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Chapter 1 

Introduction 

1.1 Background 
Icon is the most recent in a series of programming languages that started with SNOBOL [I]. SNOBOL was 

a very simple language with only one data type, the string, and a few pattern-matching statements expressed in 
a rigid syntax. The syntax of SNOBOL was primitive and its only control structure was the goto, which could 
be conditional on the success of pattern matching and in which the target label could be computed. One exotic 
feature of SNOBOL was its ability to construct identifiers during program execution and reference their 
values indirectly. 

SNOBOI.2 [2], which was in use for only a short period of time, was a minor refinement of SNOBOL. 
SNOBOL3 [3] extended the original SNOBOL language with a repertoire of built-in functions and a 
mechanism for programmer-defined procedures. The concept of success and failure was generalized to include 
a variety of comparison and testing operations. SNOBOL3 retained the single string data type, static pattern 
matching, and primitive control structures of the original SNOBOL. SNOBOL3 is still in limited use. 

SNOBOL4 [4] departed more radically from the earlier languages in the series. It introduced a variety of 
data types and the ability to construct and manipulate patterns as data objects dynamically during program 
execution. Along with this facility, the pattern matching repertoire was substantially increased. Arrays, tables, 
and defined types (records) in SNOBOL4 added the ability to produce and process structures. Tables, at the 
same time, provided a facility for associative reference of a more disciplined type than the indirect referencing 
facility of SNOBOL. although the latter was retained in SNOBOL4. An esoteric feature, originally planned 
for SNOBOL. was realized for the first time in SNOBOL4: run-time compilation allowed strings to be 
converted into executable code in the course of program execution. Despite the advances in facility. 
SNOBOL4 retained the primitive control structures of the earlier languages. Because of new data types and 
operations, SNOBOL4 is best characterized as a general-purpose language with a strong emphasis on string 
processing, whereas the earlier languages were special-purpose string processing languages. SNOBOL4 is in 
wide use at the present time for a variety of applications [5]. 

SL5 ("SNOBOL Language 5") [6] was an even more radical departure from the earlier languages. SL5 has 
a traditional. Algol-like syntax with a large repertoire of control structures. The success failure signaling 
mechanism ol the earlier SNOBOL languages was extended to drive control structures in place of the more 
conventional use of Boolean values. A notable characteristic of SL5 is its generalized procedure mechanism 
[7]. which provides coroutines as a natural consequence. Patterns and pattern matching of the earlier 
languages were replaced by the concept of string scanning in which coroutine environments operate in a goal-
directed control regime [X]. For the first time there was a mechanism for programmer-defined string scanning. 
SI.5 also has a repertoire of elementary string processing operations that are lacking in the earlier languages. 
The distribution of SI.5 was limited and its use at the present time is minimal. 

Icon represents both a synthesis of earlier ideas and a departure from trends in the earlier languages. (The 
name Icon, incidentally, is not an acronym and has no special significance — although one can imagine 
relevant connotations.) 

The development of Icon as a language distinct from SL5 was sparked by the design of a general goal-
directed evaluation mechanism that allows the traditionally goal-oriented pattern matching and string 
scanning activities to be integrated with more conventional computational activities. This integration has the 
effect of unifying formerly disparate features. At the same time, elementary string processing operations as 
introduced in SL5 have been unified with higher-level string processing operations. 

I he concept ot success or failure ol an operation as in the earlier languages is retained in Icon, although 
with a slightly different interpretation. Instead of operations returning a signal, operations in Icon either 
produce a result ("succeed") or they do not produce a result ("fail"). (The concept of a signal still appears in 



early Icon documentation.) Some operations may generate sequences of alternative results. A goal-directed 
evaluation mechanism seeks alternatives from such components of an expression if other alternatives fail to 
produce results. In this way "trees" ol alternative results in complex expressions arc "searched" in the attempt 
to produce an overall result ( "success"). 

1 ike SNOBOL4 and SI.5. Icon has a variety of data types and has facilities for creating and processing 
structures. In many cases, these facilities have been strengthened and sharpened above those ol earlier 
languages. Icon does not have a run-time compilation facility, however. 

A forewarning: Icon contains some surprises. Its goal-directed evaluation mechanism allows programming 
styles and techniques that other languages do not. As a consequence, learning to program in Icon is not just a 
matter of learning a new syntax and mastering the details of new operations — icon allows new ways of 
formulating computations. The natural tendency to translate programming techniques from familiar 
languages to Icon may, in fact, lead to frustration. SNOBOL4 programmers, in particular, are cautioned not 
to blindly imitate patterns by Icon expressions of similar appearance. 

1.2 Scope of the Manual 
This manual describes Version 5 of the Icon programming language implemented in the C programming 

language [9] and designed to run under Version 7 of UNIX* [10] on PDP-1 I computers. 
The reader is assumed to have experience with other programming languages, a familiarity with current 

programming language concepts, and a working knowledge of UNIX. 
This first chapter gives an overview of Icon and describes the techniques for presenting features of the 

language in this manual. Subsequent chapters describe the language in detail. There are a number of 
appendices at the end of this manual that provide quick reference to frequently needed information. 

1.3 An Overview of Icon 
Icon is a general-purpose programming language with an emphasis on string processing. Icon supports a 

variety of data types and has facilities for creating and manipulating the commonly used kinds of structures. 
Storage management is automatic; there are no explicit allocation and deallocation directives. The si/cs of 
objects are limited only by the architecture and physical limitations of the computer on which Icon runs. 

Variables are "untyped" as in SNOBOL4 and SI.5. Thus a variable may have values of any type. Run-time 
type checking and coercion to expected types according to context are performed automatically. 

One of the unusual characteristics of Icon is goal-directed expression evaluation, which provides 
automatic searching for alternatives and a controlled form of backtracking. This method of evaluation allows 
concise, natural formulation of many algorithms while avoiding the inefficiency of uncontrolled backtracking. 

Syntactically, Icon is a language in the style of Algol 60. It has an expression-based structure and uses 
reserved words for many constructs. 

1.4 Syntax Notation 
In this manual, the syntax of Icon is described in a semiformal manner with emphasis on clarity rather 

than rigor. For simple cases. English prose is generally used. Where the syntax is more complicated, a formal 
metalanguage is used. 

In this metalanguage, syntactic classes are denoted by italics. For example, e.xpr denotes the class of 
expressions. The names ol the syntactic types are chosen to be mnemonic, but have no formal significance. 
Program text is given in a sans-serif type face (e.g.. write). 

Alternatives arc separated by bars ( | ). Brackets ( [ ] ) enclose optional items. Ellipses ( ... ) indicate 
indefinite repetition of items. The metalinguistic and literal uses of bars, brackets, and periods are not mixed 
in anv one usage, and the meaning should be clear in context. Where necessary, ambiguity is resolved by using 
predefined syntactic types. For example, heir denotes the symbol | and the symbol [ is denoted by left- brack el. 

*l M \ is .i li.ulcnuii'k nl Hell l abora to r i e s . 
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1.5 Organisation of the Manual 
This manual is organized into chapters that describe the major features of the language. Each operation 

and function is described separately or is grouped with others of a similar nature. Following the description, 
examples of usage are given. 

The examples are not intended to motivate uses of language features, but rather to provide concrete 
instances, to show special cases that may not be clear otherwise, and to illustrate possibilities that may not be 
obvious. For these reasons, some of the examples are contrived and are not typical of ordinary usage. 

Where appropriate, there are remarks that are subsidiary to the main description. These remarks are 
divided into notes, warnings, defaults, failure conditions, and error conditions. The notes describe special 
cases, details, and such. The warnings are designed to alert the programmer to programming pitfalls and 
hazards that might otherwise be overlooked. The defaults describe interpretations that are made in the 
absence of specified values or optional parts of expressions. The failure conditions specify situations in which 
an operation may fail to produce a value. The error conditions specify situations that are erroneous and cause 
program termination. The defaults and error conditions are summarized in Appendices C and D. 

It is not always possible to describe language features in a linear fashion; some circularity is unavoidable. 
This manual contains numerous cross references between sections. In the case of forward references, an 
attempt has been made to make the referenced items clear in context even if they cannot be completely 
described there. For a full set of references, seethe index. 
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Chapter 2 

Basic Concepts and Operations 

2.1 Types 
Icon supports several kinds of data, called types: 

integer procedure 
real list 
string table 
cset null 
file 

Integers and real numbers (floating-point numbers) serve their conventional purposes. Strings are sequences 
of characters as in SNOBOL4, for example. Csets are sets of characters in which membership is significant, 
but order is not. Files identify external data storage. Procedures serve their conventional purpose, but it is 
notable that they are data objects. Lists and tables are data structures with different organizations and access 
methods. The null value, which is represented by the symbol • in this manual, serves a special purpose as the 
initial value of variables. The null value is illegal in most computations. In addition to the types listed above, 
there is a facility for defining record types. 

The first letters of type names are used in this manual to indicate values of the corresponding types. For 
example, i, s, and C are used to indicate integers, strings, and csets, respectively. Following convention, j and k 
are also used to indicate integers. Numerical suffixes are used when several values of the same type appear 
together, such as s1 and s2. The letter a ("array") is used in place of I for lists, since I is difficult to distinguish 
in text. The letter n is used to indicate numeric types (integer or real), x and y are used to indicate objects of 
unspecified or undetermined type, z is used for record types. Where the emphasis is on expressions without 
regard for the values that they may produce, expr, exprl, and so on are used. Liberties are taken with these 
conventions when the meaning is clear in context. 

Integers, real numbers, strings, and csets can be specified literally in the program text. Integers and real 
numbers are represented as constants in the conventional manner. For example, 300 is an integer, while 1.0 is 
a real number. Strings are enclosed in double quotation marks, as in "summary". See Sections 4. l.l, 4.2.1, 
5.2.1, and 5.3 for further descriptions of the methods available for representing literals. Values of types other 
than these can be constructed and computed in a variety of ways, but they do not have literal representations. 

2.2 Expressions 
Icon is an expression-based language. The most primitive expressions are identifiers and literals. More 

complex expressions can be composed from functions, operators, control structures, and groupings. The 
following sections describe various kinds of expressions. 

2.2.1 Variables and Assignment 
A variable is an entity that can have a value. Variables provide a way of storing and referencing values that 

are computed during program execution. 
The simplest kind of variable is an identifier. Syntactically, an identifier must begin with a letter or 

underscore, which may be followed by any number of other letters, underscores, and digits. Corresponding 
upper- and lower-case letters are distinct. Reserved words, such as if, may not be used as identifiers. See 
Appendix A for a complete list of reserved words. 



syntactically correct identifiers: 

x 
X 
kOOOOl 
summary 
Reportl 
nodeJink 
J ink 

syntactically erroneous identifiers: 

23K 
report$ 
then 
xO@s 

There are various forms of variables other than identifiers. Some variables, such as the elements of a 
structure, are computed during program execution and have various syntactic representations. See Sections 
6.1.4, 7.4, 8.1.2, 8.2.2, and 8.3.3. 

One of the most fundamental operations is the assignment of a value to a variable. This operation is 
performed by the := infix operator. For example, v := 3 assigns the integer value 3 to the identifier v. 

Note: The assignment operator associates to the right and returns its left operand as a variable. Thus 
multiple assignments can be made. For example, v1 := v2 := 3 assigns 3 to both v1 and v2. 

Any expression that yields a variable may appear on the left side of an assignment operation and any 
expression may appear on the right. For example, v1 :- v2 assigns the value of the identifier v2 to the 
identifier v1. 

Error Condition: If the expression on the left side of the assignment operation is not a variable. Error 111 
occurs. 

The infix operator :=: exchanges the values of its operands. For example, v1 :=: v2 exchanges the 
values of v1 and v2. 

Note: The exchange operator associates to the right and returns its left operand as a variable. 
Error Condition: If the expression on either side of the exchange operation is not a variable, Error 11 l 
occurs. 

2.2.2 Keywords 
Keywords are used to designate important values and variables. Some keywords have constants as values, 

others control the status of global conditions, while others provide values related to the environment in which 
the executing program operates. 

A keyword is composed of an ampersand ( & ) followed by one of a number of identifiers that have special 
meanings. A typical keyword is &date, whose value is the current date. 

Some keywords are variables, and values can be assigned to them to set the status of conditions. An 
example is &trace, which controls the tracing of procedure calls (see Section 11.3.4). If &trace is assigned a 
nonzero value, tracing is enabled, while a zero value disables tracing. Some keywords are not variables and 
cannot be assigned values. An example is &date. 

Error Condition: If an attempt is made to assign a value to a keyword that is not a variable, Error 111 
occurs. 

Keywords are described throughout this manual in the sections that relate to their use. 

2.2.3 Functions 
Functions (built-in procedures) provide much of the computational repertoire of Icon. Function calls have 

a conventional syntax in which the function name is followed by arguments in an expression list that is 
enclosed in parentheses: 



name ( [ expr [ , e.xpr ] . . . ] ) 

For example, type(x) produces the type of the object x, map(s1,s2,s3) produces a character mapping on s1 . 
and write (s) writes the value of S. 

As indicated, arguments may be expressions of arbitrary complexity. 
Different functions expect arguments of different types, as indicated above. Automatic conversion 

(coercion) is performed to convert arguments to the required types. 
Error Condition: If an argument cannot be converted to a required type, an error with a number of the 
form \nn occurs, where nn identifies the expected type. See Appendix D. 
Defaults: The null value, •, is provided for omitted arguments. In some cases, null values are converted to 
special default values. This allows values that occur frequently to be omitted. These cases are noted 
throughout the manual and are summarized in Appendix C. If trailing arguments are omitted, the trailing 
commas may be omitted also. 
Note: If more arguments are provided in a function call than are required by the function, the extra 
arguments are evaluated, but their values are ignored. 

2.2.4 Operators 
Operators provide a convenient abbreviated notation for functions. There are two kinds of operators: 

prefix and infix. Example of prefix operators are - i , which produces the negative of i, and *x, which produces 
the size of x. Examples of infix operators are i + j and i * j , which produce the sum and product of i and j , 
respectively. 

While all prefix operators are single symbols, some infix operators are composed of more than one 
symbol. Examples are v := X, s1 || s2 (which produces the concatenation of the strings s1 and s2). and 
s1 == s2 (which compares strings s1 and s2 for equality). 

Blanks and parentheses may be used to avoid potential ambiguities when infix operators are followed by 
prefix operators. In the absence of blanks or parentheses, rules are used to interpret potentially ambiguous 
expressions. See Section 12.4. In addition, rules of precedence and associativity are used to determine which 
operands are associated with which operators in complex expressions. See Appendix A. 

As a class, prefix operators have the highest precedence (bind most tightly to their operands). For 
example, - i * j is equivalent to (-i) * j . Different infix operators have different precedences. For arithmetic 
operators, the conventional precedences apply. Thus i + j * k is equivalent to i + (j * k). A complete list 
of operator precedences is given in Appendix A. 

Infix operators also have associativity, which determines for two consecutive operators of the same 
precedence, which one applies to which operand. Most operators associate to the left. For example, 
i - j - k is equivalent to (i - j) - k. Assignment, however, associates to the right. Thus v1 := v2 := v3 
is equivalent to v1 := (v2 := v3). A complete list of infix operator associativities is given in Appendix A. 

2.3 Evaluation of Expressions 

2.3.1 Results 
Some expressions produce variables. The simplest example is an identifier, such as delta. Other 

expressions, such as the literal 13, produce values. The term "result" is used to refer to either a variable or a 
value. Values may be assigned to variables, and some operations, such as assignment, require operands that 
produce variables. 

Conversely, many operations require values. Thus in 

S1 == s2 

the values of the variables s1 and s2 are compared. 
The process of obtaining the value of a variable is called dereferencing. In Icon, the arguments of 

functions and the operands of operators are evaluated in a strictly left-to-right manner. However, 
dereferencing is not performed by functions and operators until all arguments and operands have been 
evaluated. Normally this does not affect the results of computation, but in cases where expressions have side 
effects, it may. Consider, for example, the expression 

-6 



f (x, x != *x) 

Here the second argument off is an expression that changes the value of X. The effect is as il f (*x,*x) had been 
called, regardless ol the original value of x. since the first argument ol f is not dereferenced until the second 
argument has been evaluated. 

I'xplicit dereferencing may be obtained by the prefix . operator. Thus 

f (.x, x 1= *x) 

dereferences the first argument so that evaluation of the second argument does not affect the value ol the lust 
argument. 

\DIC: I he operand ol the dereferencing operatoi need not be a variable. 

2.3.2 Success and Failure 
The evaluation of an expression may either produce a result (a variable or a value), or it mav fail to 

produce a result. Failure to produce a result mav occur for a variety of reasons, but it generally indicates that 
some condition that is necessary for the production of a result does not hold. For example, the comparison 
operation i = j fails to produce a result if i is not numerically equal to j . Note that this is different from 
comparison in most programming languages, where the result of comparison is a Boolean value, either true or 
false, depending on whether or not the condition is satisfied. 

In Icon, on the other hand, the course of program execution is determined by whether or not expressions 
produce results. For example, in the familiar control structure 

if exprl then exprj else exprj 

exprj is evaluated il exprl produces a result, while exprl is evaluated ilexprl does not produce a result. Note 
that the effect of this method o[ control is the same as the use of Boolean values. The Icon mechanism 
provides more generality, however, since it allows operations to be conditional and at the same time to 
produce meaningful results. For example. find(s1,s2) returns the position at which s1 is a substring of s2. 
provided there is such a substring, but fails to produce a result if there is not such a substring. 

In this manual, the term "succeeds" is used as an abbreviation lor "produces a result", while "fails" is used 
as an abbreviation lor "fails to produce a result". I he term "outcome" is used to refer to the consequences ol 
evaluating an expression, whether it be a result or failure. 

failure of expression evaluation is a normal occurrence during the course of program execution, failure is 
not a programming error, per.se. but simply a wav of selecting alternative paths of computation. 

fhe keyword &fail always fails. It mav be used in situations where explicit failure is desired. 

2.4 Basic Control Structures 
Icon provides a number oi traditional control structures, as well as some that are specifically designed to 

utilize the failure of an expression to produce a result: 

1. The control structure 

if exprl then expr2 \ else exprS ] 

evaluates exprl. II exprl succeeds, exprj is evaluated; otherwise expr3 is evaluated. The outcome ol 

if exprl then exprj else exprl 

is the outcome o\' exprj or exprj. whichever is evaluated. If the else clause is omitted and exprl fails, the if-
then expression fails. 

2. I he control structure 

while exprl | do exprj \ 

evaluates exprl repeatcdlv until il tails. I aeh time exprl succeeds. exprj is evaluated. The outcome ol 
while-do is failure, but see Section 2.6. 
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3. The control structure 

until exprl [ do expr2 ] 

evaluates exprl repeatedly until it succeeds. Each time exprl fails. expr2 is evaluated. The outcome of until-
do is failure, but see Section 2.6. 

4. The case control structure permits the selection of one of a number of expressions according to the value 
ol a control expression. The form of the case control structure is 

case expr of ( [ case-clause [', case-clause ] . . . ] } 

where expr is the control expression. Case clauses have the form 

exprl '. expr2 

where exprl is a selector expression and expr2 is an expression that is evaluated if exprl is selected. There is 
also a default case clause, which has the form default: expr2. When the case expression is evaluated, the 
control expression is evaluated first and its value is compared to the values of the selector expressions, in 
order, as given in the case clauses. If a comparison is successful, the expression in the case clause is evaluated 
and its outcome becomes the outcome of the case expression. If no comparison succeeds, the expression in 
the default case clause, if present, is evaluated and becomes the outcome of the case expression. 

