Programmer-Defined Control Operations In Iconx*

Ralph E. Griswold and Michael Novak

TR 82-8a

August 3, 1982. Revised November 22, 1983

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant MCS881-01916.

Programmer-Defined C ontrol Operations In Icon

1. Introduction

Broadlv speaking. a control operation 1s any program mechanism that directly affects the flow of control
in a program Fisher (1970) 1dentifies s1x ty pes of control operations sequential processing. parallel process-
ing testing monitoring. synchronization. and relatuve continuity The scope of this report, and hence of the
discussion that follows. 1s more hmited and only considers operations that affect the sequencing of expression
evaluation The term contniol operarion 1s used here to cover mechanisms in this domain. imphecit or explicit
while the term contiol stiucture 1s reserved for such operations that are distinguished syntactically For exam-

ple.
if expr, then epi, else evp,

1s a control structure On the other hand. argument evaluation 1n a typical expression-oriented programming
language 1s an imphcit control operation A control operation that i1s broadly applicable to expression evalua-
tion. as 1s argument evaluation, 1s referred to as a control regime

While most programming languages have facilities that allow programmers to define procedures that aug-
ment the repertoire of built-in functions, comparatively few programming languages have facilities for defin-
ing control operations There are exceptions, including Madcap 6 (Morris and Wells, 1972) and the extensible
language EL1 (Wegbreit. 1970) Some work (Leavenw orth, 1969 and Fisher, 1970) has been focused directly
on the definition of control operations

The comparative lach of facihties for programmer-defined control operations 1s not surprising While the
number of programming language constructs that can be classified as control operations 1s large. most of them
are variants on a few control themes Furthermore, the number of different control operations that can be
comfortably and consistently accommodated in most programming languages 1s relatively small The design
of a set of control operations usually 1s more a matter of selection and refinement than of invention The
motnation for programmer-defined control operations therefore 1s relatively small in the context of conven-
tional programming languages

The Icon programming language 1s another matter Expression evaluation in Icon, in which an expression
can generate a sequence of results, poses many interesting and novel problems in control operation design In
the evolution of Icon through several versions, more significant changes were made 1n control operation
design than in any other area of the language (Griswold. 1982)

The manipulation of sequences of results adds a dimension to control operations that 1s lacking in most
programnung languages The question 1s not what traditional control operations to select. but which of many
possibilities to explore In Icon. the problem of control operation design becomes very similar to the design of
the built-in operation repertoire in most programming languages As with the selection of a set of built-in
operations. the problem remains of providing facilities for the definition of others

This report describes a simple programmer-defined control operation mechanism (PDCO) and gnes a
number of examples of 1ts use

2. Control Aspects of lcon

In order to understand all the programming examples in this report. the reader should be familiar with lcon
(Griswold and Griswold. 1983) The tollowing sections review the most relevant matenal. concentrating
on concepts related to control operations

2.1 Expression Evaluation

2.1.1 Result Sequences
In most programming languages. the evaluation of an expression produces exactly one result Thus it 1s
tvpical for a comparison expression, such as
>
to produce a Boolean value, rrue or false, depending on whether or not the specified relation holds
In Icon, an expression 1s capable of producing a sequence of zero or more results Ordinary computational
operations, such as
1+
produce a single result as they do 1n more conventional languages On the other hand, a comparison expres-
sion, such as
>

produces a result (the value of) if the specified relation holds. but 1t does not produce a result if the relation
does not hold That is, a comparison expression has a sequence of zero or one results. depending on the values
of 1its arguments A sequence of zero results corresponds to failure, while a sequence of more than zero results
corresponds to success

SNOBOL4 (Griswold, Poage and Polonsky, 1971) resembles Icon in this respect While SNOBOL4 termi-
nology refers to success and failure as ‘signals’. expression evaluation in SNOBOL4 can be described equally
wellin terms of sequences of zero or one results

The motivation for using sequence terminology rather than signals comes from expressions that may pro-
duce more than one result Anexample 1s
I to)
which 1s capable of producing the integers 1n sequence from i to J, inclusive Thus

1to5

1s capable of producing the sequence 1. 2, 3.4, 5

The sequence of results that an expression 1s capable of producing is called its result sequence (W ampler
1981) and 1s denoted by the sequence of results enclosed 1n braces For example, the result sequence for

1tob

1s {1 2,3 4.5}

Expressions that are capable of producing more than one result are called generarors (Griswold, Hanson
and Korb, 1981) Such expressions occur in pattern matching in SNOBOL4 For example, the pattern ARB
1s capable of matching strings of length zero, one, two, and so on There 1s no way in SNOBOL4, however, to
access these results directly, they are implicit in the pattern-matching process The used of the term generator
serves to emphasize the capacity of some expressions to produce more than one result There 1s, however, no
actual distinction 1n Icon between generators and other expressions All expressions have result sequences.
although some result sequences may be of length zero or one

Icon has many generators One example 1s find(s1,82), whose result sequence 1s the positions 1n s2, from
left to night, at which s1 occurs as a substring For example,
find("on","one motion is optional”)

has the result sequence {1, 9, 19}

A similar generator 1s upto(c, s), whose result sequence 1s the positions 1n 8, from left to right, at which
any character in ¢ occurs For example,

upto(“on", "one motion 1s optional”)
has the result sequence {1.2.6.9. 10. 15. 19, 20}

