & &pos

xy(scol + ipos, 3 » slevel — 1,”|")
xy(scol + &pos, 3 = slevel — 1,”A")

if &pos ~= ipos then # highlight nonempty string
xy(scol + min(&pos, ipos), 3 = slevel — 2, repl(”_", abs(&pos — ipos)))

every xy(dcol, 24 to 20 by -1, ce) # clear input/output window

xy(dcol, 24) # reposition cursor

return

end

state(s) updates the state identification.
#
procedure state(s)
State = s
xy{dcol, 3 = sievel — 2, left(s, 3))
xy(dcol, 20, ce)
if Single == 1 then read() # single stepping
return
end

unmark(loc) removes highlighting from ? symbol at specified coordinates.
#
procedure unmark(ioc)
xy(loc[1] + 1,loc[2], "\b \b?")
xy{dcol, 20)
return
end

xy(x.y,s) moves screen cursor to (x,y) and writes s.
Note (x,y) coordinates out of range of the screen produce no output.
#
procedure xy(x,y, s)
writes(cm, col[x], row[y]l, s)
return '
end

Appendix D — The Cinema Driver

The Cinema program proper takes options and a program name on the command line. An option causes a
corresponding dummy procedure to be linked with the program. This in turn causes the corresponding vari-
able name to be nonnull, which is tested for in init() (see Appendix C). For example, the -s option causes
sset.ul to be linked with the program. sset.u1 contains a dummy procedure sset_(), which causes this iden-
tifier to be global and nonnull, allowing Single to be set by init().

Once the command line has been parsed, the program is preprocessed, translated, and linked with library
routines. If this is successful, the screen is cleared (the clear code is terminal dependent) and the program is
written at the left of the screen. The program is then executed. Subsequent screen display comes from pro-
cedures called by Scan; see Appendix C.

The various files are at site-dependent locations.

procedure main(x)
local file, in, base, s, switch

switch = "" # procedures used as switches
every s = Ix do
if s[1] = "=" then switch |[:= " " ||
case s(2] of { # append appropriate ucode file
"u": "usetwul”
“s": "sset.ul”

default: stop(”usage: [—u —s] file")
}
else file ;= s # assume it is the program
if /file then stop(no file specification”)
file ? # parse file name
while tab(upto(’/’) + 1)
(base := tab(find(".icn")) &
pos(—4)) | stop(“illegal file specification”)
}

if system("Ptran —s " || file || # preprocess
" | icont — =s —0 " || # translate and link
base || " pscan.ul” || switch) ~= 0

then stop(“transiation failed”)

writes("\A[M") # clear the screen

in ;= open(file)

every 1 to 24 do # display program on screen
write(trim(ieft(read(in), 50))) | break

system(base) # execute the program

end

Ptran is the preprocessor. The scanning, display, and pattern-matching procedures are contained in
pscan.icn. The programs uset.icn and sset.icn are simply

procedure uset_()
end

and

procedure sset ()
end

224 -

