Co-Expressions in Icon*

Stephen B. Wamp/erT and Ralph E. Griswold

TR 82-4

April 1982

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*T'his work was supported by the National Science Foundation under Grants MCS79-03890 and MSC§1-
01916,

+
Current address: College of Engineering, Northern Arizona University, Flagstaff, Arizona 86011.

Co-Lxpressions in lcon

1. Introduction

Icon 15 a high-level programming language that features facilities for string and list processing In addition
to these facilities, 1t has expressions, called generators, that are capable of producing sequences of results A
goal-directed evaluation mechamsm automatically produces the results of generators in an attempt to produce
‘successful® computations Generators and goal-directed evaluation make 1t possible to formulate concise
natural solutions for many programming problems

Generators in Icon are limited in their use by the syntax of the language This has the advantage of provid-
ing straightforward means of controlling generators, as well as permitting an efficient implementation

1 he sequence of results that can be produced by a generator 1s hmited to a single lexical site in the pro-
gram. however Furthermore, every evaluation of a gencrator produces results from the result sequence for
that generator starting at the fir sf result

To overcome these problems, co-epressions were introduced 1n Version S of Icon

The following scctions describe co-expressions and give examples of their use The reader 1s expected to be
tamiliar with the Icon programnung language Much of the material here onginally appeared in Reterences |
and 2, this report is intended as a supplement to the reference manual for Version S of Icon [3]

2. The Features of Co-F xpressions

2.1 Co-Fxpression Fnvironments and Resumption
The expression
create e\ps

creates a co-eapression emvironment for expr - A co-expression environment subsequently referred to simph
as a co-expression, 1s a data object that contains the information necessary to evaluate an expression a refer-
ence to the expression itself a ‘program counter’ indicating where evaluation of the expression 1s to resume.
and copies of the local identifiers referenced in the expression with initial values das they are when the co-
expression Is created

The expression within a co-expression can be expheitly resumed whenever a result from the sequence of
results for the expression 1s needed The resumption operation 1s

@x
where X 15 a co-expression For example
texp = create 'tlist

credtes a co-expression for the generator st and successive resumptions ot texp produce the results from
this generator - Resumption of a co-expression fails once all the results from its expression have been gen-
crated For example

while write(@texp)
writes all the values in thst. but

while write(@texp) do
@texp

writes only the odd-numbered values in thst

Somctimes 1s 1s useful to be able to transmut a value to o co-expression when it is resumed The operation
ey @ x

resumes the co-expression X and supplies the value produced by expr to 1t (This result 1s ignored 1f the co-
expression 1s being resumed for its first result) The transmission of a value to a resumed co-expression 1s most
frequently uscful in producer consumer contexts Anexample 1s given in Section 3 3

The operation

*

X

produces a count of the number of results that have been produced by resuming the co-expression X The
operator chosen reflects the similarity of this operation to the computation of the size of a string or a list

2.2 Refreshing Co-Expressions

The refresh operation
AX

produces a copy of the co-expression X restored to 1ts state when it was created Thus the refresh operation
provides a means of repeating the sequence of results of a4 co-expression For example,

x = create find("ab"”, "abracadabra”)
write("The first position 1s ", @x)
write("The second position 1s ', @x)
X .= AX

write("The first position still 1s ", @x)

Writes

The first position 1s 1
The second position 1s 8
The first position stili 1s 1

Global side eftects, of course arc not reversed by the reftesh operation

2.3 Built-In C o-F \pressions

T here are two built in co expressions to aid in the use of co-expressions m a general coroutine style These
co expressions are the values of the keywords &main and &source

Program execution in lIcon 1s initiated by an imphcit call to the procedure main The keyword &mainis a
co-expression for this call Resumption ol &main from any co-expression returns control to the point of
mmteriuption in the evaluation of the call to main

&source s a co-expresston for the resuming expression of the currently active co-expression Control can
be exphcaithy transferred from a co-expression to its resuming expression by resuming &source

