
Reference Manual for the Icon Programming Language
Version 5 ((Implementation for liMX)*

Can A. Contain. Ralph £ Grixwoltl,
and Stephen B. Watnplcr

"RSI-4a

December 1981, Corrected July 1982

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

This work was supported by the National Science Foundation under Grant MCS79-03890.

Copyright © 1981 by Ralph E. Griswold
All rights reserved.
No part of this work may be reproduced, transmitted, or stored in any form or by any means without the prior
written consent of the copyright owner.

CONTENTS

Chapter i Introduction

1.1 Background I
1.2 Scope ol the Manual 2
1.3 An Overview of Icon 2
1.4 Syntax Notation 2
1.5 Organization ol the Manual 3

Chapter 2 Basic Concepts and Operations

2.1 Types 4
2.2 Expressions 4

2.2.1 Variables and Assignment 4
2.2.2 Keywords 5
2.2.3 Functions 5
2.2.4 Operators 6

2.3 Evaluation of Expressions 6
2.3.1 Results 6
2.3.2 Success and Failure 7

2.4 Basic Control Structures 7
2.5 Compound Expressions 9
2.6 Loop Control 9
2.7 Procedures 9

Chapter 3 Generators and Expression Evaluation

3.1 Generators 11
3.2 Goal-Directed Evaluation 12
}.?> Evaluation of Expres.sions 13
3.4 I he Extent ol Backtracking 14
3.5 I he Reversal ol Effects 14

Chapter 4 Numbers and Arithmetic Operations

4.1 Integers 15
4.1.1 l i teral Integers 15
4.1.2 Integer Arithmetic 15
4.1.3 Integer Comparison 16

4.2 Real Numbers 17
4.2.1 l i teral Real Numbers 17
4.2.2 Real Arithmetic 17
4.2.3 Comparison of Real Numbers IS

4.3 Mixed-Mode Arithmetic IX
4.4 Arithmetic Type Conversion 19

4.4.1 Conversion to Integer 19
4.4.2 Conversion to Real Number 20

4.5 Conversion to Numeric 21

Chapter 5 Strings and Character Sets

5.1
5.2

5.3
5.4

Characters
Strings
5.2.1 Literal Strings
5.2.2 String Size
Character Sets
Type Conversion
5.4.1 Explicit Conversion
5.4.2 Implicit Conversion

22
22
22
23
24
24
24
25

Chapter 6 -- Basic String Operations

6.1 Constructing Strings 27
6.1.1 Concatenation 27
6.1.2 String Replication 27
6.1.3 Positioning Strings 27
6.1.4 Character Positions and Substrings 28
6.1.5 Other String-Valued Operations 30

6.2 String Comparison 31
6.3 String Analysis 31

6.3.1 Identifying Substrings 31
6.3.2 Lexical Analysis 32

Chapter 7 String Scanning

7.1 Scanning Keywords 35
7.2 Positional Analysis 35
7.3 Scanning Operations 36
7.4 Nested Scanning 37
7.5 Generation During Scanning 38

Chapter 8 Structures

8.1 Lists 39
8.1.1 Creation of Lists 39
8.1.2 Positional Access to Lists 40
8.1.3 Stack Access to Lists 40
8.1.4 Queue Access to Lists 40
8.1.5 Operations on Lists 41

8.2 Tables 41
8.2.1 Creation of Tables 41
8.2.2 Accessing Table Elements 41

8.3 Records 42
8.3.1 Declaring Record Types 42
8.3.2 Creating Records 42
8.3.3 Accessing Records .43

8.4 Sorting Structures 43

Chapter 9 Input and Output

l>. I I i l e s

9.2 W i l t i n g I)ala to I lies
') \ Keadmg, I)ala li om I i Us

44
44
45

Chapter 10 Miscellaneous Operations

l . lemcnt Cieneration
Augmented Assignment Operators
Comparison ol Objects
Copying Objects
Random F.lcmenl (ieneration
Date and Time
I he Null Value
I ype Determination
String Images
Calling a Shell
System Information

10.1
10.2
10.3
10.4
10.5
10.6
10.7
I0.S
10.9
10.1'
10.1

46
46
47
47
47
48
48
48
48
49
49

Chapter I I Procedures

I I
i ->

11.4
11.5
11.6

I'roeed ure Deela i a t io ns
Scope o l Identif iers
Procedure Ael ivat ion
I 1.3.1 Procedure Invocat ion
I 1.3.2 Return f rom Procedures
1 1.3.3 Procedure Level
I 1.3.4 I racing Procedure Ac t iv i t y
I isting Identifier Values
Procedure Names and Values
I \ t e i n a l Procedures

50
51
51
51
51
52
52
54
54
55

Chapter 12 Program Preparat ion

I 2.1 Program Structure
12.2 Layout ol Program Text
12.3 Program Character Set
I 2.4 Signif icance of blanks
12.5 Comments

56
56
57
57
57

Chapter 13 Programming Considerat ions

13.1 I lTieieiie\ Considerat ions
13.2 Programming Pitfalls

58
59

Chapter 14 Running Icon Programs

14.1 Translation 61
14.2 Linking 61
14.3 Program Execution 61
14.4 Program Termination 61
14.5 Error Termination 62

Chapter 15 — Sample Programs

15.1 Roman Numerals 63
15.2 Meandering Strings 64
15.3 Word Intersections 65
15.4 Word Counting 66
15.5 Binary Trees 66
15.6 Eight Queens 68
15.7 Infix-to-Prcfix Conversion 69
15.X Recognition ol Context-Free Languages 70
15.9 Random Sentence Generation 71

Acknowledgments 74

References 74

Appendix A Syntax 75

Appendix B Built-in Operations 79

Appendix C Summary of Defaults 82

Appendix I) Summary ol Error Messages 83

Index 86

Chapter 1

Introduction

1.1 Background
Icon is the most recent in a series of programming languages that started with SNOBOL [I]. SNOBOL was

a very simple language with only one data type, the string, and a few pattern-matching statements expressed in
a rigid syntax. The syntax of SNOBOL was primitive and its only control structure was the goto, which could
be conditional on the success of pattern matching and in which the target label could be computed. One exotic
feature of SNOBOL was its ability to construct identifiers during program execution and reference their
values indirectly.

SNOBOI.2 [2], which was in use for only a short period of time, was a minor refinement of SNOBOL.
SNOBOL3 [3] extended the original SNOBOL language with a repertoire of built-in functions and a
mechanism for programmer-defined procedures. The concept of success and failure was generalized to include
a variety of comparison and testing operations. SNOBOL3 retained the single string data type, static pattern
matching, and primitive control structures of the original SNOBOL. SNOBOL3 is still in limited use.

SNOBOL4 [4] departed more radically from the earlier languages in the series. It introduced a variety of
data types and the ability to construct and manipulate patterns as data objects dynamically during program
execution. Along with this facility, the pattern matching repertoire was substantially increased. Arrays, tables,
and defined types (records) in SNOBOL4 added the ability to produce and process structures. Tables, at the
same time, provided a facility for associative reference of a more disciplined type than the indirect referencing
facility of SNOBOL. although the latter was retained in SNOBOL4. An esoteric feature, originally planned
for SNOBOL. was realized for the first time in SNOBOL4: run-time compilation allowed strings to be
converted into executable code in the course of program execution. Despite the advances in facility.
SNOBOL4 retained the primitive control structures of the earlier languages. Because of new data types and
operations, SNOBOL4 is best characterized as a general-purpose language with a strong emphasis on string
processing, whereas the earlier languages were special-purpose string processing languages. SNOBOL4 is in
wide use at the present time for a variety of applications [5].

SL5 ("SNOBOL Language 5") [6] was an even more radical departure from the earlier languages. SL5 has
a traditional. Algol-like syntax with a large repertoire of control structures. The success failure signaling
mechanism ol the earlier SNOBOL languages was extended to drive control structures in place of the more
conventional use of Boolean values. A notable characteristic of SL5 is its generalized procedure mechanism
[7]. which provides coroutines as a natural consequence. Patterns and pattern matching of the earlier
languages were replaced by the concept of string scanning in which coroutine environments operate in a goal-
directed control regime [X]. For the first time there was a mechanism for programmer-defined string scanning.
SI.5 also has a repertoire of elementary string processing operations that are lacking in the earlier languages.
The distribution of SI.5 was limited and its use at the present time is minimal.

Icon represents both a synthesis of earlier ideas and a departure from trends in the earlier languages. (The
name Icon, incidentally, is not an acronym and has no special significance — although one can imagine
relevant connotations.)

The development of Icon as a language distinct from SL5 was sparked by the design of a general goal-
directed evaluation mechanism that allows the traditionally goal-oriented pattern matching and string
scanning activities to be integrated with more conventional computational activities. This integration has the
effect of unifying formerly disparate features. At the same time, elementary string processing operations as
introduced in SL5 have been unified with higher-level string processing operations.

I he concept ot success or failure ol an operation as in the earlier languages is retained in Icon, although
with a slightly different interpretation. Instead of operations returning a signal, operations in Icon either
produce a result ("succeed") or they do not produce a result ("fail"). (The concept of a signal still appears in

early Icon documentation.) Some operations may generate sequences of alternative results. A goal-directed
evaluation mechanism seeks alternatives from such components of an expression if other alternatives fail to
produce results. In this way "trees" ol alternative results in complex expressions arc "searched" in the attempt
to produce an overall result ("success").

1 ike SNOBOL4 and SI.5. Icon has a variety of data types and has facilities for creating and processing
structures. In many cases, these facilities have been strengthened and sharpened above those ol earlier
languages. Icon does not have a run-time compilation facility, however.

A forewarning: Icon contains some surprises. Its goal-directed evaluation mechanism allows programming
styles and techniques that other languages do not. As a consequence, learning to program in Icon is not just a
matter of learning a new syntax and mastering the details of new operations — icon allows new ways of
formulating computations. The natural tendency to translate programming techniques from familiar
languages to Icon may, in fact, lead to frustration. SNOBOL4 programmers, in particular, are cautioned not
to blindly imitate patterns by Icon expressions of similar appearance.

1.2 Scope of the Manual
This manual describes Version 5 of the Icon programming language implemented in the C programming

language [9] and designed to run under Version 7 of UNIX* [10] on PDP-1 I computers.
The reader is assumed to have experience with other programming languages, a familiarity with current

programming language concepts, and a working knowledge of UNIX.
This first chapter gives an overview of Icon and describes the techniques for presenting features of the

language in this manual. Subsequent chapters describe the language in detail. There are a number of
appendices at the end of this manual that provide quick reference to frequently needed information.

1.3 An Overview of Icon
Icon is a general-purpose programming language with an emphasis on string processing. Icon supports a

variety of data types and has facilities for creating and manipulating the commonly used kinds of structures.
Storage management is automatic; there are no explicit allocation and deallocation directives. The si/cs of
objects are limited only by the architecture and physical limitations of the computer on which Icon runs.

Variables are "untyped" as in SNOBOL4 and SI.5. Thus a variable may have values of any type. Run-time
type checking and coercion to expected types according to context are performed automatically.

One of the unusual characteristics of Icon is goal-directed expression evaluation, which provides
automatic searching for alternatives and a controlled form of backtracking. This method of evaluation allows
concise, natural formulation of many algorithms while avoiding the inefficiency of uncontrolled backtracking.

Syntactically, Icon is a language in the style of Algol 60. It has an expression-based structure and uses
reserved words for many constructs.

1.4 Syntax Notation
In this manual, the syntax of Icon is described in a semiformal manner with emphasis on clarity rather

than rigor. For simple cases. English prose is generally used. Where the syntax is more complicated, a formal
metalanguage is used.

In this metalanguage, syntactic classes are denoted by italics. For example, e.xpr denotes the class of
expressions. The names ol the syntactic types are chosen to be mnemonic, but have no formal significance.
Program text is given in a sans-serif type face (e.g.. write).

Alternatives arc separated by bars (|). Brackets ([]) enclose optional items. Ellipses (...) indicate
indefinite repetition of items. The metalinguistic and literal uses of bars, brackets, and periods are not mixed
in anv one usage, and the meaning should be clear in context. Where necessary, ambiguity is resolved by using
predefined syntactic types. For example, heir denotes the symbol | and the symbol [is denoted by left- brack el.

*l M \ is .i li.ulcnuii'k nl Hell l abora to r i e s .

. 1 .

1.5 Organisation of the Manual
This manual is organized into chapters that describe the major features of the language. Each operation

and function is described separately or is grouped with others of a similar nature. Following the description,
examples of usage are given.

The examples are not intended to motivate uses of language features, but rather to provide concrete
instances, to show special cases that may not be clear otherwise, and to illustrate possibilities that may not be
obvious. For these reasons, some of the examples are contrived and are not typical of ordinary usage.

Where appropriate, there are remarks that are subsidiary to the main description. These remarks are
divided into notes, warnings, defaults, failure conditions, and error conditions. The notes describe special
cases, details, and such. The warnings are designed to alert the programmer to programming pitfalls and
hazards that might otherwise be overlooked. The defaults describe interpretations that are made in the
absence of specified values or optional parts of expressions. The failure conditions specify situations in which
an operation may fail to produce a value. The error conditions specify situations that are erroneous and cause
program termination. The defaults and error conditions are summarized in Appendices C and D.

It is not always possible to describe language features in a linear fashion; some circularity is unavoidable.
This manual contains numerous cross references between sections. In the case of forward references, an
attempt has been made to make the referenced items clear in context even if they cannot be completely
described there. For a full set of references, seethe index.

3-

Chapter 2

Basic Concepts and Operations

2.1 Types
Icon supports several kinds of data, called types:

integer procedure
real list
string table
cset null
file

Integers and real numbers (floating-point numbers) serve their conventional purposes. Strings are sequences
of characters as in SNOBOL4, for example. Csets are sets of characters in which membership is significant,
but order is not. Files identify external data storage. Procedures serve their conventional purpose, but it is
notable that they are data objects. Lists and tables are data structures with different organizations and access
methods. The null value, which is represented by the symbol • in this manual, serves a special purpose as the
initial value of variables. The null value is illegal in most computations. In addition to the types listed above,
there is a facility for defining record types.

The first letters of type names are used in this manual to indicate values of the corresponding types. For
example, i, s, and C are used to indicate integers, strings, and csets, respectively. Following convention, j and k
are also used to indicate integers. Numerical suffixes are used when several values of the same type appear
together, such as s1 and s2. The letter a ("array") is used in place of I for lists, since I is difficult to distinguish
in text. The letter n is used to indicate numeric types (integer or real), x and y are used to indicate objects of
unspecified or undetermined type, z is used for record types. Where the emphasis is on expressions without
regard for the values that they may produce, expr, exprl, and so on are used. Liberties are taken with these
conventions when the meaning is clear in context.

Integers, real numbers, strings, and csets can be specified literally in the program text. Integers and real
numbers are represented as constants in the conventional manner. For example, 300 is an integer, while 1.0 is
a real number. Strings are enclosed in double quotation marks, as in "summary". See Sections 4. l.l, 4.2.1,
5.2.1, and 5.3 for further descriptions of the methods available for representing literals. Values of types other
than these can be constructed and computed in a variety of ways, but they do not have literal representations.

2.2 Expressions
Icon is an expression-based language. The most primitive expressions are identifiers and literals. More

complex expressions can be composed from functions, operators, control structures, and groupings. The
following sections describe various kinds of expressions.

2.2.1 Variables and Assignment
A variable is an entity that can have a value. Variables provide a way of storing and referencing values that

are computed during program execution.
The simplest kind of variable is an identifier. Syntactically, an identifier must begin with a letter or

underscore, which may be followed by any number of other letters, underscores, and digits. Corresponding
upper- and lower-case letters are distinct. Reserved words, such as if, may not be used as identifiers. See
Appendix A for a complete list of reserved words.

syntactically correct identifiers:

x
X
kOOOOl
summary
Reportl
nodeJink
J ink

syntactically erroneous identifiers:

23K
report$
then
xO@s

There are various forms of variables other than identifiers. Some variables, such as the elements of a
structure, are computed during program execution and have various syntactic representations. See Sections
6.1.4, 7.4, 8.1.2, 8.2.2, and 8.3.3.

One of the most fundamental operations is the assignment of a value to a variable. This operation is
performed by the := infix operator. For example, v := 3 assigns the integer value 3 to the identifier v.

Note: The assignment operator associates to the right and returns its left operand as a variable. Thus
multiple assignments can be made. For example, v1 := v2 := 3 assigns 3 to both v1 and v2.

Any expression that yields a variable may appear on the left side of an assignment operation and any
expression may appear on the right. For example, v1 :- v2 assigns the value of the identifier v2 to the
identifier v1.

Error Condition: If the expression on the left side of the assignment operation is not a variable. Error 111
occurs.

The infix operator :=: exchanges the values of its operands. For example, v1 :=: v2 exchanges the
values of v1 and v2.

Note: The exchange operator associates to the right and returns its left operand as a variable.
Error Condition: If the expression on either side of the exchange operation is not a variable, Error 11 l
occurs.

2.2.2 Keywords
Keywords are used to designate important values and variables. Some keywords have constants as values,

others control the status of global conditions, while others provide values related to the environment in which
the executing program operates.

A keyword is composed of an ampersand (&) followed by one of a number of identifiers that have special
meanings. A typical keyword is &date, whose value is the current date.

Some keywords are variables, and values can be assigned to them to set the status of conditions. An
example is &trace, which controls the tracing of procedure calls (see Section 11.3.4). If &trace is assigned a
nonzero value, tracing is enabled, while a zero value disables tracing. Some keywords are not variables and
cannot be assigned values. An example is &date.

Error Condition: If an attempt is made to assign a value to a keyword that is not a variable, Error 111
occurs.

Keywords are described throughout this manual in the sections that relate to their use.

2.2.3 Functions
Functions (built-in procedures) provide much of the computational repertoire of Icon. Function calls have

a conventional syntax in which the function name is followed by arguments in an expression list that is
enclosed in parentheses:

name ([expr [, e.xpr] . . .])

For example, type(x) produces the type of the object x, map(s1,s2,s3) produces a character mapping on s1 .
and write (s) writes the value of S.

As indicated, arguments may be expressions of arbitrary complexity.
Different functions expect arguments of different types, as indicated above. Automatic conversion

(coercion) is performed to convert arguments to the required types.
Error Condition: If an argument cannot be converted to a required type, an error with a number of the
form \nn occurs, where nn identifies the expected type. See Appendix D.
Defaults: The null value, •, is provided for omitted arguments. In some cases, null values are converted to
special default values. This allows values that occur frequently to be omitted. These cases are noted
throughout the manual and are summarized in Appendix C. If trailing arguments are omitted, the trailing
commas may be omitted also.
Note: If more arguments are provided in a function call than are required by the function, the extra
arguments are evaluated, but their values are ignored.

2.2.4 Operators
Operators provide a convenient abbreviated notation for functions. There are two kinds of operators:

prefix and infix. Example of prefix operators are - i , which produces the negative of i, and *x, which produces
the size of x. Examples of infix operators are i + j and i * j , which produce the sum and product of i and j ,
respectively.

While all prefix operators are single symbols, some infix operators are composed of more than one
symbol. Examples are v := X, s1 || s2 (which produces the concatenation of the strings s1 and s2). and
s1 == s2 (which compares strings s1 and s2 for equality).

Blanks and parentheses may be used to avoid potential ambiguities when infix operators are followed by
prefix operators. In the absence of blanks or parentheses, rules are used to interpret potentially ambiguous
expressions. See Section 12.4. In addition, rules of precedence and associativity are used to determine which
operands are associated with which operators in complex expressions. See Appendix A.

As a class, prefix operators have the highest precedence (bind most tightly to their operands). For
example, - i * j is equivalent to (-i) * j . Different infix operators have different precedences. For arithmetic
operators, the conventional precedences apply. Thus i + j * k is equivalent to i + (j * k). A complete list
of operator precedences is given in Appendix A.

Infix operators also have associativity, which determines for two consecutive operators of the same
precedence, which one applies to which operand. Most operators associate to the left. For example,
i - j - k is equivalent to (i - j) - k. Assignment, however, associates to the right. Thus v1 := v2 := v3
is equivalent to v1 := (v2 := v3). A complete list of infix operator associativities is given in Appendix A.