Another generator 1s X, whose result sequence 1s the elements of X. from left to right For example if @is 4
list

a = ["a","an", "the"]
then the result sequence for 'ais {"a”. “an”. "the"}
The alternation control structure,
expr; | expi,

has a result sequence consisting of the concatenation of the result sequences for evpi and expr, Forexample
the result sequence for

(1 to 4) | (6 to 10)
18 {1.2.3.4.6.7.8.9, 10}

Whether an expression produces all the results in 1ts result sequence depends on context Once a generator
has produced a result. 1t must be resumed to produce another result A generator that has produced all the
results 1n 1ts result sequence 1s said to be deplered The resumption of a depleted generator does not produce a
result

There are two contexts in which expressions are resumed 1reration and goal-direcred ex aluation

2.1.2 Iteration

The control structure
every evpr, do eyp,

resumes e\pr, repeatedly. producing all the results in the result sequence for expr, For each result produced
by evpr, expi,is evaluated (not resumed) For example

every | ;= (1 to 5) do wnte(i A 2)

Wwrites

6
5

N\ote that the assignment 1s performed for each result that is produced by 1ts right argument as if the following
expressions had been evaluated

N = O b =

| =
=2
=3
1= 4
1 =5
The do clause 1n the iteration control structure 1s optional. allowing the expression above to be recast as

every write((1 to 5) A 2)

2.1.3 Goal-Directed Evaluation

W hile 1teration over result sequences 1s performed explicitly by a control structure, goal-directed evalua-
tion 1s 1mplicit

In the evaluation of an expression. any generators 1n 1t are resumed until the expression produces a result
(succeeds) or until all the generators in the expression are depleted

Consider the expression
(x 1y)=10

The left argument of the comparison operation has the result sequence {X.y} The first result produced b\ the
left argument expressionis X The situation at this point 1s equn alent to the evaluation of

x =10
If the value of x15 10. the comparison succeeds and the evaluation of
(x| y)=10
1s complete The left argument expression 1s not resumed and the result y 1s not produced

If the value of x1s not 10. however. the comparison fails and the left argument expression 1s resumed pro-
ducing y The situation at this point 1s equinalent to the evaluation of

y =10
If the value of y 1s 10 the comparison succeeds If the value of y 1s not 10, the left argument expression is
resumed again Since it 1s depleted no result 1s produced and the entre expression fails
Thus

(x |y =10

succeeds if either X or y has the value 10 but it fails otherwise

2.1.4 Compound Generators

If an expression contains several generators, the results it produces are determined by the order in which
the generators are resumed This order is fundamental to expression evaluation in Icon

Operators 1n expressions such as
i+]
and functions in expressions such as
find(s1, s2)

differ only 1n syntax To simplify the discussion that follows. the term funcrion 1s used for both

In the absence of control structures, the arguments of a function call are evaluated from left to nght I
evaluation of anv argument expression fails, the last argument expression to be evaluated 1s resumed to pro-
duce another result If 1t 1s depleted and does not produce a result. the next previous argument expression Is
resumed. and so on When a resumed argument expression produces a result, the remaining argument expres-
sions to the right are evaluated again If the first argument expression fails to produce a result. the function 15
not imoked and the entire expression fails If all the arguments produce a result. the function is invoked with
those argument values If the function fails for these argument values. the last argument expression 18
resumed for another result and evaluation of the argument expressions proceeds as described above Thus
generators are resumed 1n a last-1n, first-out manner

In the context of iteration, all possible combinations of results from the result sequences of all expressions
are produced In goal-directed evaluation. results are produced until the expression succeeds or until all gen-
erators are depleted For example.n

find(s1 | s2,s83 | s4)

the order of function invocation 1s

find(s1, s3)
find(s1, s4)
find(s2, s3)
find(s2, s4)

Simularhv. the result sequence for
(113 +(2to95)
15 {3.4.5.6.5 6.7. 8}

To summarize. left-to-right evaluation. coupled with last-in. first-out resumption applies to the evaluation
of all operations and functions in Icon and is the only built-in argument evaluation regime

2.1.5 Other Generative Control Structures
The control structure
expr; \ expi,
limuts the result sequence for exps, to at most expi, results For example, the result sequence for
find(s1,s2) \ 10

1s at most the first 10 positions at which s1 occurs as a substring of 82 expr,1s evaluated before expr, (con-
trary to the normal left-to-right mode of evaluation in Icon) and e\pr, can be a generator For example the
result sequence for

(1 to 3) \ (1 to 3)
s {102 102,03
Repeadted alternation.
lexpi
produces the result sequence for exps repeatedlv For example. the result sequence for
[{1 to 3)

sl 2 3001 203010203, } This result sequence 1s infimite. but it can be hmited as described above To

prevent the possibility of an internal resumption loop that could not be hmited at the source-language level
repeated alternation has the additional property that 1if exprever produces an empty result sequence. repeated
alterndation terminates at that point For esample. the result sequence for

[read()

15 the sequence of hnes from input This sequence terminates when read() fails at the end of the input file