With &main and &source it 1s possible for any co-expression to transfer control to am other co-
expression providing a general coroutine facility Fxamples are given in the following sections

3. Fxamples of C o-F xpression Usage

3.1 Parallel Fyaluation

As mentioned carher goal ditected evaluation provides a cross-product form of analysis that 1s suitable
for many combmatorial apphcations Parallel, or ‘dot-product’ evaluation 1s not possible without co-
CAPICSSIONS

Consider the problem of determining, without co-expressions whether two expressions, expr, and expr,
produce the same sequences of results Since the results from two separate expressions cannot be produced 1n
an arbitrary manner, some other method 1v needed to obtain corresponding values for comparison One

possibility 1s to generate all the values for one expression lirst and ‘capture’ them by putting them in a (phyvsi-
cal) hist

seq "= []
every put(seq, ¢'\/n/)

The values tor expr, can now be generated and compared with those in seq There 1s no longer a problem with
parallel evaluation, since the elements of seq can be accessed by position

This approach has several disadvantages, the most serious of which 1s that a List of all the results for one
eapresston must be produced before a single result 1s produced for the other This process may be time and
space consuming and must be carried to completion, even if the first results 1n the two sequences are different

With co-expressions. the results of two expressions can be generated and compared in parallel A pro-
cedure to do this1s

procedure compseq(x1, x2)
local r1, r2
while r1 ;= @x1 do |
(r2 '= @x2) | fail
(r1 === r2) | fail
}
If @x2 then fail else return
end

Since the two sequences may have different lengths, one, x1,1s chosen to control the loop There are two situa-
tions 1in which the sequences may fail to compare within the loop 1f the sequence for X2 terminates first, or if
corresponding values are ditferent If resumption of X2 fails, assignment to r2 fails. and the second expression
in the alterndation causes the procedure to fail The operation r1 === r2 compares values of arbitrary type
and fails if they are not identical Again, the procedure fails if the comparnison fails Finally, if resumption of
x1 fatls terminating the loop a check must be made to determine if X2 has additional values, if so. the pro-
cedure tails

I'he structural asymmetry tn the procedure s imposed by the need to check the lengths of the two
scquences of 1esults as well as therr values (there 1s no wav, a priori, to determine the length of a sequence of
tesults) The same problem accurs in comparing a physical list of values produced by one expression with
those generated by another, as is evident if the details of the coding are carnied out

3.2 The'Same-kringe’ Problem

Co-cxpressions permit the separation of an algornthm from the situations i which 1t 1s to be used This
generally results in clearer, more concise code For example, there are many applications, such as the ‘same
fringe” problem [4] that 1cquie access to the leaves of a tree

Suppose that a tree is represented by a list whose first element 15 o value associated with that node and
whose subsequent elements aire subtices For example, the tree

is represented by the list

!l+H' [H.Il' ['lall]’ [Hb"]]' [Il__ll' [”C"]' ["t'l' ['Idl']' ["ell]]]]
A procedure to generate the leaves of such a tree is

procedure leaves(tree)

if “tree = 1 then return tree[1]

else suspend leaves(tree[2 to *tree])
end

This procedure can be used in a solution to the same-fringe problem to walk two trees in parallel to determine
if their leaf nodes have the same values in the same order:

if compseq(create leaves(tree2), create leaves(tree2)) then
write("same fringe")

else
write("different fringes”)

3.3 Grune’s Problem
Asindicated above, co-expressions have coroutine capabilities [5-7].
The following problem was originally posed by Grune [§] to illustrate a number of coroutine facilities.

*Let A be a process that copies characters from some input to some output, replacing all occurrences of aa
with b, and a similar process. B. that converts bb into ¢. Connect these processes in series by feeding the out-
put of Ainto B.”