2.3 Evaluation of Expressions

2.3.1 Results
Some expressions produce variables. The simplest example is an identifier, such as delta. Other

expressions, such as the literal 13, produce values. The term "result" is used to refer to either a variable or a
value. Values may be assigned to variables, and some operations, such as assignment, require operands that
produce variables.

Conversely, many operations require values. Thus in

S1 == s2

the values of the variables s1 and s2 are compared.
The process of obtaining the value of a variable is called dereferencing. In Icon, the arguments of

functions and the operands of operators are evaluated in a strictly left-to-right manner. However,
dereferencing is not performed by functions and operators until all arguments and operands have been
evaluated. Normally this does not affect the results of computation, but in cases where expressions have side
effects, it may. Consider, for example, the expression

-6

f (x, x != *x)

Here the second argument off is an expression that changes the value of X. The effect is as il f (*x,*x) had been
called, regardless ol the original value of x. since the first argument ol f is not dereferenced until the second
argument has been evaluated.

I'xplicit dereferencing may be obtained by the prefix . operator. Thus

f (.x, x 1= *x)

dereferences the first argument so that evaluation of the second argument does not affect the value ol the lust
argument.

\DIC: I he operand ol the dereferencing operatoi need not be a variable.

2.3.2 Success and Failure
The evaluation of an expression may either produce a result (a variable or a value), or it mav fail to

produce a result. Failure to produce a result mav occur for a variety of reasons, but it generally indicates that
some condition that is necessary for the production of a result does not hold. For example, the comparison
operation i = j fails to produce a result if i is not numerically equal to j . Note that this is different from
comparison in most programming languages, where the result of comparison is a Boolean value, either true or
false, depending on whether or not the condition is satisfied.

In Icon, on the other hand, the course of program execution is determined by whether or not expressions
produce results. For example, in the familiar control structure

if exprl then exprj else exprj

exprj is evaluated il exprl produces a result, while exprl is evaluated ilexprl does not produce a result. Note
that the effect of this method o[control is the same as the use of Boolean values. The Icon mechanism
provides more generality, however, since it allows operations to be conditional and at the same time to
produce meaningful results. For example. find(s1,s2) returns the position at which s1 is a substring of s2.
provided there is such a substring, but fails to produce a result if there is not such a substring.

In this manual, the term "succeeds" is used as an abbreviation lor "produces a result", while "fails" is used
as an abbreviation lor "fails to produce a result". I he term "outcome" is used to refer to the consequences ol
evaluating an expression, whether it be a result or failure.

failure of expression evaluation is a normal occurrence during the course of program execution, failure is
not a programming error, per.se. but simply a wav of selecting alternative paths of computation.

fhe keyword &fail always fails. It mav be used in situations where explicit failure is desired.

2.4 Basic Control Structures
Icon provides a number oi traditional control structures, as well as some that are specifically designed to

utilize the failure of an expression to produce a result:

1. The control structure

if exprl then expr2 \ else exprS]

evaluates exprl. II exprl succeeds, exprj is evaluated; otherwise expr3 is evaluated. The outcome ol

if exprl then exprj else exprl

is the outcome o\' exprj or exprj. whichever is evaluated. If the else clause is omitted and exprl fails, the if-
then expression fails.

2. I he control structure

while exprl | do exprj \

evaluates exprl repeatcdlv until il tails. I aeh time exprl succeeds. exprj is evaluated. The outcome ol
while-do is failure, but see Section 2.6.

7-

3. The control structure

until exprl [do expr2]

evaluates exprl repeatedly until it succeeds. Each time exprl fails. expr2 is evaluated. The outcome of until-
do is failure, but see Section 2.6.

4. The case control structure permits the selection of one of a number of expressions according to the value
ol a control expression. The form of the case control structure is

case expr of ([case-clause [', case-clause] . . .] }

where expr is the control expression. Case clauses have the form

exprl '. expr2

where exprl is a selector expression and expr2 is an expression that is evaluated if exprl is selected. There is
also a default case clause, which has the form default: expr2. When the case expression is evaluated, the
control expression is evaluated first and its value is compared to the values of the selector expressions, in
order, as given in the case clauses. If a comparison is successful, the expression in the case clause is evaluated
and its outcome becomes the outcome of the case expression. If no comparison succeeds, the expression in
the default case clause, if present, is evaluated and becomes the outcome of the case expression.

Motes: The default clause may appear in any position with respect to the other case clauses, although it is
customary lor it to appear either first or last. Only one default clause is allowed in a case expression. It is
evaluated as if it appeared last. The semicolons between case clauses may be omitted if the clauses are
placed on separate lines.
Failure Conditions: case fails if the control expression fails, if no case clause is selected, or if the selected
expression fails.

An example of a case expression is

case *s1 of {
1:
*s2:
default;

m := 0
m := 1
m := 2

which assigns 0 to m if the size of s1 is I. I to m if the size of s1 is the same as the size of s2 (but not I), and 2
to m otherwise.

5. The control structure

repeat expr

evaluates expr repeatedly, repeat terminates only through a loop exit (see Section 2.6) or a procedure return
(see Section I 1.3.2).

Sote: repeat has no outcome.perse.

6. The control structure

not expr

produces • if expr fails but fails if expr succeeds. For example,

if not exprl then expr2 else expr J

is equivalent to

if exprl then expr J else expr 2

2.5 Compound Kxpressions
I:\pres.sions may be compounded to allow a sequence of expressions to appear in a context that requires a

single expression. The outcome of a compound expression is the outcome of the last expression in the
sequence. A compound expression has the form

| [expr [; expr] ...] |

For example

if z = 0 then jx := 0; y := 1|

sets xtoO and y to I if z is 0.
If the expressions in a compound expression are placed on separate lines, the semicolons are not necessary.

For example.

if z = 0 then |
x := 0
y := 1
i

is equivalent to the compound expression above. See also Section 12.2.

2.6 Loop Control
There are two control structures lor bypassing the normal completion of expressions in loops. These

control structures may be used in repeat while-do. until-do, and every-do (see Section 3.1).

1. The control structure next causes immediate transfer to the beginning of the loop without completion of
the expression in which the next appears.

2. The control structure

break expr

causes immediate termination of the loop without the completion of the expression in which the break
appears. The outcome ol expr becomes the outcome of the loop in which the break occurs.

Pc/auli: An omitted expr defaults to •.

2.7 Procedures
A program is composed ol a sequence of declarations. Procedure declarations, which contain the

executable portions of a program, have the form

procedure name ([argument-list])
proceilure-hoilv

end

The procedure name identities the procedure in the same way that functions are named. The argument list
consists of the identifiers through which values are passed to the procedure. The procedure body consists of a
sequence of expressions that arc evaluated when the procedure is invoked. A return expression terminates an
invocation ol the procedure and returns a value.

An example of a procedure is

procedure max(i,j)
if i > j then return i else return j

end

A procedure is invoked in the same fashion that a function is called. For example

m := max(*s1,*s2)

assigns to m the maximum of the sizes of S1 and s2.

file://I:/pres.sions

Program execution begins with an invocation of the procedure named main. All programs must have a
procedure with this name.

For a more detailed description of procedures, see Chapter 11.

10

Chapter 3

Generators and Expression Evaluation

3.1 Generators
Some expressions, called generators, are capable of producing a sequence of results. An example is

find (s1 ,s2), which produces the positions at which s1 occurs as a substring of s2. For example, in

find ("th","this is the thesis")
there are three positions at which th occurs as a substring of the second argument: 1, 9, and 13. On the other
hand, in

f ind("th","a single thesis")

there is only one position, 10. In fact, there may be no position, as in

f ind("th","we have none")
In this case, find cannot produce a result (it fails). Note that the number of results that a generator like find
can produce depends on the values of its arguments.

If a generator is used in a simple computational context, it produces only its first result. For example

i := find ("th","this is the thesis")
assigns the value 1 to i. On the other hand, in

i := find ("th","we have none")
the function find fails and the value of i is not changed.

There are a number of contexts in which some or all of the results produced by a generator may be useful.
The control structure

every exprl [do expr2\

evaluates exprl for every result prod uced by exprl. For example

every i := find(s1,s2) do write(i)

writes all the positions at which s1 occurs as a substring of s2.
Note: The outcome of every-do itself is failure.

As indicated, the do clause is optional. The example above can be written more concisely as

every write (find (s1,s2))
Note that although write is not a generator itself, write is called for every value of its argument, which is a
generator. The same situation occurs in the assignment operation above.

There are a number of generators. Two of the most fundamental generators are alternation and integer
sequencing.

Alternation is a control structure that has the form

exprl | exprl

This control structure produces the sequence of results produced by exprl followed by the sequence of results
produced by exprl. For example

every f(1 | 3)
evaluates f (1) ;md f(3).

Ill litis case, hoi h I lie* expressions in altci n;ilu>n aic simple values. exprl ami e\pr2 may be generators, in
which case each produces its sequence, For example,

every write (find (s1,s2) | find(s3,s4))
writes all the positions at which s1 occurs as a substring of s2 followed by all the positions at which S3 occurs
as a substring of s4. Similarly

every write (find (s1 | s2,s3))
writes all the positions at which s1 occurs as a substring of S3 followed by all the positions at which s2 occurs
as a substring of S3.

The operation

exprl t o expr2 [by expr3]

generates the integers in sequence from the value of exprl to the value of expr2, inclusive, using the value of
expr3 as an increment. For example

every write (0 to 10 by 2)

writes 0, 2 .4 . 6. 8, and 10.
furor Condition: I f the value produced by exprJ is 0. Error 21 I occurs.
Xoies: exprl. expr2. and expr J are evaluated only once. Generation stops when expr2 is exceeded. cxprJ
may be negative, in which case successively smaller values are generated until exprJ is reached or passed.
I he construction every i '.= j to k do expr is similar to the for control structure found in many
programming languages.
Default: If the by clause is omitted, the increment defaults to I.

In some cases it is desirable to limit the number of results produced by a sequence. The control structure

exprl \ expi 2

produces at most expr2 results from the sequence generated by exprl. For example

every write (find (s1,s2) \ 10)
writes the first 10 positions at which s1 occurs as a substring of s2. Of course, if there are fewer than 10
positions, only those values are produced.

Sometimes it is useful to repeatedly produce the sequence produced by a generator. The repeated
alternation control structure

|<\\y*r

is equivalent to

expr | expr | expr ...

except that if expr ever fails (that is, if it ever produces no result), \expr terminates. (This may occur because
expr fails initially or because of side effects that affect the sequence produced by expr.) For example

every write(|find(s1,s2) \ 100)

writes the positions at which s1 occurs as a substring of s2 repeatedly, but terminates after I00 values have
been written.

3.2 Goal-Directed F.valuation
In every exprl d o expr2 the complete sequence of results of exprl is produced by the explicit use of every.

! :.\ press ions in Icon arc evaluated in a ti>oa/-c/ireeiecl fashion, in which the results of generators are
automatically produced in sequence if that is necessary for an enclosing expression to succeed (that is. to
produce a result). A simple example of goal-directed evaluation is illustrated by

12

file:///expr

(x I y) > 0
Here the left operand ol the comparison operator is a generator capable of producing two results, the
variables x and y. The value of the first result of the alternation is compared to 0. If this comparison
succeeds, the entire expression succeeds. However, if this comparison fails, the entire expression does not
necessarily fail. Instead, the second result of the alternation is produced and is compared to 0. Hence the
entire expression succeeds if the value of either x or y is greater than 0 (hence the term "alternation").

This goal-directed evaluation mechanism is completely general and applies to the evaluation of the
arguments and operands of all functions and operators. For example

if (x | y | z) > (a | b) then write ("plateau reached")

writes plateau reached if any of x. y, or z is greater than either a or b.

3.3 Evaluation of Expressions
The arguments of functions and procedures, as well as the operands of operators, are evaluated from left

to right. In goal-directed evaluation, if evaluation of an argument or operand fails to produce a result, control
backtracking takes place to the most recently evaluated argument or operand to obtain another result from its
sequence. For example, in

cxprl + expi'2

cxprl is evaluated first. If cxprl fails, the addition operation fails. If cxprl succeeds, expr2 is evaluated. If
cxprl fails, however, the addition operation does not necessarily fail. Instead, backtracking occurs and
another result from the sequence for cxprl is sought. If such an alternative result exists, cxpr2 is evaluated
again. Since the evaluation of cxprl may a fleet <\v/>/\? (by means of side effects), cxpr2 may now succeed. If so.
the addition is performed. An example ol such a situation is

(x := n to m) + find("1",x)

In the case of a function call such as f (cxprl,cxpr2). if cxpr2 fails, alternative results are sought for cxprl. In
fact, if cxprl and cxpr2 both succeed, but the function itself fails, alternatives arc sought for the arguments
(first cxpr2 and. failing that, cxprl). II any argument has an alternative, successive arguments are re-evaluated
and the function is called again. If the function continues to fail, it is called for all alternative values of the
arguments. The overall expression fails only if the function fails for all alternative values of the arguments.
This method of evaluation applies regardless of the number of arguments in the function call. Operands of
operators are evaluated in the same was as arguments of functions.

In some cases, backtracking to achieve mutual results from two expressions may be desired, even though
no computation is to be performed on the results. The infix operator & ("conjunction") behaves like any
other infix operator with respect to backtracking, except that if cxprl succeeds the outcome of cxprl &.cxpr2
is simplv the outcome of cxpr2.

If mutual evaluation among several expressions is needed, conjunction can be compounded, as in

cxprl & cxprl & ... & cxpm

This notation becomes cumbersome, especially if the expressions are themselves complex. Such compounded
conjunctions may be difficult to compose correctly and to understand. An alternative method is muiual
evaluation, denoted by

(cxpr I ,cxpr2,... ,cxprn)

which evaluates cxprl. cxpr2 cxpm just like the arguments in a function call. If all the expressions
produce results, the result of mutual evaluation is the result of cxpm. Otherwise, it fails. The effect is exactly
the same as in a compound conjunction.

Sometimes a number of expressions need to be mutually evaluated, but a result other than the last is
desired. The expression

ex/>r(cxpr I ,cxpr2.... ,cxprn)

produces the result o\ cxpri, where the value of cxpr is the integer /', provided all the expressions produce a

13-

result. If any expression fails, however, the mutual conjunction fails. For example, the value of

2(find(s1,s),find(s2ls)>find(s3,s))
is the position of s2 as a substring of S provided S1, S2. and S3 all occur as substrings of S. The value of expr
can be negative, in which case the result is selected from right to left. This method of selecting the result of
mutual evaluation makes it easy to select the last result from a long list. For example

(—1)(exprl, expr2, exprn)

selects the result of exprn. The parentheses around - I are necessary; the expression

^(exprl, expr2, exprn)

produces the negative of the result of exprI !
Note that mutual conjunction has the same syntax as a function call. There is no ambiguity, however. If

the value of expr is an integer /'. the result of is the result of expri. If the value of expr is a function, however,
the function is applied to the arguments and the outcome is the outcome of the function call.

3.4 The Extent of Backtracking
Backtracking is limited in its extent by syntactic constructions in the program. The extent of backtracking

therefore can be determined by examination of the text of the program (that is. the extent of backtracking is
not determined by the history of computation in the program).

In addition to the control structure expr I \ expr2 that is described in Section 3.1. several constructions
specifically limit the extent of backtracking. The semicolons that separate expressions in a sequence, for
example, prevent backtracking from occurring between the expressions. For example, in the sequence

exprI \ expr2

failure of expr2 docs not cause backtracking into expr I.
The other contexts in which goal-directed evaluation is implicitly limited to one result are the first

(control) expressions in the case-of. if-then-else. not, until-do. and while-do.

3.5 The Reversal of Kffects
As described above, control backtracking to an earlier point in a computation may take place in order to

obtain alternative results of generators. There is, however, no implicit reversal of effects such as assignments,
hor example, in the expression

(y := 1 to 10) & (y > z)

if the value of z is 20. the value of y after the failure of the conjunction is 10. regardless of what the value of y
was before evaluation of the conjunction.

There are two assignment operators that do reverse their effects if failure occurs.

1. The infix operator v <— x assigns the value of x to v. but restores the previous value of v if backtracking
causes failure in the expression in which the reversible assignment occurred. For example, in

y := 0; (y < - 1 to 10) & (y > z)
if the value of z is 20. the value ol y is restored to 0 when the conjunction fails.

2. The infix operator v1 <—> v2 exchanges the values of v1 and v2. but restores their former values if
backtracking causes failure in the expression in which the reversible exchange occurred.

Son's: I lie reversible assignment and exchange operators associate to the right and return their left
operands ;is variables.
I.'nar Conditions: II the expression on the left side ol the reversible assignment operation or either
expression in the reversible exchange operation is not a variable. Error I I I occurs.

14

Chapter 4

Numbers and Arithmetic Operations

Icon provides integer, real, and mixed-mode arithmetic with the standard operations and comparisons.

4.1 Integers

Integers in Icon are treated as they are in most programming languages.
Xole: The allowable range of integer values is —2 to 2 —I.

4.1.1 Literal Integers
Integers may be specified literally in a program in the conventional fashion.

\oies: Leading zeroes are allowed but are ignored. Negative integers cannot be expressed literally, but
the) may be computed as the results ol arithmetic operations.

Examples:
expression value

0 0
000 0
10 l()
010 It)
27524 27.524

Integer literals such as those given above are in the base l(). Other radices may be specified by beginning the
integer literal with n r, where n is a number (base 10) between 2 and 36 that specifies the radix foi the digits
that follow. For digits with a decimal value greater than 9, the letters a, b, C. ... are used.

\nU's: I he digits used in the literal must be less than the radix. Fit her r or R may be used to indicate a
radix literal. Either upper- or lower-case letters ma\ be used for "digits".

/ xantpk's:
expression value

2r11 .1
8r10 x
10r10 l(>
16rff 255
16RFF 255
36rCat 15.941

4.1.2 Integer Arithmetic
The following infix arithmetic operations arc pro\ ided.

expression

' + J
i - J
i * j
i / J
i % j
i A j

operation

add i t ion
subtract ion

mul t ip l i ca t ion
d i \ ision

remainder ing
exponent ia t ion

re •lative
preeedenee

1
1
2
2
2
}

assoeialivil}

left
left
left
left
left

r ight

- 1 5 -

file:///oies

Nines: The remainder of integer division is discarded; that is. the result is truncated, i % j produces the
remainder of i divided by j . The sign of the result is the sign of i.
Error Conditions: If an attempt is made to divide by 0. Error 201 occurs. If the second operand of
remaindering is /ero. Frror 202 occurs. II the result of an arithmetic operation exceeds the range of
allowable integer values. Error 203 occurs.

Examples:
e.\

1
1
1
1
2
2
2
2
1
1
1
2
2
4
4

•pression

+ 2
- 2
* 2
/ 2
/ 1
A 3
A 0
A - 1

- 1 -
* 2 /
/ 2 *
/ 2 -
/ d -
A 3 A

% 3
1400 %
4

4

% 4
4 % 3
% - 3

4 % - :

1
2
2
1

- 2)
2

1000

3

value

3
- I

2
0
2
8
I
0

- I
I
0
I)

- 2
262.144

I
400

0
- I

There are two arithmetic prefix operations: +i and — i, to form the positive and negative of i respectively. In
addition, the function abs(i) produces the absolute value of i.

Examples:
expression value

+ 100 100
-100 - I 0U
+ 0 0
- 0 0
- (4 - 700) 6%
abs(7) 7
abs(-7) 7

4.1.3 Integer Comparison

There are six operations for comparing the magnitude of integers.

i = j equal to
i ~= j not equal to
i > j greater than
i >= j greater than or equal to
i < j less than
i <= j less than or equal to

All the comparison operators associate to the left and have lower precedence than any of the arithmetic
computation operations. The operations return the value of their right operand if the specified relation
between the operands holds and fail otherwise.

- 16-

/:\(iin/'/cs:
i'.\/>rt'.\.\ion value

100 100 100
1 ~= 1 none
1 > 1 none
2 > 1 I
1 < 2 2
2 >= 1 I
2 <= 2 2
2 < 3 < 400 400
2 < 3 = 4 none

4.2 Real Numbers
Real numbers are represented in floating-point format.

Note: Floating-point numbers are double precision.

4.2.1 Literal Real Numbers
Real numbers may be specified literally in a program in the conventional fashions using either decimal or

exponent notation.
Xote.s: For magnitudes less than I. a leading zero is required. Additional leading zeroes are allowed but
are ignored. Either e or E may be used in exponent notation.