2.2 Procedures
Procedures 1n Icon are similar to those in most traditional programming languages. except that they can
fail or can produce a sequence of results Return of a single result 1s indicated by
return evps

while failure 1s indicated by fail For example

procedure fcount(s1, s2)

count ;= 0

every find(s1, s2) do count += 1

if count > 0 then return count else fail
end

produces the number of times 81 occurs as a substring in $2 unless the count 1s zero. in which case 1t fails

Flowing off the end of a procedure body without an explicit return 1s equinv alent to fail

file:///expr

A sequence of results can be produced by using
suspend evps

which returns the result of evaluating eypr but leaves the procedure environment ntact so that 1t can be
resumed to produce another result For example

procedure To(l,)
while | <= | do {
suspend |
I+=1
}

end
1s a procedural version of

I to }

The suspend control structure iterates over the result sequence for its argument 1n the fashion of ever1-do.
suspending with successive results Consider the procedure

procedure octcode()
suspend (O to 1) || (Oto 7) || (O to 7)
end

The expression octcode() has the result sequence {000, 001. ,007.010 .077.100. .177}

Sometimes 1t 1s useful to encapsulaie a generator n a procedure so that its result sequence can be obtained
anvwhere the procedure is called Given an expression expr and a procedure

procedure p()
suspend ey
end

both expr and p() have the same result sequence provided there are no side effects or dependencies in expi on
the values of local identifiers

For example.

procedure odd()
suspend (1 := 1) | |(+1= 2)
end

encapsules the expression
(r=1)110+=2)
and both odd() and this expression have the infinite result sequence {1, 3.5.7. }

Procedures and functions. which are simply built-in procedures, are data objects in Icon Thus the value of
write 1s a function. write 1s a global identifier whose initial value 1s a function Simularly, a procedure declara-
tion causes the name of the procedure to be a global 1dentifier whose 1nitial value 1s the procedure itself The
term procedure 1s used subsequently to refer to functions as well as procedures

In a call of the form
expr(expr,, expr,, , expi)
expr can be any procedure-valued expression Consider, for example, the following hist of two procedures
phst = [find, upto]
Then
plist[1](s1, s2)

1s equivalent to

find(s1, s2)

The expression that produces the procedure value also can be a generator For example the result sequence
for

(‘phst)(s1, s2)

consists of the concatenation of the result sequences for find(s1, s2) and upto(s1, s2)

2.3 Co-Expressions

The only way that an expression can be resumed to produce a sequence of results 1s by 1teration or goal-
directed evaluation Consequently, the results that an expression can produce are strictly imited to the lexical
site of the expression

Co-expressions overcome this limitation A co-expression ‘captures’ an expression and its environment so
that the expression can be explicitly resumed at any time and place

The expression
create exvps

produces a co-expression for expr This co-expression is a data object that consists of the information that 1
necessary to evaluate expr areference to evps 1tself, a location that indicates where the evaluation of expy 15 to
resume and copies of the local identifiers that are referenced in expr For example.

e .= create find(s1, s2)

assigns to € a co-expression for the expression find(s1, s2) 1If s1 and s2 are local to the procedure in which
this expression occurs the co-expression contains copies of these identifiers with the values that s1 and s2
have when the create i1s performed The expression find(s1, 82) 1s nor evaluated when the create is per-
formed

A co-expression 1s activ ared by the operation

@e

When a co-expression is activated. 1ts expression 1s resumed to produce a result (when a co-expression s
actinvated the first ime. the expression 1s evaluated to produce its first result) For example.

write(@e)

writes the first position at which s1 occurs as a substring of s2 The activation of a co-expression fails if 1ts
expression does not produce a result Thus

e = create find(s1, s2)
while write(@e)

1s equivalent to
every write(find(s1, s2))

Since activation 1s an explicit operation, the results of an expression can be produced wherever or whenever
they are needed For example,

e := create find(s1, s2)
while write(@e) do
@e

writes the odd-numbered results from the sequence for find(s1, s2)
The operation

*e

produces the number of results that have been produced by activating e — 1ts current ‘size” For example

e = create find(s1, s2)
while @e
write(xe)

writes the number of positions at which s1 occurs as a substring of s2

The activation of a co-expression fails after 1ts expression has produced 1ts last result. and the *size” of the
co-expression does not increase

The operation
ne

produces a copy of the co-expression € with its evaluation location and the values of 1ts local 1dentifiers
restored to the values they had when e was created Thus the refresh operation provides a means of repeating
the sequence of results for an expression For example

e := create ("L” || (1 to 1000))

write(@e)
write(@e) .
e = Ae
write(@e)
writes
L1
L2
L1

When a refreshed copy of a co-expression is produced. the copies of the local 1dentifiers in the co-expression
are restored to their values at the time the co-expression was created Global identifiers are not affected by
refreshing

For more information on co-expressions. see Wampler and Griswold (1983)

3. The PDCO Facility

The PDCO facility 1s an extension to Icon It relies on co-expressions to provide the control over expres-
sion evaluation and resumption that 1s necessary to define control operations

The expression

plexpr, expr,, , expr}

indicates a call of the procedure p with a single argument that consists of a list of co-expressions for exps,
expr,. .exp, Thatis,

plexpr, expr,, , expr |
1s equivalent to
p([create expr,, create evpr,, . create expi,])