Motes: The default clause may appear in any position with respect to the other case clauses, although it is 
customary lor it to appear either first or last. Only one default clause is allowed in a case expression. It is 
evaluated as if it appeared last. The semicolons between case clauses may be omitted if the clauses are 
placed on separate lines. 
Failure Conditions: case fails if the control expression fails, if no case clause is selected, or if the selected 
expression fails. 

An example of a case expression is 

case *s1 of { 
1: 
*s2: 
default; 

m := 0 
m := 1 
m := 2 

which assigns 0 to m if the size of s1 is I. I to m if the size of s1 is the same as the size of s2 (but not I), and 2 
to m otherwise. 

5. The control structure 

repeat expr 

evaluates expr repeatedly, repeat terminates only through a loop exit (see Section 2.6) or a procedure return 
(see Section I 1.3.2). 

Sote: repeat has no outcome.perse. 

6. The control structure 

not expr 

produces • if expr fails but fails if expr succeeds. For example, 

if not exprl then expr2 else expr J 

is equivalent to 

if exprl then expr J else expr 2 



2.5 Compound Kxpressions 
I:\pres.sions may be compounded to allow a sequence of expressions to appear in a context that requires a 

single expression. The outcome of a compound expression is the outcome of the last expression in the 
sequence. A compound expression has the form 

| [ expr [ ; expr ] ... ] | 

For example 

if z = 0 then jx := 0; y := 1| 

sets xtoO and y to I if z is 0. 
If the expressions in a compound expression are placed on separate lines, the semicolons are not necessary. 

For example. 

if z = 0 then | 
x := 0 
y := 1 
i 

is equivalent to the compound expression above. See also Section 12.2. 

2.6 Loop Control 
There are two control structures lor bypassing the normal completion of expressions in loops. These 

control structures may be used in repeat while-do. until-do, and every-do (see Section 3.1). 

1. The control structure next causes immediate transfer to the beginning of the loop without completion of 
the expression in which the next appears. 

2. The control structure 

break expr 

causes immediate termination of the loop without the completion of the expression in which the break 
appears. The outcome ol expr becomes the outcome of the loop in which the break occurs. 

Pc/auli: An omitted expr defaults to •. 

2.7 Procedures 
A program is composed ol a sequence of declarations. Procedure declarations, which contain the 

executable portions of a program, have the form 

procedure name ( [ argument-list ] ) 
proceilure-hoilv 

end 

The procedure name identities the procedure in the same way that functions are named. The argument list 
consists of the identifiers through which values are passed to the procedure. The procedure body consists of a 
sequence of expressions that arc evaluated when the procedure is invoked. A return expression terminates an 
invocation ol the procedure and returns a value. 

An example of a procedure is 

procedure max(i,j) 
if i > j then return i else return j 

end 

A procedure is invoked in the same fashion that a function is called. For example 

m := max(*s1,*s2) 

assigns to m the maximum of the sizes of S1 and s2. 
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Program execution begins with an invocation of the procedure named main. All programs must have a 
procedure with this name. 

For a more detailed description of procedures, see Chapter 11. 
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Chapter 3 

Generators and Expression Evaluation 

3.1 Generators 
Some expressions, called generators, are capable of producing a sequence of results. An example is 

find (s1 ,s2), which produces the positions at which s1 occurs as a substring of s2. For example, in 

find ("th","this is the thesis") 
there are three positions at which th occurs as a substring of the second argument: 1, 9, and 13. On the other 
hand, in 

f ind("th","a single thesis") 

there is only one position, 10. In fact, there may be no position, as in 

f ind("th","we have none") 
In this case, find cannot produce a result (it fails). Note that the number of results that a generator like find 
can produce depends on the values of its arguments. 

If a generator is used in a simple computational context, it produces only its first result. For example 

i := find ("th","this is the thesis") 
assigns the value 1 to i. On the other hand, in 

i := find ("th","we have none") 
the function find fails and the value of i is not changed. 

There are a number of contexts in which some or all of the results produced by a generator may be useful. 
The control structure 

every exprl [do expr2\ 

evaluates exprl for every result prod uced by exprl. For example 

every i := find(s1,s2) do write(i) 

writes all the positions at which s1 occurs as a substring of s2. 
Note: The outcome of every-do itself is failure. 

As indicated, the do clause is optional. The example above can be written more concisely as 

every write (find (s1,s2)) 
Note that although write is not a generator itself, write is called for every value of its argument, which is a 
generator. The same situation occurs in the assignment operation above. 

There are a number of generators. Two of the most fundamental generators are alternation and integer 
sequencing. 

Alternation is a control structure that has the form 

exprl | exprl 

This control structure produces the sequence of results produced by exprl followed by the sequence of results 
produced by exprl. For example 



every f(1 | 3) 
evaluates f (1) ;md f(3). 

Ill litis case, hoi h I lie* expressions in altci n;ilu>n aic simple values. exprl ami e\pr2 may be generators, in 
which case each produces its sequence, For example, 

every write (find (s1,s2) | find(s3,s4)) 
writes all the positions at which s1 occurs as a substring of s2 followed by all the positions at which S3 occurs 
as a substring of s4. Similarly 

every write (find (s1 | s2,s3)) 
writes all the positions at which s1 occurs as a substring of S3 followed by all the positions at which s2 occurs 
as a substring of S3. 

The operation 

exprl t o expr2 [by expr3] 

generates the integers in sequence from the value of exprl to the value of expr2, inclusive, using the value of 
expr3 as an increment. For example 

every write (0 to 10 by 2) 

writes 0, 2 .4 . 6. 8, and 10. 
furor Condition: I f the value produced by exprJ is 0. Error 21 I occurs. 
Xoies: exprl. expr2. and expr J are evaluated only once. Generation stops when expr2 is exceeded. cxprJ 
may be negative, in which case successively smaller values are generated until exprJ is reached or passed. 
I he construction every i '.= j to k do expr is similar to the for control structure found in many 
programming languages. 
Default: If the by clause is omitted, the increment defaults to I. 

In some cases it is desirable to limit the number of results produced by a sequence. The control structure 

exprl \ expi 2 

produces at most expr2 results from the sequence generated by exprl. For example 

every write (find (s1,s2) \ 10) 
writes the first 10 positions at which s1 occurs as a substring of s2. Of course, if there are fewer than 10 
positions, only those values are produced. 

Sometimes it is useful to repeatedly produce the sequence produced by a generator. The repeated 
alternation control structure 

|<\\y*r 

is equivalent to 

expr | expr | expr ... 

except that if expr ever fails (that is, if it ever produces no result), \expr terminates. (This may occur because 
expr fails initially or because of side effects that affect the sequence produced by expr.) For example 

every write( |find(s1,s2) \ 100) 

writes the positions at which s1 occurs as a substring of s2 repeatedly, but terminates after I00 values have 
been written. 

3.2 Goal-Directed F.valuation 
In every exprl d o expr2 the complete sequence of results of exprl is produced by the explicit use of every. 

! :.\ press ions in Icon arc evaluated in a ti>oa/-c/ireeiecl fashion, in which the results of generators are 
automatically produced in sequence if that is necessary for an enclosing expression to succeed (that is. to 
produce a result). A simple example of goal-directed evaluation is illustrated by 
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(x I y) > 0 
Here the left operand ol the comparison operator is a generator capable of producing two results, the 
variables x and y. The value of the first result of the alternation is compared to 0. If this comparison 
succeeds, the entire expression succeeds. However, if this comparison fails, the entire expression does not 
necessarily fail. Instead, the second result of the alternation is produced and is compared to 0. Hence the 
entire expression succeeds if the value of either x or y is greater than 0 (hence the term "alternation"). 

This goal-directed evaluation mechanism is completely general and applies to the evaluation of the 
arguments and operands of all functions and operators. For example 

if (x | y | z) > (a | b) then write ("plateau reached") 

writes plateau reached if any of x. y, or z is greater than either a or b. 

3.3 Evaluation of Expressions 
The arguments of functions and procedures, as well as the operands of operators, are evaluated from left 

to right. In goal-directed evaluation, if evaluation of an argument or operand fails to produce a result, control 
backtracking takes place to the most recently evaluated argument or operand to obtain another result from its 
sequence. For example, in 

cxprl + expi'2 

cxprl is evaluated first. If cxprl fails, the addition operation fails. If cxprl succeeds, expr2 is evaluated. If 
cxprl fails, however, the addition operation does not necessarily fail. Instead, backtracking occurs and 
another result from the sequence for cxprl is sought. If such an alternative result exists, cxpr2 is evaluated 
again. Since the evaluation of cxprl may a fleet <\v/>/\? (by means of side effects), cxpr2 may now succeed. If so. 
the addition is performed. An example ol such a situation is 

(x := n to m) + find("1",x) 

In the case of a function call such as f (cxprl,cxpr2). if cxpr2 fails, alternative results are sought for cxprl. In 
fact, if cxprl and cxpr2 both succeed, but the function itself fails, alternatives arc sought for the arguments 
(first cxpr2 and. failing that, cxprl). II any argument has an alternative, successive arguments are re-evaluated 
and the function is called again. If the function continues to fail, it is called for all alternative values of the 
arguments. The overall expression fails only if the function fails for all alternative values of the arguments. 
This method of evaluation applies regardless of the number of arguments in the function call. Operands of 
operators are evaluated in the same was as arguments of functions. 

In some cases, backtracking to achieve mutual results from two expressions may be desired, even though 
no computation is to be performed on the results. The infix operator & ("conjunction") behaves like any 
other infix operator with respect to backtracking, except that if cxprl succeeds the outcome of cxprl &.cxpr2 
is simplv the outcome of cxpr2. 

If mutual evaluation among several expressions is needed, conjunction can be compounded, as in 

cxprl & cxprl & ... & cxpm 

This notation becomes cumbersome, especially if the expressions are themselves complex. Such compounded 
conjunctions may be difficult to compose correctly and to understand. An alternative method is muiual 
evaluation, denoted by 

(cxpr I ,cxpr2,... ,cxprn) 

which evaluates cxprl. cxpr2 cxpm just like the arguments in a function call. If all the expressions 
produce results, the result of mutual evaluation is the result of cxpm. Otherwise, it fails. The effect is exactly 
the same as in a compound conjunction. 

Sometimes a number of expressions need to be mutually evaluated, but a result other than the last is 
desired. The expression 

ex/>r(cxpr I ,cxpr2.... ,cxprn) 

produces the result o\ cxpri, where the value of cxpr is the integer /', provided all the expressions produce a 

13-



result. If any expression fails, however, the mutual conjunction fails. For example, the value of 

2(find(s1,s),find(s2ls)>find(s3,s)) 
is the position of s2 as a substring of S provided S1, S2. and S3 all occur as substrings of S. The value of expr 
can be negative, in which case the result is selected from right to left. This method of selecting the result of 
mutual evaluation makes it easy to select the last result from a long list. For example 

(—1)(exprl, expr2, .... exprn) 

selects the result of exprn. The parentheses around - I are necessary; the expression 

^(exprl, expr2, .... exprn) 

produces the negative of the result of exprI ! 
Note that mutual conjunction has the same syntax as a function call. There is no ambiguity, however. If 

the value of expr is an integer /'. the result of is the result of expri. If the value of expr is a function, however, 
the function is applied to the arguments and the outcome is the outcome of the function call. 

3.4 The Extent of Backtracking 
Backtracking is limited in its extent by syntactic constructions in the program. The extent of backtracking 

therefore can be determined by examination of the text of the program (that is. the extent of backtracking is 
not determined by the history of computation in the program). 

In addition to the control structure expr I \ expr2 that is described in Section 3.1. several constructions 
specifically limit the extent of backtracking. The semicolons that separate expressions in a sequence, for 
example, prevent backtracking from occurring between the expressions. For example, in the sequence 

exprI \ expr2 

failure of expr2 docs not cause backtracking into expr I. 
The other contexts in which goal-directed evaluation is implicitly limited to one result are the first 

(control) expressions in the case-of. if-then-else. not, until-do. and while-do. 

3.5 The Reversal of Kffects 
As described above, control backtracking to an earlier point in a computation may take place in order to 

obtain alternative results of generators. There is, however, no implicit reversal of effects such as assignments, 
hor example, in the expression 

(y := 1 to 10) & (y > z) 

if the value of z is 20. the value of y after the failure of the conjunction is 10. regardless of what the value of y 
was before evaluation of the conjunction. 

There are two assignment operators that do reverse their effects if failure occurs. 

1. The infix operator v <— x assigns the value of x to v. but restores the previous value of v if backtracking 
causes failure in the expression in which the reversible assignment occurred. For example, in 

y := 0; (y < - 1 to 10) & (y > z) 
if the value of z is 20. the value ol y is restored to 0 when the conjunction fails. 

2. The infix operator v1 <—> v2 exchanges the values of v1 and v2. but restores their former values if 
backtracking causes failure in the expression in which the reversible exchange occurred. 

Son's: I lie reversible assignment and exchange operators associate to the right and return their left 
operands ;is variables. 
I.'nar Conditions: II the expression on the left side ol the reversible assignment operation or either 
expression in the reversible exchange operation is not a variable. Error I I I occurs. 
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Chapter 4 

Numbers and Arithmetic Operations 

Icon provides integer, real, and mixed-mode arithmetic with the standard operations and comparisons. 

4.1 Integers 

Integers in Icon are treated as they are in most programming languages. 
Xole: The allowable range of integer values is —2 to 2 —I. 

4.1.1 Literal Integers 
Integers may be specified literally in a program in the conventional fashion. 

\oies: Leading zeroes are allowed but are ignored. Negative integers cannot be expressed literally, but 
the) may be computed as the results ol arithmetic operations. 

Examples: 
expression value 

0 0 
000 0 
10 l() 
010 It) 
27524 27.524 

Integer literals such as those given above are in the base l(). Other radices may be specified by beginning the 
integer literal with n r, where n is a number (base 10) between 2 and 36 that specifies the radix foi the digits 
that follow. For digits with a decimal value greater than 9, the letters a, b, C. ... are used. 

\nU's: I he digits used in the literal must be less than the radix. Fit her r or R may be used to indicate a 
radix literal. Either upper- or lower-case letters ma\ be used for "digits". 

/ xantpk's: 
expression value 

2r11 .1 
8r10 x 
10r10 l(> 
16rff 255 
16RFF 255 
36rCat 15.941 

4.1.2 Integer Arithmetic 
The following infix arithmetic operations arc pro\ ided. 

expression 

' + J 
i - J 
i * j 
i / J 
i % j 
i A j 

operation 

add i t ion 
subtract ion 

mul t ip l i ca t ion 
d i \ ision 

remainder ing 
exponent ia t ion 

re •lative 
preeedenee 

1 
1 
2 
2 
2 
} 

assoeialivil} 

left 
left 
left 
left 
left 

r ight 

- 1 5 -
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Nines: The remainder of integer division is discarded; that is. the result is truncated, i % j produces the 
remainder of i divided by j . The sign of the result is the sign of i. 
Error Conditions: If an attempt is made to divide by 0. Error 201 occurs. If the second operand of 
remaindering is /ero. Frror 202 occurs. II the result of an arithmetic operation exceeds the range of 
allowable integer values. Error 203 occurs. 

Examples: 
e.\ 

1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
2 
2 
4 
4 

•pression 

+ 2 
- 2 
* 2 
/ 2 
/ 1 
A 3 
A 0 
A - 1 

- 1 -
* 2 / 
/ 2 * 
/ 2 -
/ d -
A 3 A 

% 3 
1400 % 
4 

4 

% 4 
4 % 3 
% - 3 

4 % - : 

1 
2 
2 
1 

- 2) 
2 

1000 

3 

value 

3 
- I 

2 
0 
2 
8 
I 
0 

- I 
I 
0 
I) 

- 2 
262.144 

I 
400 

0 
- I 

There are two arithmetic prefix operations: +i and — i, to form the positive and negative of i respectively. In 
addition, the function abs( i ) produces the absolute value of i. 

Examples: 
expression value 

+ 100 100 
-100 - I 0U 
+ 0 0 
- 0 0 
- ( 4 - 700) 6% 
abs(7) 7 
abs(-7) 7 

4.1.3 Integer Comparison 

There are six operations for comparing the magnitude of integers. 

i = j equal to 
i ~= j not equal to 
i > j greater than 
i >= j greater than or equal to 
i < j less than 
i <= j less than or equal to 

All the comparison operators associate to the left and have lower precedence than any of the arithmetic 
computation operations. The operations return the value of their right operand if the specified relation 
between the operands holds and fail otherwise. 
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/:\(iin/'/cs: 
i'.\/>rt'.\.\ion value 

100 100 100 
1 ~= 1 none 
1 > 1 none 
2 > 1 I 
1 < 2 2 
2 >= 1 I 
2 <= 2 2 
2 < 3 < 400 400 
2 < 3 = 4 none 

4.2 Real Numbers 
Real numbers are represented in floating-point format. 

Note: Floating-point numbers are double precision. 

4.2.1 Literal Real Numbers 
Real numbers may be specified literally in a program in the conventional fashions using either decimal or 

exponent notation. 
Xote.s: For magnitudes less than I. a leading zero is required. Additional leading zeroes are allowed but 
are ignored. Either e or E may be used in exponent notation. 

Examples: 
expression value 

3.14159 3.I4I59 
0.0 0.0 
000. 0.0 
27e2 2.700.0 
27e -6 0.000027 
27e5 2,700,000.0 
27E5 2,700.000.0 

4.2.2 Real Arithmetic 
The arithmetic operations available for real numbers are the same as those available for integers. See 

Section 4.1.2. 
Error Conditions: In the case of real overflow, real underflow, or division by zero. Error 204 occurs. I f an 
attempt is made to raise a negative real number to a real power. Error 206 occurs. 
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Examples: 
expression 

1.0 + 2.0 
1.0 - 2.0 
1.0 * 2.0 
1.0 / 2.0 
2.0 / 1.0 
1.0 - 1.0 - 1.0 
1.0 * 2.0 / 2.0 
1.0 / 2.0 * 2.0 
4.7 % 2.0 
2.5 % 1.0 
+ 1.0 
-1.0 
abs(7.0) 
abs(-7.0) 

value 

3.0 
- I .0 

2.0 
0.5 
2.0 

- I . 0 
I.O 
I.O 
0.7 
0.5 
I.O 

-I.O 
7.0 
7.0 

4.2.3 Comparison of Real Numbers 
The comparison operations available for real numbers are the same as those available for integers. See 

Section 4.1.3. 
Now: Because of the imprecision of the floating-point representation and computation, comparison for 
equality of real numbers may not always produce the result that would be obtained if true real arithmetic 
were possible. 

Examples: 
expression 

1.0 ~- 1.0 
1.0 — 1.0 
1.0 > 1.0 
2.0 > 1.0 
1.0 < 2.0 
2.0 <= 1.0 
2.0 <= 2.0 
2.0 < 3.0 < 
2.0 < 3.0 <= 
2.0 < 3.0 = 

4.0 
= 4.0 
4.0 

value 

I.O 
none 
none 

I.O 
2.0 

none 
2.0 
4.0 
4.0 

none 

4.3 Mixed-Mode Arithmetic 

Except for exponentiation, if either operand of an infix operation is a real number, the other operand is 
converted to a real number and real arithmetic is performed. In the case of exponentiation, a negative real 
number may be raised to an integer power. 



l:\ui)) pies: 
expression value 

1 . 0 + 2 .V0 
1 » 2.0 10 
1 2.0 -1.0 
1.0 * 2 2.0 
1 . 0 / 2 0.5 
2 / 1 . 0 2.0 
1 - 1 - 1 . 0 - i . o 
1 * 2.0 / 2 I.O 
1 / 2.0 * 2 I.O 
1.0 / 2 * 2 I.O 
2.0 A 2 4.0 
2.0 A - 1 0.5 

4.4 Arithmetic Type Conversion 

4.4.1 Conversion to Integer 
The value of integer(x) is an integer corresponding to x. where x may be an integer, real number, or cset. 