Examples:
expression value

3.14159 3.I4I59
0.0 0.0
000. 0.0
27e2 2.700.0
27e -6 0.000027
27e5 2,700,000.0
27E5 2,700.000.0

4.2.2 Real Arithmetic
The arithmetic operations available for real numbers are the same as those available for integers. See

Section 4.1.2.
Error Conditions: In the case of real overflow, real underflow, or division by zero. Error 204 occurs. I f an
attempt is made to raise a negative real number to a real power. Error 206 occurs.

17-

Examples:
expression

1.0 + 2.0
1.0 - 2.0
1.0 * 2.0
1.0 / 2.0
2.0 / 1.0
1.0 - 1.0 - 1.0
1.0 * 2.0 / 2.0
1.0 / 2.0 * 2.0
4.7 % 2.0
2.5 % 1.0
+ 1.0
-1.0
abs(7.0)
abs(-7.0)

value

3.0
- I .0

2.0
0.5
2.0

- I . 0
I.O
I.O
0.7
0.5
I.O

-I.O
7.0
7.0

4.2.3 Comparison of Real Numbers
The comparison operations available for real numbers are the same as those available for integers. See

Section 4.1.3.
Now: Because of the imprecision of the floating-point representation and computation, comparison for
equality of real numbers may not always produce the result that would be obtained if true real arithmetic
were possible.

Examples:
expression

1.0 ~- 1.0
1.0 — 1.0
1.0 > 1.0
2.0 > 1.0
1.0 < 2.0
2.0 <= 1.0
2.0 <= 2.0
2.0 < 3.0 <
2.0 < 3.0 <=
2.0 < 3.0 =

4.0
= 4.0
4.0

value

I.O
none
none

I.O
2.0

none
2.0
4.0
4.0

none

4.3 Mixed-Mode Arithmetic

Except for exponentiation, if either operand of an infix operation is a real number, the other operand is
converted to a real number and real arithmetic is performed. In the case of exponentiation, a negative real
number may be raised to an integer power.

l:\ui)) pies:
expression value

1 . 0 + 2 .V0
1 » 2.0 10
1 2.0 -1.0
1.0 * 2 2.0
1 . 0 / 2 0.5
2 / 1 . 0 2.0
1 - 1 - 1 . 0 - i . o
1 * 2.0 / 2 I.O
1 / 2.0 * 2 I.O
1.0 / 2 * 2 I.O
2.0 A 2 4.0
2.0 A - 1 0.5

4.4 Arithmetic Type Conversion

4.4.1 Conversion to Integer
The value of integer(x) is an integer corresponding to x. where x may be an integer, real number, or cset.

1. Integers are returned unmodified by integer(x).
2. Real numbers are converted to integer by truncation.
I'ailure Condition: Conversion of a real number to an integer tails il the value ol the real number is out ol
the allowable range ol integers.

/ \aniples:
expression value

integer(2.0) 2
integer(2.5) 2
integer(-2.5) -2
integer(2e35) none

3. Strings are converted to integers in the same way that an integer literal is treated in program text,
except that
(a) leading and trailing blanks are allowed, but arc ignored.
(b) A leading sign may be included.
(c) There must be at least one digit.
II the string corresponds to a real literal, real-to-integer conversion is performed. See Section 5.4.

I'ailure (onJiiion: integer(s) tails il s is not a proper representation ol an integer or real number.

I samples:
expression value

integer("10") l()
integer("8r10") s
integer("-10") - l ()
integer(" 3") 3
integer (" 0003") .1
integer("3.5") .1
integer("3.x") none
integer("3r4") none

19-

file://l:/ui
file:///aniples

4. C'sets are first converted to strings and then to integers. See Section 5.4.
Failure Condition: integer(x) fails il the type of X is not one of those listed above.

For operations that require integers, implicit conversions are automatically performed lor real numbers,
strings, and csets.

Error Condition: II an implicit conversion to integer fails. Error 102 occurs.

Examples:
expression value

1 + "10" II
'2' A 4.0 16.0

4.4.2 Conversion to Real Number
The value of real (x) is a real number corresponding to x, where x may be a real number, integer, string, or

cset.

1. Real numbers are returned unmodified by real (x).

2. Integers are converted to the corresponding real values.

Examples:
expression value

real (10) 10.0
real (-10) -MM)
real(8r10) 8.0
real (27000) 27.000.0

3. Strings are converted to real numbers in the same way that real litcrals.are treated in program text,
except that
(a) Leading and trailing blanks are allowed, but they are ignored.

(b) A leading sign may be included.

(c) A leading zero is not required before the decimal point for values whose magnitudes are less
than I.

Soles: I! the string corresponds to an integer literal, integer-lo-real conversion is performed.
i'ailure Condition: real (s) fails il s is not a proper representation of a real number or integer.

Examples:
expression

real ("10.0")
real f -10.0")
real ("27000")
real(" 3.0")
rea l f 0003.0")
real("8r10")
real ("3.x")
real("3r4")

value

10.0
-KM)

27.000.0
3.0
3.0
8.0

none
noin

4. C'sets are first converted to strings and then to real numbers. Sec Section 5.4.
I'ailure Condition: real (x) fails il the type of X is not one ol those listed above.

Implicit conversions are automatically performed lor integers, strings, and csets in operations that require
real numbers.

Error (ondition: II an implicit conversion to real number tails. Error I02 occurs.

20

Examples:
expression value

1.0 + "10.0" M.O
"2.0" A 3 8.0

4.5 Conversion to Numeric
The function numeric(n) returns the integer or real number corresponding to n if n is an integer, real

number, or if it is convertible to one of these types. See Section 5.4. The function fails otherwise.

Examples:
expression

numeric (100)
numeric (0.0)
numeric ("0")
numeric ("0.0")
numeric ("a")
numeric ("16Rff")
numeric ("3r4")
numeric (" ")

value

100
0.0
0
0.0

none
255
none
none

-21

Chapter 5

Strings and Character Sets

5.1 Characters
Although characters are not themselves data objects in Icon, strings of characters and sets of characters

are. Strings form the heart of Icon's processing capabilities.
The character set used by Icon is based on ASCII [11], There are, however, 256 different characters

available for use in Icon programs.
Note: The thirty-third character (octal code 40) is the blank (space). Since it has no visible representation,
the symbol o is used in this manual to represent the blank in contexts that otherwise might be confusing.

While it is customary to think of characters in terms of their graphic representations and control functions,
characters are basically just integers. Internally the integers corresponding to ASCII are represented by octal
codes from 000 through 177 (hexadecimal codes 00 through 7F). The order of characters is determined by
these codes and specifies the "collating sequence" of the ASCII character set. For example, Z comes before z
in the collating sequence. This order is the basis for comparing strings (see Section 6.2) and for sorting (see
Section 8.4). The full set of 256 characters similarly are represented by octal codes 000 through 377
(hexadecimal codes 00 through FF).

5.2 Strings
A string is a sequence of zero or more characters. Any character may appear in a string. There are many

ways of constructing strings during program execution. See Chapter 6.

5.2.1 Literal Strings
Strings may be specified literally in a program by delimiting (enclosing) the sequence of characters by

double quotes (").

Examples:
expression value

"X " X
" D " D

"abed" abed
"Isn'tnitngreat?" Isn'taitngreat?

Note: In this manual, string values are given in the body of the text without the delimiting quotation
marks, provided that the meaning is clear.

Some characters cannot be entered directly in program text because of their control functions or because
of the limitations of input devices. To allow specification of all characters in literal strings, an escape
convention is used in which the backslash (\) causes subsequent characters to have a special meaning as
follows:

22-

character

backspace
delete
esca pe
formfeed
linefeed
ncwline
carriage return
hor izonta l tab
vert ical tab
double quote
single quote
backslash
octal code
hexadecimal code
control code

code

\ b
\ d
\ e
\ f
\ l
\ n
\ r
\ t
\ v
\ "
\ '
\ \
\ddd
\xdd
W

The specification \ddd represents the character with octal code ddd. The specification \xdd represents a
character with hexadecimal code dd. Only enough digits need to be given to specify the octal or hexadecimal
code. For example, \ 0 specifies the null character and \ x a is equivalent to \xOa. \A< - represents the ASCII
character control-r. For example. \ A A is the ASCII character control-A. In general, \ A < - is the character
corresponding to the five low-order bits of c. II the character following a backslash is not one of those listed
above, the backslash is ignored.

Soles: The conven t ion used here l o r representing characters in l i terals is adapted f r o m that used by the C
p r o g r a m m i n g language [9] . The linefeed and ncwl ine characters arc the same.

I.xa in pies:
expression value

"V'oopsV" "oops"
"\"\" "
" \ D " D
" \a\z" az
"\132" Z
"\134\134" W
"\77a" ?a
"\1234" S4
"\x64" d
" \ \ " \

5.2.2 String Si/c
The size of a string is the number of characters it contains and is computed by the unary operator *. The

cinpH string is the string consisting of no characters and has size zero. It may be represented literally by two
adjacent quotes, enclosing no characters.

is . . .
Sotes: I he m a x i m u m si/e o l a s t r ing is 2 — I . I he pract ical m a x i m u m is usual ly d ic ta ted by the amoun t
of memorx avai lab le. Since the empty s t r ing contains no characters, it has no vis ib le representat ion. In
this manua l , the symbo l • is used to represent the empty s t r ing in contexts that otherwise might be
confus ing. Thus " " a n d • bo th indicate an empt \ s t r ing.

ICvamples:
expression value

*"abcd" 4
* " D " |

* " " 0

23

file:///134/134
file:///1234

5.3 Character Sets
Whereas a string is an ordered sequence of characters in which the same character may appear more than

once, a character set (cset) is an unordered collection of characters. The value of the keyword &cset is the set
of all 256 characters. Other character sets are subsets of &cset and are useful for operations where specific
characters are of interest, regardless of the order in which they appear. See Sections 6.3.2 and 7.3. Other
built-in character sets are &ascii, the first 128 characters of &cset, &lcase, the lower-case letters, and
&ucase, the upper-case letters.

Error Condition: The keywords &cset, &ascii, &lcase, and &ucase are not variables. If an attempt is
made to assign a value to one of them, Error 11 1 occurs.

Csets may be specified literally in a program by delimiting (enclosing) the characters in single quotes (') .
Duplicate characters in cset literals are ignored and the order of the characters is irrelevant. The same escape
conventions that apply to string literals apply to character set literals.

Examples:
expression value

'abed' a b e d
'bade' a b e d
'energy' e g n r y
• \Y \

Note: Values of csets in examples are given with separating spaces to distinguish them from the values of
strings.

There are five operations on character sets:

1. ~C is the complement of C with respect to &cset.

2. d ++ c2 is the union of d and c2.

3. d ** c2 is the intersection of d and c2.

4. d — c2 is the difference of d and c2; that is, all of the characters in d that are not in c2.

5. *c is the number of characters in c.

Examples:
expression

c1 := 'drama'
c2 := 'append'
c1 ++ c2
c1 ** c2
c1 — c2
c1 c2
*c1

value

a d m r
a d e n p
a d e m n p r
a d
m r
a d
4

Note: A character set may be empty, i.e. containing no characters. Such a character set may be obtained
by "or ~&cset.

5.4 Type Conversion

5.4.1 Explicit Conversion
The value of String (x) is a string corresponding to x, where x may be an string, integer, real number, or

cset.

24

1. Strings are returned unmodified by string (x).
2. For integers and real numbers, the resulting string is a representation of the numerical value

corresponding to the literal representation that the numeric object would have in the source
program.

Examples:
expression

string(10)
string (00010)
string (8r10)
string (2.7)
string (02.70)
string (27e-1)
string (2700000.)
string (0.0000027)

value

10
10
8
2.7
2.7
2.7
2.7e6
2.7e-6

3. For csets, the result is a string of characters in the cset, arranged in order of collating sequence (see
Section 6.2).

Failure Condition: String (x) fails if X is not one of types listed above.
The value of cset (x) is a character set corresponding to x, where x may be an integer, real number, string,

or cset. If x is an integer or real number, it is first converted to a string as described above.
Failure Condition: cset(x) fails if the type of x is not one of those listed above.

Examples:
expression value

cset ("drama") a d m r
cset (1088) 0 1 8
cset(3.14) . 1 3 4

Note: Conversion of a string to a cset and back to a string, as in

s :- string (cset (s))
eliminates duplicate characters and sorts the characters of the string.

Examples:
expression value

string (cset ("ab")) ab
string (cset ("ba")) ab
string (cset ("mam")) am
string (cset("anb")) Dab

5.4.2 Implicit Conversion
In contexts that require strings, implicit conversion is automatically performed for integers, real numbers,

and csets.
Error Condition: If an object of any other type is encountered in a context that requires implicit
conversion to a string. Error I03 occurs.

Examples:
expression value

*10 2
*010 2
*100 3

25-

For operalions that require csets, implicit conversion is performed automatically for integers, real
numbers, and strings. Integers and real numbers are lirst converted to strings and then to csets.

Error Condition: If an object of any other type is encountered in a. context that requires implicit
conversion to a cset, Error 104 occurs.

26

Chapter 6

Basic String Operations

6.1 Constructing Strings
There are a number of operations for constructing strings. Most of these operations are described in the

following sections. See also Sections 7.2, 7.3, and 7.4.

6.1.1 Concatenation
Since a string is a sequence of characters, one of the most natural string construction operations is

concatenation — appending one string to another. The value of s1 11 s2 is a string consisting of s1 followed by
S2.

Note: The empty string is the identity with respect to concatenation. That is, the result of concatenating
the empty string with any string s is simply s.

Examples:
expression value

"a" || "z" az
" [" || "abed" || "] " [abed]
"abed" || " " abed

6.1.2 String Replication
The value of repl (s,i) is the result of concatenating i copies of s.

Error Condition: If i is negative oi
Note: The value of repl (S,0) is • .
Error Condition: If i is negative or greater than 2 - I, Error 205 occurs.

Examples:
expression

repl("a",2)
repl("*.",3)
repl(&lcase,0)

value

aa
..*
•

6.1.3 Positioning Strings
Positioning data in strings of a specified size is frequently useful, especially when printing output in

columns. There are three functions for doing this.

I. The value of left (s1 ,i,s2) is s1 positioned at the left of a string of size i. s2 is used to fill out the remaining
portion to the right of s 1 , and is replicated as necessary, starting from the right. The last copy of s2 is
truncated at the left if necessary to obtain the proper size. If the size of s1 is greater than i, it is truncated at
the right end.

Default: A null value for s2 defaults to • .
Error Condition: If i is negative or greater than 2 - I , Error 205 occurs.

27-

Examples:
expression

left("abcd",6,".o")
left("abcd",7,".D")
left("abcde".7,".D")
left("abcd",6)
left(&lcase,10)

value

abcd.o
abcda.D
abcde.n
abed DO
abedefghij

2. The value of right (s1,i,s2) is similar to Ieft(s1,i,s2), except that s1 is placed at the right, s2 is replicated
starting at the left, with the truncation of the last copy of s2 at the right if necessary. If the size of s1 is greater
than i, it is truncated at the left end.

Default: A null value for s2 defaults to • .
Error Condition: If i is negative or greater than 2 - 1 , Error 205 occurs.

Examples:
expression

right("abcd",6,".D")
right("abcd",7,".D")
right("abcde",7,".o'
right ("abcd",6)
right(&lcase,10)

value

.•abed

.D.abcd

.oabede
• aabed
qrstuvwxyz

3. The value of center (s1 ,i,s2) is s1 centered in a string of size i. s2 is used for filling on the left and right as
for the functions above. If the size of s1 is greater than i, it is truncated at the left and at the right to produce
its center section. If s1 cannot be centered exactly, it is positioned to the left of center.

Default: A null value for s2 defaults to • .
Error Condition: If i is negative or greater than 2 - I, Error 205 occurs.

Examples:
expression value

center ("abcd",8,".D") .oabcd.o
center ("abed",9,".•") . •abcdn.n
center ("abcde",9,".n") .aabcde.n
center("abcd",6) aabedo
center(&lcase,10) ijklmnopqr
center (&lcase,11) ijklmnopqrs

6.1.4 Character Positions and Substrings
The positions of characters in a string are numbered from the left starting at 1. The numbering identifies

positions between characters. For example, the positions in the string HAT are

H A T
1 t t I
1 2 3 4

Note that the position after the last character may be specified.
Positions may also be specified with respect to the right end of a string, using nonpositive numbers starting

at 0 and continuing with negative values toward the left:

H A T
T T T T
.1 - 2 1 0

For this string, positions 4 and 0 are equivalent, positions 3 and -1 are equivalent, and so on.

- 2 8 -

The positions that can be specified for a string S are in the range -*s to *s + I, inclusive. Values out o! this
range are not allowable position specifications. In general, the positive specification i is equivalent to the
nonpositive specification i-(*s + I).

S'ote.The only allowable positions for the empty string are I and 0, which are equivalent.
A substring is a sequence of characters within a string. An initial substring of s is one that begins at the

first character of S. A terminal substring of S is one that ends at the last character of S. Substrings are
determined by beginning and ending positions, using a range specification. There are four forms of range
specification:

i the single character following position i
i: j characters between positions i and j
i +: k k characters following position i
i - : k k characters preceding position i

In all cases, i and j may be given by positive or nonpositive specifications and k may be positive, negative, or
zero.

Note.The range specifications i:j and j:i are equivalent.
A substring is obtained by a subscripting expression of the form

string left-bracket range-specif cation right-bracket

The resulting substring consists of the characters given by the range specification.
Failure Condition: A subscripting expression fails if either of the positions of the range specification do
not correspond to allowable positions in the string being subscripted. In this case, the specification is said
to be out of range.
Warning: The internal representation of characters starts at 0, not I, while the positions in a string start at
I. Consequently, there is a difference of I between the position of a character in &ascii and its (decimal)
code value. Thus &ascii[1] is the null character. This difference may be an annoyance and also a source
of error. It is the consequence of the technique used for specifying positions from either end of the string
by unique integers.

Examples:
expression value

&lcase[1] a
&ucase[26] Z
&lcase[1:2] a
&lcase[2:1] a
&lcase[1:1] •
&ucase[27] none
&lcase[27:28] none
&lcase[-1:-2] y
"abed" [2:0] bed
"abed"[2:-7] none
"abcd"[1:0] abed
"abcd"[2+:2] be
"abcd"[3-:2] ab

If the string specified in a substring operation is a variable, assignment can be performed to replace the
specified substring and hence change the value of the variable.

Notes: All forms of assignment can be used to replace substrings.
Error Condition: If an attempt is made to assign to a subscripting expression in which the string is not a
variable. Error 11 1 occurs.

- 2 9 -

Examples:
expression

s := "abed"
s[1:2] := "xx"
s[-1:0] := " "
s[1] := "abc"
s [1 + .2] .= ,y,
s[2] :=: s[3]

value of

abed
xxbed
xxbc
abexbe
ycxbc
yxebe

6.1.5 Other String-Valued Operations

1. The value of reverse (s) is a string consisting of the characters of S in reversed order.

Examples:
expression value

reverse ("abed") deba
reverse (&lcase) zyxwvutsrqponmlkjihgfedcba
reverse ("") •

2. The value of trim (s,c) is a string consisting of the initial substring of s with the omission of the trailing
substring of s which consists solely of characters contained in C.

Default: A null value for C defaults to ' • ' .

Examples:
expression value

t r im("abcdnoa", 'a ') abed
t r im("abcdnnn") abed
tr im("abcdoaD", 'nd') abc
tr im("abcdnna", 'd ') abcdanD
trim("abcdDDD",&ascii) •

3. The value of map (s1 ,s2,s3) is a string resulting from a character mapping on s1 , where each character of
s1 that is contained in s2 is replaced by the character in the corresponding position in S3. Characters of s1
that do not appear in s2 are left unchanged. If the same character appears more than once in s2, the
rightmost correspondence with s3 applies. If the sizes of s2 and s3 are not the same, Error 208 occurs.

Defaults: A null value for s2 defaults to &ucase and a null value for s3 defaults to &lcase.
Note: If s1 is a transposition (rearrangement) of the characters of s2, then map(s1,s2,s3) produces the
corresponding transposition of s3.