Thus when p 1s called, e\pl,. expl,. . expr, are not evaluated but instead are passed to p as a list of co-
expressions The procedure p can then activate these co-expressions as necessary to perform a desired control
operation The number of arguments in the call 1s not limited Some control operations may expect a fixed
number of co-expressions. while other control operations may operate on an arbitrary number of co-
expressions

The braces 1n place of the usual parentheses to indicate a procedure call serve two purposes (1) thev obvi-
ate the writing of the list and creation expressions, and (2) they differentiate visually between an ordinary pro-
cedure call and the invocation of a control procedure

An example of the use of this facility 1s given by the control operation

Alt{eapr,, expi}

that models the control structure
expr; | expis

The control procedure is

procedure Alt(a)

local x

while x = @a[1] do suspend x # produce sequence for first expression

while x = @a[2] do suspend x # produce sequence for second expression
end

which s invoked as
Alt{epr,, expi,}

The expressions a[1] and a[2] are co-expressions for expr; and expr,. respectively Alt first activates a[1]

repeatedly. suspending with each result for expr; When the actnation of a[1] fails, the same process 15 per-
formed for a[2] This control procedure shows how simple alternation really 1s

Note that the wav Altis written. 1t must be called with two arguments A check on the size of a could be
added to detect a call with on incorrect number of arguments

Since a control procedure can be called with an arbitrary number of arguments, 1t 1s easy to generalize
operations like Alt For example.

procedure Galt(a)
local e, x
every e ‘= 'a do # get next expression
while x = @e do suspend x # produce sequence for expression
end

produces the alternation of an arbitrary number of arguments (the generator 'a produces the co-expressions in
the hst from left to right) For example. the result sequence for

Galt{1 to 5,4 to 6,2 to 5}
18 {1.2.3.4.5.4.5.6.2.3.4. 5}

4. Examples

The following sections present a number of examples of the use of PDCO First some of the built-in gen-
erative control structures of Icon are modeled using PDCO Next some examples of control operations that
are not built into Icon are introduced Finally, the power of PDCO 1s demonstrated by the definition of new
argument evaluation regimes

4.1 Modeling Built-In Control Structures

4.1.1 Iteration
The relationship between the traditional control structure

while expr, do expi,
in which expr; 1s repeatedly evaluated. and
every expi, do expr,

in which expr; 1s repeatedly resumed. 1s shown in the following model for iteration

procedure Every(a)

while @a[1] do { # resume first expression
@al2] # evaluate second expression
al2] = nal2] # refresh for next time
}
end

Thatis
Every{evpi,, e\xpl,}
models
every expr, do exps,
Note that a refreshed copy of the second argument co-expression i1s made after 1t 1s activated This
corresponds to the fact that expr,1s evaluared anew for each result produced by the resumprion of expr, This

procedure can be made more concise by noting that the refreshed copy can be actnated directly without
changing the second value in the argument hst

procedure Every(a)
while @a[1] do @Ara[2]
end

This procedure assumes that it 15 called with two arguments A check on the size of a can be added easih
to tahe care of the common usage

every c\py

4.1.2 Limiting Result Sequences

The limitation control structure
expr, N\ epi,
«dn be modeled by the following control procedure

procedure Limit(a)

local 1, x
while | '= @a[2] do { # get Iimit
every 1 to 1 do # produce sequence to lmit
If x '= @a[1] then suspend x
else break
a[1] '= na[1]
}
end

In Limit the second argument co-expression 1s repeatedly actinated in a loop to produce a sequence of hmits
I for actinations of the first argument The first argument co-expression 1s activated repeated and Limit
suspends with each result 1t produces W hen the inner loop 1s completed a refreshed copy of the first argu-
ment 1« made for use with subsequent values of I The second argument co-expression is activated again in the

outer loop and soon

4.1.3 Repeated Alternation
Repeated alternation 1s modeled by the following control procedure

=10 -

procedure Repalt(a)

local x
repeat {
while x ‘= @a[1] do suspend x # produce the sequence
if xa[1] = 0 then fail # exit on empty sequence
else af1] = Aa[1] # else refresh and repeat
}
end

Atter suspending with the sequence of results for the argument. the size of the co-expression 1s checked If 1t 15
zero. indicating that no results were produced. the procedure terminates Otherwise. the argument co-
expression 1s refreshed and the loop 1s repeated

It 1s worth noting that repeated alternation can be used to make the coding of some control procedures
more concise The expression
suspend |@a[1]
suspends with the same sequence of results as
while x = @a[i] do suspend x

For example. Galt can be written as

procedure Galt(a)

local e

every e = la do suspend |[@e
end

Consider. however the following proposed revision

procedure Galt(a)
suspend |@'a
end

This procedure does not work as intended. since the generator 'a 1s resumed before the repeated alternation
The analvsis of the result sequence produced by this procedure 1s a good test of understanding of generators
and argument evaluation in Icon See Section 4 2 4

4.2 New Control Operations

While the implementation of built-in control operations using PDCO demonstrates 1ts capabilities and
illustrates programming techniques used in control procedures, the really interesting applhcations involve con-
trol operations that are not built into Icon

4.2.1 The LISP Conditional Control Structure

The LISP conditional control structure, cond (McCarthy. 1965). 1s an example of a control structure that
does not appear in Icon and has no direct relation to generators It can be modeled by