1. Integers are returned unmodified by integer(x). 
2. Real numbers are converted to integer by truncation. 
I'ailure Condition: Conversion of a real number to an integer tails il the value ol the real number is out ol 
the allowable range ol integers. 

/ \aniples: 
expression value 

integer(2.0) 2 
integer(2.5) 2 
integer(-2.5) -2 
integer(2e35) none 

3. Strings are converted to integers in the same way that an integer literal is treated in program text, 
except that 
(a) leading and trailing blanks are allowed, but arc ignored. 
(b) A leading sign may be included. 
(c) There must be at least one digit. 
II the string corresponds to a real literal, real-to-integer conversion is performed. See Section 5.4. 

I'ailure ( onJiiion: integer(s) tails il s is not a proper representation ol an integer or real number. 

I samples: 
expression value 

integer("10") l() 
integer("8r10") s 
integer("-10") - l () 
integer(" 3") 3 
integer (" 0003") .1 
integer("3.5") .1 
integer("3.x") none 
integer("3r4") none 
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4. C'sets are first converted to strings and then to integers. See Section 5.4. 
Failure Condition: integer(x) fails il the type of X is not one of those listed above. 

For operations that require integers, implicit conversions are automatically performed lor real numbers, 
strings, and csets. 

Error Condition: II an implicit conversion to integer fails. Error 102 occurs. 

Examples: 
expression value 

1 + "10" II 
'2' A 4.0 16.0 

4.4.2 Conversion to Real Number 
The value of real (x) is a real number corresponding to x, where x may be a real number, integer, string, or 

cset. 

1. Real numbers are returned unmodified by real (x). 

2. Integers are converted to the corresponding real values. 

Examples: 
expression value 

real (10) 10.0 
real (-10) -MM) 
real(8r10) 8.0 
real (27000) 27.000.0 

3. Strings are converted to real numbers in the same way that real litcrals.are treated in program text, 
except that 
(a) Leading and trailing blanks are allowed, but they are ignored. 

(b) A leading sign may be included. 

(c) A leading zero is not required before the decimal point for values whose magnitudes are less 
than I. 

Soles: I! the string corresponds to an integer literal, integer-lo-real conversion is performed. 
i'ailure Condition: real (s) fails il s is not a proper representation of a real number or integer. 

Examples: 
expression 

real ("10.0") 
real f -10.0") 
real ("27000") 
real(" 3.0") 
rea l f 0003.0") 
real("8r10") 
real ("3.x") 
real("3r4") 

value 

10.0 
-KM) 

27.000.0 
3.0 
3.0 
8.0 

none 
noin 

4. C'sets are first converted to strings and then to real numbers. Sec Section 5.4. 
I'ailure Condition: real (x) fails il the type of X is not one ol those listed above. 

Implicit conversions are automatically performed lor integers, strings, and csets in operations that require 
real numbers. 

Error ( ondition: II an implicit conversion to real number tails. Error I02 occurs. 
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Examples: 
expression value 

1.0 + "10.0" M.O 
"2.0" A 3 8.0 

4.5 Conversion to Numeric 
The function numeric(n) returns the integer or real number corresponding to n if n is an integer, real 

number, or if it is convertible to one of these types. See Section 5.4. The function fails otherwise. 

Examples: 
expression 

numeric (100) 
numeric (0.0) 
numeric ("0") 
numeric ("0.0") 
numeric ("a") 
numeric ("16Rff") 
numeric ("3r4") 
numeric (" ") 

value 

100 
0.0 
0 
0.0 

none 
255 
none 
none 
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Chapter 5 

Strings and Character Sets 

5.1 Characters 
Although characters are not themselves data objects in Icon, strings of characters and sets of characters 

are. Strings form the heart of Icon's processing capabilities. 
The character set used by Icon is based on ASCII [11], There are, however, 256 different characters 

available for use in Icon programs. 
Note: The thirty-third character (octal code 40) is the blank (space). Since it has no visible representation, 
the symbol o is used in this manual to represent the blank in contexts that otherwise might be confusing. 

While it is customary to think of characters in terms of their graphic representations and control functions, 
characters are basically just integers. Internally the integers corresponding to ASCII are represented by octal 
codes from 000 through 177 (hexadecimal codes 00 through 7F). The order of characters is determined by 
these codes and specifies the "collating sequence" of the ASCII character set. For example, Z comes before z 
in the collating sequence. This order is the basis for comparing strings (see Section 6.2) and for sorting (see 
Section 8.4). The full set of 256 characters similarly are represented by octal codes 000 through 377 
(hexadecimal codes 00 through FF). 

5.2 Strings 
A string is a sequence of zero or more characters. Any character may appear in a string. There are many 

ways of constructing strings during program execution. See Chapter 6. 

5.2.1 Literal Strings 
Strings may be specified literally in a program by delimiting (enclosing) the sequence of characters by 

double quotes ( " ). 

Examples: 
expression value 

"X " X 
" D " D 

"abed" abed 
"Isn'tnitngreat?" Isn'taitngreat? 

Note: In this manual, string values are given in the body of the text without the delimiting quotation 
marks, provided that the meaning is clear. 

Some characters cannot be entered directly in program text because of their control functions or because 
of the limitations of input devices. To allow specification of all characters in literal strings, an escape 
convention is used in which the backslash ( \ ) causes subsequent characters to have a special meaning as 
follows: 
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character 

backspace 
delete 
esca pe 
formfeed 
linefeed 
ncwline 
carriage return 
hor izonta l tab 
vert ical tab 
double quote 
single quote 
backslash 
octal code 
hexadecimal code 
control code 

code 

\ b 
\ d 
\ e 
\ f 
\ l 
\ n 
\ r 
\ t 
\ v 
\ " 
\ ' 
\ \ 
\ddd 
\xdd 
W 

The specification \ddd represents the character with octal code ddd. The specification \xdd represents a 
character with hexadecimal code dd. Only enough digits need to be given to specify the octal or hexadecimal 
code. For example, \ 0 specifies the null character and \ x a is equivalent to \xOa. \A< - represents the ASCII 
character control-r. For example. \ A A is the ASCII character control-A. In general, \ A < - is the character 
corresponding to the five low-order bits of c. II the character following a backslash is not one of those listed 
above, the backslash is ignored. 

Soles: The conven t ion used here l o r representing characters in l i terals is adapted f r o m that used by the C 
p r o g r a m m i n g language [9 ] . The linefeed and ncwl ine characters arc the same. 

I.xa in pies: 
expression value 

"V'oopsV" "oops" 
"\"\" " 
" \ D " D 
" \a\z" az 
"\132" Z 
"\134\134" W 
"\77a" ?a 
"\1234" S4 
"\x64" d 
" \ \ " \ 

5.2.2 String Si/c 
The size of a string is the number of characters it contains and is computed by the unary operator *. The 

cinpH string is the string consisting of no characters and has size zero. It may be represented literally by two 
adjacent quotes, enclosing no characters. 

is . . . 
Sotes: I he m a x i m u m si/e o l a s t r ing is 2 — I . I he pract ical m a x i m u m is usual ly d ic ta ted by the amoun t 
of memorx avai lab le. Since the empty s t r ing contains no characters, it has no vis ib le representat ion. In 
this manua l , the symbo l • is used to represent the empty s t r ing in contexts that otherwise might be 
confus ing. Thus " " a n d • bo th indicate an empt \ s t r ing. 

ICvamples: 
expression value 

*"abcd" 4 
* " D " | 

* " " 0 
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5.3 Character Sets 
Whereas a string is an ordered sequence of characters in which the same character may appear more than 

once, a character set (cset) is an unordered collection of characters. The value of the keyword &cset is the set 
of all 256 characters. Other character sets are subsets of &cset and are useful for operations where specific 
characters are of interest, regardless of the order in which they appear. See Sections 6.3.2 and 7.3. Other 
built-in character sets are &ascii, the first 128 characters of &cset, &lcase, the lower-case letters, and 
&ucase, the upper-case letters. 

Error Condition: The keywords &cset, &ascii, &lcase, and &ucase are not variables. If an attempt is 
made to assign a value to one of them, Error 11 1 occurs. 

Csets may be specified literally in a program by delimiting (enclosing) the characters in single quotes ( ') . 
Duplicate characters in cset literals are ignored and the order of the characters is irrelevant. The same escape 
conventions that apply to string literals apply to character set literals. 

Examples: 
expression value 

'abed' a b e d 
'bade' a b e d 
'energy' e g n r y 
• \Y \ 

Note: Values of csets in examples are given with separating spaces to distinguish them from the values of 
strings. 

There are five operations on character sets: 

1. ~C is the complement of C with respect to &cset. 

2. d ++ c2 is the union of d and c2. 

3. d ** c2 is the intersection of d and c2. 

4. d — c2 is the difference of d and c2; that is, all of the characters in d that are not in c2. 

5. *c is the number of characters in c. 

Examples: 
expression 

c1 := 'drama' 
c2 := 'append' 
c1 ++ c2 
c1 ** c2 
c1 — c2 
c1 c2 
*c1 

value 

a d m r 
a d e n p 
a d e m n p r 
a d 
m r 
a d 
4 

Note: A character set may be empty, i.e. containing no characters. Such a character set may be obtained 
by "or ~&cset. 

5.4 Type Conversion 

5.4.1 Explicit Conversion 
The value of String (x) is a string corresponding to x, where x may be an string, integer, real number, or 

cset. 
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1. Strings are returned unmodified by string (x). 
2. For integers and real numbers, the resulting string is a representation of the numerical value 

corresponding to the literal representation that the numeric object would have in the source 
program. 

Examples: 
expression 

string(10) 
string (00010) 
string (8r10) 
string (2.7) 
string (02.70) 
string (27e-1) 
string (2700000.) 
string (0.0000027) 

value 

10 
10 
8 
2.7 
2.7 
2.7 
2.7e6 
2.7e-6 

3. For csets, the result is a string of characters in the cset, arranged in order of collating sequence (see 
Section 6.2). 

Failure Condition: String (x) fails if X is not one of types listed above. 
The value of cset (x) is a character set corresponding to x, where x may be an integer, real number, string, 

or cset. If x is an integer or real number, it is first converted to a string as described above. 
Failure Condition: cset(x) fails if the type of x is not one of those listed above. 

Examples: 
expression value 

cset ("drama") a d m r 
cset (1088) 0 1 8 
cset(3.14) . 1 3 4 

Note: Conversion of a string to a cset and back to a string, as in 

s :- string (cset (s)) 
eliminates duplicate characters and sorts the characters of the string. 

Examples: 
expression value 

string (cset ("ab")) ab 
string (cset ("ba")) ab 
string (cset ("mam")) am 
string (cset("anb")) Dab 

5.4.2 Implicit Conversion 
In contexts that require strings, implicit conversion is automatically performed for integers, real numbers, 

and csets. 
Error Condition: If an object of any other type is encountered in a context that requires implicit 
conversion to a string. Error I03 occurs. 

Examples: 
expression value 

*10 2 
*010 2 
*100 3 
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For operalions that require csets, implicit conversion is performed automatically for integers, real 
numbers, and strings. Integers and real numbers are lirst converted to strings and then to csets. 

Error Condition: If an object of any other type is encountered in a. context that requires implicit 
conversion to a cset, Error 104 occurs. 
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Chapter 6 

Basic String Operations 

6.1 Constructing Strings 
There are a number of operations for constructing strings. Most of these operations are described in the 

following sections. See also Sections 7.2, 7.3, and 7.4. 

6.1.1 Concatenation 
Since a string is a sequence of characters, one of the most natural string construction operations is 

concatenation — appending one string to another. The value of s1 11 s2 is a string consisting of s1 followed by 
S2. 

Note: The empty string is the identity with respect to concatenation. That is, the result of concatenating 
the empty string with any string s is simply s. 

Examples: 
expression value 

"a" || "z" az 
" [ " || "abed" || " ] " [abed] 
"abed" || " " abed 

6.1.2 String Replication 
The value of repl (s,i) is the result of concatenating i copies of s. 

Error Condition: If i is negative oi 
Note: The value of repl (S,0) is • . 
Error Condition: If i is negative or greater than 2 - I, Error 205 occurs. 

Examples: 
expression 

repl("a",2) 
repl("*.",3) 
repl(&lcase,0) 

value 

aa 
*.*.* 
• 

6.1.3 Positioning Strings 
Positioning data in strings of a specified size is frequently useful, especially when printing output in 

columns. There are three functions for doing this. 

I. The value of left (s1 ,i,s2) is s1 positioned at the left of a string of size i. s2 is used to fill out the remaining 
portion to the right of s 1 , and is replicated as necessary, starting from the right. The last copy of s2 is 
truncated at the left if necessary to obtain the proper size. If the size of s1 is greater than i, it is truncated at 
the right end. 

Default: A null value for s2 defaults to • . 
Error Condition: If i is negative or greater than 2 - I , Error 205 occurs. 
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Examples: 
expression 

left("abcd",6,".o") 
left("abcd",7,".D") 
left("abcde".7,".D") 
left("abcd",6) 
left(&lcase,10) 

value 

abcd.o 
abcda.D 
abcde.n 
abed DO 
abedefghij 

2. The value of right (s1,i,s2) is similar to Ieft(s1,i,s2), except that s1 is placed at the right, s2 is replicated 
starting at the left, with the truncation of the last copy of s2 at the right if necessary. If the size of s1 is greater 
than i, it is truncated at the left end. 

Default: A null value for s2 defaults to • . 
Error Condition: If i is negative or greater than 2 - 1 , Error 205 occurs. 

Examples: 
expression 

right("abcd",6,".D") 
right("abcd",7,".D") 
right("abcde",7,".o' 
right ("abcd",6) 
right(&lcase,10) 

value 

.•abed 

.D.abcd 

.oabede 
• aabed 
qrstuvwxyz 

3. The value of center (s1 ,i,s2) is s1 centered in a string of size i. s2 is used for filling on the left and right as 
for the functions above. If the size of s1 is greater than i, it is truncated at the left and at the right to produce 
its center section. If s1 cannot be centered exactly, it is positioned to the left of center. 

Default: A null value for s2 defaults to • . 
Error Condition: If i is negative or greater than 2 - I, Error 205 occurs. 

Examples: 
expression value 

center ("abcd",8,".D") .oabcd.o 
center ("abed",9,".•") . •abcdn.n 
center ("abcde",9,".n") .aabcde.n 
center("abcd",6) aabedo 
center(&lcase,10) ijklmnopqr 
center (&lcase,11) ijklmnopqrs 

6.1.4 Character Positions and Substrings 
The positions of characters in a string are numbered from the left starting at 1. The numbering identifies 

positions between characters. For example, the positions in the string HAT are 

H A T 
1 t t I 
1 2 3 4 

Note that the position after the last character may be specified. 
Positions may also be specified with respect to the right end of a string, using nonpositive numbers starting 

at 0 and continuing with negative values toward the left: 

H A T 
T T T T 
.1 - 2 1 0 

For this string, positions 4 and 0 are equivalent, positions 3 and -1 are equivalent, and so on. 
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The positions that can be specified for a string S are in the range -*s to *s + I, inclusive. Values out o! this 
range are not allowable position specifications. In general, the positive specification i is equivalent to the 
nonpositive specification i-(*s + I). 

S'ote.The only allowable positions for the empty string are I and 0, which are equivalent. 
A substring is a sequence of characters within a string. An initial substring of s is one that begins at the 

first character of S. A terminal substring of S is one that ends at the last character of S. Substrings are 
determined by beginning and ending positions, using a range specification. There are four forms of range 
specification: 

i the single character following position i 
i: j characters between positions i and j 
i +: k k characters following position i 
i - : k k characters preceding position i 

In all cases, i and j may be given by positive or nonpositive specifications and k may be positive, negative, or 
zero. 

Note.The range specifications i:j and j:i are equivalent. 
A substring is obtained by a subscripting expression of the form 

string left-bracket range-specif cation right-bracket 

The resulting substring consists of the characters given by the range specification. 
Failure Condition: A subscripting expression fails if either of the positions of the range specification do 
not correspond to allowable positions in the string being subscripted. In this case, the specification is said 
to be out of range. 
Warning: The internal representation of characters starts at 0, not I, while the positions in a string start at 
I. Consequently, there is a difference of I between the position of a character in &ascii and its (decimal) 
code value. Thus &ascii[1] is the null character. This difference may be an annoyance and also a source 
of error. It is the consequence of the technique used for specifying positions from either end of the string 
by unique integers. 

Examples: 
expression value 

&lcase[1] a 
&ucase[26] Z 
&lcase[1:2] a 
&lcase[2:1] a 
&lcase[1:1] • 
&ucase[27] none 
&lcase[27:28] none 
&lcase[-1:-2] y 
"abed" [2:0] bed 
"abed"[2:-7] none 
"abcd"[1:0] abed 
"abcd"[2+:2] be 
"abcd"[3-:2] ab 

If the string specified in a substring operation is a variable, assignment can be performed to replace the 
specified substring and hence change the value of the variable. 

Notes: All forms of assignment can be used to replace substrings. 
Error Condition: If an attempt is made to assign to a subscripting expression in which the string is not a 
variable. Error 11 1 occurs. 
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Examples: 
expression 

s := "abed" 
s[1:2] := "xx" 
s[-1:0] := " " 
s[1] := "abc" 
s [ 1 + .2 ] .= ,y, 
s[2] :=: s[3] 

value of 

abed 
xxbed 
xxbc 
abexbe 
ycxbc 
yxebe 

6.1.5 Other String-Valued Operations 

1. The value of reverse (s) is a string consisting of the characters of S in reversed order. 

Examples: 
expression value 

reverse ("abed") deba 
reverse (&lcase) zyxwvutsrqponmlkjihgfedcba 
reverse ("") • 

2. The value of trim (s,c) is a string consisting of the initial substring of s with the omission of the trailing 
substring of s which consists solely of characters contained in C. 

Default: A null value for C defaults to ' • ' . 

Examples: 
expression value 

t r im("abcdnoa", 'a ' ) abed 
t r im("abcdnnn") abed 
tr im("abcdoaD", 'nd') abc 
tr im("abcdnna", 'd ' ) abcdanD 
trim("abcdDDD",&ascii) • 

3. The value of map (s1 ,s2,s3) is a string resulting from a character mapping on s1 , where each character of 
s1 that is contained in s2 is replaced by the character in the corresponding position in S3. Characters of s1 
that do not appear in s2 are left unchanged. If the same character appears more than once in s2, the 
rightmost correspondence with s3 applies. If the sizes of s2 and s3 are not the same, Error 208 occurs. 

Defaults: A null value for s2 defaults to &ucase and a null value for s3 defaults to &lcase. 
Note: If s1 is a transposition (rearrangement) of the characters of s2, then map(s1,s2,s3) produces the 
corresponding transposition of s3. 

Examples: 
expression value 

map("abcda","a","*") *bcd* 
map ("abcda'V'ad","**") *bc** 
map("abcda","ad","*:") *bc:* 
map ("abcda'V'ax","*:") *bcd* 
map ("abcda","yx"."*:") abeda 
map ("abed","bead","1234") 3124 
map("acda","aac","123") 23d2 
map ("wxyz","zyxw","abcd") deba 
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6.2 String Comparison 
Strings, like numbers, can be compared, but the basis for comparison is lexical (alphabetical) order rather 

than numerical value. Lexical order includes all characters and is based on the collating sequence. If a 
character c1 appears before c2 in collating sequence, d is lexically less than c2. The lexical order for single-
character strings is based on this ordering. Thus X is less than x, but z is greater than X. For longer strings, 
lexical order is determined by the lexical order of characters in corresponding positions, starting at the left. 
Two strings are lexically equal if and only if they are identical, character by character. If one string is an initial 
substring of another, then the shorter string is lexically less than the longer one. 