Examples:
expression value

map("abcda","a","*") *bcd*
map ("abcda'V'ad","**") *bc**
map("abcda","ad","*:") *bc:*
map ("abcda'V'ax","*:") *bcd*
map ("abcda","yx"."*:") abeda
map ("abed","bead","1234") 3124
map("acda","aac","123") 23d2
map ("wxyz","zyxw","abcd") deba

-30

6.2 String Comparison
Strings, like numbers, can be compared, but the basis for comparison is lexical (alphabetical) order rather

than numerical value. Lexical order includes all characters and is based on the collating sequence. If a
character c1 appears before c2 in collating sequence, d is lexically less than c2. The lexical order for single-
character strings is based on this ordering. Thus X is less than x, but z is greater than X. For longer strings,
lexical order is determined by the lexical order of characters in corresponding positions, starting at the left.
Two strings are lexically equal if and only if they are identical, character by character. If one string is an initial
substring of another, then the shorter string is lexically less than the longer one.

Note: The empty string is lexically less than any other string.
The operation s1 « s2 succeeds if s1 is lexically less than s2 and fails otherwise. The value returned on

success is s2. In all, there are six lexical comparison operators:

s1 « s2
s1 « = s2
s1 » s2
s1 » = s2
s1 == s2
s1 ~== s2

Examples:
expression

"X" « "X"
"X" « = "X"
"x" » "x"
"XX" « "x"
"xx" » = "xX"
"xx" « "xxx"
"xx" « "xxX"
" " ~== "x"

lexically less than
lexically less than or equal
lexically greater than
lexically greater than or equal
lexically equal
lexically not equal

value

X

none
none
x
xX
xxx
xxX
x

6.3 String Analysis
Most programming operations on strings involve analysis rather than synthesis, and the repertoire of

analytic operations is correspondingly large.

6.3.1 Identifying Substrings
There are two functions for identifying specific substrings.

1. If s1 is an initial substring of s2[i:j], the function match (s1,s2,i,j) returns the position of the end of the
substring.

Failure Condition: match (s1,s2,i,j) fails if si is not an initial substring of s2[i:j].
Defaults: A null value for i defaults to 1 and a null value for j defaults to 0.

31

Examples:
expression value

match("a","abc",1) 2
match("a","abc") 2
match("a","abc",2) none
match ("ab'V'abc", 1,2) none
match ("be","abc",1) none
match("bc","abc",2) 4
match("bcd","abc",2) none
match ("","abed",1) l
match (" ","abcd",5) 5

2. The value of find (s1 ,s2,i,j) is the leftmost position in s2 where s1 occurs as a substring in s2[i:j].
Failure Condition: V\nd (s~\ ,s2,\,\) fails if si is not a substring of s2[i:j].
Defaults: A null value for i defaults to 1 and a null value for j defaults to 0.

Examples:
expression value

find("a","abcd",1) I
find("a","abcd") I
find ("be","abed",1) 2
find("a","abcd",2) none
find ("ab","abed",1,2) none
find("de","abcd",1) none
f ind("","abcd",3) 3

The function find is a generator that produces the sequence of the positions, from left to right, at which s1
is a substring of s2[i:j].

Examples:
expression
every find("a","abaaa")
every find ("abed","abedeabe")
every find ("be","abedeabe")
every find ("bc","abcdeabc",3)

values in sequence
1, 3, 4, 5
l
2, 7
7

6.3.2 Lexical Analysis
Lexical analysis involves sets of characters rather than substrings. There are four lexical analysis

(unctions.

I. II the first character of s[i:j] is contained in the character set c, the value of any (c,s,i,j) is i+ I.
Failure Condition: any (c,S,i,j) fails if the first character of s[i:j] is not contained in the character set C.
Defaults: A null value for i defaults to l and a null value for j defaults to 0.

32

Examples:
expression value

any('abc',"abcd",1) 2
any fabc', "abed") 2
any fabcV'dcba") none
any (~'abc',"dcba") 2
any('abc',"dcba",2) 3
any('abcd',"abcd",1,2) 2

2. The value of u p t o (c,S,i,j) is the leftmost position in S of the first instance of a character of C in S[i:j].
Failure Condition: upto(c,s,i,j) fails if no character in s[i:j] is contained in c.
Defaults: A null value for i defaults to 1 and a null value for j defaults to 0.

Examples:
expression value

upto('a',"abcd",1) l
upto ('a',"abed") I
upto ('abc', "abed") I
upto (~'abc\ "abed") 4
upto('d',"abcd",2) 4
upto ('d',"abed",2,3) none
upto ('a',"abed",2) none

The function u p t o is a generator that produces the sequence of the positions, from left to right, at which a
character of c occurs in S[i:j].

Examples:
expression

every upto('abcd',"abcd")
every upto ('a',"abed")
every upto ('ab\"abed",2)
every upto (~'ab\"abed")

3. The value of m a n y (c.S.i.j) is the position in S after the longest initial substring of s[i:j] consisting solely
of characters contained in c.

Failure Condition: many (c,s,i,j) fails if the first character of s[i:j] is not contained in c.
Defaults: A null value for i defaults to l and a null value for j defaults to 0.

Examples:
expression value

many('ab',"abcd",1) 3
many fab', "abed") 3
many ('ab', "abed", 2) 3
many fab', "abed", 2,3) 3
many fab',"abed",3) none

4. The value of bal (c i ,c2,c3,S,i,j) is the position in S after an initial substring of S[i:j] that is balanced with
respect to characters in c2 and c3 , respectively, and which is followed by a character in d .

In determining balance, a count is kept, starting at 0. Characters in S[i:j] are processed from left to right. If
the character being processed is contained in d and the count is zero, the process is complete at that point.
Otherwise, a character in c2 causes the count to be incremented by 1, while a character in c 3 causes the count
to be decremented by 1. All other characters leave the count unchanged.

Failure Conditions: If the count ever becomes negative or if the substring being examined is exhausted
with a positive count, bal fails.

value:

1,
i
i

2
3.

2,

4

i in

3,

»sequence

4

- 33 -

Note: Characters in c2 are examined before characters in c3, so that if a character occurs in both c2 and
c3, it is treated as if it occurred only in c2.
Defaults: A null value for i defaults to 1 and a null value for j defaults to 0. A null value for d defaults to
&cset, a null value for c2 defaults to '(', and a null value for c3 defaults to ')'.

Examples:
expression value

bal('+7(7)\"(aHb)") 4
bal('+',„"(a)+(b)",1) 4
bal(,+'„>"(a)+(b)") 4
bal('+',„"(a)+(b)",2) none
bal(,-',„"(a)+(b)") none
bal(,„"(a)+(b)") 1
bal(,'([7])\"(aHb)") i

The function bal is a generator that produces the sequence of positions, from left to right, at which
successively longer balanced strings terminate.

Examples:
expression values in sequence

every bal(,„"(a)+(b)+(c)") 1, 4, 5, 8, 9
every bal('+',„"(a)+(b)+(c)") 4, 8
every bal(,,,"abed") I, 2, 3, 4

- 3 4 -

Chapter 7

String Scanning

String scanning is a high-level facility for the analysis and synthesis of strings that permits the string being
operated on to be implicit, thus avoiding much of the notational detail that would otherwise be required.

The string scanning expression

exprl ? exprl

evaluates exprl and establishes its value as the string to be scanned, exprl is then evaluated to perform the
scanning. The outcome of the string scanning expression is the outcome of exprl.

7.1 Scanning Keywords
During string scanning, the string being scanned is the value of the keyword &subject. The implicit posi-

tion in &subject is the value of the keyword &pos. The value of &subject is automatically set to the value of
exprl and the value of &pos is set to I, corresponding to the beginning of &subject. Subsequently, values
may be explicitly assigned to &subject and &pos. Assignment of a value to &subject automatically sets
&pos to 1, as does assignment to a substring of &subject.

Note: A nonpositive position specification may be used in assignment to &pos, but the corresponding
positive value is actually assigned.
Failure Condition: An attempt to set &pos to a value that is out of the range of &subject fails.

The function pos (i) returns the positive equivalent of the position i in &subject, provided &pos is at this
position.

Failure Condition: pos (i) fails if &pos is not at position i.

Examples:
expression

&subject := '
pos(1)
pos(-4)
pos (3)
&pos := - 1
pos(-1)
&subject[2:4]
&subject := '

"abed"

:= "x"
'ab"

value

abed
I
l
none
4
4
X
ab

value of &pos

1
I
I
l
4
4
3
I

7.2 Positional Analysis
There are two functions that change &pos automatically and return the substring between the previous

and new values of &pos.

I. The result of move (i) is the substring between &pos and &pos+ i, and &pos is incremented by i.
Failure Condition: If &pos+ i is out of range, move(i) fails and &pos is not changed.

35

Examples:
expression

&subject := "abed"
move (2)
move (3)
move(-1)
move (-2)
move(O)
&pos := 0
move(-1)

The assignment made to &pos by move(i) is a reversible effect. If move (i) succeeds, but the expression in
which it appears fails, &pos is restored to its original value.

Examples:
expression

&subject := "abed"
move (2) & move (3)
move (2)
move(-1) & pos(3)

value

abed
ab
none
b
none
•
5
d

value of &.pos

I
3
.1
2
2
2
5
4

value

abed
none
ab
none

value of &pos

1
!
3
3

The result of tab (i) is the substring between &pos and i, and &pos is set to i.
Failure Condition: If i is out of range, tab (i) fails and &pos is not changed.

Examples:
expression value

&subject := "abed" abed
tab (2) a
tab(O) bed
tab(1) abed
tab(-5) none

value of &.pos

I
2
5

The assignment made to &pos by tab (i) is a reversible effect.

Examples:
expression

&subject := "abed"
tab(O) & move(1)
tab(O) & move(-1)

value

abed
none
d

value q/&pOS

I
i
4

7.3 Scanning Operations
Several functions have defaults that provide implicit arguments for string scanning:

form

any(c)
bal(c1,c2,c3)
f ind(s)
many(c)
match (s)
upto(c)

interpretation
any(c,&subject.&pos,0)
bal (d ,c2,c31&subject,&pos,0)
f ind (s,&subject,&pos,0)
many (c,&subject,&pos,0)
match (s,&subject,&pos,0)
upto (c,&subject,&pos,0)

Thus in each case the default interpretation applies to &subject starting at &pos and continuing to the end of
&subject. The values returned by these functions are integers representing positions in &subject, but &pos
is not changed.

-36

Xoic: The default interpretations for the last two arguments apply only if the argument that speeilies the
siring to he examined is omitted or •. Sec Appendix (.'.

Examples:
expression

&subject '.-
upto('c')
upto('a')
many('abc')
any('d')

"abed"

value

abed
3
1
4
none

value of &pos

1
1
I
1
1

value

abed
ab
none
C
d

value <;/&pos

1
3
3
4
5

These functions may be used as arguments to tab to change the value of &pos and to obtain a substring
between the new and old values of &pOS.

Examples:
expression

&subject != "abed"
tab(upto('c'))
tab(uptofa'))
tab(manyfc'))
tab(any('d'))

In addition. = s is provided as a synonym for tab (match (s)).

Examples:
expression value value of &pos

&subject != "abed"
="ab"
="ab"
="c"
="d"

="d"

7.4 Nested Scanning
The \alues of &subject and &pos are saved on entry to string scanning and are restored upon exit.

Consequently, nested scanning is possible. For example, suppose words contains a sequence ol words
followed by blanks. Then the following code segment assigns a similar string to twords, but with only those
words containing a t. It also assigns the total number of words to WCOunt.

twords != " "
wcount := 0
words ?

whi le t ab (up to (' a ')) ? j
if upto(' t ') then twords '.- twords | | &subject | | " • "
wcount != wcount + 1
I

do m o v e (1)

H timing: I he values of &subject and &pos arc not restored if string scanning is exited hy a break, next,
or a procedure return.

abed
ab
none
C
d
•
none

I
3
3
4
5
5
5

37-

file:///alues

7.5 (feneration During Scanning
Like in any other operation, both operands in string scanning can be generators. For example,

every write((s1 | s2 | s3) ? up to (d I c2))
writes every position at which a character of d or c2 occurs in S"l, s2, and S3. The order in which the values
are produced is not the same as in

up to (d | c2, s1 | s2 | S3)
since the order in which the arguments are reactivated to produce alternatives is different.

38-

Chapter 8

Structures

Structures are aggregates of variables. Different kinds of structures have different organizations and
different methods for accessing these variables. Structures are data objects and may be assigned to variables
like other data objects. Structures are not copied when they are assigned to variables.

Xoie: There are specific limits to I he sizes of structures as noted in subsequent sections. In practice,
maximum sizes are usually limited by the amount of available memory.

8.1 Lists

Lists are sequences of variables that can be referenced by position or manipulated by stack and queue
access methods. When referenced by positions, lists appear to be one-dimensional arrays. When manipulated
by stack and queue access methods, lists expand and contract as needed. Positional and access methods for
lists can be used in combination.

8.1.1 Creation of Lists
A list is created during program execution by an expression of the form

left'bracket e.xpr [, expr] ... right-bracket

where the values of the expressions provide the initial values of the list elements.

I he value of *a gives the number of elements in a.
Sole: I he value ol [| is an empty list, containing no elements. In other cases, omitted arguments default
to the •. Kir example [,] is a list of two null-valued elements.

Examples:
expression

triple := [0,0,0]
• triple
line := [,,,]
* line
seq = [1,2,3,4,5,6,7,8]
*seq
unit := []
• unit

value

[().().()]
1
[•••••••]
4
[1.2. .1.4.5.6.7.X
K
fl
I)

Lists are also created by the function list (i,x). where i is the size of the list and x is the initial value of each
element of the list.

Default: A null value for i delimits to 0.
is

Error Conditions: II size ol the list is greater than 2 —I, rrror 205 occurs.

Examples:
expression value

init := list(5,0) (().().().().()]
octave := list(8) [•.•.•.•.•-•.•.•]
count := list(0) [|
*init 5
• octave x
• count o

39-

8.1.2 Positional Access to Lists
An element of a list may be accessed by specifying the position of the element in a referencing expression of

the form

list left-bracket expr right-bracket

where the value of expr is the position of the element in list. Element positions are also called subscripts.
Assignment may be made to an element of a list to change its value.

Failure Condition: A referencing expression fails if the subscript does not reference an element between
the I and the size of the list, inclusive. In this case the subscript is said to be out of range.
Note: Negative subscripts can be used to reference elements relative to the right end of the list. For
example, -1 references the last element of a list.

Examples:
expression
seq[3] := 1
seq[5] := seq[3]
seq[0]
seq[-1]
seq [-4]
unit[1]

value
I
5
none
8
5
none

8.1.3 Stack Access to Lists
The functions push(a.x) and pop(a) provide stack access to lists, push(a.x) prepends x to the left end of

the list a and returns a as its value, pop(a) removes the left-most element from the list a and returns this
element as its value. a[1] is the top of the stack.

Failure Condition: pop(a) fails if a is empty, that is, if its size is zero.

xamples:
expression

laundry := []
• laundry
push(laundry,'
push(laundry,'
• laundry
pop(laundry)
pop(laundry)
• laundry
pop(laundry)

"shirts")
'pants")

value

[]
0
[shirts]
[pants,shirts]
2
pants
shirts
0
none

8.1.4 Queue Access to Lists
The functions put(a.x) and get(a) provide queue access to lists, put(a.x) appends x to the right end of the

list a and returns a as its value, get(a) removes the left-most element from the list a and returns this element as
its value. a[1] is the head of the queue. For completeness, pull(a) removes the right-most element from the
list a and returns this element as its value.

Failure Conditions: get(a) and pull(a) fail if a is empty.
Note: pop(a) and get(a) are synonymous.

-40

Examples:
expression

laundry != []
put(laundry,"shirts'
put(laundry,"pants'
get(laundry)
get(laundry)
get(laundry)

value

[]
[shirts]
[shirts.pants]
shirts
pants
none

8.1.5 Operations on Lists
In addition to the operations above, there are operations for concatenating and sectioning lists.
The operation a1 | | | a2 produces the result of concatenating the lists a1 and a2.

Note: The list produced by a1 | | | a2 is physically distinct from the lists a1 and a2.

Examples:
expression

[1,2] Ml [3,4]
[] I I I ["a"]

value

[1.2.3.4]
[a]

Range specifications are used to produce lists that are sections of other lists (see Section 6.1.4).
Sows: A list produced by list sectioning is physically distinct from the list to which the range specification
is applied. List sections are not sublists.
Warning: a [i] is the ith element of the list a; it is not a list section.

Examples:
expression

a = [1,2,3,4]
a[l!2]
a[3'.0]
a[2+!2]
a[0-:2]

value

[I.2.3.4]
[I]
[3.4]
[2.3]
[3.4]

8.2 Tables
A table is an aggregate of elements that resembles a list. A table, however, can be referenced (subscripted)

by an object of any type. The elements of a table are not ordered by position. Thus a table can be thought of as
an associative list.

8.2.1 Creation of Tables
"fables are created during program execution by the function t ab le (x). When a table is created, it is empty

and has no elements. Elements may be added at will and tables grow automatically. Non-existent elements
are accessed as if they had the value x.

8.2.2 Accessing Table Klements
An element of a table is accessed by specifying a referencing value in an expression of the form

tahle left-bracket expr right-bracket

where the value of expr references tahle. The referencing value may be of any type. For example. t ["n"]
references the table t with the string n.

Xote: No type conversion is performed on the value used to reference the table. For example. t[1] and
t["1"] reference different elements. See also Section 10.3.

A value may be assigned to a table element in a manner similar to that for lists. For example

41

t["n"] := 3

assigns the integer 3 to the clement referenced by the string n.
A table grows automatically as assignments arc made to referenced elements that are not already in the

table. Table elements are only created, however, when values are assigned to them.

The value of *t is the number of elements in the table t.

1'..samples:
expression

op '.= table ()
*op
opf 'add"] '.=
*op
op["sub"]
op["sub"] ;=
*op
ct := table()
ct["four"] '.=
ct["score"] '.=
*ct

"C273"

"c274"

"four"
"twenty"

value

tahle
0
C273
1
•
c274
2
table
four
twenty
2

8.3 Records
Records are aggregates of variables that resemble lists, but the elements are accessed by name rather than

by position.

8.3.1 Declaring Record Types

A record type is declared in the form

record record-name ([field-name f , field-name] . . .])
I he record name specifies a new type, which is added to the repertoire of types. Sec Section 10.8. The field
names provide names by which the fields of the record may be referenced.

Sows: A record declaration cannot appear within a procedure declaration or within another record
declaration. The same field name may be used in more than one record declaration and the positions need
not be the same. Field names do not conflict with identifier names.

An example of a record declaration is

record complex (real,imag)

which declares complex to be a record type with two fields, real and imag.

8.3.2 Creating Records
A record is created during program execution by an expression of the form

type (expr [, expr] ...)

where the type is one declared in a record declaration and the values of the expressions provide the values of
the fields of the record in the order corresponding to the field names. The values may be of any type. For
example.

z != complex (1.0, 2.5)
assigns to Z a complex record with a value of I.O for the real field and a value of 2.5 for the imag field.

Default: Null-valued arguments in a record creation expression default to •.
I he value of *z is the number of fields declared for the type of record Z.

42

8.3.3 Accessing Records
A record is accessed by field name, using the infix . operator. Continuing the example above, the value ol

z.real is 1.0. The infix dot operator binds more tightly than any other infix or prefix operator and associates
to the left. For example, a.b.c.d and ((a.b).c).d are equivalent. Assignment can be made to a field reference
to change the value of that field of the record.

Records can also be accessed by position like lists. For example, z[1] is equivalent to Z.real. Negative
position specifications can be used to access fields relative to the end of the record. For example, z[-1] is
equivalent to z.imag.

Failure Condition: z[i] fails if the magnitude of i is greater than the number of fields in z.

Examples:
expression
z1 := complex (0,0)
z2 := complex (3.14, 2.0)
zl.real
zl.real + z2.imag
zl.real := z2.real
z2[2]
z2[3]
z1[-2]

value
complex
complex
0
2.0
3.14
2.0
none
3.14

8.4 Sorting Structures
The function sort (a) produces a copy of the list a with the elements in sorted order.
In sorting, strings are sorted in non-decreasing lexical order (see Section 6.2), while integers and real

numbers are sorted in non-decreasing numerical order (see Sections 4.1.3 and 4.2.3). The ordering of values of
other types is unspecified.