Lcond{epr,, expr,, , expy,)}

where 1 1s even Beginming with expr,, every other ‘test’ expression 1s evaluated from left to night until one
succeeds (corresponding to a value that 1s not mi/ 1n LISP) The argument immediately to the right of this one
15 evaluated and produces the result of the control operation If none of the tests succeeds, Lcond fails (in
LISP the result 1s undefined) It 1s natural to adapt the LISP form of cond to Icon so that the selected expres-
sion produces a sequence of results. not just one

procedure Lcond(a)

local 1
every | =1 to *a by 2 do # test expressions
If @al1] then {
suspend |@af[) + 1] # produce selected sequence
tail
}
end

Exen more natural to Icon 1s the combination of the test with the selection, so that the first expression that
succeeds provides the result sequence for the control operation

procedure Cond(a)

local 1, x
every | := 1 10 *a do
if x ;= @a[i1] then { # test for success
suspend x # produce first result
suspend |[@ali] # produce rest of results
fail
}
end

4.2.2 Selecting Results from Sequences

In the imitation control structure
expl, \ epi,

It the value of expr,1s 1. results 1, 2 1 are produced from the result sequence for expr; This s just a special
case of selecting results 7 7,. from the result sequence for exps, If this selection operation 1s called Select
then for example the resull sequence for

Select{octcode(), odd()}
1s {000 002, .008 010. .100 176}

In order to make a reasonable implementation of this control operation possible. the selecting values are
required to be in monotone nondecreasing order The control procedure for this operation is

procedure Select(a)

local 1, j, x
) =0
while 1 ;= @a[2] do { # selector
while) < 1 do # count through the sequence
if x ;= @a[1] then) +=1 # count up
else fail # or exit if none
if 1 = then suspend Xx # produce the selected one

else stop('selection sequence error”)

}
end

The control operation fails 1f the result sequence for the first argument 1s depleted before the selecting value
reached If a selecting value 1s not in monotone nondecreasing order, program execution 1s termiated with an
error message

-12-

4.2.3 Limited Iteration

Expressions of the form
every expr; \ epi,

occur ~o frequently in Icon that a control operation for explicitly resuming an expression a fixed number of
times s useful The control operation

Resume{e\pi,expi,}
does this The control procedure 1s

procedure Resume(a)

local 1
while 1 = @a[2] do { # number of resumptions
every 1 to 1 do @a[1] | fail
a{1] = aa[1] # refresh first argument
}
end

4.2.4 Collating Results

Because of the order of resumption in iteration and goal-directed evaluation, 1t 1s not possible to produce
the results from several expressions “in parallel’ For example. 1f a1 and a2 are lists. alternate results cannot be
obtained from them by using 'aland 'a2

It 1s easy to formulate a control operation. Colseq. that produces results from several expressions in
parallel Infact the proposed. but incorrect compact version of Galt performs just this control operation

procedure Colseq{(a)
suspend |@'a
end

Thus the result sequence for
Colseq{1 to 5,6 to 10}
1s{1.6 2.7.3.8.4.9.5. 10}

In this formulation 1if the result sequence for one expression 1s depleted before another, the remaining
results from the longer sequences are produced Therefore the result sequence for

Colseqg{1 to 3,6 to 10}
1s{l 6.2.7.3 8.9.10}

4.2.5 Comparing Result Sequences

Another operation that cannot be performed with the built-in control operations of Icon 1s the comparison
of two result sequence to determine if they are the same The following control procedure performs this opera-
tion. failing 1f the result sequences for the two expressions are different. but returning the length of the result
sequences if they are the same

procedure Comseq(a)
local x1, x2
while x1 := @a[1] do # result from first compared
(x1 === @a[2]) | fal # to result from second
fail If second s longer
if @a[2] then fail else return *a[1]
end

Note that this procedure does not terminate 1if the result sequences are the same and they are infinite in length
It 1s easy to modify this control procedure to hmit the comparison to a finite number of results

file:///expr

4.2.6 Random Argument Resumption

The following control procedure 1s somewhat whimsical but 1t suggests some unusual possibilities for con-
trol operations

procedure Ranseq(a)

local x

while x := @?a do suspend x
end

Ranseq repeatedly selects at random an argument co-expression to be actinated Note that Ranseq ter-
minates if activation of the selected co-expression fails, even if there are remaining results for other arguments

4.3 Argument Evaluation Regimes

4.3.1 Lifo Resumption

As described in Section 2 2. the call of a procedure amounts to the evaluation of a list of expressions the
first of which produces the procedure to which the remaining values are supplied The evaluation of the
expressions is from left to right In the case that an expression fails, the previous expression 1s resumed This
Ifo resumption 1s built into the evaluation of all procedure calls and 1s imphcit n Icon (Wampler and
Griswold 1983a) In the absence of side effects, the left-to-right order of argument evaiuation is not impor-
tant The order of resumption is important. since it determines the order in which the possible combinations of

argument values are produced

Modeling the built-in argument evaluation regime of Icon illustrates the capabilities of PDCO and alo
focuses attention on an essential aspect of expression evaluation in fcon

Since the expression that produces the procedure to be applied 1s not treated any differently from the other
expressions in the argument evaluation process. a call that has the form

expi (expis, expr;, , expr)
can be modeled by the control operation
Lifofespr, expr, expr,, , expi,}