Using co-expressions, this problem can be solved as follows.

global A, B

procedure main()
A = create compress(”a”, "b", create |reads(), B)
B := create compress("b”, “c”, A, &main)
repeat writes(@B)

end

procedure compress(ct, ¢2, in, out)

local ch
repeat {
ch = @in
if ch == c1 then {
ch = @in

if ch == ¢1 then ch = c2
else ¢c1 @ out
}

ch @ out

}

end

This solution is similar to a solution originally presented in Simula [9] and translated into ACL by Marlin
[10]. Like their solutions and those proposed by Grune, it assumes an infinite stream of input, although it is
not hard to modify the solution above for a finite input stream. Like their solutions, the one above creates two
instances of the same procedure for the operation of both A and B. The Icon version is simplified slightly by
the ability to transfer results explicitly between co-expressions.

3.4 The Sieve of Eratosthenes

The following example uses co-expressions to implement the Sieve of Eratosthenes. The technique is
based upon a similar one used to illustrate a use of coroutines [1 1] and filtered variables [12].

The sieve supplies an infinite stream of integers through a cascade of ‘filters’, each of which checks to see if
the integer is divisible by a specific known prime. Each filter activates the next filter in the cascade if the
integer passes its test. If a filter finds an integer that is a multiple of its prime, the filter activates the source of
integers and the cascade is restarted on the next integer. If the integer passes through the entire set of filters
successfully. it is output as a prime and a new filter is added to the cascade to test subsequent integers against
this prime.

global number, cascade, source, nextfilter

procedure main()
cascade = |]

source .= create { # root of sieve
number = 1
repeat {
number +:= 1
nextfilter := create !cascade # sequence of filters
@@nextfilter # get first filter and activate it
!
]
push{cascade, create sink()) # sink starts as the only filter
@source # start the sieve :
end -

procedure sink()
local prime
repeat {
write(prime = number)
push(cascade, create filter(prime)) # add filter to cascade
@source # start processing next number

}

end

procedure filter(prime)
repeat {

if number % prime = 0 then @source

try next number

else @@nextfilter # get next filter and activate it.

}

end

The co-expression source generates the integers and starts the cascade on each integer. Each filter in the
cascade is a co-expression that tests the potential prime against a specific known prime. The co-expression
sink processes new primes and is always the last filter in the cascade. An additional co-expression is used to
sequence through the filters in cascade. Note that each filter is invoked exactly once. From then on, control

is simply passed between source and the various filters (including sink).

Actually, there is no need for any of the procedures other than main. This example can be written as

global number, cascade, source, nextfilter

procedure main()
local prime
cascade =[]
source = create |
number = 1
repeat |
number +:= 1

@@ (nextfilter := create !cascade)

}
@&main
}
push(cascade, create
repeat {

write(prime = number)
push(cascade, create repeat
0 then @source

if number % prime

)

@source

)

else @@nextfilter

)

@source
end

This version does not show the logical division of the algorithm as well as the previous version, however.

3.5 Modeling Generative Control Structures

Since co-eapressions allow control over the generation of results, they can be used to model generative
control structures and to gain insight into their relationship with traditional control structures.

For example, alternation
expr, | expr,

can be modeled by a procedure such as

procedure Alt(x1, x2)

local r

while r '= (@x1 do suspend r

while r .= (@x2 do suspend r
end

which s invoked as
Alt(create exps,, create erpr_,)
This model clearly demonstrates the relationship between the sequences of results for expr; and evpr, and the
sequence of results for
expr, | expr,
and avoids complicated explanations of alternation in terms of control backtracking { 13]

Simuilarly, the relationship between
every e, do epr,
and
while expr, do expr,
1s illuminated by the modcl

procedure Every(x1, x2)
while @x1 do @Ax2
end

In fact. all the gencrative control structures 1n lcon can be modeled using co-expressions and traditional con-
trol structures