In heterogeneous lists containing values of different types, values are first sorted by type and then among
the values of the same type. The order of types in sorting is

•
integers
real numbers
strings
csets
files
procedures
lists
tables
record types

A table is converted to a sorted list by sort (t,i). If the size of t is j , the result is a list of j elements. Each
element of this list is itself a list of two elements, the first of which is the reference of a table element and the
second of which is the corresponding value. If i is I, these two-element lists are in the sorted order of the
references of the table. If i is 2, these two-element lists are in the sorted order of the values of the table.

Note: 1ft is empty, sort(t,i) returns an empty list.
Default: A null value for i defaults to I.
Error Conditions: In sort(x). if x is not a list or a table, Error 1 15 occurs. In sort(t.i), if i is not 1 or 2.
Error 205 occurs.

-43

Chapter 9

Input and Output

9.1 Files
The values of &input, &output, and &errout are the standard input, standard output, and standard error

output files, respectively.
Error Condition: These keywords are not variables. If an attempt is made to assign a value to one of them.
Error 111 occurs.

A file must be opened to be written or read. In addition, the status of the file must be established; some
files are designated for input and others are designated for output. All files are automatically closed when
program execution is terminated.

Note: &input, &output, and &errout are automatically opened when program execution begins.
The function 0pen(s1,s2) opens the file with name s1 according to the options specified by s2 and

returns that file as its value. The possible options are represented by characters as follows:
r open for reading
w open for writing
b open for reading and writing (bidirectional)
a open for writing in append mode
C create and open for writing
p pipe to/from a command (s1 is given to a shell to execute)

In the case of the w option, writing starts at the beginning of the file, causing any data previously
contained in the file to be lost. The a option allows data to be written at the end of an existing file. The b
option usually applies to interactive input and output at a terminal that behaves like a file that is both written
and read.

Warning: File names are interpreted by UNIX. Strange file names may produce strange results.
Default: A null value for s2 defaults to r.
Notes: If a file is opened for writing but not for reading, create is implied. Create and append have no
effect on pipes. Pipes may not be opened for simultaneous reading and writing.
Failure Condition: open (s1 ,s2) fails if the file with name s1 cannot be opened with the options specified
by S2.
Error Condition: If the option specification is invalid. Error 209 occurs.

The function close (f) closes f and returns f as its value. This has the effect of physically completing
output (emptying internal buffers used for intermediate storage of data). Once a file has been closed, it must
be reopened to be used again. In this case, the file is positioned at the beginning (rewound).

9.2 Writing Data to Files
The function write (x1,...,xn) writes strings to files. Arguments are processed from left to right. If xi is a

string or can be converted to one (see Section 5.4), it is written. If xi is a file, subsequent strings are written to
that file until another file argument is encountered. Thus strings can be written to several files by a single call
of write. Output is written to &output in the absence of a specified file. The strings are written one after
another as a single line, not as separate lines (i.e., they are not separated by line terminators). The effect is as if
the strings were concatenated and written as a single line. A line terminator is added after the last string
written on each file. The value returned by write is the last string written.

Note: No actual concatenation is performed by the write function. Since strings output to a file
frequently are composed of several parts, the write function may be used to avoid concatenation that
otherwise might be necessary. A significant amount of processing time may be saved in this way.

44

writes(x1 ,...,xn) writes in the manner ol write(x1,. . . ,xn). but no line terminators are appended. Thus
several strings can be placed on the same line of a file with successive calls of the writes (unction. One use of
this function is to provide prompting at a terminal in interactive mode, allowing the user to respond on the
same (visual) line that the inquiry is written.

Delimits: Null-valued arguments lor write and writes default to the empty string. • If the last argument
is a file, an additional • is supplied.
I'.nor Condition: II an attempt is made to write on a file that is not open for writing. Error 2I3 occurs.

I:\aniplcs:
expression

out '.= open ("data.txt","w")
flag := "*"
sep != "'."
write ()
write(out)
write (out,flag,"a",sep,"b")
write (flag,"a",sep,"b")
write (out,"x",sep,"y",sep,"z",flag)
write (1, sep, 2.0, sep, "2")

value

file
*
•
•
•
b
b
*
2

value written

none
none
none
•
•
*a!b
*a!b
x!y!z*
1:2.0:2

file written

none
none
none
&output
data.txt
data.txt
&output
data.txt
&output

9.3 Reading Data from Files
The lunction read(f) reads the next line from the file f. Line terminators are not included in the returned

string.
failure Condition: When the end of a file is reached (that is. when there are no more lines in the file).
read(f) fails.
Default: A null value lor f defaults to &input.
Xote: The maximum input line length is 257. II an input line is longer than 257 characters, onlv 257
characters are read. Suhsequent characters arc read on suhsequent reads.
I'rror Condition: II an attempt is made to read from a file which is not opened for reading. Error 2I2
occurs.

I he function reads (f,i) reads the next i characters from the file f. Line terminators are included in the
result. If fewer than i characters remain on the file f. the remaining characters are read and the result is shorter
than i.

failure Condition: reads fails if no chaiacteis remain to he read.
Defaults: A null value for f defaults to &input. A null value lor i defaults to I.
\ote: There is no limit to the maximum value of i except the amount ol memory available to store the

string.
is hrror Conditions: II i is less than I or greater than 2 —I. Error 205 occurs. II an attempt is made to read

from a file which is not opened for reading. Error 212 occurs.

- 4 5 -

file://I:/aniplcs

Chapter 10

Miscellaneous Operations

10.1 Element Generation
The expression !x generates successive elements of x as required, x may be a string, structure, or file.
For strings, successive characters are generated. Assignment to !s may be performed in the same manner

as to s[i].

Examples:
expression values in sequence

every !"abcde" a, b, c, d, e
every !&lcase[10!l5] j , k. I. m. n

For lists, the order of generation is from the first (left-most) element to the last (right-most) element. For
example, if a is a list

every write(!a)

writes the elements of a in order from the first to the last.
For tables, all elements are generated, but the order of generation is unpredictable. For records, the order

of generation is the same as for lists. For all structure types, assignment to !x may be used to change the value
ol an clement.

For files, successive lines of input arc generated. For example,

every write(!&input)

copies all the lines in the standard input file to the standard output file.

10.2 Augmented Assignment Operators
One of the commonest operations is the modification of the value of a variable by performing some

computation on its previous value. For example

i != i + 1

increments the value of i.
To simplify such computations, augmented assignment operators are provided in which the computation

and assignment operators are combined in a single operator. For example, the value of i is incremented by

i +:= 1

\oie: exprl +:= expr? has the same meaning as exprl := e.xprl + expr2except that exprl is evaluated only
once.

There are augmented assignment operators for all infix operations except except the assignment operators
themselves. For example

S ?!= expr

scans s and changes its value to the value of expr.
Ilrror Condition: II the expression on the left side of an augmented assignment operator is not a variable.
I nor I I I occurs.

46-

10.3 Comparison of Objects
Most comparison operations such as i = j and s1 == s2 are concerned with comparison of values. In these

cases, implicit type conversion occurs prior to lite comparison.
The two operations x = = = y and x ~= = = y are concerned with the equivalence of objects, x = = = y

succeeds if x and y are of the same type and arc equivalent. Similarly, x - = = = y succeeds if x and y are of
dillercnt types or if they are not equivalent. In both cases, the value of the right operand is returned in the case
of successful comparison.

The meaning of the term "equivalent" as used here depends on the type. Integers, real numbers, strings,
and csets are considered to be equivalent if they have the same values, regardless of how they are computed.
For procedures, files, lists, tables, and record objects, object comparison fails regardless of value, unless x and
y are the same object.

No/e: The kind of comparison used in X === y is also used to determine whether two table references are
the same. See also Section 8.2.2.

Examples:
expression value

("abc" || "def") = = = "abedef" abedef
7 = = = (6 + 1) 7
7 = = = "7" none
'amy' = = = 'may' a m y
110,10] = = = [10.10] none
)x := y := list(10) ; x = = = yj list

10.4 Copying Objects
Assignment does not copy objects, but rather assigns the same object to another variable. For example.

a1 := list (10)
a2 := a1

assign the same list to a1 and a2. Subsequently. a1 [3] and a2[3] reference the same element of the same list.
An object may be copied by the function copy (x). For example, if a1 is a list

a2 := copy(a1)
assigns a copy of a1 to a2. This copy is the same size as a1 and the values of all the elements are the same, but
a1 and a2 are distinct objects. Subsequently. a1[3] and a2[3] reference elements in the corresponding
positions of different objects.

Xote: Any type of object may be copied. In the case of integers, real numbers, strings, files, procedures,
csets. and •. the result is not a physically distinct object, but this difference is undetectable. See Section
10.3.

10.5 Random Flement Generation
The operation ?x returns a randomly selected value from x. If x is a positive integer i. ?x produces an

integer from a pseudo-random sequence in the range of I < ?x < i. ?0 produces a real number r from a
pseudo-random sequence in the range 0.0 < r< 1.0.

If x is a string. ?x returns a randomly selected one-character substring of x.
If x is a list, table, or record. ?x returns a randomly selected element of X.

\<>te: For structures, variables are produced and assignment can be made to them.
The pseudo-random sequence is generated by a linear congruence relation starting with an initial seed

value ol 0. This sequence is the same from one program execution to another, allowing program testing in a
reproducible env ironment. The seed may be changed by an assignment to &random. For example.

&random '.= 0
resets the seed to its initial value.

47-

Error Condition: If the value of i in ?i is less than Oor greater than 2 - 1 , Error 205 occurs.

10.6 Date and Time
The value of the keyword &date is the current date in the form yyyy/mm/dd. For example, the value of

&date for December 1, 1981 is 1981/12/01.
The value of the keyword &cl0Ck is the current time of day in the form hh:mm:ss. For example, the value

of &clock for 8:00 p.m. is 20:00:00.
The value of the keyword &dateline is the date and time of day in a readable format. An example is Fri-

day, December 4,1981 7:42 am .

The value of the keyword &time is the elapsed cpu time in milliseconds starting at the beginning of pro-
gram execution.

Note: The value of &time includes only user time, not system time.
Error Condition: &date, &clock, Adateline, and &tirne are not variables. If an attempt is made to assign
a value to one of them. Error 111 occurs.

10.7 The Null Value
The null value, •, is the initial value of all identifiers and is provided as the value for omitted expressions in

function and procedure calls, as well as in some control structures. In addition, the value of the keyword
&null is*.

The null value is illegal in most computational contexts, although it defaults to commonly used values for
the arguments of some functions. See Appendix C.

There are two operations that can be used to test for •:
/expr returns expr if the value of e.xpr is •, but fails otherwise.
\expr returns expr if the value of expr is not •, but fails otherwise.

Note: If expr produces a variable, these operations return that variable. For example, /v := 0 assigns 0
to v if the value of v is •.

10.8 Type Determination
The function type(x) returns a string that is the name of type of x.

Examples:
expression

type(1)
type (2.0)
type("")
type ('armada')
type (trim)
type (main)
type ()

value

integer
real
string
cset
procedure
procedure
null

10.9 String Images

The function image (X) produces a string that represents the value of X. For strings and csets, this includes
enclosing quotes and escapes as necessary. For structures, their current size is given. Keywords are given in
place of their values in several cases.

48-

file:///expr

I'.xampli'.s:
expression

image(1)
image(2.0)
image("abc")
image(" ")
image('drama')
image (&lcase)
image()
image (&input)
image (open ("data","w"))
image([1,0,11])
image(list(10))
image (complex (3.1,1.0))
image(trim)
image(main)
image(complex)

value

1
2.0
"abc"
" "
'admr'
& lease
&null
&input
file (data)
list (3)
list (10)
record complex (2)
function trim
procedure main
record constructor compl

Sole: Note that image (x) can be used to distinguish between functions, procedures, and record
constructors.

10.10 (ailing a Shell
The function system (s) calls a shell to execute the string S. For example, system ("Is") lists the cuirent

directory. The \alue returned by system (s) is the exit status returned by the shell.
/-."/Tor Condition: If the si/e of s is greater than 256. Krror 210 occurs.

10.11 System Information
I he value of the keyword &host is the host location, operating system, and computer on which Icon is

running. An example is University of Arizona, UNIX Version 7, PDP-11/70.
I he value of the keyword aversion is the name and version number of the Icon implementation. An

example is Icon Version 5.0 interpreter, December 1981 .
I.rrur Comfilion: &host and aversion arc not variables. If an attempt is made to assign a value to one ol
them. Krror I I I occurs.

- 4 9 -

file:///alue

Chapter 11

Procedures

11.1 Procedure Declarations
A procedure declaration has the form

procedure identifier ([identifier [, identifier] . . .]) ;
[local-declaration ',]...
[initial-clause ;]
[procedure-body ',]

end

Note: The semicolons in a procedure declaration may he omitted if the components are placed on separate
lines. See also Section 12.2.

The identifier following procedure gives the name of the procedure. A local declaration has the form

local-specification identifier [, identifier] ...

A local specification may be local, dynamic, or static.
Xo/c: local and dynamic are equivalent.

I'.xumpk's:

local x, y
dynamic count
static state, basis

Dynamic identifiers exist only during each invocation of the procedure. Static identifiers come into existence
at the first call of the procedure in which they are declared and remain in existence after return from the
procedure so that their values are retained between calls of the procedure.

S'ote: Identifiers in the argument list arc dynamic.
The initial clause has the form

initial expr

1 he expression in the initial clause is evaluated once when the procedure is called the first time. The initial
clause is useful for assigning values to static identifiers.

The procedure body consists of a sequence of expressions that are executed when the procedure is called.
Two examples of procedure declarations follow.

procedure max(i. j)
if i > j then return i else return j

end

procedure accum(s)
local static t
initial t != " , "
t n:= s ii V
return t

end

50

11.2 Scope of Identifiers
As indicated in the preceding section, identifiers declared in a procedure are accessible only to that

procedure. If an identifier in a procedure is not declared, its scope is determined by g loba l declarations that
apply to the entire program.

global identifier [, identifier] ...
specifies that the listed identifiers are to be interpreted as global in those procedures in which they are not
explicitly declared to be local. The values of such variables arc accessible to all such procedures.

Notes: A local declaration lor an identifier in a procedure overrides a global declaration for that identifier,
(ilobal declarations cannot occur inside other declarations but they otherwise may occur anywhere in the
program. Record names ha\e global scope, but this scope can be overridden by local declarations. Field
names are not identifiers; they apply to the entire program and are not affected by scope declarations.

The scope of an identifier for which there is neither a local nor a global declaration is local.

11.3 Procedure Activation

11.3.1 Procedure Invocation
Procedures are invoked in the same form that functions are called:

expr ([expr [, expr] . . .])

where the expression before the parenthcsi/ed list has a procedure value. This expression usually is an
identifier. For example, the procedure max given in the example above might be used as follows:

m != max(*x,*y)

Argument transmission is by value. When a procedure is called, the expressions given in the call are evaluated
from the left to the right. The values of the expressions in the call are assigned to the corresponding identifiers
in the argument list of the procedure. Control is then transferred to the first expression in the procedure body.

Sole: If more expressions are given in the call than are specified in the procedure declaration, the excess
expressions are evaluated, but their values are discarded. II fewer expressions are given in the call than are
specified in the procedure declaration. • is prov ided lor the remaining arguments.

11.3.2 Return from Procedures
When a procedure is called, the expressions in the procedure body are executed until a return expression is

encountered. There are three forms of return expression:

return [expr]
fail
suspend [expr]

Defaults: An omitted expr in a return expression defaults to •. II control flows off the end of a procedure
body without an explicit return, the procedure call returns no result (that is. it fails).
Warning: failure to provide an explicit return from a procedure bodv may lead to unexpected and
erroneous results.

flic expression re turn expr terminates the call of a procedure and returns the outcome of evaluating expr.
If expr fails, the procedure call fails. Otherwise the value of expr becomes the value of the calling expression.
fo r example

j '.= max(*x,*y)
assigns to j the si/e of the larger of the two objects x and y.

I he expression fail terminates the call of a procedure without returning a result, causing the calling
expression to fail. Consider the following procedure.

51 -

procedure typeq(x.y)
if type(x) == type(y) then return else fail

end
This procedure compares the types of x and y, returning • if they are the same and failing otherwise. On the
other hand,

return type(x) == type(y)

also fails if the types are not the same, but returns the type instead of • if the types are the same.
The expression suspend expr is similar to return expr, except that the procedure call is left in suspension

so that it may be resumed for additional computation. Execution of the procedure body is resumed if the
context in which the procedure call occurs requires an alternative result. Thus suspended procedures are
generators. Consider the following procedure.

procedure timer(t)
while &time < t do suspend

end
This procedure suspends evaluation until the time exceeds a specified limit, in which case it fails. Therefore

every timer(&time + 1000) do expr
evaluates expr repeatedly during an interval of approximately I000 milliseconds.

Like every, suspend produces all alternatives of expr as required. For example

suspend (1 | 2 | 3)
suspends with the values I. 2, and 3 on successive activations of the procedure in which it appears. If the
procedure is activated again, evaluation continues with the expression following the suspend.

Sow: The suspend expression itself fails, once all alternatives of expr have been produced.
If the expression in return or suspend is a global identifier or a computed variable (such as a list element),

the variable is not dereferenced. Local identifiers are dereferenced, however, and only their value is returned.
An assignment can be made to the result of a procedure call that returns a variable. Consider the following
procedure:

procedure maxel(x,i,j)
if x[i] > x[j] then return x[i]
else return x[j]

end
An assignment to a call of this procedure, such as

maxel(roster,k,m) := n

changes the value of the maximum of the elements kand m in roster.

11.3.3 Procedure Level
Since procedures can invoke other procedures before they return, several procedures may be invoked at

any one time. The value of the keyword &level is the number of procedures that are currently invoked.
Error Conditions: There is no specific limit to the number of procedures that may be invoked at any one
time, but storage is required for procedure invocations that have not returned. II available storage is
exhausted. Error 304 occurs. &level is not a variable. If an attempt is made to assign a value to it. Error
I I I occurs.

11.3.4 Tracing Procedure Activity
Tracing of procedure invocation is controlled by the keyword &trace. If the value of &trace is non/ero. a

diagnostic message is written to &errout each time a procedure is called and each time a procedure returns or
suspends. The value of &trace is decremented for each trace message.

52-

Default:The initial, default value ol &trace is 0.
Miles: Tracing stops automatically when &trace is decremented to 0. II a negative value is assigned to
&lrace. tracing continues indefinitely. II the value assigned to &trace is less than -2 ' or greater than
2 - I . the actual value assigned is —I.

In the case ol a procedure call, the trace message includes the name of the procedure and string images ot
the values of its arguments. The message is indented with a number of vertical bars equal to the level Irom
which the call is made (&level). In the case of procedure return, the trace message includes the function name,
the type of return, and the value returned, except in the case of failure. All trace messages include the name of
the file containing the procedure that is traced and the line number in that file from which the call or return is
made.

An example is given by the following program, which is contained in the file acker.icn:

procedure acker(m,n)
if (m | n) < 0 then fail
if m = 0 then return n + 1
if n = 0 then return acker(m - 1,1)
return acker(m - 1,acker(m,n - 1))

end
procedure main()

&trace ".= - 1
acker (1,3)

end
The trace output produced by this program is

acker.icn!10
acker.icn!5
acker.icn!5
acker.icn)5
acker.icn!4
acker.icn!3
acker.icn!4
acker.icn!5
acker.icn!3
acker.icn!5
acker.icn!5
acker.icn!3
acker.icn!5
acker.icn!5
acker.icn!3
acker.icn!5
acker. icn."11

| acker(1,3)
I | acker (1,2)
I I I acker(1,1)
I | | | acker(1,0)
| | | | | acker(0,1)
M i l l acker returned 2
I I I I acker returned 2
I | I I acker(0,2)
I | | I acker returned 3
I | | acker returned 3
I | | acker(0,3)
| | | acker returned 4
| | acker returned 4
| | acker (0,4)
I | acker returned 5
| acker returned 5
main failed

Note that the procedure main, which has no explicit return, produces no result (that is, it fails).
In trace output, values are imaged in a manner similar to that produced by image(x) (see Section I0.8). In

order to prevent trace output from being unwieldy, literal strings and csets are truncated to 16 characters and
lollowed by ellipses (...) to indicate the truncation. hor lists and records, values are shown for up to six
elements. If the size of a list or record is greater than six. the first three and last three elements are shown, with
ellipses indicating the omitted elements. Various additional information is shown, such as where variables are
returned and the ranges lor substrings.