Note: The empty string is lexically less than any other string. 
The operation s1 « s2 succeeds if s1 is lexically less than s2 and fails otherwise. The value returned on 

success is s2. In all, there are six lexical comparison operators: 

s1 « s2 
s1 « = s2 
s1 » s2 
s1 » = s2 
s1 == s2 
s1 ~== s2 

Examples: 
expression 

"X" « "X" 
"X" « = "X" 
"x" » "x" 
"XX" « "x" 
"xx" » = "xX" 
"xx" « "xxx" 
"xx" « "xxX" 
" " ~== "x" 

lexically less than 
lexically less than or equal 
lexically greater than 
lexically greater than or equal 
lexically equal 
lexically not equal 

value 

X 

none 
none 
x 
xX 
xxx 
xxX 
x 

6.3 String Analysis 
Most programming operations on strings involve analysis rather than synthesis, and the repertoire of 

analytic operations is correspondingly large. 

6.3.1 Identifying Substrings 
There are two functions for identifying specific substrings. 

1. If s1 is an initial substring of s2[i:j], the function match (s1,s2,i,j) returns the position of the end of the 
substring. 

Failure Condition: match (s1,s2,i,j) fails if si is not an initial substring of s2[i:j]. 
Defaults: A null value for i defaults to 1 and a null value for j defaults to 0. 
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Examples: 
expression value 

match("a","abc",1) 2 
match("a","abc") 2 
match("a","abc",2) none 
match ("ab'V'abc", 1,2) none 
match ("be","abc",1) none 
match("bc","abc",2) 4 
match("bcd","abc",2) none 
match ("","abed",1) l 
match (" ","abcd",5) 5 

2. The value of find (s1 ,s2,i,j) is the leftmost position in s2 where s1 occurs as a substring in s2[i:j]. 
Failure Condition: V\nd (s~\ ,s2,\,\) fails if si is not a substring of s2[i:j]. 
Defaults: A null value for i defaults to 1 and a null value for j defaults to 0. 

Examples: 
expression value 

find("a","abcd",1) I 
find("a","abcd") I 
find ("be","abed",1) 2 
find("a","abcd",2) none 
find ("ab","abed",1,2) none 
find("de","abcd",1) none 
f ind("","abcd",3) 3 

The function find is a generator that produces the sequence of the positions, from left to right, at which s1 
is a substring of s2[i:j]. 

Examples: 
expression 
every find("a","abaaa") 
every find ("abed","abedeabe") 
every find ("be","abedeabe") 
every find ("bc","abcdeabc",3) 

values in sequence 
1, 3, 4, 5 
l 
2, 7 
7 

6.3.2 Lexical Analysis 
Lexical analysis involves sets of characters rather than substrings. There are four lexical analysis 

(unctions. 

I. II the first character of s[i:j] is contained in the character set c, the value of any (c,s,i,j) is i+ I. 
Failure Condition: any (c,S,i,j) fails if the first character of s[i:j] is not contained in the character set C. 
Defaults: A null value for i defaults to l and a null value for j defaults to 0. 
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Examples: 
expression value 

any('abc',"abcd",1) 2 
any fabc', "abed") 2 
any fabcV'dcba") none 
any (~'abc',"dcba") 2 
any('abc',"dcba",2) 3 
any('abcd',"abcd",1,2) 2 

2. The value of u p t o (c,S,i,j) is the leftmost position in S of the first instance of a character of C in S[i:j]. 
Failure Condition: upto(c,s,i,j) fails if no character in s[i:j] is contained in c. 
Defaults: A null value for i defaults to 1 and a null value for j defaults to 0. 

Examples: 
expression value 

upto('a',"abcd",1) l 
upto ('a',"abed") I 
upto ('abc', "abed") I 
upto (~'abc\ "abed") 4 
upto('d',"abcd",2) 4 
upto ('d',"abed",2,3) none 
upto ('a',"abed",2) none 

The function u p t o is a generator that produces the sequence of the positions, from left to right, at which a 
character of c occurs in S[i:j]. 

Examples: 
expression 

every upto('abcd',"abcd") 
every upto ('a',"abed") 
every upto ('ab\"abed",2) 
every upto (~'ab\"abed") 

3. The value of m a n y (c.S.i.j) is the position in S after the longest initial substring of s[i:j] consisting solely 
of characters contained in c. 

Failure Condition: many (c,s,i,j) fails if the first character of s[i:j] is not contained in c. 
Defaults: A null value for i defaults to l and a null value for j defaults to 0. 

Examples: 
expression value 

many('ab',"abcd",1) 3 
many fab', "abed") 3 
many ('ab', "abed", 2) 3 
many fab', "abed", 2,3) 3 
many fab',"abed",3) none 

4. The value of bal (c i ,c2,c3,S,i,j) is the position in S after an initial substring of S[i:j] that is balanced with 
respect to characters in c2 and c3 , respectively, and which is followed by a character in d . 

In determining balance, a count is kept, starting at 0. Characters in S[i:j] are processed from left to right. If 
the character being processed is contained in d and the count is zero, the process is complete at that point. 
Otherwise, a character in c2 causes the count to be incremented by 1, while a character in c 3 causes the count 
to be decremented by 1. All other characters leave the count unchanged. 

Failure Conditions: If the count ever becomes negative or if the substring being examined is exhausted 
with a positive count, bal fails. 

value: 

1, 
i 
i 

2 
3. 

2, 

4 

i in 

3, 

»sequence 

4 
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Note: Characters in c2 are examined before characters in c3, so that if a character occurs in both c2 and 
c3, it is treated as if it occurred only in c2. 
Defaults: A null value for i defaults to 1 and a null value for j defaults to 0. A null value for d defaults to 
&cset, a null value for c2 defaults to '(', and a null value for c3 defaults to ')'. 

Examples: 
expression value 

bal('+7(7)\"(aHb)") 4 
bal('+',„"(a)+(b)",1) 4 
bal(,+'„>"(a)+(b)") 4 
bal('+',„"(a)+(b)",2) none 
bal(,-',„"(a)+(b)") none 
bal(,„"(a)+(b)") 1 
bal(,'([7])\"(aHb)") i 

The function bal is a generator that produces the sequence of positions, from left to right, at which 
successively longer balanced strings terminate. 

Examples: 
expression values in sequence 

every bal(,„"(a)+(b)+(c)") 1, 4, 5, 8, 9 
every bal('+',„"(a)+(b)+(c)") 4, 8 
every bal(,,,"abed") I, 2, 3, 4 
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Chapter 7 

String Scanning 

String scanning is a high-level facility for the analysis and synthesis of strings that permits the string being 
operated on to be implicit, thus avoiding much of the notational detail that would otherwise be required. 

The string scanning expression 

exprl ? exprl 

evaluates exprl and establishes its value as the string to be scanned, exprl is then evaluated to perform the 
scanning. The outcome of the string scanning expression is the outcome of exprl. 

7.1 Scanning Keywords 
During string scanning, the string being scanned is the value of the keyword &subject. The implicit posi-

tion in &subject is the value of the keyword &pos. The value of &subject is automatically set to the value of 
exprl and the value of &pos is set to I, corresponding to the beginning of &subject. Subsequently, values 
may be explicitly assigned to &subject and &pos. Assignment of a value to &subject automatically sets 
&pos to 1, as does assignment to a substring of &subject. 

Note: A nonpositive position specification may be used in assignment to &pos, but the corresponding 
positive value is actually assigned. 
Failure Condition: An attempt to set &pos to a value that is out of the range of &subject fails. 

The function pos (i) returns the positive equivalent of the position i in &subject, provided &pos is at this 
position. 

Failure Condition: pos (i) fails if &pos is not at position i. 

Examples: 
expression 

&subject := ' 
pos(1) 
pos( -4 ) 
pos (3) 
&pos := - 1 
pos( -1 ) 
&subject[2:4] 
&subject := ' 

"abed" 

:= "x" 
'ab" 

value 

abed 
I 
l 
none 
4 
4 
X 
ab 

value of &pos 

1 
I 
I 
l 
4 
4 
3 
I 

7.2 Positional Analysis 
There are two functions that change &pos automatically and return the substring between the previous 

and new values of &pos. 

I. The result of move (i) is the substring between &pos and &pos+ i, and &pos is incremented by i. 
Failure Condition: If &pos+ i is out of range, move(i) fails and &pos is not changed. 
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Examples: 
expression 

&subject := "abed" 
move (2) 
move (3) 
move(-1) 
move (-2) 
move(O) 
&pos := 0 
move(-1) 

The assignment made to &pos by move(i) is a reversible effect. If move (i) succeeds, but the expression in 
which it appears fails, &pos is restored to its original value. 

Examples: 
expression 

&subject := "abed" 
move (2) & move (3) 
move (2) 
move(-1) & pos(3) 

value 

abed 
ab 
none 
b 
none 
• 
5 
d 

value of &.pos 

I 
3 
.1 
2 
2 
2 
5 
4 

value 

abed 
none 
ab 
none 

value of &pos 

1 
! 
3 
3 

The result of tab (i) is the substring between &pos and i, and &pos is set to i. 
Failure Condition: If i is out of range, tab (i) fails and &pos is not changed. 

Examples: 
expression value 

&subject := "abed" abed 
tab (2) a 
tab(O) bed 
tab(1) abed 
tab(-5) none 

value of &.pos 

I 
2 
5 

The assignment made to &pos by tab (i) is a reversible effect. 

Examples: 
expression 

&subject := "abed" 
tab(O) & move(1) 
tab(O) & move(-1) 

value 

abed 
none 
d 

value q/&pOS 

I 
i 
4 

7.3 Scanning Operations 
Several functions have defaults that provide implicit arguments for string scanning: 

form 

any(c) 
bal(c1,c2,c3) 
f ind(s) 
many(c) 
match (s) 
upto(c) 

interpretation 
any(c,&subject.&pos,0) 
bal ( d ,c2,c31&subject,&pos,0) 
f ind (s,&subject,&pos,0) 
many (c,&subject,&pos,0) 
match (s,&subject,&pos,0) 
upto (c,&subject,&pos,0) 

Thus in each case the default interpretation applies to &subject starting at &pos and continuing to the end of 
&subject. The values returned by these functions are integers representing positions in &subject, but &pos 
is not changed. 

-36 



Xoic: The default interpretations for the last two arguments apply only if the argument that speeilies the 
siring to he examined is omitted or •. Sec Appendix (.'. 

Examples: 
expression 

&subject '.-
upto('c') 
upto('a') 
many('abc') 
any('d') 

"abed" 

value 

abed 
3 
1 
4 
none 

value of &pos 

1 
1 
I 
1 
1 

value 

abed 
ab 
none 
C 
d 

value <;/&pos 

1 
3 
3 
4 
5 

These functions may be used as arguments to tab to change the value of &pos and to obtain a substring 
between the new and old values of &pOS. 

Examples: 
expression 

&subject != "abed" 
tab(upto('c')) 
tab(uptofa')) 
tab(manyfc')) 
tab(any('d')) 

In addition. = s is provided as a synonym for tab (match (s)). 

Examples: 
expression value value of &pos 

&subject != "abed" 
="ab" 
="ab" 
="c" 
="d" 

="d" 

7.4 Nested Scanning 
The \alues of &subject and &pos are saved on entry to string scanning and are restored upon exit. 

Consequently, nested scanning is possible. For example, suppose words contains a sequence ol words 
followed by blanks. Then the following code segment assigns a similar string to twords, but with only those 
words containing a t. It also assigns the total number of words to WCOunt. 

twords != " " 
wcount := 0 
words ? 

whi le t ab (up to ( ' a ' ) ) ? j 
if upto( ' t ' ) then twords '.- twords | | &subject | | " • " 
wcount != wcount + 1 
I 

do m o v e ( 1 ) 

H timing: I he values of &subject and &pos arc not restored if string scanning is exited hy a break, next, 
or a procedure return. 

abed 
ab 
none 
C 
d 
• 
none 

I 
3 
3 
4 
5 
5 
5 
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7.5 (feneration During Scanning 
Like in any other operation, both operands in string scanning can be generators. For example, 

every write((s1 | s2 | s3) ? up to (d I c2)) 
writes every position at which a character of d or c2 occurs in S"l, s2, and S3. The order in which the values 
are produced is not the same as in 

up to (d | c2, s1 | s2 | S3) 
since the order in which the arguments are reactivated to produce alternatives is different. 
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Chapter 8 

Structures 

Structures are aggregates of variables. Different kinds of structures have different organizations and 
different methods for accessing these variables. Structures are data objects and may be assigned to variables 
like other data objects. Structures are not copied when they are assigned to variables. 

Xoie: There are specific limits to I he sizes of structures as noted in subsequent sections. In practice, 
maximum sizes are usually limited by the amount of available memory. 

8.1 Lists 

Lists are sequences of variables that can be referenced by position or manipulated by stack and queue 
access methods. When referenced by positions, lists appear to be one-dimensional arrays. When manipulated 
by stack and queue access methods, lists expand and contract as needed. Positional and access methods for 
lists can be used in combination. 

8.1.1 Creation of Lists 
A list is created during program execution by an expression of the form 

left'bracket e.xpr [ , expr ] ... right-bracket 

where the values of the expressions provide the initial values of the list elements. 

I he value of *a gives the number of elements in a. 
Sole: I he value ol [ | is an empty list, containing no elements. In other cases, omitted arguments default 
to the •. Kir example [ , ] is a list of two null-valued elements. 

Examples: 
expression 

triple := [0,0,0] 
• triple 
line := [,,,] 
* line 
seq = [1,2,3,4,5,6,7,8] 
*seq 
unit := [ ] 
• unit 

value 

[().().()] 
1 
[•••••••] 
4 
[1.2. .1.4.5.6.7.X 
K 
fl 
I) 

Lists are also created by the function list (i,x). where i is the size of the list and x is the initial value of each 
element of the list. 

Default: A null value for i delimits to 0. 
is 

Error Conditions: II size ol the list is greater than 2 —I, rrror 205 occurs. 

Examples: 
expression value 

init := list(5,0) (().().().().()] 
octave := list(8) [•.•.•.•.•-•.•.•] 
count := list(0) [ | 
*init 5 
• octave x 
• count o 
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8.1.2 Positional Access to Lists 
An element of a list may be accessed by specifying the position of the element in a referencing expression of 

the form 

list left-bracket expr right-bracket 

where the value of expr is the position of the element in list. Element positions are also called subscripts. 
Assignment may be made to an element of a list to change its value. 

Failure Condition: A referencing expression fails if the subscript does not reference an element between 
the I and the size of the list, inclusive. In this case the subscript is said to be out of range. 
Note: Negative subscripts can be used to reference elements relative to the right end of the list. For 
example, -1 references the last element of a list. 

Examples: 
expression 
seq[3] := 1 
seq[5] := seq[3] 
seq[0] 
seq[-1] 
seq [-4] 
unit[1] 

value 
I 
5 
none 
8 
5 
none 

8.1.3 Stack Access to Lists 
The functions push(a.x) and pop(a) provide stack access to lists, push(a.x) prepends x to the left end of 

the list a and returns a as its value, pop(a) removes the left-most element from the list a and returns this 
element as its value. a[1] is the top of the stack. 

Failure Condition: pop(a) fails if a is empty, that is, if its size is zero. 

xamples: 
expression 

laundry := [ ] 
• laundry 
push(laundry,' 
push(laundry,' 
• laundry 
pop(laundry) 
pop(laundry) 
• laundry 
pop(laundry) 

"shirts") 
'pants") 

value 

[ ] 
0 
[shirts] 
[pants,shirts] 
2 
pants 
shirts 
0 
none 

8.1.4 Queue Access to Lists 
The functions put(a.x) and get(a) provide queue access to lists, put(a.x) appends x to the right end of the 

list a and returns a as its value, get(a) removes the left-most element from the list a and returns this element as 
its value. a[1] is the head of the queue. For completeness, pull(a) removes the right-most element from the 
list a and returns this element as its value. 

Failure Conditions: get(a) and pull(a) fail if a is empty. 
Note: pop(a) and get(a) are synonymous. 
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Examples: 
expression 

laundry != [ ] 
put(laundry,"shirts' 
put(laundry,"pants' 
get(laundry) 
get(laundry) 
get(laundry) 

value 

[ ] 
[shirts] 
[shirts.pants] 
shirts 
pants 
none 

8.1.5 Operations on Lists 
In addition to the operations above, there are operations for concatenating and sectioning lists. 
The operation a1 | | | a2 produces the result of concatenating the lists a1 and a2. 

Note: The list produced by a1 | | | a2 is physically distinct from the lists a1 and a2. 

Examples: 
expression 

[1,2] Ml [3,4] 
[ ] I I I ["a"] 

value 

[1.2.3.4] 
[a] 

Range specifications are used to produce lists that are sections of other lists (see Section 6.1.4). 
Sows: A list produced by list sectioning is physically distinct from the list to which the range specification 
is applied. List sections are not sublists. 
Warning: a [ i ] is the ith element of the list a; it is not a list section. 

Examples: 
expression 

a = [1,2,3,4] 
a[l!2] 
a[3'.0] 
a[2+!2] 
a[0-:2] 

value 

[I.2.3.4] 
[ I ] 
[3.4] 
[2.3] 
[3.4] 

8.2 Tables 
A table is an aggregate of elements that resembles a list. A table, however, can be referenced (subscripted) 

by an object of any type. The elements of a table are not ordered by position. Thus a table can be thought of as 
an associative list. 

8.2.1 Creation of Tables 
"fables are created during program execution by the function t ab le (x). When a table is created, it is empty 

and has no elements. Elements may be added at will and tables grow automatically. Non-existent elements 
are accessed as if they had the value x. 

8.2.2 Accessing Table Klements 
An element of a table is accessed by specifying a referencing value in an expression of the form 

tahle left-bracket expr right-bracket 

where the value of expr references tahle. The referencing value may be of any type. For example. t [ "n" ] 
references the table t with the string n. 

Xote: No type conversion is performed on the value used to reference the table. For example. t[1] and 
t["1"] reference different elements. See also Section 10.3. 

A value may be assigned to a table element in a manner similar to that for lists. For example 
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t["n"] := 3 

assigns the integer 3 to the clement referenced by the string n. 
A table grows automatically as assignments arc made to referenced elements that are not already in the 

table. Table elements are only created, however, when values are assigned to them. 

The value of *t is the number of elements in the table t. 

1'..samples: 
expression 

op '.= table () 
*op 
opf 'add"] '.= 
*op 
op["sub"] 
op["sub"] ;= 
*op 
ct := table() 
ct["four"] '.= 
ct["score"] '.= 
*ct 

"C273" 

"c274" 

"four" 
"twenty" 

value 

tahle 
0 
C273 
1 
• 
c274 
2 
table 
four 
twenty 
2 

8.3 Records 
Records are aggregates of variables that resemble lists, but the elements are accessed by name rather than 

by position. 

8.3.1 Declaring Record Types 

A record type is declared in the form 

record record-name ( [ field-name f , field-name ] . . . ] ) 
I he record name specifies a new type, which is added to the repertoire of types. Sec Section 10.8. The field 
names provide names by which the fields of the record may be referenced. 

Sows: A record declaration cannot appear within a procedure declaration or within another record 
declaration. The same field name may be used in more than one record declaration and the positions need 
not be the same. Field names do not conflict with identifier names. 

An example of a record declaration is 

record complex (real,imag) 

which declares complex to be a record type with two fields, real and imag. 