There are two parts to the modeling of a procedure call (1) the evaluation of the argument expressions
and (2) the invocation of the procedure If the invocation of the procedure fails. both parts are repeated This
process is repeated until there are no more combinations of argument values

The control procedure 15

-14 -

procedure Lifo(a)

local 1, x
x .= hist(+a) # hist for argument values
=1
repeat {
while 1 <= | <= xa do
if x[1] ;= @a[1] then { # 1f argument produces value, go to next
I +.=1
afi] = aafi] # refresh it
else | —:1= 1 # 1f argument fails, go back to previous one
iIf 1 < 1 then fall # fail 1f first argument failed
else {
suspend Call(x) # else call function
I = xa # set up to resume last argument
}
}
end

The do clause in the while loop 1s evaluated as long as 11s 1n range of the argument list If an argument pro-
duces a result. 11s incremented In this case the next argument 1s refreshed so that it will produce 1ts first result
when 1t 1s next activated This expression fails if the new value of 115 greater than =a. but this does not matter
since the while loop terminates immedately

If an argument does not produce a result. 11s decremented so that the previous argument is activated again
on the nextiteration of the while loop

The while loop terminates when 1 1s either less than 1 or greater than *a The former case occurs if there 1s
no combination of argument values to pass to the procedure The latter case occurs when there 15 a combina-
tion of argument values to pass to the procedure

The procedure Call implements the actual application of the procedure to its arguments Note thatif Call
fails. the argument evaluation process resumes argument expressions to provide another hist of argument
values for Call On the other hand 1if call succeeds. the value 1t produces 1s produced by Lifo If Lifo is
resumed dagam. either because of iteration or goal-directed evaluation. Call 1s resumed first Argument
expressions are resumed only 1if Call fails

Since there i1s no wav 1n lcon to invoke a procedure with an arbitrary number of arguments. the imvocation
in Callis broken down into cases according to the size of a

procedure Call(a)

suspend case *a of {

1: a[1]()

af1](a[2])
a[1](a[2], a[3])
a[1](a[2], a[3], a[4])
a[1](a[2], a[3], a[4], a[5])
a[1](a[2], a[3], a[4], a[5], a[6])

ogohArLON

default” stop(”"too many arguments to Call")

}
end

Note that a[1] 1s the procedure that is actually invoked If the invocation succeeds, Call suspends with the
result so that 1if Lifo1s resumed. a[1]1s resumed 1n turn

-15-

4.3.2 Fifo Resumption

Although Iifo resumption 1s built into Icon 1t 1s not the only way that argument lists can be produced An
alternative method 1s fifo resumption, in which the first rather than the last. argument 1s resumed if in\ oca-
tion of the procedure tails For convenience. arguments are evaluated from right to left

This alternative argument evaluation regime requires only a small variation on the control procedure Lifo

procedure Fifo(a)

local 1, x

x = hst(*a)

I = *a

repeat {

while 1 <= 1 <= *a do
if x[1] := @a[1] then {

== 1
afi] := aafi]
}

else 1 +:=1
if 1 > xa then fail
else |
suspend Call(x)
=1
}

end

The difference between lifo and fifo resumption 1s 1llustrated by the order of the calls for an expression hke
find(s1 | s2,83 | s4)

In the model for lifo resumption. the call 1s
Lifo{find, s1 | s2,s3 | s4}

and the order of invocation of find 1s

find(s1, s3)
find(s1, s4)
find(s2, s3)
find(s2, s4)

In the model for fifo resumption. the call 1s
Fifo{find,s1 | s2,s3 | s4}
and the order of invocation of find 1s

find(s1, s3)
find(s2, s3)
find(s1, s4)
find(s2, s4)

These two different orders of invocation of find produce the same results but in different orders In Iifo
resumption, the last argument 1s ‘varied’ first, w hich the converse 1s true in fifo resumption Either order might
be preferred. depending on the situation In lifo resumption, the primary concern 1s on the positions of a sub-
string in different strings. while in fifo resumption. the primary concern 1s where different substrings occur 1n a
string

-16-

4.3.3 Parallel Resumption

One of the well-known deficiencies of lifo resumption s 1ts inability to allow parallel evaluation of expres-
sions (Griswold Hanson and Korb. 1981) A special case of parallel generation 1s given in Section 4 2 4. but
there 1s no control regime for parallel evaluation One approach to parallel evaluation 1s to simply resume
ever\ argument each time a new hist of argument values 1s required The control procedure for doing this 1s
considerably simpler than for Iifo and fifo resumption

procedure Parallel(a)

local 1, x

x = list(xa)

repeat {
every | (= 1 to *a do

x[1] = @a[1] | fall
suspend Call(x)
}
end

Evaluation stops when any argument fails to produce a value
The usefulness of parallel resumption 1s illustrated by the following call
Parallel {|write, octcode(), | “, deccode(), | ", hexcode()}
In this expression. octcode 1s a generator of octal codes as given 1n Section 2 2, while deccode and hexcode
are similar generators of decimal and hexadecimal codes. respectively

Since all argument are resumed 1n parallel. arguments. such as write that would be single values in Iifo or
fifo resumption are generated repeatedly in a parallel resumption call