5.V

11.4 Listing Identifier Values
The function display(i,f) prints a list of all identifiers and their values in the i levels of procedure

invocation starting at the current procedure invocation. The output is written to f.
Notes: display(&level,f) displays the identifiers in all procedure invocations leading to the current
invocation, display (0,f) displays only global identifiers, display (i,f) returns • as its value.
Defaults: A null value for i defaults to &level. A null value for f defaults to &errout.
Error Condition: If the value of i is less than 0, Error 205 occurs.

As an example of the display of identifiers, consider the following program:

global hexd

procedure main()
local label
hexd := "0123456789ABCDEF"
label := "hex (61)="
write(label,hex("61"))

end

procedure hex(x)
display (&level)
return &ascii[16 * find (x[1], hexd) + find(x[2], hexd) - 16]

end
The output of display (&level) is

hex local identifiers:
x = " 6 1 "

main local identifiers:
label = "hex(61)="

global identifiers:
main = procedure main
hexd = "0123456789ABCDEF"
hex = procedure hex
write = function write
display = function display
find = function find

Global identifiers are listed at the end of every display output, regardless of whether or not the global
identifiers are referenced by the displayed procedures.

11.5 Procedure Names and Values
A procedure declaration establishes an object of type procedure as the initial value of the global identifier

that is the procedure name. This object can be assigned to another variable and the procedure can be called
using the new variable. For example imax := max assigns to imax the procedure for max as given earlier.
Subsequently, imax (i,j) can be used to compute the maximum of i and j .

Any expression that produces a value of type procedure may be used in a call. For example, if procs is a
list whose elements are procedures, such as

procs[1] := max
then

procs[1](i,j)

computes the maximum of i and j .
The names of functions are global identifiers with predefined values. The declaration of a procedure or

record with the same name as a function overrides the predefined value. A local declaration for a function

54

name has the same effect within the procedure in which the declaration occurs.

11.6 Kxternal Procedures
Procedures written in C can be included in an Icon program by the declaration

external identifier [, identifier] ...
where identifier is the name of a C proceduie. External procedures have the same status as Icon functions. See
Reference 12 for coding conventions that must be used in writing external procedures.

- 5 5 -

Chapter 12

Program Preparation

12.1 Program Structure
A program is a sequence ol declarations. The declarations may appear in any order. The executable

components of a program are contained in procedure declarations. Every program must contain a procedure
named main.

A program may be divided into a number of files, but every declaration must be completely contained in a
single file. When a multi-file program is processed, the scope of identifiers is the same as if the program had
been contained in a single file.

Warning: A global declaration in one tile ol a program may affect the interpretation ol an undeclared
identifier in another file.
\<>ic: Record and procedure declarations implicitly declare their record and procedure names.
respectively, to be global.

12.2 Layout of Program Text
Since a file is a sequence ol lines, it is usually convenient and natural to parallel the logical structure of a

sequence of expressions by the physical structure ol a sequence of lines in the file.

Semicolons are used in a number of places to separate expressions. See Appendix A. If a semicolon falls at
the end of a line, it may be omitted, provided that the syntactic token at the end of the line can legitimately end
an expression and the token at the beginning of the next line can legitimately begin an expression. Thus most
semicolons can be omitted at the ends of lines, and long expressions can be written on several lines without
difficulty.

S'olc: II a semicolon can be legitimately inserted in the place ol a ncwline character in program text, this is
done automatically hy the Icon translator.

For example.

x := 1; y := 2; z > 0

can also be written as

x := 1
y = 2
z := o

Because ol the way than the translator interprets ends of lines, if an infix operation is split into two lines, the
operator should be placed at the end of the first line, not at the beginning of the second. For example

s1 II
s2

is the concatenation of the values o! two identifiers, while

S1
II s2

is two expressions, the first of which is a lone identifier and the second of which is two repeated alternations of
a second identifier!

II dining: Care should be taken not to spin expressions at places where components are optional, f o r
example

- 5 6 -

return expr
and

return
i:\pr

arc quite different.
Identifiers may be arbitrarily long, but must be contained on one line. A quoted literal may be continued

from one line to the next by entering an underscore (_) as the last character of the current line. When a line is
continued in this way. the underscore as well as any blanks or tab characters at the beginning of the next line
are ignored to allow normal indentation and visual layout conventions to be used.

Sole: The total length of a string literal is limited only by the memory available to the translator. There is
no practical limit.

12.3 Program Character Set
Icon uses the ASCII character set [II] . In program text, tabs and blanks are syntactically equivalent. All

other characters are distinct.
Sole: In literal strings, blanks and tabs are distinct.

12.4 Significance of blanks
Blanks (and tabs) in program text, except in string literals, serve to separate tokens that otherwise would

appear to be a single token. Blanks are otherwise optional between tokens and may be used for indentation
and to produced desired visual effects in program text. Blanks are necessary to separate reserved words,
identifiers, and where an infix operator that is followed by a prefix operator would be ambiguous. For
example.

x—y

is interpreted as the character set difference of x and y. while

x - - y

is interpreted as x minus the negative of y.

12.5 Comments
A comment is text in the line of a program that is not part of the program itself, but is included to describe

the program or to provide other auxiliary information. The character # causes the rest of the line on which it
appears to be treated as a comment. The following program segment illustrates the use of comments.

These procedures print all the intersections of two words.
cross uses nested every constructs to find all intersections and
calls xprint to print each intersection.
procedure cross(wordl, word2)

local j , k
every j ;= upto(word2,wordl) do

end

every k := upto(word1[j], word2) do

xprint(word1, word2, j , k)

procedure xprint (wordl, word2, j , k)
every write (right (word2[1 to k - 1] , j))
write (wordl)
every write (right (word2[k + 1 to *word2],]))

end

location in wordl of
every character in word2
and for each, all
positions in word2
print the result

up to position in wordl
then wordl
then rest of word2

57-

file://i:/pr

Chapter 13

Programming Considerations

13.1 Efficiency Considerations
Many of the considerations in writing efficient Icon programs are the same as for other languages: use of

good algorithms, good program structure, appropriate data representations, and so on. There are, however,
idiosyncrasies of the Icon language and its implementation that warrant specific attention:

1. Any operation that causes the allocation of a significant amount of storage may adversely affect running
speed, since that storage must eventually be reclaimed by garbage collection, a relatively expensive process.
While a detailed understanding of storage allocation and garbage collection requires extensive knowledge of
the implementation of Icon, common sense provides a good guide to programming practices. Some specific
aspects of storage allocation are mentioned below.

2. Long strings are expensive to manipulate. Operations that construct strings require storage allocation and
the movement of data. Appending to the last string constructed is a comparatively inexpensive process,
however.

3. Creation of a substring does not require a significant amount of storage and involves no movement of
data. Assignment to a substring, however, is a form of string creation.

4. Several strings can be appended in output without concatenation by using write and wrifes. This
technique frequently can be used to avoid considerable amounts of storage allocation. Note that multi-line
output can be produced in a single output expression by using " \ n " to generate newlines.

5. Icon stores integers in the range of - 2 1 5 to 2I 5-I in one word. One-word integers do not require the
allocation of storage. For integers beyond this range, two words are used. Two-word integers do require the
allocation of storage.

6. Icon provides automatic type conversion (coercion) where possible. Such type conversions, although not
directly evident, may be the cause of significant inefficiencies. The worst potential problems are in cset-to-
string and string-to-cset conversion. For example, evaluation of upto ("aeiou") causes the string aeiou to be
converted to a cset every time the expression is evaluated. If such an expression occurs in a frequently
executed inner loop, overall program performance may be significantly affected. It is good programming
practice to use cset literals or to perform an explicit out-of-line conversion in such cases.

7. Augmented assignment operations, such as i +:= 1, should be used wherever possible to avoid two
evaluations of the variable to which the assignment is made. This is particularly important in the case of table
references (for example, t["n"] +:- 1), since table references are comparatively slow.

8. Case selector expressions are evaluated in the order in which they appear (except for default).
Consequently, selector expressions should be ordered according to likelihood of selection.

9. Compound comparisons should be ordered so that unnecessary comparisons are avoided if the final
outcome is failure. For example

0 = f(x) = g(x)

is generally more efficient than

-58

f(x) = g(x) = 0

since f (x) and g(x) may produce the same, but nonzero, value. This consideration is particularly important
when expressions in the comparison may have many alternative results.

13.2 Programming Pitfalls
Since Icon has several unusual features, the novice Icon programmer is likely to encounter a number of

problems that would not come up in other programming languages. Some of the problems that may be
encountered are described below.

1. Generators are reactivated for successive alternatives in a last-in first-out manner. As a result, all possible
alternative results are produced, if necessary, in the goal-directed mode of evaluation used by Icon. However,
the order of evaluation that results from last-in, first-out reactivation of generators is different from that in
conventional left-to-right, precedence-determined evaluation of expressions. In particular, if a generator is
reactivated for an alternative result, only those components of the expression that follow the reactivated gen-
erator are re-evaluated. If generators are used in complicated combinations, unexpected results may occur for
these reasons. In particular, it is bad programming practice to use generators to produce side effects in an
every clause.

2. The referencing expression x[y] is polymorphous, allowing x to be a string, list, table, or record object. If
x is not of the type that is expected, unusual results may occur. In particular, it is a common programming
practice for x to be a list and for an expression of the form x := x[i] to be used to link through a structure. If
x[i] is a string instead of a list (perhaps as a result of an error in building the structure), an endless loop may
result.

3. Assignment does not copy structures. Thus, if a1 is a list, a2 := a1 assigns the same list to a2. Thus
assignment to an element of a1 changes that element of a2. Similarly, the effect of

a := list(3,list(5))

is to assign the same list of five elements to each of the three elements of a.

4. Exiting string scanning, whether by next, break, or a procedure return, does not restore the previous
values of &subject and &pos. Unless this effect is specifically desired or known to be safe, it is not good prac-
tice to exit from string scanning.

5. Since return from a procedure by flowing off the end of the procedure body causes the call of the pro-
cedure to fail, unexpected results may occur if the call is used in a context where its outcome is significant.
Such failure may cause an enclosing expression to fail. If the call is in a goal-directed context, the function
may be called again for other values of its arguments.

6. Since dereferencing is not performed until all arguments of a function or operation are evaluated, unex-
pected results may occur if side effects change the values of variables during argument evaluation. For exam-
ple

write (s,s := "a")
writes aa regardless of the value of S prior to the evaluation of the write function. The explicit dereferencing
operator . may be used to avoid this problem.

7. Since the outcome of loop control structures is failure, their use in contexts where this failure is significant
may produce unexpected results. For example, if expr2 in e.xprl ? expr2 is such a control structure, the entire
scanning expression fails. Similarly, if exprl then expr2 fails if exprl fails.

X. In exprl ? t'xprJ. neither exprl nor exprJ is limited in the number of results it may produce in a
goal- directed context. In particular, if cxpr2 fails, backtracking to exprl occurs.

-59

9. The functions move(i) and tab (i) restore the value of &pos if they are activated to produce an alternative
result. If this effect is not anticipated, the consequences may be mysterious. For example

suspend move(1)
produces only one result, but if an alternative is sought (by goal-directed evaluation at the cite where the pro-
cedure containing this suspend is called), &pos is restored.

10. Since • is illegal in most computational contexts, failure to assign an appropriate value to a variable
before it is used usually results in a run-time error.

11. The names of functions are global identifiers with predefined values. If such a name is declared to be local
in a procedure, it may be used as an identifier like any other name, but the corresponding function is inaccessi-
ble within that procedure. If such a declaration is made unintentionally, the results may be mysterious.

12. In splitting long program lines, binary operators should be placed at the end of line, not the beginning.
Otherwise the translator may interpret the lines as syntactically correct, but differently from the way intended
by the programmer.

13. SNOBOL4 programmers are prone to omit the || operator that is required for concatenation in Icon. The
result is usually a syntax error. A more subtle error is the use of = in place of := for assignment. This error
may produce undetected program malfunction or a run-time type error.

60-

Chapter 14

Running Icon Programs

There are four phases in processing an Icon program: translation, linking, loading, and execution.

14.1 Translation
An Icon program is first translated into an intermediate form. The translator may detect a variety of

errors. Most of the errors that the translator can detect are syntactic ones — illegal grammatical
constructions. The translator can also detect a lew semantic errors, such as multiply declared identifiers. See
Appendix D lor a list of translator error messages.

Xote.s: Some grammatical errors are not detected until alter the location of the actual cause of the error,
for example, if an extra left brace appears in an expression, the error is not detected until some
construction occurs that requires the matching, hut missing right brace. Asa result ol this phenomenon,
the translator message may not properly indicate the cause or location of the error. SimilarK. some kinds
ol errors mav cause the translator to mistakenly interpret subsequent constructions as erroneous when, in
fact, they are correct. Several diagnostic messages referring to locations in proximity should be suspect.

II the translator detects a syntactic error, the translation process is continued, but the program is not
executed. There are also overflow conditions that cause termination of translation at the point of overflow.
See Appendix D.

14.2 Linking
Once an Icon program has been translated into its intermediate form, there is a linking phase in which the

scope of identifiers is resolved and in which a form suitable for execution is produced.

In the C implementation, there are two options: interpretation and compilation. The linker for the
interpreter produces a compact representation of the program that is executed interpretively. The linker for
the compiler produces executable machine language. The translation and linking processes for the interpreter
are fast and the program sets into execution quickly. Compilation is considerably slower, but the code it
produces executes somewhat faster. One advantage of the compiler is that it allows separately translated
program segments to be linked together and external procedures to be included. In order to produce
executable code, the compiler has additional assembly and loading phases. Loading ("link cditingd") is done
bv the UNIX program /</[IO]. At this time external procedures are added to the Icon run-time system and
linked program.

The error message text overflow from hi indicates that there is not enough memory available to run the
Icon program.

14.3 Program Fxecution

Program execution is initiated by invoking the procedure main.

II there are any arguments on the UNIX command line used to initiate program execution, main is
invoked with one argument, which consists of a list of strings. Each string corresponds to one argument on the
command line (not including the " / c ro th" argument).

\'t>tc: I! there is no argument on the command line, main is invoked with an empty list.

14.4 Program Termination

Program execution terminates automatically on return from the initial call of the procedure main.
\<>/f.- I he exit status on return from main is 0.

Program termination may also be caused by Stop (x1 ,...,xn). The function s top writes in the fashion ol
write (see Section 9.2) and then causes termination.

61

\oics: The Stop function can be used to terminate program execution at an arbitrary place and is a
convenient way of handling errors or abnormal conditions thai arc delected during program execution,
stop produces an exit status of I.
Delimit: II the lirst argument to stop is not a tile, output is written to &errout until a file argument is
encountered.

I he lunc t ion ex i t (i) terminates program execution wi th an exit status of i.

14.5 Krror Termination

Frrors that occur during program execution may result from logical mistakes, invalid data, and so forth.
II such an error occurs, an error number and an explanatory message are printed. In some cases, the offending
value is shown. Sec Appendix I) for a list of run-time error messages. A run-time error terminates program
execution with an exit status of 2.

- 62

Chapter 15

Sample Programs

This chapter contains a number of sample programs. These programs illustrate various aspects of
programming in Icon. No claim is made that the programming techniques or the algorithms used here are the
best, but they are all running programs and they were written by programmers who have used Icon for some
time.

The programs are preceded by problem statements and discussions of the methods used for the solutions.
Discussions follow the programs. Icon idioms and points of special interest are noted. Exercises include
suggested extensions, improvements, and related problems.

The programs themselves have been stripped of most comments for better typographic presentation. In
most cases, error checking and embellishments have been omitted also. These amenities can be provided by
the interested reader.

All the programs in this chapter are included in the Icon distribution system for UNIX.

15.1 Roman Numerals
Description: This problem is a simple one: write a program to convert Arabic numerals to corresponding
Roman numerals.
Solution: The method of solution is due to (iimpel [13]. Each digit of the Arabic number is mapped into its
Roman equivalent. The multiplication by 10 represented by successive positions in the Arabic number is
reflected in the corresponding Roman numeral by shifting to the next "octave" using character replacement.
The occurrence of an asterisk in the result indicates a number that is too large to be represented by a Roman
numeral.

R O M A N N U M E R A L S

This main procedure takes Arabic numerals from standard input and writes
the corresponding Roman numerals to standard outout.

procedure main()
local n
while n := read() do

write(roman(n) | "cannot convert")
end

procedure roman(n)
local arabic, result
static equiv
initial equiv := ["","I","II","III","IV","V","VI","VII","VIII","IX"]
integer(n) > 0 | fail
result := ""
every arabic := !n do

result := map(result,"IVXLCDM","XLCDM**") || equiv[arabic+1]
if find("*",result) then fail else return result

end

63

Kxercisrs:

1. Revvi ite the every loop to eliminate the local ideniifiei arabic.
2. Mixlilx equivso iluil the addition ol I is nol nccessarv when il is referenced.
} . Consider alternative data representations lor equiv. including strings and tables.
4. Write a procedure to convert Roman numerals to Arabic numerals.

15.2 Meandering Strings
Description: A string over an alphabet of k characters is said to be an ^-meander if it contains every possible
substring of length n from the alphabet [14]. For example, 0001111011001010000 is a 4-meander for the
alphabet 01.

The problem here is to write a procedure to compute meandering strings of minimal length (the example
given above is minimal).
Solution: In Reference 14. it is shown that the length of the minimal meandering string is k"+n—\ and an
algorithm is given to generate such a string. The algorithm is basically an enumerative one, systematically
constructing substrings, but discarding ones that already occur in the result.

M E A N D E R I N G S T R I N G S

This main procedure accepts specifications for meandering strings
from standard input with the alphabet separated from the length by
a colon.

procedure main()
local line, alpha, n
while line := read() do {

line ? if alpha := tab(upto(':')) then {
move(1)
if n := integer(tab(0)) then write(meander(alpha,n))
else write ("erroneous input")

else write ("erroneous input")

end

procedure meander (alpha,n)
local result, t, i, c, k
i := k := *alpha
t := n-1
result :=-repl(alpha[1],t)
while c := alpha[i] do {

if find (result[-t:0J || c,result)
then i - := 1
else {result 11:= c; i := kj
i

return result
end

Hxeri'iM's:

I. I r\ to improve the algorithm used in the solution above.

64-

2. Apply the concept of meandering strings to produce space-efficient techniques for telegraphic codes.

15.3 Word Intersections
Ih'scri/Hion: Given two strings, display their intersections in common characters.
Solution: The approach is to consider one string as a set of characters and look for occurrences of these
characters in the other string.

W O R D I N T E R S E C T I O N S

This main procedure accepts word pairs from standard input, with
the words separated by semicolons.

procedure main()
local line, j
while line := read() do {

write ()
j := upto(':',line)
cross (line[1:jl,line[j+1:0])
I

end

procedure cross (s1,s2)
local j , k
every j := upto(s2,s1) do

every k := upto(s1[j],s2) do
xprint(s1,s2,j,k)

end

procedure xprint(s1,s2,j,k)
write ()
every write(right(s2[1 to k-1],j))
write (s1)
every write (right (s2[k+1 to *s2|,j))

end
Comments: The procedure cross(s1,s2) provides a good illustration of generators and particularly how
nested generators can be used to formulate a search over many alternatives. The procedure xprint(s1,s2,j,k)
prints s1 horizontally and s2 vertically, crossing at the point of intersection. For example, the output ol
cross ("fish","school") is

f i s h
c
h
o
o
I

s
c

f i s h
o
o

65

Exercises:

I. F.xtend the solution to handle the mutual intersections of several words.
?. I \ l end I he solution to I he genera lion ol Kriss-Kioss pu//les | I5|.

15.4 Word Counting
Description: One of the simplest illustrations of the utility of string scanning, as opposed to more primitive
string analysis methods, is counting the words contained in a file of text. For the purposes of this problem, a
"word" is defined to be a sequence of letters. The output is a listing of words in alphabetical order, together
with a count of the number of times each word occurs in the file.
Solution: String scanning tabs up to a letter. The subsequent sequence of letters references a table and the
count is incremented. When processing of the file is complete, the table is sorted and printed, using a column
width that is supplied as an argument to the procedure. The text to be processed comes from standard input
and the results are written to standard output.