8.3.2 Creating Records 
A record is created during program execution by an expression of the form 

type ( expr [ , expr ] ... ) 

where the type is one declared in a record declaration and the values of the expressions provide the values of 
the fields of the record in the order corresponding to the field names. The values may be of any type. For 
example. 

z != complex (1.0, 2.5) 
assigns to Z a complex record with a value of I.O for the real field and a value of 2.5 for the imag field. 

Default: Null-valued arguments in a record creation expression default to •. 
I he value of *z is the number of fields declared for the type of record Z. 
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8.3.3 Accessing Records 
A record is accessed by field name, using the infix . operator. Continuing the example above, the value ol 

z.real is 1.0. The infix dot operator binds more tightly than any other infix or prefix operator and associates 
to the left. For example, a.b.c.d and ((a.b).c).d are equivalent. Assignment can be made to a field reference 
to change the value of that field of the record. 

Records can also be accessed by position like lists. For example, z[1] is equivalent to Z.real. Negative 
position specifications can be used to access fields relative to the end of the record. For example, z[-1] is 
equivalent to z.imag. 

Failure Condition: z[i] fails if the magnitude of i is greater than the number of fields in z. 

Examples: 
expression 
z1 := complex (0,0) 
z2 := complex (3.14, 2.0) 
zl.real 
zl.real + z2.imag 
zl.real := z2.real 
z2[2] 
z2[3] 
z1[-2] 

value 
complex 
complex 
0 
2.0 
3.14 
2.0 
none 
3.14 

8.4 Sorting Structures 
The function sort (a) produces a copy of the list a with the elements in sorted order. 
In sorting, strings are sorted in non-decreasing lexical order (see Section 6.2), while integers and real 

numbers are sorted in non-decreasing numerical order (see Sections 4.1.3 and 4.2.3). The ordering of values of 
other types is unspecified. 

In heterogeneous lists containing values of different types, values are first sorted by type and then among 
the values of the same type. The order of types in sorting is 

• 
integers 
real numbers 
strings 
csets 
files 
procedures 
lists 
tables 
record types 

A table is converted to a sorted list by sort (t,i). If the size of t is j , the result is a list of j elements. Each 
element of this list is itself a list of two elements, the first of which is the reference of a table element and the 
second of which is the corresponding value. If i is I, these two-element lists are in the sorted order of the 
references of the table. If i is 2, these two-element lists are in the sorted order of the values of the table. 

Note: 1ft is empty, sort(t,i) returns an empty list. 
Default: A null value for i defaults to I. 
Error Conditions: In sort(x). if x is not a list or a table, Error 1 15 occurs. In sort(t.i), if i is not 1 or 2. 
Error 205 occurs. 
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Chapter 9 

Input and Output 

9.1 Files 
The values of &input, &output, and &errout are the standard input, standard output, and standard error 

output files, respectively. 
Error Condition: These keywords are not variables. If an attempt is made to assign a value to one of them. 
Error 111 occurs. 

A file must be opened to be written or read. In addition, the status of the file must be established; some 
files are designated for input and others are designated for output. All files are automatically closed when 
program execution is terminated. 

Note: &input, &output, and &errout are automatically opened when program execution begins. 
The function 0pen(s1,s2) opens the file with name s1 according to the options specified by s2 and 

returns that file as its value. The possible options are represented by characters as follows: 
r open for reading 
w open for writing 
b open for reading and writing (bidirectional) 
a open for writing in append mode 
C create and open for writing 
p pipe to/from a command (s1 is given to a shell to execute) 

In the case of the w option, writing starts at the beginning of the file, causing any data previously 
contained in the file to be lost. The a option allows data to be written at the end of an existing file. The b 
option usually applies to interactive input and output at a terminal that behaves like a file that is both written 
and read. 

Warning: File names are interpreted by UNIX. Strange file names may produce strange results. 
Default: A null value for s2 defaults to r. 
Notes: If a file is opened for writing but not for reading, create is implied. Create and append have no 
effect on pipes. Pipes may not be opened for simultaneous reading and writing. 
Failure Condition: open (s1 ,s2) fails if the file with name s1 cannot be opened with the options specified 
by S2. 
Error Condition: If the option specification is invalid. Error 209 occurs. 

The function close (f) closes f and returns f as its value. This has the effect of physically completing 
output (emptying internal buffers used for intermediate storage of data). Once a file has been closed, it must 
be reopened to be used again. In this case, the file is positioned at the beginning (rewound). 

9.2 Writing Data to Files 
The function write (x1,...,xn) writes strings to files. Arguments are processed from left to right. If xi is a 

string or can be converted to one (see Section 5.4), it is written. If xi is a file, subsequent strings are written to 
that file until another file argument is encountered. Thus strings can be written to several files by a single call 
of write. Output is written to &output in the absence of a specified file. The strings are written one after 
another as a single line, not as separate lines (i.e., they are not separated by line terminators). The effect is as if 
the strings were concatenated and written as a single line. A line terminator is added after the last string 
written on each file. The value returned by write is the last string written. 

Note: No actual concatenation is performed by the write function. Since strings output to a file 
frequently are composed of several parts, the write function may be used to avoid concatenation that 
otherwise might be necessary. A significant amount of processing time may be saved in this way. 
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writes(x1 ,...,xn) writes in the manner ol write(x1,. . . ,xn). but no line terminators are appended. Thus 
several strings can be placed on the same line of a file with successive calls of the writes (unction. One use of 
this function is to provide prompting at a terminal in interactive mode, allowing the user to respond on the 
same (visual) line that the inquiry is written. 

Delimits: Null-valued arguments lor write and writes default to the empty string. • If the last argument 
is a file, an additional • is supplied. 
I'.nor Condition: II an attempt is made to write on a file that is not open for writing. Error 2I3 occurs. 

I:\aniplcs: 
expression 

out '.= open ("data.txt","w") 
flag := "*" 
sep != "'." 
write () 
write(out) 
write (out,flag,"a",sep,"b") 
write (flag,"a",sep,"b") 
write (out,"x",sep,"y",sep,"z",flag) 
write (1, sep, 2.0, sep, "2") 

value 

file 
* 
• 
• 
• 
b 
b 
* 
2 

value written 

none 
none 
none 
• 
• 
*a!b 
*a!b 
x!y!z* 
1:2.0:2 

file written 

none 
none 
none 
&output 
data.txt 
data.txt 
&output 
data.txt 
&output 

9.3 Reading Data from Files 
The lunction read(f) reads the next line from the file f. Line terminators are not included in the returned 

string. 
failure Condition: When the end of a file is reached (that is. when there are no more lines in the file). 
read(f) fails. 
Default: A null value lor f defaults to &input. 
Xote: The maximum input line length is 257. II an input line is longer than 257 characters, onlv 257 
characters are read. Suhsequent characters arc read on suhsequent reads. 
I'rror Condition: II an attempt is made to read from a file which is not opened for reading. Error 2I2 
occurs. 

I he function reads (f,i) reads the next i characters from the file f. Line terminators are included in the 
result. If fewer than i characters remain on the file f. the remaining characters are read and the result is shorter 
than i. 

failure Condition: reads fails if no chaiacteis remain to he read. 
Defaults: A null value for f defaults to &input. A null value lor i defaults to I. 
\ote: There is no limit to the maximum value of i except the amount ol memory available to store the 

string. 
is hrror Conditions: II i is less than I or greater than 2 —I. Error 205 occurs. II an attempt is made to read 

from a file which is not opened for reading. Error 212 occurs. 
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Chapter 10 

Miscellaneous Operations 

10.1 Element Generation 
The expression !x generates successive elements of x as required, x may be a string, structure, or file. 
For strings, successive characters are generated. Assignment to !s may be performed in the same manner 

as to s[i]. 

Examples: 
expression values in sequence 

every !"abcde" a, b, c, d, e 
every !&lcase[10!l5] j , k. I. m. n 

For lists, the order of generation is from the first (left-most) element to the last (right-most) element. For 
example, if a is a list 

every write(!a) 

writes the elements of a in order from the first to the last. 
For tables, all elements are generated, but the order of generation is unpredictable. For records, the order 

of generation is the same as for lists. For all structure types, assignment to !x may be used to change the value 
ol an clement. 

For files, successive lines of input arc generated. For example, 

every write(!&input) 

copies all the lines in the standard input file to the standard output file. 

10.2 Augmented Assignment Operators 
One of the commonest operations is the modification of the value of a variable by performing some 

computation on its previous value. For example 

i != i + 1 

increments the value of i. 
To simplify such computations, augmented assignment operators are provided in which the computation 

and assignment operators are combined in a single operator. For example, the value of i is incremented by 

i +:= 1 

\oie: exprl +:= expr? has the same meaning as exprl := e.xprl + expr2except that exprl is evaluated only 
once. 

There are augmented assignment operators for all infix operations except except the assignment operators 
themselves. For example 

S ?!= expr 

scans s and changes its value to the value of expr. 
Ilrror Condition: II the expression on the left side of an augmented assignment operator is not a variable. 
I nor I I I occurs. 
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10.3 Comparison of Objects 
Most comparison operations such as i = j and s1 == s2 are concerned with comparison of values. In these 

cases, implicit type conversion occurs prior to lite comparison. 
The two operations x = = = y and x ~= = = y are concerned with the equivalence of objects, x = = = y 

succeeds if x and y are of the same type and arc equivalent. Similarly, x - = = = y succeeds if x and y are of 
dillercnt types or if they are not equivalent. In both cases, the value of the right operand is returned in the case 
of successful comparison. 

The meaning of the term "equivalent" as used here depends on the type. Integers, real numbers, strings, 
and csets are considered to be equivalent if they have the same values, regardless of how they are computed. 
For procedures, files, lists, tables, and record objects, object comparison fails regardless of value, unless x and 
y are the same object. 

No/e: The kind of comparison used in X === y is also used to determine whether two table references are 
the same. See also Section 8.2.2. 

Examples: 
expression value 

("abc" || "def") = = = "abedef" abedef 
7 = = = ( 6 + 1 ) 7 
7 = = = "7" none 
'amy' = = = 'may' a m y 
110,10] = = = [10.10] none 
)x := y := list(10) ; x = = = yj list 

10.4 Copying Objects 
Assignment does not copy objects, but rather assigns the same object to another variable. For example. 

a1 := list (10) 
a2 := a1 

assign the same list to a1 and a2. Subsequently. a1 [3] and a2[3] reference the same element of the same list. 
An object may be copied by the function copy (x). For example, if a1 is a list 

a2 := copy(a1) 
assigns a copy of a1 to a2. This copy is the same size as a1 and the values of all the elements are the same, but 
a1 and a2 are distinct objects. Subsequently. a1[3] and a2[3] reference elements in the corresponding 
positions of different objects. 

Xote: Any type of object may be copied. In the case of integers, real numbers, strings, files, procedures, 
csets. and •. the result is not a physically distinct object, but this difference is undetectable. See Section 
10.3. 

10.5 Random Flement Generation 
The operation ?x returns a randomly selected value from x. If x is a positive integer i. ?x produces an 

integer from a pseudo-random sequence in the range of I < ?x < i. ?0 produces a real number r from a 
pseudo-random sequence in the range 0.0 < r< 1.0. 

If x is a string. ?x returns a randomly selected one-character substring of x. 
If x is a list, table, or record. ?x returns a randomly selected element of X. 

\<>te: For structures, variables are produced and assignment can be made to them. 
The pseudo-random sequence is generated by a linear congruence relation starting with an initial seed 

value ol 0. This sequence is the same from one program execution to another, allowing program testing in a 
reproducible env ironment. The seed may be changed by an assignment to &random. For example. 

&random '.= 0 
resets the seed to its initial value. 
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Error Condition: If the value of i in ?i is less than Oor greater than 2 - 1 , Error 205 occurs. 

10.6 Date and Time 
The value of the keyword &date is the current date in the form yyyy/mm/dd. For example, the value of 

&date for December 1, 1981 is 1981/12/01. 
The value of the keyword &cl0Ck is the current time of day in the form hh:mm:ss. For example, the value 

of &clock for 8:00 p.m. is 20:00:00. 
The value of the keyword &dateline is the date and time of day in a readable format. An example is Fri-

day, December 4,1981 7:42 am . 

The value of the keyword &time is the elapsed cpu time in milliseconds starting at the beginning of pro-
gram execution. 

Note: The value of &time includes only user time, not system time. 
Error Condition: &date, &clock, Adateline, and &tirne are not variables. If an attempt is made to assign 
a value to one of them. Error 111 occurs. 

10.7 The Null Value 
The null value, •, is the initial value of all identifiers and is provided as the value for omitted expressions in 

function and procedure calls, as well as in some control structures. In addition, the value of the keyword 
&null is*. 

The null value is illegal in most computational contexts, although it defaults to commonly used values for 
the arguments of some functions. See Appendix C. 

There are two operations that can be used to test for •: 
/expr returns expr if the value of e.xpr is •, but fails otherwise. 
\expr returns expr if the value of expr is not •, but fails otherwise. 

Note: If expr produces a variable, these operations return that variable. For example, /v := 0 assigns 0 
to v if the value of v is •. 

10.8 Type Determination 
The function type(x) returns a string that is the name of type of x. 

Examples: 
expression 

type(1) 
type (2.0) 
type("") 
type ('armada') 
type (trim) 
type (main) 
type () 

value 

integer 
real 
string 
cset 
procedure 
procedure 
null 

10.9 String Images 

The function image (X) produces a string that represents the value of X. For strings and csets, this includes 
enclosing quotes and escapes as necessary. For structures, their current size is given. Keywords are given in 
place of their values in several cases. 
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I'.xampli'.s: 
expression 

image(1) 
image(2.0) 
image("abc") 
image(" ") 
image('drama') 
image (&lcase) 
image() 
image (&input) 
image (open ("data","w")) 
image([1,0,11]) 
image(list(10)) 
image (complex (3.1,1.0)) 
image(trim) 
image(main) 
image(complex) 

value 

1 
2.0 
"abc" 
" " 
'admr' 
& lease 
&null 
&input 
file (data) 
list (3) 
list (10) 
record complex (2) 
function trim 
procedure main 
record constructor compl 

Sole: Note that image (x) can be used to distinguish between functions, procedures, and record 
constructors. 

10.10 (ailing a Shell 
The function system (s) calls a shell to execute the string S. For example, system ("Is") lists the cuirent 

directory. The \alue returned by system (s) is the exit status returned by the shell. 
/-."/Tor Condition: If the si/e of s is greater than 256. Krror 210 occurs. 

10.11 System Information 
I he value of the keyword &host is the host location, operating system, and computer on which Icon is 

running. An example is University of Arizona, UNIX Version 7, PDP-11/70. 
I he value of the keyword aversion is the name and version number of the Icon implementation. An 

example is Icon Version 5.0 interpreter, December 1981 . 
I.rrur Comfilion: &host and aversion arc not variables. If an attempt is made to assign a value to one ol 
them. Krror I I I occurs. 
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Chapter 11 

Procedures 

11.1 Procedure Declarations 
A procedure declaration has the form 

procedure identifier ( [ identifier [ , identifier ] . . . ] ) ; 
[ local-declaration ',]... 
[ initial-clause ; ] 
[ procedure-body ', ] 

end 

Note: The semicolons in a procedure declaration may he omitted if the components are placed on separate 
lines. See also Section 12.2. 

The identifier following procedure gives the name of the procedure. A local declaration has the form 

local-specification identifier [ , identifier ] ... 

A local specification may be local, dynamic, or static. 
Xo/c: local and dynamic are equivalent. 

I'.xumpk's: 

local x, y 
dynamic count 
static state, basis 

Dynamic identifiers exist only during each invocation of the procedure. Static identifiers come into existence 
at the first call of the procedure in which they are declared and remain in existence after return from the 
procedure so that their values are retained between calls of the procedure. 

S'ote: Identifiers in the argument list arc dynamic. 
The initial clause has the form 

initial expr 

1 he expression in the initial clause is evaluated once when the procedure is called the first time. The initial 
clause is useful for assigning values to static identifiers. 

The procedure body consists of a sequence of expressions that are executed when the procedure is called. 
Two examples of procedure declarations follow. 

procedure max(i. j) 
if i > j then return i else return j 

end 

procedure accum(s) 
local static t 
initial t != " , " 
t n:= s ii V 
return t 

end 
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11.2 Scope of Identifiers 
As indicated in the preceding section, identifiers declared in a procedure are accessible only to that 

procedure. If an identifier in a procedure is not declared, its scope is determined by g loba l declarations that 
apply to the entire program. 

global identifier [ , identifier ] ... 
specifies that the listed identifiers are to be interpreted as global in those procedures in which they are not 
explicitly declared to be local. The values of such variables arc accessible to all such procedures. 

Notes: A local declaration lor an identifier in a procedure overrides a global declaration for that identifier, 
(ilobal declarations cannot occur inside other declarations but they otherwise may occur anywhere in the 
program. Record names ha\e global scope, but this scope can be overridden by local declarations. Field 
names are not identifiers; they apply to the entire program and are not affected by scope declarations. 

The scope of an identifier for which there is neither a local nor a global declaration is local. 

11.3 Procedure Activation 

11.3.1 Procedure Invocation 
Procedures are invoked in the same form that functions are called: 

expr ( [ expr [ , expr ] . . . ] ) 

where the expression before the parenthcsi/ed list has a procedure value. This expression usually is an 
identifier. For example, the procedure max given in the example above might be used as follows: 

m != max(*x,*y) 

Argument transmission is by value. When a procedure is called, the expressions given in the call are evaluated 
from the left to the right. The values of the expressions in the call are assigned to the corresponding identifiers 
in the argument list of the procedure. Control is then transferred to the first expression in the procedure body. 

Sole: If more expressions are given in the call than are specified in the procedure declaration, the excess 
expressions are evaluated, but their values are discarded. II fewer expressions are given in the call than are 
specified in the procedure declaration. • is prov ided lor the remaining arguments. 

11.3.2 Return from Procedures 
When a procedure is called, the expressions in the procedure body are executed until a return expression is 

encountered. There are three forms of return expression: 

return [ expr ] 
fail 
suspend [ expr ] 

Defaults: An omitted expr in a return expression defaults to •. II control flows off the end of a procedure 
body without an explicit return, the procedure call returns no result (that is. it fails). 
Warning: failure to provide an explicit return from a procedure bodv may lead to unexpected and 
erroneous results. 

flic expression re turn expr terminates the call of a procedure and returns the outcome of evaluating expr. 
If expr fails, the procedure call fails. Otherwise the value of expr becomes the value of the calling expression. 
fo r example 

j '.= max(*x,*y) 
assigns to j the si/e of the larger of the two objects x and y. 

I he expression fail terminates the call of a procedure without returning a result, causing the calling 
expression to fail. Consider the following procedure. 
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procedure typeq(x.y) 
if type(x) == type(y) then return else fail 

end 
This procedure compares the types of x and y, returning • if they are the same and failing otherwise. On the 
other hand, 

return type(x) == type(y) 

also fails if the types are not the same, but returns the type instead of • if the types are the same. 
The expression suspend expr is similar to return expr, except that the procedure call is left in suspension 

so that it may be resumed for additional computation. Execution of the procedure body is resumed if the 
context in which the procedure call occurs requires an alternative result. Thus suspended procedures are 
generators. Consider the following procedure. 

procedure timer(t) 
while &time < t do suspend 

end 
This procedure suspends evaluation until the time exceeds a specified limit, in which case it fails. Therefore 

every timer(&time + 1000) do expr 
evaluates expr repeatedly during an interval of approximately I000 milliseconds. 

Like every, suspend produces all alternatives of expr as required. For example 

suspend ( 1 | 2 | 3 ) 
suspends with the values I. 2, and 3 on successive activations of the procedure in which it appears. If the 
procedure is activated again, evaluation continues with the expression following the suspend. 