The result of evaluating this expression 1s a table of corresponding octal. decimal. and hexadecimal codes
The expression terminates when any of the generators, such as octcode. 1s depleted The form of the output
for this example 15

000 000 00
001 001 01
002 002 02
003 003 03
004 004 04
005 005 05
006 006 06
007 007 07
010 008 08
011 009 09
012 010 0A
013 011 0B

5. Implementation

The implementation of PDCO 1s quite simple All that 1s necessary 1s a mechanism for translating the syn-
tax for invoking control procedures into standard Icon That is. expressions of the form

plexpr,, exprs, , exp), }

must be translated into

-17-

p([create e\xpr), Create e\pi,, , Create mp;"])

There are several wavs of doing this One s a preprocessor Such a preprocessor. to be correct and general
must accurately parse Icon programs

Instead a vanant Icon translator was constructed This was easy to do. since the lcon parser (Griswold
Mitchell and Wampler. 1983) 1s generated automatically by yacc (Johnson. 1978) A rule was added 1o the
grammar to recognize constructions of the form

p{e\pll, epls, , e\pf”}
with 4 semantic action to produce the same result as
p({create expr,, create e\pr,, , create exp])

Because normal procedure invocations and control procedure im ocations can be nested within each other. 1t
1s necessary to maintan a stack in the parser-generator whose top value indicates whether an expresston in an
argument list 1s to have co-expression creation code inserted

Note that standard Icon syntax 1s a proper subset of the PDCO syntax The variant translator therefore
correctly processes standard lcon programs

6. Limitations

One possible objection to PDCO 1s that 1t provides no syntactic support for casting defined control opera-
tions as control structures For example. there 1s no way to cast Select{e\pr/. e\pi,} as a syntactically dis-
tinguished construction such as

expr; \\ expi,

This objection 1s not reallv relevant to PDCO. which 1s designed to provide a means of adding control
operations to the repertoire of built-in ones much as procedures provide a means of adding to the repertoire of
built-in functions Indeed. different programs mav use different control operations Casting these in a control
structure sy ntax would be hittle more useful than casting every procedure in a different sy niax

Problems in the programming and use of control operations are more significant The absence of some
features 1n lcon forces awkward program constructions Most of these problems arise because Icon pro-
cedures cannot be declared with an arbitrary number of parameters Furthermore, there 1s no way for an Icon
procedure to determine how many arguments have been passed to 1t

These considerations motivated the model of control procedures with a single argument that is a ist of co-
expressions This in 1tself if not particularly awhward. since any built-in language mechanism for dealing with
an arbitrary number of arguments would necessarily in\volve some syntactic overhead also

The most offensive instance of this problem occurs in the implementation of argument evaluation regimes
where Call applies an actual procedure to a hst of arguments There 1s no way to sublimate the problem at this
point and a number of special cases must be written explicitly In theory there 1s the additional problem that
no fixed number of cases can handle the general instance. but in practice this 1s not an important considera-
tion Fortunately this manifestation of the problem can be isolated in one procedure

There are, however. more significant problems with the PDCO facility These have to do with scope. con-
text. and dereferencing

When an co-expression 1s created. copies of the local identifiers in the expression are made These copies
then have no further connection with the corresponding local identifiers in the procedure in which the co-
expression was created Consequently, assignment to a local identifier 1n a co-expression has no effect on the
value of the corresponding i1dentifier outside that co-expression Thus local identifiers cannot be used to com-
municate values between the arguments 1n a control operation An expression such as

every 1 ;= find(s1, s2) do write())

does not work properly when cast as the control operation

-18-

Every{i ;= find(s1, s2), write(1)}
unless 11s a global identifier

There are other manifestations of this problem W hile
every (I '= odd()) \ 7

assigns the seventh result 1n the octal sequence to 1. the corresponding control operation does not affect the
value of tunless t1s global

Another scoping problem occurs when co-expressions are refreshed. since the values of the copies of the
local identifiers 1n the co-expression are restored to the values they had at the time the co-expression was
created Thus a co-expression cannot use local identifiers for memory after 1t 1s refreshed For example. in

:a\}eryo write(I(1 +:= 1) \ (1 to 3))

the values written are 1. 2. 3. 4. 5. and 6 On the other hand.
=0
every write(Repalt{i +:= 1} \ (1 to 3))

writes 1. 1. 2. 1. 2. 3 unless 11s global

These scoping problems can be circumvented at the expense of program organization by using only global
identifiers in control operations

There are also problems of syntactic context For example. the return expressions return. fail. and
suspend cannot occur in the scope of a create. since they subsequently could be used out of context W hile it
1s possible (and good 1diomatic Icon) to use expressions of the form

ey | fail
such as appears in Comseq
Alt{erpr, fail}

1s syntactically erroneous

More seriouslv. break and next cannot occur in the scope of create unless they are within loops that are
in the scope of create Therelore the common lcon idiom

every eypr do
if expr, then evpi, else break

cannot be cast as
Every{exp: 1f expr, then eypi, else break}
A less obvious. but sometimes annoying problem occurs because the result produced by activating a co-

expression always 1s dereferenced Control procedures therefore can only return values, not variables While
1t1s possible. if obscure, to assign 0 to three 1dentifiers by

every (x |yl z):=0
the expression
every Galt{x,y,z} =0

produces a run-time error. since Galtreturns only the va/ues of the identifiers. This problem exists whether or
not X. y. and z are local or global and no matter how Galt 1s written, since the activation operation always
produces a dereferenced result Since there 1s no fundamental reason why the activation operation has to
dereference global 1dentifiers, this problem can be attributed to the implementation of co-expressions instead
of to language design