4. The Status of C o-F xpressions in Version § of lcon

Co-cxpresstons arc included in Version 5 of Icon as an unsupported feature Co-expressions are not sup-
ported since the nature of then implementation in Version 5 limits their usefulness and allows possible mal-
function of programs n which they are used In particular, only a few co-expressions can be in existence at
amy onc ume 1n a program More importantly, stack overflow in co-expressions 1s not checked, such overflow
may cause of variety of program malfunctions

Nonetheless co-expressions can be used safely in many situations and offer the opportunity for interesting
programming methods he following additional information about co-expressions may be useful

® [hentix operator @, which supphes a result to the activation of a co-expression, associates to the left and
has the same precedence as the operator \ (see Reference 3) The augmented assignment operator @:= 15
avatlable

e If X15 a co-expression, copy (x) simply returns X, not a physically distinct copy of it
®] here are two error messages assoctated with the use of co-expressions

118 co-expression expected
305 insufficient storage for co-expressions

T here are two environment variables that mav be assigned values to control the storage utihzation of co-
expressions [14, 15}

ASTACAS Sct the number of stacks initially available for co-expressions Normally, two stacks are avail-
able More are automatically allocated it needed

STASIZI Set the size ol cach co-expression stack (in words) Normally 1000 words per stack are available

Acknowledgements

I'm Korb [13] oniginally suggested the idea of ‘capturing’ expressions, on which co-expressions are based

We are indebted to Cary Coutant and Dave Hanson for their discussions and suggestions on co-expressions
Carny Coutant provided invaluable assistance with the implementation

References

10

Wampler, Stephen B New Conrrol Structures in fcon Technical Report TR 81-1a, Department of
Computer Science, The University of Arizona July 1981

Wampler, Stephen B Conrnol Mechanisnis for Generators in lcon Technical Report TR 81-18,
Department of Computer Science, The University of Arizona December 1981

Coutant Cary A . Ralph F Griswold, and Stephen B Wampler Reference Manual for the lcon Pro-
gramnung [anguage Version 5 (C Implementation for UNIX), Technical Report TR 81-4a, Depart-
ment of Computer Science The University of Arizona December 1981

Hewitt, Carl and Michael Patterson “Comparative Schematology™. Record of Project MAC Confer-
ence on Concunvent Svstems and Parallel Computation June 1980

Conway, Melvin “Design of a Separable Transition-Diagram Compiler”, Communications of the
4C M Vol 6 No 7(luly 1963) pp 396-408

Dahl Ole-Tahn and C A R Hoare A *“Coroutines™, Structured Programming, Academic Press 1972
pp 1¥4-193

Ichbiah 1T D and S P Moise “General Concepts of the Simula 67 Programming Language™, Annual
Review i Automatic Programnnng, Vol 7, No 1(1972) pp 65-93

Grune, Dick A View of Cotoutines™, SIGPI AN Nonces, Vol 12, No 7 (July 1977) pp 75-81
ILvnning, F (1978) | ctier to the editor, SIGPL AN Notices, Vol 13, No 2 (February 1978) pp 12-14
Marhn, C D “Coroutines™ [ecture Notes in Computer Science, Vol 95, Springer-Verlag 1980

Mcllroy M D Corounnes, Technical Report, Bell Telephone Laboratories, Murray Hill, New Jersey
1968

Hanson David R “hilters in SLS™, The Computer Journal. Volume 21, No 2 (May 1978) pp 134-
143

Korb John T The Dosvign and Implemeniation of a Goal-Duected Programnung Language Technical
Report TR 79-11, Department ol Computer Science, The University of Arizona June 1979

Coutant, Cary A and Stephen B Wampler /C ON((/) Local manual page for UNIX Programmer s
AManual Department of Computer Science, The Unnversity of Arizona December 1981

Coutant Cary A and Stephen B Wampler /CONX(1) 1 ocal manual page for UNIX Piogrammer s
Manual Department of Computer Science, The University of Arizona December 1981