Sow: The suspend expression itself fails, once all alternatives of expr have been produced. 
If the expression in return or suspend is a global identifier or a computed variable (such as a list element), 

the variable is not dereferenced. Local identifiers are dereferenced, however, and only their value is returned. 
An assignment can be made to the result of a procedure call that returns a variable. Consider the following 
procedure: 

procedure maxel(x,i,j) 
if x[i] > x[j] then return x[i] 
else return x[j] 

end 
An assignment to a call of this procedure, such as 

maxel(roster,k,m) := n 

changes the value of the maximum of the elements kand m in roster. 

11.3.3 Procedure Level 
Since procedures can invoke other procedures before they return, several procedures may be invoked at 

any one time. The value of the keyword &level is the number of procedures that are currently invoked. 
Error Conditions: There is no specific limit to the number of procedures that may be invoked at any one 
time, but storage is required for procedure invocations that have not returned. II available storage is 
exhausted. Error 304 occurs. &level is not a variable. If an attempt is made to assign a value to it. Error 
I I I occurs. 

11.3.4 Tracing Procedure Activity 
Tracing of procedure invocation is controlled by the keyword &trace. If the value of &trace is non/ero. a 

diagnostic message is written to &errout each time a procedure is called and each time a procedure returns or 
suspends. The value of &trace is decremented for each trace message. 
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Default:The initial, default value ol &trace is 0. 
Miles: Tracing stops automatically when &trace is decremented to 0. II a negative value is assigned to 
&lrace. tracing continues indefinitely. II the value assigned to &trace is less than -2 ' or greater than 
2 - I . the actual value assigned is —I. 

In the case ol a procedure call, the trace message includes the name of the procedure and string images ot 
the values of its arguments. The message is indented with a number of vertical bars equal to the level Irom 
which the call is made (&level). In the case of procedure return, the trace message includes the function name, 
the type of return, and the value returned, except in the case of failure. All trace messages include the name of 
the file containing the procedure that is traced and the line number in that file from which the call or return is 
made. 

An example is given by the following program, which is contained in the file acker.icn: 

procedure acker(m,n) 
if (m | n) < 0 then fail 
if m = 0 then return n + 1 
if n = 0 then return acker(m - 1,1) 
return acker(m - 1,acker(m,n - 1)) 

end 
procedure main() 

&trace ".= - 1 
acker (1,3) 

end 
The trace output produced by this program is 

acker.icn!10 
acker.icn!5 
acker.icn!5 
acker.icn)5 
acker.icn!4 
acker.icn!3 
acker.icn!4 
acker.icn!5 
acker.icn!3 
acker.icn!5 
acker.icn!5 
acker.icn!3 
acker.icn!5 
acker.icn!5 
acker.icn!3 
acker.icn!5 
acker. icn."11 

| acker(1,3) 
I | acker (1,2) 
I I I acker(1,1) 
I | | | acker(1,0) 
| | | | | acker(0,1) 
M i l l acker returned 2 
I I I I acker returned 2 
I | I I acker(0,2) 
I | | I acker returned 3 
I | | acker returned 3 
I | | acker(0,3) 
| | | acker returned 4 
| | acker returned 4 
| | acker (0,4) 
I | acker returned 5 
| acker returned 5 
main failed 

Note that the procedure main, which has no explicit return, produces no result (that is, it fails). 
In trace output, values are imaged in a manner similar to that produced by image(x) (see Section I0.8). In 

order to prevent trace output from being unwieldy, literal strings and csets are truncated to 16 characters and 
lollowed by ellipses (...) to indicate the truncation. hor lists and records, values are shown for up to six 
elements. If the size of a list or record is greater than six. the first three and last three elements are shown, with 
ellipses indicating the omitted elements. Various additional information is shown, such as where variables are 
returned and the ranges lor substrings. 
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11.4 Listing Identifier Values 
The function display(i,f) prints a list of all identifiers and their values in the i levels of procedure 

invocation starting at the current procedure invocation. The output is written to f. 
Notes: display(&level,f) displays the identifiers in all procedure invocations leading to the current 
invocation, display (0,f) displays only global identifiers, display (i,f) returns • as its value. 
Defaults: A null value for i defaults to &level. A null value for f defaults to &errout. 
Error Condition: If the value of i is less than 0, Error 205 occurs. 

As an example of the display of identifiers, consider the following program: 

global hexd 

procedure main() 
local label 
hexd := "0123456789ABCDEF" 
label := "hex (61)=" 
write(label,hex("61")) 

end 

procedure hex(x) 
display (&level) 
return &ascii[16 * find (x[1], hexd) + find(x[2], hexd) - 16] 

end 
The output of display (&level) is 

hex local identifiers: 
x = " 6 1 " 

main local identifiers: 
label = "hex(61)=" 

global identifiers: 
main = procedure main 
hexd = "0123456789ABCDEF" 
hex = procedure hex 
write = function write 
display = function display 
find = function find 

Global identifiers are listed at the end of every display output, regardless of whether or not the global 
identifiers are referenced by the displayed procedures. 

11.5 Procedure Names and Values 
A procedure declaration establishes an object of type procedure as the initial value of the global identifier 

that is the procedure name. This object can be assigned to another variable and the procedure can be called 
using the new variable. For example imax := max assigns to imax the procedure for max as given earlier. 
Subsequently, imax (i,j) can be used to compute the maximum of i and j . 

Any expression that produces a value of type procedure may be used in a call. For example, if procs is a 
list whose elements are procedures, such as 

procs[1] := max 
then 

procs[1](i,j) 

computes the maximum of i and j . 
The names of functions are global identifiers with predefined values. The declaration of a procedure or 

record with the same name as a function overrides the predefined value. A local declaration for a function 
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name has the same effect within the procedure in which the declaration occurs. 

11.6 Kxternal Procedures 
Procedures written in C can be included in an Icon program by the declaration 

external identifier [ , identifier ] ... 
where identifier is the name of a C proceduie. External procedures have the same status as Icon functions. See 
Reference 12 for coding conventions that must be used in writing external procedures. 
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Chapter 12 

Program Preparation 

12.1 Program Structure 
A program is a sequence ol declarations. The declarations may appear in any order. The executable 

components of a program are contained in procedure declarations. Every program must contain a procedure 
named main. 

A program may be divided into a number of files, but every declaration must be completely contained in a 
single file. When a multi-file program is processed, the scope of identifiers is the same as if the program had 
been contained in a single file. 

Warning: A global declaration in one tile ol a program may affect the interpretation ol an undeclared 
identifier in another file. 
\<>ic: Record and procedure declarations implicitly declare their record and procedure names. 
respectively, to be global. 

12.2 Layout of Program Text 
Since a file is a sequence ol lines, it is usually convenient and natural to parallel the logical structure of a 

sequence of expressions by the physical structure ol a sequence of lines in the file. 

Semicolons are used in a number of places to separate expressions. See Appendix A. If a semicolon falls at 
the end of a line, it may be omitted, provided that the syntactic token at the end of the line can legitimately end 
an expression and the token at the beginning of the next line can legitimately begin an expression. Thus most 
semicolons can be omitted at the ends of lines, and long expressions can be written on several lines without 
difficulty. 

S'olc: II a semicolon can be legitimately inserted in the place ol a ncwline character in program text, this is 
done automatically hy the Icon translator. 

For example. 

x := 1; y := 2; z > 0 

can also be written as 

x := 1 
y = 2 
z := o 

Because ol the way than the translator interprets ends of lines, if an infix operation is split into two lines, the 
operator should be placed at the end of the first line, not at the beginning of the second. For example 

s1 II 
s2 

is the concatenation of the values o! two identifiers, while 

S1 
II s2 

is two expressions, the first of which is a lone identifier and the second of which is two repeated alternations of 
a second identifier! 

II dining: Care should be taken not to spin expressions at places where components are optional, f o r 
example 
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return expr 
and 

return 
i:\pr 

arc quite different. 
Identifiers may be arbitrarily long, but must be contained on one line. A quoted literal may be continued 

from one line to the next by entering an underscore ( _ ) as the last character of the current line. When a line is 
continued in this way. the underscore as well as any blanks or tab characters at the beginning of the next line 
are ignored to allow normal indentation and visual layout conventions to be used. 

Sole: The total length of a string literal is limited only by the memory available to the translator. There is 
no practical limit. 

12.3 Program Character Set 
Icon uses the ASCII character set [II] . In program text, tabs and blanks are syntactically equivalent. All 

other characters are distinct. 
Sole: In literal strings, blanks and tabs are distinct. 

12.4 Significance of blanks 
Blanks (and tabs) in program text, except in string literals, serve to separate tokens that otherwise would 

appear to be a single token. Blanks are otherwise optional between tokens and may be used for indentation 
and to produced desired visual effects in program text. Blanks are necessary to separate reserved words, 
identifiers, and where an infix operator that is followed by a prefix operator would be ambiguous. For 
example. 

x—y 

is interpreted as the character set difference of x and y. while 

x - - y 

is interpreted as x minus the negative of y. 

12.5 Comments 
A comment is text in the line of a program that is not part of the program itself, but is included to describe 

the program or to provide other auxiliary information. The character # causes the rest of the line on which it 
appears to be treated as a comment. The following program segment illustrates the use of comments. 

# These procedures print all the intersections of two words. 
# cross uses nested every constructs to find all intersections and 
# calls xprint to print each intersection. 
procedure cross(wordl, word2) 

local j , k 
every j ;= upto(word2,wordl) do 

end 

every k := upto(word1[j], word2) do 

xprint(word1, word2, j , k) 

procedure xprint (wordl, word2, j , k) 
every write (right (word2[ 1 to k - 1 ] , j )) 
write (wordl) 
every write (right (word2[ k + 1 to *word2 ],])) 

end 

# location in wordl of 
# every character in word2 
# and for each, all 
# positions in word2 
# print the result 

# up to position in wordl 
# then wordl 
# then rest of word2 
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Chapter 13 

Programming Considerations 

13.1 Efficiency Considerations 
Many of the considerations in writing efficient Icon programs are the same as for other languages: use of 

good algorithms, good program structure, appropriate data representations, and so on. There are, however, 
idiosyncrasies of the Icon language and its implementation that warrant specific attention: 

1. Any operation that causes the allocation of a significant amount of storage may adversely affect running 
speed, since that storage must eventually be reclaimed by garbage collection, a relatively expensive process. 
While a detailed understanding of storage allocation and garbage collection requires extensive knowledge of 
the implementation of Icon, common sense provides a good guide to programming practices. Some specific 
aspects of storage allocation are mentioned below. 

2. Long strings are expensive to manipulate. Operations that construct strings require storage allocation and 
the movement of data. Appending to the last string constructed is a comparatively inexpensive process, 
however. 

3. Creation of a substring does not require a significant amount of storage and involves no movement of 
data. Assignment to a substring, however, is a form of string creation. 

4. Several strings can be appended in output without concatenation by using write and wrifes. This 
technique frequently can be used to avoid considerable amounts of storage allocation. Note that multi-line 
output can be produced in a single output expression by using " \ n " to generate newlines. 

5. Icon stores integers in the range of - 2 1 5 to 2I 5-I in one word. One-word integers do not require the 
allocation of storage. For integers beyond this range, two words are used. Two-word integers do require the 
allocation of storage. 

6. Icon provides automatic type conversion (coercion) where possible. Such type conversions, although not 
directly evident, may be the cause of significant inefficiencies. The worst potential problems are in cset-to-
string and string-to-cset conversion. For example, evaluation of upto ("aeiou") causes the string aeiou to be 
converted to a cset every time the expression is evaluated. If such an expression occurs in a frequently 
executed inner loop, overall program performance may be significantly affected. It is good programming 
practice to use cset literals or to perform an explicit out-of-line conversion in such cases. 

7. Augmented assignment operations, such as i +:= 1, should be used wherever possible to avoid two 
evaluations of the variable to which the assignment is made. This is particularly important in the case of table 
references (for example, t["n"] +:- 1), since table references are comparatively slow. 

8. Case selector expressions are evaluated in the order in which they appear (except for default). 
Consequently, selector expressions should be ordered according to likelihood of selection. 

9. Compound comparisons should be ordered so that unnecessary comparisons are avoided if the final 
outcome is failure. For example 

0 = f(x) = g(x) 

is generally more efficient than 
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f(x) = g(x) = 0 

since f (x) and g(x) may produce the same, but nonzero, value. This consideration is particularly important 
when expressions in the comparison may have many alternative results. 

13.2 Programming Pitfalls 
Since Icon has several unusual features, the novice Icon programmer is likely to encounter a number of 

problems that would not come up in other programming languages. Some of the problems that may be 
encountered are described below. 

1. Generators are reactivated for successive alternatives in a last-in first-out manner. As a result, all possible 
alternative results are produced, if necessary, in the goal-directed mode of evaluation used by Icon. However, 
the order of evaluation that results from last-in, first-out reactivation of generators is different from that in 
conventional left-to-right, precedence-determined evaluation of expressions. In particular, if a generator is 
reactivated for an alternative result, only those components of the expression that follow the reactivated gen-
erator are re-evaluated. If generators are used in complicated combinations, unexpected results may occur for 
these reasons. In particular, it is bad programming practice to use generators to produce side effects in an 
every clause. 

2. The referencing expression x[y] is polymorphous, allowing x to be a string, list, table, or record object. If 
x is not of the type that is expected, unusual results may occur. In particular, it is a common programming 
practice for x to be a list and for an expression of the form x := x[i] to be used to link through a structure. If 
x[i] is a string instead of a list (perhaps as a result of an error in building the structure), an endless loop may 
result. 

3. Assignment does not copy structures. Thus, if a1 is a list, a2 := a1 assigns the same list to a2. Thus 
assignment to an element of a1 changes that element of a2. Similarly, the effect of 

a := list(3,list(5)) 

is to assign the same list of five elements to each of the three elements of a. 

4. Exiting string scanning, whether by next, break, or a procedure return, does not restore the previous 
values of &subject and &pos. Unless this effect is specifically desired or known to be safe, it is not good prac-
tice to exit from string scanning. 

5. Since return from a procedure by flowing off the end of the procedure body causes the call of the pro-
cedure to fail, unexpected results may occur if the call is used in a context where its outcome is significant. 
Such failure may cause an enclosing expression to fail. If the call is in a goal-directed context, the function 
may be called again for other values of its arguments. 

6. Since dereferencing is not performed until all arguments of a function or operation are evaluated, unex-
pected results may occur if side effects change the values of variables during argument evaluation. For exam-
ple 

write (s,s := "a") 
writes aa regardless of the value of S prior to the evaluation of the write function. The explicit dereferencing 
operator . may be used to avoid this problem. 

7. Since the outcome of loop control structures is failure, their use in contexts where this failure is significant 
may produce unexpected results. For example, if expr2 in e.xprl ? expr2 is such a control structure, the entire 
scanning expression fails. Similarly, if exprl then expr2 fails if exprl fails. 

X. In exprl ? t'xprJ. neither exprl nor exprJ is limited in the number of results it may produce in a 
goal- directed context. In particular, if cxpr2 fails, backtracking to exprl occurs. 
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9. The functions move(i) and tab (i) restore the value of &pos if they are activated to produce an alternative 
result. If this effect is not anticipated, the consequences may be mysterious. For example 

suspend move(1) 
produces only one result, but if an alternative is sought (by goal-directed evaluation at the cite where the pro-
cedure containing this suspend is called), &pos is restored. 

10. Since • is illegal in most computational contexts, failure to assign an appropriate value to a variable 
before it is used usually results in a run-time error. 

11. The names of functions are global identifiers with predefined values. If such a name is declared to be local 
in a procedure, it may be used as an identifier like any other name, but the corresponding function is inaccessi-
ble within that procedure. If such a declaration is made unintentionally, the results may be mysterious. 

12. In splitting long program lines, binary operators should be placed at the end of line, not the beginning. 
Otherwise the translator may interpret the lines as syntactically correct, but differently from the way intended 
by the programmer. 

13. SNOBOL4 programmers are prone to omit the || operator that is required for concatenation in Icon. The 
result is usually a syntax error. A more subtle error is the use of = in place of := for assignment. This error 
may produce undetected program malfunction or a run-time type error. 
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Chapter 14 

Running Icon Programs 

There are four phases in processing an Icon program: translation, linking, loading, and execution. 

14.1 Translation 
An Icon program is first translated into an intermediate form. The translator may detect a variety of 

errors. Most of the errors that the translator can detect are syntactic ones — illegal grammatical 
constructions. The translator can also detect a lew semantic errors, such as multiply declared identifiers. See 
Appendix D lor a list of translator error messages. 

Xote.s: Some grammatical errors are not detected until alter the location of the actual cause of the error, 
for example, if an extra left brace appears in an expression, the error is not detected until some 
construction occurs that requires the matching, hut missing right brace. Asa result ol this phenomenon, 
the translator message may not properly indicate the cause or location of the error. SimilarK. some kinds 
ol errors mav cause the translator to mistakenly interpret subsequent constructions as erroneous when, in 
fact, they are correct. Several diagnostic messages referring to locations in proximity should be suspect. 

II the translator detects a syntactic error, the translation process is continued, but the program is not 
executed. There are also overflow conditions that cause termination of translation at the point of overflow. 
See Appendix D. 

14.2 Linking 
Once an Icon program has been translated into its intermediate form, there is a linking phase in which the 

scope of identifiers is resolved and in which a form suitable for execution is produced. 

In the C implementation, there are two options: interpretation and compilation. The linker for the 
interpreter produces a compact representation of the program that is executed interpretively. The linker for 
the compiler produces executable machine language. The translation and linking processes for the interpreter 
are fast and the program sets into execution quickly. Compilation is considerably slower, but the code it 
produces executes somewhat faster. One advantage of the compiler is that it allows separately translated 
program segments to be linked together and external procedures to be included. In order to produce 
executable code, the compiler has additional assembly and loading phases. Loading ("link cditingd") is done 
bv the UNIX program /</[IO]. At this time external procedures are added to the Icon run-time system and 
linked program. 

The error message text overflow from hi indicates that there is not enough memory available to run the 
Icon program. 

14.3 Program Fxecution 

Program execution is initiated by invoking the procedure main. 

II there are any arguments on the UNIX command line used to initiate program execution, main is 
invoked with one argument, which consists of a list of strings. Each string corresponds to one argument on the 
command line (not including the " / c ro th" argument). 

\'t>tc: I! there is no argument on the command line, main is invoked with an empty list. 

14.4 Program Termination 

Program execution terminates automatically on return from the initial call of the procedure main. 
\<>/f.- I he exit status on return from main is 0. 

Program termination may also be caused by Stop (x1 ,...,xn). The function s top writes in the fashion ol 
write (see Section 9.2) and then causes termination. 
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\oics: The Stop function can be used to terminate program execution at an arbitrary place and is a 
convenient way of handling errors or abnormal conditions thai arc delected during program execution, 
stop produces an exit status of I. 
Delimit: II the lirst argument to stop is not a tile, output is written to &errout until a file argument is 
encountered. 

I he lunc t ion ex i t ( i ) terminates program execution wi th an exit status of i. 

14.5 Krror Termination 

Frrors that occur during program execution may result from logical mistakes, invalid data, and so forth. 
II such an error occurs, an error number and an explanatory message are printed. In some cases, the offending 
value is shown. Sec Appendix I) for a list of run-time error messages. A run-time error terminates program 
execution with an exit status of 2. 
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Chapter 15 

Sample Programs 

This chapter contains a number of sample programs. These programs illustrate various aspects of 
programming in Icon. No claim is made that the programming techniques or the algorithms used here are the 
best, but they are all running programs and they were written by programmers who have used Icon for some 
time. 