-19-

7. Conclusions

Programmer-defined control operations in Icon have proved to be useful in two ways In the first place
thev have been used 1in a number of programming situations where the existing features of Icon are inade-
quate An example 1s the generation of tabular text 1n which the parallel resumption of arguments 1s particu-
larlh apt More importantly programmer-defined control operations have provided insights into the interac-
tion of generators and sequencing of expression evaluation PDCO provides a tool that can be used to verify
conjectures and to stimulate new 1deas

Experience has shown that despite the hmitations mentioned 1n the preceding section. PDCO 1s nonethe-
less a useful facility This 1s probably largely due to the fact that the built-in control structures are adequate for
handling those cases that would otherwise produce problems if defined control operations had to be used
The situation would be quite different 1if. for example. ever1-do were not built into the control repertoire of
lcon

A facility for programmer-defined control operations in the style of PDCO can be added to any program-
ming language. such as LISP. 1in which expressions can be treated as data objects Unevaluated expressions in
SNOBOL4 and in SL5 (Griswold and Korb. 1977) are 1n fact quite similar to co-expressions in Icon and the
techniques of PDCO can be carried over into these languages in a straightforward way In fact. the extended
function defimiuion facihity for SNOBOL4 (Druseikis and Griswold., 1973) and SL5's defined argument
transmission mechanism allow arguments to be transmitted by expression without any additional support In
other languages. a preprocessor can be provided

The usefulness of programmer-defined control operations in other programming languages 1s debatablc
however Most of the interesting apphcations of PDCO depend on the properties of generators For example
when an unevaluated expression is evaluated in SNOBOL4. 1t can only fail or produce a single result It s the
richness of expression evaluation provided by sequences of results that makes programmer-defined control
operations potentially valuable for users instead of being just a programming language design tool The emer-
gence of generators as a general aspect of expressions in other languages (Budd. 1982) suggests a growing arcd
of applicability tor defined control operations

The most promusing areas for further exploration of control operations in Icon appear to lie 1n argument
evaluation regimes and control of procedure invocation Work in these areas will be presented 1n a subsequent
report

Acknowledgements

The authors are indebted to Steve Wampler for the co-expression facility upon which PDCO 1s built Steve
Wampler and Dave Hanson provided a number of helpful suggestions on the PDCO facility and on the
presentation of the material in thisreport

References

Budd. T A (1982) Animplementation of generators in C. Computer Languages. Vol 7. 69-87

Druseikis, F C and Gniswold. R E (1973) An Extended Funcnion Defininion Facalinn for SNOBOL4.
Technical Report S4D36, Department of Computer Science, The University of Arizona

Fisher. D A (1970) Control Structures for Programnung Languages, Ph D dissertation, Computer Science
Department, Carnegie-Mellon University

Griswold. R E (1982) The evaluation of expressions in Icon. TOPLAS. Vol 4, No 4, pp 563-584.
Griswold.R E.and M T Griswold (1983) The Icon Programnnung Language. Prentice-Hall, Inc

Griswold. R E . Hanson D R .and Korb.J T (1981) Generators in Icon, TOPLA4S. Vol 3. No.2,pp 144-
161

-20-

Griswold. R E and Korb J T (1977) A Catalog of Buili-In S15 Operators and Functions. Technical
Report S5LD3g. Department of Computer Science, The Unnersity of Arizona

Griswold R E Mitchell W H and Wampler. S B (1983) The C Implemeniation of lcon, A Tow
Thiough Version 5 Technical Report TR 83-11, Department of Computer Science. The Unnerssity of

Arizonag

Griswold. R E . Poage.J F.and Polonsky,1 P (1971) The SNOBOL4 Programming Language. 2nd ed .
Prentice-Hall Inc

Johnson. S C (1978) Yacc Yer Another Compiler-Compiler Bell Telephone Laboratories, Inc

Leavenworth. B M (1969) Programmer-defined control structures, Proceedings of the Third Annual Prince-
ton Conference on Information Sciences and Systems, pp 30-34

McCarthy.J etal (1965) LISP 15 Programmer’s Manual.2nded .M 1T Press

Morris.J B and Wells, M B (1972) The specification of program flow in Madcap 6, SIGPLAN Nonces
Vol 7.No 11, pp 28-35

Wampler. S B (1981) Control Mechanisms for Generators m Icon Ph D dissertation, Department of Com-
puter Science. The Unnersity of Arizona

Wampler. S B and Griswold. R E (1983) Co-expressions in Icon. The Computer Journal, Vol 26.No 1. pp,
72-74

Wampler.S B and Gniswold. R E (1983a) Result sequences. Computer Languages, Vol 8.No |.pp 1-14

Wegbreit B (1970) Stuches m Exiensible Programnung Languages Ph D dissertation. The Dinision of
Engineering and Apphied Physics. Harvard University

221-