W O R D C O U N T I N G

This main procedure processes standard input and writes the results
with the words in a column 20 characters wide.

procedure main()
wordcount(20)

end

procedure wordcount(n)
local t, line, x, y
static letters
initial letters := &lcase ++ &ucase
t := table (0)
while line := read() do

line ? while tab(upto(letters)) do
t[tab (many (letters))] +:= 1

x := sort(t)
every y := !x do write(left(y[1],n),y[2J)

end
Comments: Note the use of augmented assignment to update the count without having to reference the table
twice.

Exercises:

1. Modify the solution so that a suitable column width is computed by the procedure wordcount.
2. Revise the solution so that the output is ordered by decreasing count.
3. Revise the solution so that the output is broken down into sections of words having the same count and
w ith the words listed alphabetically in each section.

15.5 Binary Trees
Description: Write a program to construct and traverse binary trees.
Solution: The nodes in a hi nun tree can be represented by records, in which one field is devoted to the
contents ol the node and two other lields point to the left and right subtrees. For input output purposes, trees
are represented bv strings in which parentheses and commas specify the skeleton of the tree and the contents
ol the nodes are given between punctuation characters. For example. a(b,c) represents a tree with a root
node containing a and two leaves containing band C. respectively.

66

B I N A R Y T R E E S

This main program accepts string representations of binary trees from
standard input. It performs a tree walk and lists the leaves of
each tree.

record node(data,ltree,rtree)

procedure mainQ
local line, tree
while line := read() do j

tree := tform (line)
write ("tree walk")
every write (walk (tree))
write ("leaves")
every write (leaves (tree))
)

end

procedure tform (s)
local value,left,right
if /s then return
s ? if value := tab(upto('(')) then {

move(1)
left := tab(bal(','))
move(1)
right := tab(bal (')'))
return node (value,tform (left),tform (right))
}
else return node(s)

end

procedure walk(t)
suspend walk(\t.ltree | \t.rtree)
return t.data

end

procedure leaves(t)
if not(\t.ltree | \t.rtree) then return t.data
suspend leaves (\t.ltree | \t.rtree)

end
Comments: The procedure tform constructs the binary tree from a string representation of the type
described above. The procedures walk and leaves walk the tree and generate the leaves, respectively. Note
that these procedures are generators, allowing successive nodes to be obtained as desired.

Exercises:

1. Modify the procedure t form to allow trailing commas to be omitted to indicate the absence of a right
subtree.
2. Modify the procedure walk to walk the tree in various different orders.
3. Add error checking to the procedure tform to detect syntactically incorrect input.

- 6 7 -

file:///t.rtree
file:///t.rtree
file:///t.ltree
file:///t.rtree

4 Write a procedure to convert a binary tree into its string representation.

15.6 Kight Queens
Description: The classic example used to illustrate backtracking is the eight-queens problem [18,19], which
is to determine the number of ways that eight queens can be placed on a chess board such that none can attack
another.
Solution: The solution involves trial placements of the eight queens with backtracking from attacking
positions.

E I G H T Q U E E N S

procedure main()
every write(q (1),q (2),q (3),q (4),q(5),q (6),q (7),q(8))

end

procedure q(c)
suspend place (1 to 8,c)

end

procedure place (r,c)
static up, down, rows, upoff, downoff
initial j

up := list(15,0)
down := list(15,0)
rows := list(8,0)
upoff := 8
downoff := - 1
i

if rows[r] = up[upoff+r-c] = down[downoff+r+c] = 0 then
suspend rows[r] < - up[upoff+r-c] < - down[downoff+r+c] < - r

end

procedure q(c)
suspend place (1 to 8,c)

end

procedure place (r,c)
static up, down, rows, upoff, downoff
initial {

up := list(15,0)
down := list(15,0)
rows := list(8,0)
upoff := 8
downoff := - 1
}

if rows[r] = upfupoff+r-c] = down[downoff+r+c] = 0 then
suspend rows[r] < - up[upoff+r-c] < - down[downoff+r+c] < - r

end
Comments: The three lists keep track of the free rows, the upward-facing diagonals, and the downward-
lacing diagonals. Free squares are indicated by zero values, while occupied squares are indicated by the value
one. Note that goal-directed evaluation forces the function write to be called for all combinations of

68-

arguments that have values (for which p (i) returns a value).

/:!\'(7<7.w.\:

I Write an analogous procedure lor four rooks.
2. Write a procedure to display the solutions in the format of a chess board.

15.7 Infix-to-Prefix Conversion
Description: Write a program to convert arithmetic expressions from infix form to fully parenthesized
prefix form. The desired conversions are illustrated by the following examples:

x x
x+1 +(x,1)
((x+1)) +(x,1)
x - y - z -(-(x,y),z)
3*delta+1 +(*(3,delta),1)
2A2An A(2,A(2,n))
(xAn)/(z+1) /(A(x,n),+ (z,1))

Solution: Since the infix expressions may not be fully parenthesized, the precedence and associat i\ its of the
infix operators must be considered. In addition, the infix expressions may contain superfluous parentheses
that must be removed. Separate procedures are provided to remove such superfluous parentheses and for
handling left- and right-associative operators according to their conventional precedences. Once an expression
has been decomposed into its operators and operands, the corresponding prefix expression is easily obtained.

I N F I X - T O - P R E F I X C O N V E R S I O N

This main procedure accepts infix expressions from standard input and
writes the corresponding prefix expressions to standard output.

procedure main()
while write (prefix (read ()))

end

procedure prefix(s)
s := strip (s)
return lassoc(s,'+-' | '*/ ') | rassoc(s,'A') | s

end

procedure strip(s)
while s ? (=*'(" & s < - tab(bal(')')) & pos(- l))
return s

end

procedure lassoc(s.c)
local j
s ? every j := bal(c)
return form (s,\j)

end

69

procedure rassoc(s.c)
local j
return form(s,s ? bal(c))

end

procedure form(s.k)
local a1, a2, op
s ? (

a1 := tab(k)
op := move(1)
a2 := tab(O)
I

return op || " (" || prefix (a1) || "," || prefix(a2) || ") "
end

Comments: This solution illustrates a number of facets of string scanning and the use of the function bal in
particular. Note the use of conjunction in Strip to assure that the balanced string ends at a terminal
parenthesis.

Exercises:

1. Modify the procedure prefix to avoid calling lassocand rassoc in case sdoes not contain any operators.
2. Write a procedure to convert from prefix form to infix form.
3. Extend the solution given above to handle prefix operators and functional forms.
4. Write a program to perform symbolic differentiation.
5. Write a program to perform general symbolic evaluation. Provide for simplification of the results.

15.8 Recognition of Context-Free Languages
Description: Given a context-free grammar, write a program to recognize sentences from the corresponding
language.
Solution: In SNOBOI.4 there is an isomorphism between the productions of a context-free grammar and
corresponding recognition patterns [20]. Provided there is no left recursion, there is a similar isomorphism in
Icon, in which recognition procedures take the place of patterns. This isomorphism is illustrated by the
following simple grammar.

<s> ::= a <s> | < t> b | c
< t> ::= d <s> d | e | f

A program containing recognition procedures Sand t corresponding to <S> and <t> follows.

C F L R E C O G N I T I O N

This main procedure takes strings from standard input and determines
whether or not they are sentences in the language defined by <s>.

procedure main()
local line
while line := read() do

if recogn(sjine) then write ("accepted") else write ("rejected")
end

70

procedure recogn (goal,text)
return text ? (goal() & pos(O))

end

<s> ::= a <s> | <t> b | c

procedure s()
suspend (="a" || s()) | (t() || ="b") | ="c"

end

<t> ::= d <s> d | e | f

procedure t()
suspend (="d" || s() || ="d") | ="e" | ="f"

end
Comments: Terminal symbols arc matched by expressions of the form =X, while nonterminal symbols are
matched by calls on the corresponding recognition procedures. For each successful match, a recognition
procedure suspends with the value matched.

The procedure recogn succeeds or fails, depending on whether or not text is a sentence in the goal
grammar. Note that the goal procedure is an argument of recogn. This demonstrates the usefulness of
procedures being data objects.

The use of conjunction and a test for a position at the end of &subject are necessary to prevent spurious
recognition ol an initial substring.

/•'xercisex:

1. Note that the recognition procedures return the substring that they match. Run the program with tracing
and various input, observing how the recognition process proceeds.
2. Write a program to accept a grammar as input and generate corresponding recognition procedures.
3. Procedures of the type used here are not limited to recognition. Adapt them to the generation oi parse
trees.

15.9 Random Sentence (feneration
Description: Write a program to accept a context-free grammar as input and generate randomly selected
sentences from the corresponding language.
Solution: I he solution here is patterned after the one given in Reference 21. which should be consulted lor a
more detailed description.

Grammatical specifications are read in and analyzed. A list of alternatives is created for each definition.
Fach alternative, in turn, is represented by a list of subsequents (terminal and nonterminal symbols). The
name of a nonterminal is associated with its structure through a table. Terminals are represented by strings,
while nonterminals are represented by records.

Generation specifications are represented by a nonterminal followed by a count. For example, <s>10
specifies the generation of l() sentences from the language defined by <S>.

The generation process starts with a generation list consisting ol the desired nonterminal. Elements are
removed from the left end of this list. If an element is a nonterminal, the subsequent list for one of its
randomly selected alternatives is prepended to the generation list. If an element is a terminal, it is appended to
the ev olving result.

71 -

R A N D O M S E N T E N C E G E N E R A T I O N

global def

record nonterm(ntname)

procedure main()
local line
def := table ()
while line := read()do

enter(line) | generate(line) | write("*** syntax error")
end
procedure enter(s)

local name
return s ?

if ="<" then |
name := tab (find (">::=")) | fail
move (4)
def [name] := buildalt (tab(O))
}

end

procedure buildalt(s)
local k
k := []
every put(k,buildsub(genalt(s)))
return k

end

procedure buildsub(s)
local k
k := []
every put(k,gensub(s))
return k

end

procedure genalt(s)
local t
s ? while t := tab(upto(T) I 0) do {

suspend t
move(1) | break
I

end

-72-

procedure gensub(s)
local t
s ? repeat {

t := tab(upto('<') I 0)
if t == " " then {

move(1) | break
t := nonterm(tab(upto('>')))
move(1)

suspend t

end

procedure generate (s)
local name, count
s ? {

="<" | fail
name := tab(upto('>')) | fail
move(1)
count := integer (tab (0)) | fail
}

every 1 to count do write (synthesize (name))
return

end

procedure synthesize(s)
local sentence, nexts, t, x
sentence := " "
nexts := [nonterm(s)]
while t := get (nexts) do

if type(t) == "nonterm" then {
x := \def[t.ntname] | {write("*** <",t.ntname,"> undefined"); fail}
nexts := ?x 111 nexts
)

else sentence 11:= t
return sentence

end

Comments: The analvsis of the grammatical specifications illustrates moderately complicated string
scanning. In the scanning expressions, terminators are appended so that successive items can be handled
uniformly. Note that genalt and gensub generate values for buildalt and buildsub, respectively. This
organization of the analysis activities is not necessary, but it partitions logically distinct activities and allows
the program to be adapted to other uses by changing the definitions of buildalt and bui ldsub. See the
exercises.
lixenises:

1. Prov ide a way for allowing the metalinguistic characters |, <, and > to be included in grammars.
2. Using the preceding extension, write a grammar that generates random grammars.
3. Recursive grammars, such as those that describe arithmetic expressions, tend to lead to endless growth of
the generation list. Prov ide a mechanism for biasing the selection of alternatives to mitigate this problem.
4. Some kinds ol context sensitivity are easily added to the program above. Explore such possibilities.
5. Modify the program above to generate recognition procedures.

73

Acknowledgments
The Icon programming language was designed by the authors in collaboration with Dave Hanson and Tim

Korb. Many other persons, too numerous to list here, have provided criticism and suggestions that have been
incorporated in the current version of the language.

References
1. Farbcr. David J., Ralph E. Griswold, and Ivan P. Polonsky. "SNOBOL. A String Manipulation
Language". Journal of the A CM, Vol. 11, No. 1 (January 1964). pp. 21-30.
2. Farber. David J.. Ralph E. Griswold, and Ivan P. Polonsky. SNOBOL 2. Technical report. Bell Labs.
Holmdel. New Jersey. April 1964.
3. Farber. David J., Ralph E. Griswold, and Ivan P. Polonsky. " T h e S N O B O L 3 Programming Language".
The Bell Sr.stem Technical Journal, Vol. XLV, No. 6 (July-August 1966). pp. 895-944.

4. Griswold. Ralph E.. James F. Poage, and Ivan P. Polonsky. The SNOBOL4 Programming Language.
second edition. Prentice-Hall, Inc.. Englewood Cliffs, New Jersey. 1971.

5. Griswold. Ralph E. Bibliography of Documents Related to the SNOBOL languages. Technical Report
I R 78-1 Sa. Department of Computer Science. The University of Arizona, Tucson, Arizona. September 1979.

6. Griswold. Ralph E. and David R. Hanson. "An Overview of SL5", SIGPLAN Notices, Vol. 12. No. 4
(April 1977). pp. 40-50.

7. Hanson. David R. and Ralph E. Griswold. "The SL5 Procedure Mechanism", Communications of the
ACM. Vol .21 . No. 5 (May 1978). pp. 392-400.
8. Griswold. Ralph E. "String Analysis and Synthesis in SL5", Proceedings of the ACM Annual
Conference. October 1976. pp. 410-414.

9. Kernighan. Brian W. and Dennis M. Ritchie. The C Programming Language. Prentice-Hall. Inc..
Englewood Cliffs, New Jersey. 1978.
10. Kernighan. Brian W. and M. D. Mcllroy. UNIX Programmers Manual, Seventh Edition. Bell
Laboratories. Murray Hill. New Jersey. January 1979.

I I. American National Standards Institute. USA Standard Code for Information Interchange, X3.4-I977.
New York. New York. 1977.

12. Coutant . Cary A. and Stephen B. Wampler. A Tour Through The C Implementation of Icon; Version 5.
Technical Report TR 81-1 la. Department of Computer Science. The University of Arizona, Tucson. Arizona.
December 1981.

13. Gimpel. James F. Algorithms in SNOBOL4. John Wiley & Sons. New York, New York. 1976. pp. 25-26.

14. Gimpel. James F. and William Keister. Minimal Meandering Strings. Technical report. Bell Labs.
Holmdel. New Jersey. July 1970.

15. Wetherell. Charles. Etudes for Programmers. Prentice-Hall. Inc., Englewood Cliffs, New Jersey. 1978.
pp. 30-31.

16. Gimpel. James F. Algorithms in SNOBOL4. John Wiley & Sons. New York, New York. 1976. pp. 253-
273.

17. Griswold. Ralph E. "Programming Techniques Using Character Sets and Character Set Mappings in
Icon". The Computer Journal. Vol. 23. No. 2 (May 1980). pp. 107-1 14.
IS. Wirth. N'iklaus. Algorithms + Data Structures — Programs. Prentice-Hall, Inc., Englewood Cliffs. New
Jersey. 1976. pp. 143-147.

19. Hanson. David R. "A Procedure Mechanism for Backtrack Programming". Proceedings of the ACM
Annual Conference. October 1976. pp. 401-405.
20. Griswold. Ralph E. and David R. Hanson. "An Alternative to the Use of Patterns in String Processing".
ACM Trait.saction.s on Programming Languages and Systems, Vol. 2, No. 2 (April 1980). pp. 153-172.
21. Griswold. Ralph E. String and List Processing in SNOBOL4; Techniques and Applications. Prentice-
Hall. Inc.. Englewood Cliffs. New Jersey. 1975. pp. 192-200.

-74

Appendix A

Syntax

Formal Syntax
The following formal syntax for Icon describes only macroscopic features. Complete lists of operators and

keywords are included in Appendix B. See Section 2.2.1 for a description of identifiers and Sections 4.1.1.
4.2.1. 5.2.1. and 5.3 for a description of literals. Record types are context sensitive; see Section 8.3. See
Chapter 12 for equivalence of characters, situations in which semicolons may be omitted, the continuation of
string literals over line terminations, and the treatment of blanks.

The syntactic types period, left-bracket* and right-bracket indicate occurrences of the characters
. . [. and] , which have metalinguistic uses in the syntax description language.

program '.'.= declaration ...

declaration '.'.= global-declaration \ external-dec larat ion \ record-declaration |
procedure-declaration

global-declaration '.'.= global identifier-list

identifier-list '.'.— identifier f , identifier]...

external-declaration '.'.= external identifier-list

record-declaration '.'.= record identifier ([identifier-list])

procedure-declaration '.'.= procedure-header ; [local-declaration ;] . . . [initial-clause ;]

[procedure-body ',] end

procedure-header ::= procedure identifier ([identifier-list])

local-declaration '.'.= local-specification identifier-list

local-specification ::- local | static | dynamic

initial-clause '.'.= initial expr

proccdure-both '.'.— optexpr[', opt expr]...

optexpr '.'.= [expr]
expr '.'.= literal \ identifier | keyword \ operation \ call | reference \

substring \ list \ record-object \ control-struct \ return \
conipound-expr \ (optexpr)

literal '.:= integer-literal \ real-literal \ quoled-literal

operation " = prefix-oper expr \ expr infix-oper expr

75

call '.'.— expr (expr-list)

expr-list '.'= optexpr [, optexpr] . . .

reference :: e\f*i left bracket expr right bracket \ cxpr period identifier

substring '.'.= expr left-bracket cxpr range expr right-bracket

range '.'.= '. | +: | —:

list ::= left-bracket optexpr right-bracket

record-object '.'.= record-type (expr-list)

control-struct '.'= if-then-else \ while-do \ until-do | even-do \ repeat \ case
not | to-by \ next | break

if-then-else '.'.= if expr then expr [else expr]

while-do '.'.= whWeexpr [do expr]

until-do '.'.= until expr [do expr]

every-do '.'.— every expr [do expr]

repeat '.'.— repeat expr

case ::= case expr of { case-clause [; case-clause] . . . }

case-clause '.'.= expr'. expr \ default: expr

not '.'.= not expr

to-by ::= expr to f.v/;/- [by expr]

next ::= next

A/roA ::= break optexpr

return ::= return optexpr | suspend optexpr \ fail

compound-expr '.'= | optexpr [; optexpr]... }

-76

Precedence and Associativity
The relative precedence of control structures, operators, and expression-list delimiters arranged in

ascending order, follows. Hor infix operators, the associativity is listed also.

precedence type associativity
if-then-else
w/u'le-do
until-do
every-do
repeat
case
break
return
suspend
fail
&
9

&: =
+ ; =

*: —
/:=
%:=
A; =

>=:=
>: =
<=:—
<:=

>>: =

<<: =

?:=
++•=

to-hv

<
<=

2
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
6
7
7
7
7

infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
i n f i \
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
i n 11 x
in f ix
inf ix
infix
infix
infix
infix
infix
i n 11 x

infix
infix
infix
infix
infix

left
left

right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right
right

left
left
left
left
left

77-

X

O

CD

"O

CD

03
 .-••
 3 0)

X

CD

 O
-

~
3 0)
 3 r>
 (I)

o c 3 7=

 ~
a-

I
3

=,•

P.

/
•o

 *

go

|
-

3
/

>
II

II
II A

A
V

V
A

A
V

V
V

V

:
3

3
0

it
a

=
C

 ~
 §

•
CD

3

9L

$
CO

O

=K

 C
D

O

IS
""

E.

%
CD

 O

^

c 3"

o'

3"

<̂
 £

£

-^
 3

3
33

 3
3

33
 3

3
'^

 3
3

33
 -3

3
33

 3
3

33
 N

J
—

o

o
o

c
s

O
s

D
"

0
v

0
0

c
0

c
^

^
J

"
~

J
'~

J
^

J
^

'~
J

'~
J

"
J

"
J

5'

~%
 "̂

 "̂
 "5

 "5
 "̂

 "?
 ^

 "̂
 "5

 "̂
 "?