The programs are preceded by problem statements and discussions of the methods used for the solutions. 
Discussions follow the programs. Icon idioms and points of special interest are noted. Exercises include 
suggested extensions, improvements, and related problems. 

The programs themselves have been stripped of most comments for better typographic presentation. In 
most cases, error checking and embellishments have been omitted also. These amenities can be provided by 
the interested reader. 

All the programs in this chapter are included in the Icon distribution system for UNIX. 

15.1 Roman Numerals 
Description: This problem is a simple one: write a program to convert Arabic numerals to corresponding 
Roman numerals. 
Solution: The method of solution is due to (iimpel [13]. Each digit of the Arabic number is mapped into its 
Roman equivalent. The multiplication by 10 represented by successive positions in the Arabic number is 
reflected in the corresponding Roman numeral by shifting to the next "octave" using character replacement. 
The occurrence of an asterisk in the result indicates a number that is too large to be represented by a Roman 
numeral. 

# 
# R O M A N N U M E R A L S 
# 

# This main procedure takes Arabic numerals from standard input and writes 
# the corresponding Roman numerals to standard outout. 

procedure main() 
local n 
while n := read() do 

write(roman(n) | "cannot convert") 
end 

procedure roman(n) 
local arabic, result 
static equiv 
initial equiv := ["","I","II","III","IV","V","VI","VII","VIII","IX"] 
integer(n) > 0 | fail 
result := "" 
every arabic := !n do 

result := map(result,"IVXLCDM","XLCDM**") || equiv[arabic+1] 
if find("*",result) then fail else return result 

end 
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Kxercisrs: 

1. Revvi ite the every loop to eliminate the local ideniifiei arabic. 
2. Mixlilx equivso iluil the addition ol I is nol nccessarv when il is referenced. 
} . Consider alternative data representations lor equiv. including strings and tables. 
4. Write a procedure to convert Roman numerals to Arabic numerals. 

15.2 Meandering Strings 
Description: A string over an alphabet of k characters is said to be an ^-meander if it contains every possible 
substring of length n from the alphabet [14]. For example, 0001111011001010000 is a 4-meander for the 
alphabet 01. 

The problem here is to write a procedure to compute meandering strings of minimal length (the example 
given above is minimal). 
Solution: In Reference 14. it is shown that the length of the minimal meandering string is k"+n—\ and an 
algorithm is given to generate such a string. The algorithm is basically an enumerative one, systematically 
constructing substrings, but discarding ones that already occur in the result. 

# 
# M E A N D E R I N G S T R I N G S 
# 

# This main procedure accepts specifications for meandering strings 
# from standard input with the alphabet separated from the length by 
# a colon. 

procedure main() 
local line, alpha, n 
while line := read() do { 

line ? if alpha := tab(upto(':')) then { 
move(1) 
if n := integer(tab(0)) then write(meander(alpha,n)) 
else write ("erroneous input") 

else write ("erroneous input") 

end 

procedure meander (alpha,n) 
local result, t, i, c, k 
i := k := *alpha 
t := n-1 
result :=-repl(alpha[1],t) 
while c := alpha[i] do { 

if find (result[-t:0J || c,result) 
then i - := 1 
else {result 11:= c; i := kj 
i 

return result 
end 

Hxeri'iM's: 

I. I r\ to improve the algorithm used in the solution above. 
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2. Apply the concept of meandering strings to produce space-efficient techniques for telegraphic codes. 

15.3 Word Intersections 
Ih'scri/Hion: Given two strings, display their intersections in common characters. 
Solution: The approach is to consider one string as a set of characters and look for occurrences of these 
characters in the other string. 

# 
# W O R D I N T E R S E C T I O N S 
# 

# This main procedure accepts word pairs from standard input, with 
# the words separated by semicolons. 

procedure main() 
local line, j 
while line := read() do { 

write () 
j := upto(':',line) 
cross (line[1:jl,line[j+1:0]) 
I 

end 

procedure cross (s1,s2) 
local j , k 
every j := upto(s2,s1) do 

every k := upto(s1[j],s2) do 
xprint(s1,s2,j,k) 

end 

procedure xprint(s1,s2,j,k) 
write () 
every write(right(s2[1 to k-1],j)) 
write (s1) 
every write (right (s2[ k+1 to *s2|,j)) 

end 
Comments: The procedure cross(s1,s2) provides a good illustration of generators and particularly how 
nested generators can be used to formulate a search over many alternatives. The procedure xprint(s1,s2,j,k) 
prints s1 horizontally and s2 vertically, crossing at the point of intersection. For example, the output ol 
cross ("fish","school") is 

f i s h 
c 
h 
o 
o 
I 

s 
c 

f i s h 
o 
o 
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Exercises: 

I. F.xtend the solution to handle the mutual intersections of several words. 
?. I \ l end I he solution to I he genera lion ol Kriss-Kioss pu//les | I5|. 

15.4 Word Counting 
Description: One of the simplest illustrations of the utility of string scanning, as opposed to more primitive 
string analysis methods, is counting the words contained in a file of text. For the purposes of this problem, a 
"word" is defined to be a sequence of letters. The output is a listing of words in alphabetical order, together 
with a count of the number of times each word occurs in the file. 
Solution: String scanning tabs up to a letter. The subsequent sequence of letters references a table and the 
count is incremented. When processing of the file is complete, the table is sorted and printed, using a column 
width that is supplied as an argument to the procedure. The text to be processed comes from standard input 
and the results are written to standard output. 

# 
# W O R D C O U N T I N G 
# 

# This main procedure processes standard input and writes the results 
# with the words in a column 20 characters wide. 

procedure main() 
wordcount(20) 

end 

procedure wordcount(n) 
local t, line, x, y 
static letters 
initial letters := &lcase ++ &ucase 
t := table (0) 
while line := read() do 

line ? while tab(upto(letters)) do 
t[tab (many (letters))] +:= 1 

x := sort(t) 
every y := !x do write(left(y[1],n),y[2J) 

end 
Comments: Note the use of augmented assignment to update the count without having to reference the table 
twice. 

Exercises: 

1. Modify the solution so that a suitable column width is computed by the procedure wordcount. 
2. Revise the solution so that the output is ordered by decreasing count. 
3. Revise the solution so that the output is broken down into sections of words having the same count and 
w ith the words listed alphabetically in each section. 

15.5 Binary Trees 
Description: Write a program to construct and traverse binary trees. 
Solution: The nodes in a hi nun tree can be represented by records, in which one field is devoted to the 
contents ol the node and two other lields point to the left and right subtrees. For input output purposes, trees 
are represented bv strings in which parentheses and commas specify the skeleton of the tree and the contents 
ol the nodes are given between punctuation characters. For example. a(b,c) represents a tree with a root 
node containing a and two leaves containing band C. respectively. 
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# 
# B I N A R Y T R E E S 
# 

# This main program accepts string representations of binary trees from 
# standard input. It performs a tree walk and lists the leaves of 
# each tree. 

record node(data,ltree,rtree) 

procedure mainQ 
local line, tree 
while line := read() do j 

tree := tform (line) 
write ("tree walk") 
every write (walk (tree)) 
write ("leaves") 
every write (leaves (tree)) 
) 

end 

procedure tform (s) 
local value,left,right 
if /s then return 
s ? if value := tab(upto('(')) then { 

move(1) 
left := tab(bal(',')) 
move(1) 
right := tab(bal (')')) 
return node (value,tform (left),tform (right)) 
} 
else return node(s) 

end 

procedure walk(t) 
suspend walk(\t.ltree | \t.rtree) 
return t.data 

end 

procedure leaves(t) 
if not(\t.ltree | \t.rtree) then return t.data 
suspend leaves (\t.ltree | \t.rtree) 

end 
Comments: The procedure tform constructs the binary tree from a string representation of the type 
described above. The procedures walk and leaves walk the tree and generate the leaves, respectively. Note 
that these procedures are generators, allowing successive nodes to be obtained as desired. 

Exercises: 

1. Modify the procedure t form to allow trailing commas to be omitted to indicate the absence of a right 
subtree. 
2. Modify the procedure walk to walk the tree in various different orders. 
3. Add error checking to the procedure tform to detect syntactically incorrect input. 

- 6 7 -

file:///t.rtree
file:///t.rtree
file:///t.ltree
file:///t.rtree


4 Write a procedure to convert a binary tree into its string representation. 

15.6 Kight Queens 
Description: The classic example used to illustrate backtracking is the eight-queens problem [18,19], which 
is to determine the number of ways that eight queens can be placed on a chess board such that none can attack 
another. 
Solution: The solution involves trial placements of the eight queens with backtracking from attacking 
positions. 

# 
# E I G H T Q U E E N S 
# 

procedure main() 
every write(q (1 ),q (2),q (3),q (4),q(5),q (6),q (7),q(8)) 

end 

procedure q(c) 
suspend place (1 to 8,c) 

end 

procedure place (r,c) 
static up, down, rows, upoff, downoff 
initial j 

up := list(15,0) 
down := list(15,0) 
rows := list(8,0) 
upoff := 8 
downoff := - 1 
i 

if rows[r] = up[upoff+r-c] = down[downoff+r+c] = 0 then 
suspend rows[r] < - up[upoff+r-c] < - down[downoff+r+c] < - r 

end 

procedure q(c) 
suspend place (1 to 8,c) 

end 

procedure place (r,c) 
static up, down, rows, upoff, downoff 
initial { 

up := list(15,0) 
down := list(15,0) 
rows := list(8,0) 
upoff := 8 
downoff := - 1 
} 

if rows[r] = upfupoff+r-c] = down[downoff+r+c] = 0 then 
suspend rows[r] < - up[upoff+r-c] < - down[downoff+r+c] < - r 

end 
Comments: The three lists keep track of the free rows, the upward-facing diagonals, and the downward-
lacing diagonals. Free squares are indicated by zero values, while occupied squares are indicated by the value 
one. Note that goal-directed evaluation forces the function write to be called for all combinations of 
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arguments that have values (for which p (i) returns a value). 

/:!\'(7<7.w.\: 

I Write an analogous procedure lor four rooks. 
2. Write a procedure to display the solutions in the format of a chess board. 

15.7 Infix-to-Prefix Conversion 
Description: Write a program to convert arithmetic expressions from infix form to fully parenthesized 
prefix form. The desired conversions are illustrated by the following examples: 

x x 
x+1 +(x,1) 
((x+1)) +(x,1) 
x - y - z -(-(x,y),z) 
3*delta+1 +(*(3,delta),1) 
2A2An A(2,A(2,n)) 
(xAn)/(z+1) /(A(x,n),+ (z,1)) 

Solution: Since the infix expressions may not be fully parenthesized, the precedence and associat i\ its of the 
infix operators must be considered. In addition, the infix expressions may contain superfluous parentheses 
that must be removed. Separate procedures are provided to remove such superfluous parentheses and for 
handling left- and right-associative operators according to their conventional precedences. Once an expression 
has been decomposed into its operators and operands, the corresponding prefix expression is easily obtained. 

# 
# I N F I X - T O - P R E F I X C O N V E R S I O N 
# 

# This main procedure accepts infix expressions from standard input and 
# writes the corresponding prefix expressions to standard output. 

procedure main() 
while write (prefix (read ())) 

end 

procedure prefix(s) 
s := strip (s) 
return lassoc(s,'+-' | '*/ ' ) | rassoc(s,'A') | s 

end 

procedure strip(s) 
while s ? (=*'(" & s < - tab(bal(')')) & pos( - l ) ) 
return s 

end 

procedure lassoc(s.c) 
local j 
s ? every j := bal(c) 
return form (s,\j) 

end 
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procedure rassoc(s.c) 
local j 
return form(s,s ? bal(c)) 

end 

procedure form(s.k) 
local a1, a2, op 
s ? ( 

a1 := tab(k) 
op := move(1) 
a2 := tab(O) 
I 

return op || " ( " || prefix (a1) || "," || prefix(a2) || " ) " 
end 

Comments: This solution illustrates a number of facets of string scanning and the use of the function bal in 
particular. Note the use of conjunction in Strip to assure that the balanced string ends at a terminal 
parenthesis. 

Exercises: 

1. Modify the procedure prefix to avoid calling lassocand rassoc in case sdoes not contain any operators. 
2. Write a procedure to convert from prefix form to infix form. 
3. Extend the solution given above to handle prefix operators and functional forms. 
4. Write a program to perform symbolic differentiation. 
5. Write a program to perform general symbolic evaluation. Provide for simplification of the results. 

15.8 Recognition of Context-Free Languages 
Description: Given a context-free grammar, write a program to recognize sentences from the corresponding 
language. 
Solution: In SNOBOI.4 there is an isomorphism between the productions of a context-free grammar and 
corresponding recognition patterns [20]. Provided there is no left recursion, there is a similar isomorphism in 
Icon, in which recognition procedures take the place of patterns. This isomorphism is illustrated by the 
following simple grammar. 

<s> ::= a <s> | < t> b | c 
< t> ::= d <s> d | e | f 

A program containing recognition procedures Sand t corresponding to <S> and <t> follows. 

# 
# C F L R E C O G N I T I O N 
# 

# This main procedure takes strings from standard input and determines 
# whether or not they are sentences in the language defined by <s>. 

procedure main() 
local line 
while line := read() do 

if recogn(sjine) then write ("accepted") else write ("rejected") 
end 
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procedure recogn (goal,text) 
return text ? (goal() & pos(O)) 

end 

# <s> ::= a <s> | <t> b | c 

procedure s() 
suspend (="a" || s()) | (t() || ="b") | ="c" 

end 

# <t> ::= d <s> d | e | f 

procedure t() 
suspend (="d" || s() || ="d") | ="e" | ="f" 

end 
Comments: Terminal symbols arc matched by expressions of the form =X, while nonterminal symbols are 
matched by calls on the corresponding recognition procedures. For each successful match, a recognition 
procedure suspends with the value matched. 

The procedure recogn succeeds or fails, depending on whether or not text is a sentence in the goal 
grammar. Note that the goal procedure is an argument of recogn. This demonstrates the usefulness of 
procedures being data objects. 

The use of conjunction and a test for a position at the end of &subject are necessary to prevent spurious 
recognition ol an initial substring. 

/•'xercisex: 

1. Note that the recognition procedures return the substring that they match. Run the program with tracing 
and various input, observing how the recognition process proceeds. 
2. Write a program to accept a grammar as input and generate corresponding recognition procedures. 
3. Procedures of the type used here are not limited to recognition. Adapt them to the generation oi parse 
trees. 

15.9 Random Sentence (feneration 
Description: Write a program to accept a context-free grammar as input and generate randomly selected 
sentences from the corresponding language. 
Solution: I he solution here is patterned after the one given in Reference 21. which should be consulted lor a 
more detailed description. 

Grammatical specifications are read in and analyzed. A list of alternatives is created for each definition. 
Fach alternative, in turn, is represented by a list of subsequents (terminal and nonterminal symbols). The 
name of a nonterminal is associated with its structure through a table. Terminals are represented by strings, 
while nonterminals are represented by records. 

Generation specifications are represented by a nonterminal followed by a count. For example, <s>10 
specifies the generation of l() sentences from the language defined by <S>. 

The generation process starts with a generation list consisting ol the desired nonterminal. Elements are 
removed from the left end of this list. If an element is a nonterminal, the subsequent list for one of its 
randomly selected alternatives is prepended to the generation list. If an element is a terminal, it is appended to 
the ev olving result. 
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# 
# R A N D O M S E N T E N C E G E N E R A T I O N 

# 

global def 

record nonterm(ntname) 

procedure main() 
local line 
def := table () 
while line := read()do 

enter(line) | generate(line) | write("*** syntax error") 
end 
procedure enter(s) 

local name 
return s ? 

if ="<" then | 
name := tab (find (">::=")) | fail 
move (4) 
def [name] := buildalt (tab(O)) 
} 

end 

procedure buildalt(s) 
local k 
k := [] 
every put(k,buildsub(genalt(s))) 
return k 

end 

procedure buildsub(s) 
local k 
k := [] 
every put(k,gensub(s)) 
return k 

end 

procedure genalt(s) 
local t 
s ? while t := tab(upto(T) I 0) do { 

suspend t 
move(1) | break 
I 

end 
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procedure gensub(s) 
local t 
s ? repeat { 

t := tab(upto('<') I 0) 
if t == " " then { 

move(1) | break 
t := nonterm(tab(upto('>'))) 
move(1) 

suspend t 

end 

procedure generate (s) 
local name, count 
s ? { 

="<" | fail 
name := tab(upto('>')) | fail 
move(1) 
count := integer (tab (0)) | fail 
} 

every 1 to count do write (synthesize (name)) 
return 

end 

procedure synthesize(s) 
local sentence, nexts, t, x 
sentence := " " 
nexts := [nonterm(s)] 
while t := get (nexts) do 

if type(t) == "nonterm" then { 
x := \def[t.ntname] | {write("*** <",t.ntname,"> undefined"); fail} 
nexts := ?x 111 nexts 
) 

else sentence 11:= t 
return sentence 

end 

Comments: The analvsis of the grammatical specifications illustrates moderately complicated string 
scanning. In the scanning expressions, terminators are appended so that successive items can be handled 
uniformly. Note that genalt and gensub generate values for buildalt and buildsub, respectively. This 
organization of the analysis activities is not necessary, but it partitions logically distinct activities and allows 
the program to be adapted to other uses by changing the definitions of buildalt and bui ldsub. See the 
exercises. 
lixenises: 

1. Prov ide a way for allowing the metalinguistic characters |, <, and > to be included in grammars. 
2. Using the preceding extension, write a grammar that generates random grammars. 
3. Recursive grammars, such as those that describe arithmetic expressions, tend to lead to endless growth of 
the generation list. Prov ide a mechanism for biasing the selection of alternatives to mitigate this problem. 
4. Some kinds ol context sensitivity are easily added to the program above. Explore such possibilities. 
5. Modify the program above to generate recognition procedures. 
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Appendix A 

Syntax 

Formal Syntax 
The following formal syntax for Icon describes only macroscopic features. Complete lists of operators and 

keywords are included in Appendix B. See Section 2.2.1 for a description of identifiers and Sections 4.1.1. 
4.2.1. 5.2.1. and 5.3 for a description of literals. Record types are context sensitive; see Section 8.3. See 
Chapter 12 for equivalence of characters, situations in which semicolons may be omitted, the continuation of 
string literals over line terminations, and the treatment of blanks. 