 "5
 5

"
5'

 5
"

5'
 5

"
5"

 3"
 3

' 5
' 5

' 5
' 5

' 3
"

5'
 5

' 5
' 5

' 5
' 5

' 5
' 5

'
5'

~

n
o

o
n

r>
 n

o

c
r>

 n

o
o

<"B
 IT

2
T̂:

 ^
1

m
 n

"/
~:

 !
^

n̂
. ~

:
zT

!
T̂J

 T̂
! n

n
~

>̂
^!

 ^

T̂:
 H

T:
^

^
IT

!
x

~
:

~
r

r
!

~
^

>
r

r
>

r
r

:
n

~
~

^
r

r
!

z
r

:
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

n Q
.

c/>

c 0)

TJ

CD

3

-o
 -^

O

O

CD

a

3
'

*-
h fll

CD
 < CD

-̂

<:
 Q

. m

—*

10

t_
 *—»-

a
c

a.

3

3
3*

 ?

?
?

?
3

^
^

^
;?

 ;
?

;?>
 ^

, j?
^

, ^
?^

t>
^

T
i ^

t'
-

7?

^

CD

O

O

2-
D

O

W

CD

d
"

3 0)

Appendix B

Built-in Operations

The following sections list the built-in operations of Icon, with citations to primary section references.

Functions

function
abs(n)
any(c,s,i, j)
bal(c1,c2,c3,s,i,j)
center (s1,i,s2)
close (f)
copy(x)
cset(x)
display (i,f)
exi t (i)
f ind (s1,s2,i,j)
get (a)
image(x)
integer (x)
Ieft(s1,i,s2)
l ist(i .x)
many(c,s,i, j)
map(s1,s2,s3)
match (s1,s2,i,j)
move(i)
numer ic(n)
open(s1,s2)
pop (a)
pos(i)
pul l (a)
push (a,x)
put(a.x)
read(f)
reads (f,i)
real(x)
repl(s.i)
reverse (s)
right(s1,i,s2)
sort(x, i)
stop(x1,...,xn)
str ing (x)
system (s)
tab(i)
table(x)
t r im(s,c)
type(x)
upto(c,s,i, j)

section

4.I.2
6.3.2
6.3.2
6.1.3

9.1
10.4
5.3

I 1.4
14.5

6.3.1
8.1.4
I0.9

4.4.1
6.1.3
8.1.1
6.3.2
6.1.5
6.3.1

7.2
4.5
9.1

8.1.3
7.1

8.1.4
8.1.3
8.1.4

9.3
9.3

4.4.2
6.1.2
6.1.5
6.1.3

8.4
14.5

5.4.1
10.10

7.2
8.2.1
6.1.5
10.8

6.3.2

79-

write (x1,...,xn) l>.2
writes (x1,...,xn) 9.2

Infix Operators

operator section

2.2.1
< - 3.5

2.2.1
< - > 3.5
&:= I0.2
+ := I0.2
-:= io.2
»:= m.2
/ := I0.2
%:= io.2
A : = I0.2
=:= io.2
>= := I0.2
>:= io.2
<= := I0.2
<:= io.2
- = : = 10.2
| | . - 10.2
= : = io.2
» = : = 10.2
» : = io.2
« = : = io.2
« : = io.2
- = = : = 10.2
?:= I0.2
++:= I0.2
- : = l().2
**:= 10.2
| | | : = I0.2
= = : = io.2
- = = = : = io.2
& 3.3
+ 4.1.2

4.!.2
* 4.1.2
/ 4.1.2
A 4.1.2
% 4.1.2

4.1.3
4.1.3

> 4.1.3
>= 4.1.3
< 4.1.3
<= 4.1.3
++ 5.3

5.3
* * 5.3

80

|| 6.1.1
HI 8.1.5

6.2
- = = 6.2
» 6.2
» = 6.2
« 6.2
« = 6.2
= = 10.3
-=== 10.3

8.3.3

Prefix Operators

operator section
+ 4.1.2

4.1.2
5.3

! 10.1
7.3

* 2.2.4
& 2.2.2
? 10.5
/ 10.7
\ 10.7

2.3.1

Keywords

keyword section
&ascii 5.3
&clock 10.6
&cset 5.3
&date 10.6
&dateline 10.6
&errout 9.1
&fail 2.3.2
&host 10.11
&input 9.1
&lcase 5.3
&level 11.3.3
&null 10.7
&output 9.1
&pos 7.1
&random 10.5
&subject 7.1
&time 10.6
&trace 11.3.4
&ucase 5.3
Aversion 10.11

Appendix C

Summary of Defaults

Omitted Expressions
Omitted expressions default to •. For example

break
is equivalent to

break &null
Similarly, omitted arguments in function and procedure calls default to •. For example left(s,i) is equivalent
to left (s.i.&null) In some (unctions, null-valued arguments default to commonly used values. These defaults
apply whether the argument is explicitly omitted or whether evaluation of the expression given for the
argument produces •. For example, left (s,i) and left (s,i,&null) are equivalent so far as interpretation of the
third argument is concerned. Defaults for null-valued arguments are listed below. Arguments that are not
shown as • are assumed to be non-null. Note that for the string analysis functions, the default for the initial
position depends on whether the argument specifying the string being examined is •. In all other cases, the
default for a null-valued argument is independent ol the values of the other arguments.

abbreviated form
any(c,» ,•,•)
any(c,s • ,•)
bal (•,••,•,••)
bal(« •.•,s,»,«)
center(s,i ,•)
display(«,«)
find(s ,»,•)
find(s1,s2,« ,•)
left (s,i,»)
list (•)
many(c,«,«,»)
many(c,s,« ,•)
map(s,« ,•)
match (s,« ,• ,•)
match (s1,s2 ,•,•)
open(s ,•)
read(«)
reads (•,•)
right (s,i,«)
sort(x ,•)
stop(...»,...)
trim(s)
upto(c ,•,• ,•)
upto(c,s,« ,•)
write(...,•,...)
writes(...,«,...)

equivalent expression

any(c,&subject,&pos,0)
any(c,s,1,0)
baK&cset.'C/J'.&subject.&pos.O)
balj&cset/CT.s.l.O)
center(s,i,"D")
display (&level,&errout)
find (s.&subject.&pos.O)
find(s1,s2,1,0)
left(s,i,"D")
list(O)
many (c,&subject,&pos,0)
many(c,s,1,0)
map (s,&ucase,&lcase)
match (s,&subject,&pos,0)
match (s1,s2,1,0)
open(s,"r")
read(&input)
reads(&input,1)
right(s,i,"D")
sort(x,1)
stop(...,"",...)
trim(s.'n')
upto(c,&subject,&pos,0)
upto(c,s,1,0)
write(...,"",...)
writesf...,"",...)

82

Appendix D

Summary of Error Messages

Translator Error Messages
Messages that may occur during translation because of syntax errors in the program are listed

below. The translator continues following detection of an error, but the translated program cannot be
executed.

end-of-file expected
global, record, or procedure declaration expected
inconsistent redeclaration
invalid argument list
invalid by clause
invalid case clause
invalid case control expression
invalid character
invalid context for break
invalid context for next
invalid context for return or fail
invalid context for suspend
invalid create expression
invalid declaration
invalid default clause
invalid digit in integer literal
invalid do clause
invalid else clause
invalid every control expression
invalid field name
invalid global declaration
invalid if control expression
invalid initial expression
invalid integer literal
invalid keyword
invalid keyword construction
invalid local declaration
invalid operand
invalid operand for unary operator
invalid operand in alternation
invalid operand in assignment
invalid operand in augmented assignment
invalid radix for integer literal
invalid real literal
invalid reference or subscript
invalid repeat expression
invalid section
invalid then clause
invalid to clause
invalid until control expression
invalid while control expression
missing argument list in procedure declaration
missing colon
missing end

-83

missing field list in record declaration
missing identifier
missing left brace
missing of
missing procedure name
missing record name
missing right brace
missing right bracket
missing right parenthesis
missing semicolon
missing semicolon or operator
missing then
more than one default clause
unclosed quote
unexpected end of file

Translation may be terminated because of various kinds of overflow:

out of global symbol table space
out of local symbol table space
out of string space
out of constant table space
out of tree space
yacc stack overflow

There is one warning message issued by the translator:

redeclared identifier

Unlike the messages above, this warning does not prevent the use of the translated program.

Linker Krror Messages
There are two programming errors that are detected by the linker:

inconsistent redeclaration
invalid field name

These errors prevent the program from being run. There is also a way to request the linker to detect identifiers
that have not been declared. The message produced is

undeclared identifier

I his message is only a warning: it does not prevent the use of the linked program.

Krrors During Loading

Errors that occur during loading are issued by the loader, which is not part of the Icon system itself. Errors
may occur because insufficient memory is available or because of errors in external procedures (for example,
unresolved references). In the case of loader errors, attempts to execute the resulting program may cause a bus
error or other malfunction.

Program Krror Messages
Program errors are div ided into several major categories, depending on the nature of the error.

84

(ategory I : Invalid Typo or I'orm

101 integei expected
102 numeric expected
103 string expected
104 cset expected
105 file expected
106 procedure or integer expected
107 record expected
108 list expected
109 string or file expected
110 string or list expected
111 variable expected
112 invalid type to size operation
113 invalid type to random operation
114 invalid type to subscript operation
115 list or table expected
116 invalid type to element generator
117 missing main procdure

Category 2: Invalid Argument or Computation

201 division by zero
202 remaindering by zero
203 integer overflow
204 real overflow, underflow, or division by zero
205 value out of range
206 negative first operand to real exponentiation
207 invalid field name
208 second and third arguments to map of unequal length
209 invalid second argument to open
210 argument to system function too long
211 by clause equal to zero
212 attempt to read file not open for reading
213 attempt to write file not open for writing

Category 3: Capacity Kxcceded

301 insufficient storage in heap
302 insufficient storage in string space
303 insufficient storage for garbage collection
304 insufficient storage for system stack

85

INDEX

abs(n) 16
absolute \;iluc 16
accessing lists 40
accessing records 43
accessing tables 41
addition 15
alternation 1 I

expr I | expr2 I I
alternatives 58,59
any(c) 36-37
any(c,s,i,j) 32
argument transmission 51
arguments 5,6
arithmetic 15-21
arithmetic operations 17
ASCII 22.57
assignment 5,14.29,40,47
associativity 6. 15, 16. 77
augmented assignment 46, 58
backslashes 22. 23
backtracking 13, 14
bal(c1,c2,c3) 36-37
bal(c1,c2,c3,s,i,j) 33-34
balanced strings 33-34
blanks 22.57
Boolean values 1,7
break expr 9
built-in character sets 24
C 2.23

case t'xpr of 8. 14
case selectors 8, 58
case control expressions 8
center (s1,i,s2) 28
character codes 22
character equivalences 57
character graphics 22
character positions 28-29
character set conversion 24
character sets 4, 20. 24, 25, 32-34, 43, 47, 58
characters 22
close (f) 44
closing tiles 44
collating sequence 22,25,31
command lines 61
comments 57
comparison operators 16, 18.31,47,58
compound expressions 9
computed procedures 54
computed variables 52
concatenation 27,44,60
conjunction 14

constructing strings 27-30
continuation ol quoted literals 57
control characters 23
control expressions 8
control structures 4
conversion to integer 19
conversion to numeric 21
conversion to real number 20
copy(x) 47
copying objects 47, 59
creation of lists 39

[x1,x2 xn] 39
creation of records 42
creation of table elements 41
creation of tables 41
cset(s) 24
date 48
decimal notation 17
declarations 42-43, 50-51. 56
default 8
default case clauses 8
default values 6
defaults 6,9, 12, 27. 28, 30, 31. 32, 33, 34. 36.

39. 42,43, 44, 45. 51, 52, 54, 62, 82
defined types 42-43,47
dereferencing 6, 52, 59
display (i,f) 54
division 15
dynamic 50
dynamic identifiers 50
efficiency 58
element generation 46

!x 46
empty lists 39
empty strings 4,23,27,29,31
end 50
equivalence of objects 47
equivalent characters 57
error conditions 5.6, 12, 14, 16, 17,20.24,25,

26, 27, 28, 29, 39, 43, 44, 45, 46. 47, 48, 49,
52,54

error messages 61,83-85
error termination 62
errors 61,62
escape conventions 22, 48
every expr J do expr2 9, II, 12,52.59
exception errors 62
exchanging values 5,14,15
exit status 61
exit(i) 62
exponent notation 17,25

86

exponentiation 15, 17. 18
expressions 4-14
external 55
external procedures 55
extra arguments 51
fail 5!
failure 1.7.51
failure conditions 8, 19.20,25,29.31.32.33,

35. 36. 40. 43. 44. 45, 60
field names 42
tile names 48
file option .specifications 44
files 4. 43. 44-45. 47, 48
find(s) 36-37
find(s1,s2,i,j) 11. 32
floating-point representation 17. 18
functions 5-6. 54. 60. 79-80
generators I 1. 32. 33. 34. 52. 59
get(a) 40
global 51
global declarations 51.56
global identifiers 52. 54. 60
goal-directed evaluation
hexadecimal codes 22. 23
identifier declarations 50-5 I
identifiers 4.5,50.51
if c.xprl then exprJ else cxpr.i 7. 14
image (x) 45,48
infix operators 6. 15. 16.80

a1 HI a2 41
c1 ++ c2 24
C1 — c2 24
d ** C2 24

2. 12. 13, 14,52,59

1 = 1
i ~= j

i < i
i < =

i > J
i >=
i + J
' - i
i * j

i / j
i % j
i A j

s 1 II
s1 ?
s1 ==
s1 «
s1 <<
s1 >>
s1 »
s1 ~=
v := >

16.47
16
16
16

16
16

15
15
15
15
15. 16

15
s2 6. 27
s2 35-37.
s2 6. 31
s2 31

= s2 31
= S2 31

s2 31
- s2 31
: 5

59
.47

v l :=: v2 5
v < - x 14
v1 < - > v2 14
v &:= x 46
v +:= i 46
v - : = i 46
v * := i 46
v / : = i 46
v %:= i 46
v A : = i 46
v =:= i 46
v >= := i 46
v >:= i 46
v <= := i 46
v <:= i 46
v - = : = i 46
v 11 := s 46
v == := s 46
v > > = : = f 46
v >> := s 46
v < < = : = s 46
v << := s 46
v - = = : = s 46
v ?:= s 46
v ++:= c 46
v — : = c 46
v * * := c 46
v | | | := 46
v' = - = . - X 4 0

' - = = = ; = X 4h
X & y IV 14
x === y 47
x - = = = y 47
z.f 43

initial 50
initial clauses 50
initial substrings 28. 31-32. 33
initiating execution 61
input 44.45
input line length 45
integer arithmetic 15-16
integer comparison 16-17
integer division 16
integer literals 15
integer sequences 12

exprl to expr2 by exprJ 12
integer (x) 19-20
integers 4, 15-17,43.47, 58
keywords 5. 6. 23. 24. 35. 44. 47. 48. 52. 81

&ascii 24. 29
&clock 48
&cset 24
&date 5.48
&datel ine 48

87-

&errout 44
&fail 7
&host 49
&input 44,45
&lcase 24
&level 52,53,54
&null 48
&OUtput 44,45
&pos 35-37,59,60
&random 47
&subject 35-37,59
&time 48
&trace 5, 52
&ucase 24
Aversion 49

Ieft(s1,i,s2) 27
letters 24
lexical analysis 32
lexical order 31, 43
limiting evaluation 12

exprl \ expr2 12
line terminators 44,45
linking 61
list elements 39

a[i] 40
list sections 41

a[i:j] 41
a[i+:j] 41
a[i-:j] 41

list(i.x) 4,39,47
lists 4,39-41,43,46,47
literal character sets 24
literals 4,8. 15, 17,24
loading 61
local 50
local declarations 50,51
local identifiers 52
loop control 9
main procedure 10,56,61
many(c) 36-37
many(c,s,i,j) 33
map(s1,s2,s3) 6,30
mapping characters 30
match (s) 36-37
match (s1,s2,i,j) 31-32
mixed-mode arithmetic 18
move(i) 35
multiplication 15
multutal evaluation 13-14
nested scanning 37
newline characters 23, 58
next 9
not expr 8, 14
null character 29

null value (•) 4,51
numeric(n) 21
object comparison 47
octal codes 22, 23
omitted arguments 6,51
open options 44
open(s1,s2) 44
opening files 44
operands 6
operators 6
order of evaluation 13,51
out-of-range references 40
outcome of evaluation 7, 8, 52
output 44
overflow conditions 61
parentheses 5
PDP-11 2
pipes 44
polymorphous operations 59
pop (a) 40
pos(i) 35
positional analysis 35-36
positioning of strings 27
positions in strings 28-29
precedence 6, 16, 77
precision of real numbers 17
prefix operators 6,16,81

~C 24
+ i 16
- i 16
&k 5
=S 37
/x 48
• x 6,23,39.41
!x 46
\ x 48
?x 47
.x 6

procedure 50
procedure activation 51,53
procedure bodies 9,50
procedure calls 51,52,54
procedure declarations 50, 54, 56
procedure invocation 51, 54
procedure level 52
procedure names 50
procedure values 54
procedures 4,9-10,43,47,50-53
program character set 57
program errors 62
program execution 62
program lines 56
program listings 61
program structure 56

program termination 16,61
program text 56
program translation 61
pull(a) 40
programs 9,56-57
push(a,x> 40
put(a.x) 40
queues 40
quotation marks 4,22,48
quoted strings 22, 23
radix representation 15
random number generation 47
random element generation 47
range specifications 29, 41
random number seed 47
read (f) 45
reading data 45
reads (f,i) 45
real arithmetic 17
real comparison 18
real literals 17
real numbers 4, 17
real(x) 20
record 42
record fields 42-43
record declarations 42-43, 56
record types 42-43, 47
records 4, 39. 42-43, 46, 47, 51
referencing expressions 40, 43

t[x] 41
a[i] 40.59
z.f 43

remaindering 16
repeat expr 8.9
repeated alternation 12

\expr 12
repl(sj) 27
replication of strings 27
reserved words 2, 4, 42, 78
results 6, 1 I
return expr 52
return from procedures 51-52
reverse(s) 30
reversible assignment 14
reversible effects 14.36
reversible exchange 14
reversing strings 30
right (s1,i,s2) 28
scanned substrings 35
scanning keywords 35-37
scanning operations 36-37,60
scope of identifiers 50-51
selecting results 13-14
semicolons 9, 14. 56

shells 44,49
size of strings 23. 31
size of structures 48
SL5 1,2
SNOBOLlanguages 1,2.60
sort (a) 43
sort(t.i) 43
sorting 22,25,43
splitting of expressions 56
stacks 40
standard error output file 44
standard input file 44
standard output file 44
static 50
static identifiers 50, 51
StOp(x1,x2,...,xn) 61
storage allocation 2, 58
storage limits 23,39,45
string analysis 31-34
string comparison 31
string images 48
string literals 57
string replication 27
string scanning 35-37
string (x) 24-26
strings 4,22-30,43,46,47,48,58
structures 39
subscripting expressions 29
subscripts 40
substrings 28-30.31-32,58

s[i] 29
s[i:j] 29
s[i+:k] 29
s[i- :k] 29

subtraction 15
success 1, 2, 7
suspend expr 52, 60
suspended procedures 52
syntactic types 2, 75-76
syntactic errors 61,83-84
syntax notation 2
system (s) 49
tab characters 57
tab(i) 36,37
table (x) 4,47
table references 41,43,47,58
tables 4,39,41
terminal substrings 28
time 48
trace messages 53
tracing procedure activity 52, 53
trailing arguments 6
translation 61
translation errors 61. 83-84

- 8 9

file:///expr

transposing characters 30
trim(s,c) 30
trim mi nil strings 30
truncation 16, 19
type checking 2
type coercion 2. 6
t\ pc conversion 6, 19-20. 24-26. 41, 45
type determination 4S
type(x) 6.48
types 2,4.42,43
undeclared identifiers 51,56
underscores 57
I'N'iX 2.44.61
unti l c\pil do i:\pr2 8,9, 14
upto(c) 36-37
upto(c,s,i,j) 33
values 4
\ariables 4-5.39.40.41,42.52
warnings 29, 37. 41. 44. 51. 56. 59-60
whi le cv/i/7 do v.vprJ 7,9.14
wr i te(x1 xn) 6.44
writes(x1,... ,xn) 45
writinu data 44-45.58

-90

file://i:/pr2
file:///ariables