The syntactic types period, left-bracket* and right-bracket indicate occurrences of the characters 
. . [ . and ] , which have metalinguistic uses in the syntax description language. 

program '.'.= declaration ... 

declaration '.'.= global-declaration \ external-dec larat ion \ record-declaration | 
procedure-declaration 

global-declaration '.'.= global identifier-list 

identifier-list '.'.— identifier f , identifier]... 

external-declaration '.'.= external identifier-list 

record-declaration '.'.= record identifier ( [ identifier-list ] ) 

procedure-declaration '.'.= procedure-header ; [ local-declaration ; ] . . . [ initial-clause ; ] 

[ procedure-body ', ] end 

procedure-header ::= procedure identifier ( [ identifier-list ] ) 

local-declaration '.'.= local-specification identifier-list 

local-specification ::- local | static | dynamic 

initial-clause '.'.= initial expr 

proccdure-both '.'.— optexpr[ ', opt expr]... 

optexpr '.'.= [ expr ] 
expr '.'.= literal \ identifier | keyword \ operation \ call | reference \ 

substring \ list \ record-object \ control-struct \ return \ 
conipound-expr \ ( optexpr ) 

literal '.:= integer-literal \ real-literal \ quoled-literal 

operation " = prefix-oper expr \ expr infix-oper expr 
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call '.'.— expr (expr-list ) 

expr-list '.'= optexpr [, optexpr ] . . . 

reference :: e\f*i left bracket expr right bracket \ cxpr period identifier 

substring '.'.= expr left-bracket cxpr range expr right-bracket 

range '.'.= '. | +: | —: 

list ::= left-bracket optexpr right-bracket 

record-object '.'.= record-type (expr-list ) 

control-struct '.'= if-then-else \ while-do \ until-do | even-do \ repeat \ case 
not | to-by \ next | break 

if-then-else '.'.= if expr then expr [ else expr ] 

while-do '.'.= whWeexpr [ do expr ] 

until-do '.'.= until expr [ do expr ] 

every-do '.'.— every expr [do expr] 

repeat '.'.— repeat expr 

case ::= case expr of { case-clause [ ; case-clause ] . . . } 

case-clause '.'.= expr'. expr \ default: expr 

not '.'.= not expr 

to-by ::= expr to f.v/;/- [ by expr ] 

next ::= next 

A/roA ::= break optexpr 

return ::= return optexpr | suspend optexpr \ fail 

compound-expr '.'= | optexpr [ ; optexpr]... } 
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Precedence and Associativity 
The relative precedence of control structures, operators, and expression-list delimiters arranged in 

ascending order, follows. Hor infix operators, the associativity is listed also. 

precedence type associativity 
if-then-else 
w/u'le-do 
until-do 
every-do 
repeat 
case 
break 
return 
suspend 
fail 
& 
9 

&: = 
+ ; = 

*: — 
/:= 
%:= 
A; = 

>=:= 
>: = 
<=:— 
<:= 

>>: = 

<<: = 

?:= 
++•= 

to-hv 

< 
<= 

2 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
6 
7 
7 
7 
7 

infix 
infix 
infix 
infix 
infix 
infix 
infix 
infix 
infix 
infix 
infix 
infix 
infix 
i n f i \ 
infix 
infix 
infix 
infix 
infix 
infix 
infix 
infix 
infix 
infix 
i n 11 x 
in f ix 
inf ix 
infix 
infix 
infix 
infix 
infix 
i n 11 x 

infix 
infix 
infix 
infix 
infix 

left 
left 

right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 
right 

left 
left 
left 
left 
left 
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Appendix B 

Built-in Operations 

The following sections list the built-in operations of Icon, with citations to primary section references. 

Functions 

function 
abs(n) 
any(c,s,i, j) 
bal(c1,c2,c3,s,i,j) 
center (s1,i,s2) 
close (f) 
copy(x) 
cset(x) 
display (i,f) 
exi t ( i ) 
f ind (s1,s2,i,j) 
get (a) 
image(x) 
integer (x) 
Ieft(s1,i,s2) 
l ist( i .x) 
many(c,s,i, j) 
map(s1,s2,s3) 
match (s1,s2,i,j) 
move(i) 
numer ic(n) 
open(s1,s2) 
pop (a) 
pos(i) 
pul l (a) 
push (a,x) 
put(a.x) 
read(f) 
reads (f,i) 
real(x) 
repl(s.i) 
reverse (s) 
right(s1,i,s2) 
sort(x, i ) 
stop(x1,...,xn) 
str ing (x) 
system (s) 
tab( i ) 
table(x) 
t r im(s,c) 
type(x) 
upto(c,s,i, j) 

section 

4.I.2 
6.3.2 
6.3.2 
6.1.3 

9.1 
10.4 
5.3 

I 1.4 
14.5 

6.3.1 
8.1.4 
I0.9 

4.4.1 
6.1.3 
8.1.1 
6.3.2 
6.1.5 
6.3.1 

7.2 
4.5 
9.1 

8.1.3 
7.1 

8.1.4 
8.1.3 
8.1.4 

9.3 
9.3 

4.4.2 
6.1.2 
6.1.5 
6.1.3 

8.4 
14.5 

5.4.1 
10.10 

7.2 
8.2.1 
6.1.5 
10.8 

6.3.2 
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write (x1,...,xn) l>.2 
writes (x1,...,xn) 9.2 

Infix Operators 

operator section 

2.2.1 
< - 3.5 

2.2.1 
< - > 3.5 
&:= I0.2 
+ := I0.2 
-:= io.2 
»:= m.2 
/ := I0.2 
%:= io.2 
A : = I0.2 
=:= io.2 
>= := I0.2 
>:= io.2 
<= := I0.2 
<:= io.2 
- = : = 10.2 
| | . - 10.2 
= : = io.2 
» = : = 10.2 
» : = io.2 
« = : = io.2 
« : = io.2 
- = = : = 10.2 
?:= I0.2 
++:= I0.2 
- : = l().2 
**:= 10.2 
| | | : = I0.2 
= = : = io.2 
- = = = : = io.2 
& 3.3 
+ 4.1.2 

4.!.2 
* 4.1.2 
/ 4.1.2 
A 4.1.2 
% 4.1.2 

4.1.3 
4.1.3 

> 4.1.3 
>= 4.1.3 
< 4.1.3 
<= 4.1.3 
++ 5.3 

5.3 
* * 5.3 
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|| 6.1.1 
HI 8.1.5 

6.2 
- = = 6.2 
» 6.2 
» = 6.2 
« 6.2 
« = 6.2 
= = 10.3 
-=== 10.3 

8.3.3 

Prefix Operators 

operator section 
+ 4.1.2 

4.1.2 
5.3 

! 10.1 
7.3 

* 2.2.4 
& 2.2.2 
? 10.5 
/ 10.7 
\ 10.7 

2.3.1 

Keywords 

keyword section 
&ascii 5.3 
&clock 10.6 
&cset 5.3 
&date 10.6 
&dateline 10.6 
&errout 9.1 
&fail 2.3.2 
&host 10.11 
&input 9.1 
&lcase 5.3 
&level 11.3.3 
&null 10.7 
&output 9.1 
&pos 7.1 
&random 10.5 
&subject 7.1 
&time 10.6 
&trace 11.3.4 
&ucase 5.3 
Aversion 10.11 



Appendix C 

Summary of Defaults 

Omitted Expressions 
Omitted expressions default to •. For example 

break 
is equivalent to 

break &null 
Similarly, omitted arguments in function and procedure calls default to •. For example left(s,i) is equivalent 
to left (s.i.&null) In some (unctions, null-valued arguments default to commonly used values. These defaults 
apply whether the argument is explicitly omitted or whether evaluation of the expression given for the 
argument produces •. For example, left (s,i) and left (s,i,&null) are equivalent so far as interpretation of the 
third argument is concerned. Defaults for null-valued arguments are listed below. Arguments that are not 
shown as • are assumed to be non-null. Note that for the string analysis functions, the default for the initial 
position depends on whether the argument specifying the string being examined is •. In all other cases, the 
default for a null-valued argument is independent ol the values of the other arguments. 

abbreviated form 
any(c,» ,•,•) 
any(c,s • ,•) 
bal (•,••,•,••) 
bal(« •.•,s,»,«) 
center(s,i ,•) 
display(«,«) 
find(s ,»,•) 
find(s1,s2,« ,•) 
left (s,i,») 
list (•) 
many(c,«,«,») 
many(c,s,« ,•) 
map(s,« ,•) 
match (s,« ,• ,•) 
match (s1,s2 ,•,•) 
open(s ,•) 
read(«) 
reads (•,•) 
right (s,i,«) 
sort(x ,•) 
stop(...»,...) 
trim(s) 
upto(c ,•,• ,•) 
upto(c,s,« ,•) 
write(...,•,...) 
writes(...,«,...) 

equivalent expression 

any(c,&subject,&pos,0) 
any(c,s,1,0) 
baK&cset.'C/J'.&subject.&pos.O) 
balj&cset/CT.s.l.O) 
center(s,i,"D") 
display (&level,&errout) 
find (s.&subject.&pos.O) 
find(s1,s2,1,0) 
left(s,i,"D") 
list(O) 
many (c,&subject,&pos,0) 
many(c,s,1,0) 
map (s,&ucase,&lcase) 
match (s,&subject,&pos,0) 
match (s1,s2,1,0) 
open(s,"r") 
read(&input) 
reads(&input,1) 
right(s,i,"D") 
sort(x,1) 
stop(...,"",...) 
trim(s.'n') 
upto(c,&subject,&pos,0) 
upto(c,s,1,0) 
write(...,"",...) 
writesf...,"",...) 
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Appendix D 

Summary of Error Messages 

Translator Error Messages 
Messages that may occur during translation because of syntax errors in the program are listed 

below. The translator continues following detection of an error, but the translated program cannot be 
executed. 

end-of-file expected 
global, record, or procedure declaration expected 
inconsistent redeclaration 
invalid argument list 
invalid by clause 
invalid case clause 
invalid case control expression 
invalid character 
invalid context for break 
invalid context for next 
invalid context for return or fail 
invalid context for suspend 
invalid create expression 
invalid declaration 
invalid default clause 
invalid digit in integer literal 
invalid do clause 
invalid else clause 
invalid every control expression 
invalid field name 
invalid global declaration 
invalid if control expression 
invalid initial expression 
invalid integer literal 
invalid keyword 
invalid keyword construction 
invalid local declaration 
invalid operand 
invalid operand for unary operator 
invalid operand in alternation 
invalid operand in assignment 
invalid operand in augmented assignment 
invalid radix for integer literal 
invalid real literal 
invalid reference or subscript 
invalid repeat expression 
invalid section 
invalid then clause 
invalid to clause 
invalid until control expression 
invalid while control expression 
missing argument list in procedure declaration 
missing colon 
missing end 
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missing field list in record declaration 
missing identifier 
missing left brace 
missing of 
missing procedure name 
missing record name 
missing right brace 
missing right bracket 
missing right parenthesis 
missing semicolon 
missing semicolon or operator 
missing then 
more than one default clause 
unclosed quote 
unexpected end of file 

Translation may be terminated because of various kinds of overflow: 

out of global symbol table space 
out of local symbol table space 
out of string space 
out of constant table space 
out of tree space 
yacc stack overflow 

There is one warning message issued by the translator: 

redeclared identifier 

Unlike the messages above, this warning does not prevent the use of the translated program. 

Linker Krror Messages 
There are two programming errors that are detected by the linker: 

inconsistent redeclaration 
invalid field name 

These errors prevent the program from being run. There is also a way to request the linker to detect identifiers 
that have not been declared. The message produced is 

undeclared identifier 

I his message is only a warning: it does not prevent the use of the linked program. 

Krrors During Loading 

Errors that occur during loading are issued by the loader, which is not part of the Icon system itself. Errors 
may occur because insufficient memory is available or because of errors in external procedures (for example, 
unresolved references). In the case of loader errors, attempts to execute the resulting program may cause a bus 
error or other malfunction. 

Program Krror Messages 
Program errors are div ided into several major categories, depending on the nature of the error. 
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( ategory I : Invalid Typo or I'orm 

101 integei expected 
102 numeric expected 
103 string expected 
104 cset expected 
105 file expected 
106 procedure or integer expected 
107 record expected 
108 list expected 
109 string or file expected 
110 string or list expected 
111 variable expected 
112 invalid type to size operation 
113 invalid type to random operation 
114 invalid type to subscript operation 
115 list or table expected 
116 invalid type to element generator 
117 missing main procdure 

Category 2: Invalid Argument or Computation 

201 division by zero 
202 remaindering by zero 
203 integer overflow 
204 real overflow, underflow, or division by zero 
205 value out of range 
206 negative first operand to real exponentiation 
207 invalid field name 
208 second and third arguments to map of unequal length 
209 invalid second argument to open 
210 argument to system function too long 
211 by clause equal to zero 
212 attempt to read file not open for reading 
213 attempt to write file not open for writing 

Category 3: Capacity Kxcceded 

301 insufficient storage in heap 
302 insufficient storage in string space 
303 insufficient storage for garbage collection 
304 insufficient storage for system stack 
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INDEX 

abs(n) 16 
absolute \;iluc 16 
accessing lists 40 
accessing records 43 
accessing tables 41 
addition 15 
alternation 1 I 

expr I | expr2 I I 
alternatives 58,59 
any(c) 36-37 
any(c,s,i,j) 32 
argument transmission 51 
arguments 5,6 
arithmetic 15-21 
arithmetic operations 17 
ASCII 22.57 
assignment 5,14.29,40,47 
associativity 6. 15, 16. 77 
augmented assignment 46, 58 
backslashes 22. 23 
backtracking 13, 14 
bal(c1,c2,c3) 36-37 
bal(c1,c2,c3,s,i,j) 33-34 
balanced strings 33-34 
blanks 22.57 
Boolean values 1,7 
break expr 9 
built-in character sets 24 
C 2.23 

case t'xpr of 8. 14 
case selectors 8, 58 
case control expressions 8 
center (s1,i,s2) 28 
character codes 22 
character equivalences 57 
character graphics 22 
character positions 28-29 
character set conversion 24 
character sets 4, 20. 24, 25, 32-34, 43, 47, 58 
characters 22 
close (f) 44 
closing tiles 44 
collating sequence 22,25,31 
command lines 61 
comments 57 
comparison operators 16, 18.31,47,58 
compound expressions 9 
computed procedures 54 
computed variables 52 
concatenation 27,44,60 
conjunction 14 

constructing strings 27-30 
continuation ol quoted literals 57 
control characters 23 
control expressions 8 
control structures 4 
conversion to integer 19 
conversion to numeric 21 
conversion to real number 20 
copy(x) 47 
copying objects 47, 59 
creation of lists 39 

[x1,x2 xn] 39 
creation of records 42 
creation of table elements 41 
creation of tables 41 
cset(s) 24 
date 48 
decimal notation 17 
declarations 42-43, 50-51. 56 
default 8 
default case clauses 8 
default values 6 
defaults 6,9, 12, 27. 28, 30, 31. 32, 33, 34. 36. 

39. 42,43, 44, 45. 51, 52, 54, 62, 82 
defined types 42-43,47 
dereferencing 6, 52, 59 
display (i,f) 54 
division 15 
dynamic 50 
dynamic identifiers 50 
efficiency 58 
element generation 46 

!x 46 
empty lists 39 
empty strings 4,23,27,29,31 
end 50 
equivalence of objects 47 
equivalent characters 57 
error conditions 5.6, 12, 14, 16, 17,20.24,25, 

26, 27, 28, 29, 39, 43, 44, 45, 46. 47, 48, 49, 
52,54 

error messages 61,83-85 
error termination 62 
errors 61,62 
escape conventions 22, 48 
every expr J do expr2 9, II, 12,52.59 
exception errors 62 
exchanging values 5,14,15 
exit status 61 
exit(i) 62 
exponent notation 17,25 
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exponentiation 15, 17. 18 
expressions 4-14 
external 55 
external procedures 55 
extra arguments 51 
fail 5! 
failure 1.7.51 
failure conditions 8, 19.20,25,29.31.32.33, 

35. 36. 40. 43. 44. 45, 60 
field names 42 
tile names 48 
file option .specifications 44 
files 4. 43. 44-45. 47, 48 
find(s) 36-37 
find(s1,s2,i,j) 11. 32 
floating-point representation 17. 18 
functions 5-6. 54. 60. 79-80 
generators I 1. 32. 33. 34. 52. 59 
get(a) 40 
global 51 
global declarations 51.56 
global identifiers 52. 54. 60 
goal-directed evaluation 
hexadecimal codes 22. 23 
identifier declarations 50-5 I 
identifiers 4.5,50.51 
if c.xprl then exprJ else cxpr.i 7. 14 
image (x) 45,48 
infix operators 6. 15. 16.80 

a1 HI a2 41 
c1 ++ c2 24 
C1 — c2 24 
d ** C2 24 

2. 12. 13, 14,52,59 

1 = 1 
i ~= j 

i < i 
i < = 

i > J 
i >= 
i + J 
' - i 
i * j 

i / j 
i % j 
i A j 

s 1 II 
s1 ? 
s1 == 
s1 « 
s1 << 
s1 >> 
s1 » 
s1 ~= 
v := > 

16.47 
16 
16 
16 

16 
16 

15 
15 
15 
15 
15. 16 

15 
s2 6. 27 
s2 35-37. 
s2 6. 31 
s2 31 

= s2 31 
= S2 31 

s2 31 
- s2 31 
: 5 
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v l :=: v2 5 
v < - x 14 
v1 < - > v2 14 
v &:= x 46 
v +:= i 46 
v - : = i 46 
v * := i 46 
v / : = i 46 
v %:= i 46 
v A : = i 46 
v =:= i 46 
v >= := i 46 
v >:= i 46 
v <= := i 46 
v <:= i 46 
v - = : = i 46 
v 11 := s 46 
v == := s 46 
v > > = : = f 46 
v >> := s 46 
v < < = : = s 46 
v << := s 46 
v - = = : = s 46 
v ?:= s 46 
v ++:= c 46 
v — : = c 46 
v * * := c 46 
v | | | := 46 
v' = - = . - X 4 0 

' - = = = ; = X 4h 
X & y IV 14 
x === y 47 
x - = = = y 47 
z.f 43 

initial 50 
initial clauses 50 
initial substrings 28. 31-32. 33 
initiating execution 61 
input 44.45 
input line length 45 
integer arithmetic 15-16 
integer comparison 16-17 
integer division 16 
integer literals 15 
integer sequences 12 

exprl to expr2 by exprJ 12 
integer (x) 19-20 
integers 4, 15-17,43.47, 58 
keywords 5. 6. 23. 24. 35. 44. 47. 48. 52. 81 

&ascii 24. 29 
&clock 48 
&cset 24 
&date 5.48 
&datel ine 48 
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&errout 44 
&fail 7 
&host 49 
&input 44,45 
&lcase 24 
&level 52,53,54 
&null 48 
&OUtput 44,45 
&pos 35-37,59,60 
&random 47 
&subject 35-37,59 
&time 48 
&trace 5, 52 
&ucase 24 
Aversion 49 

Ieft(s1,i,s2) 27 
letters 24 
lexical analysis 32 
lexical order 31, 43 
limiting evaluation 12 

exprl \ expr2 12 
line terminators 44,45 
linking 61 
list elements 39 

a[i] 40 
list sections 41 

a[i:j] 41 
a[i+:j] 41 
a[i-:j] 41 

list(i.x) 4,39,47 
lists 4,39-41,43,46,47 
literal character sets 24 
literals 4,8. 15, 17,24 
loading 61 
local 50 
local declarations 50,51 
local identifiers 52 
loop control 9 
main procedure 10,56,61 
many(c) 36-37 
many(c,s,i,j) 33 
map(s1,s2,s3) 6,30 
mapping characters 30 
match (s) 36-37 
match (s1,s2,i,j) 31-32 
mixed-mode arithmetic 18 
move(i) 35 
multiplication 15 
multutal evaluation 13-14 
nested scanning 37 
newline characters 23, 58 
next 9 
not expr 8, 14 
null character 29 

null value (•) 4,51 
numeric(n) 21 
object comparison 47 
octal codes 22, 23 
omitted arguments 6,51 
open options 44 
open(s1,s2) 44 
opening files 44 
operands 6 
operators 6 
order of evaluation 13,51 
out-of-range references 40 
outcome of evaluation 7, 8, 52 
output 44 
overflow conditions 61 
parentheses 5 
PDP-11 2 
pipes 44 
polymorphous operations 59 
pop (a) 40 
pos(i) 35 
positional analysis 35-36 
positioning of strings 27 
positions in strings 28-29 
precedence 6, 16, 77 
precision of real numbers 17 
prefix operators 6,16,81 

~C 24 
+ i 16 
- i 16 
&k 5 
=S 37 
/x 48 
• x 6,23,39.41 
!x 46 
\ x 48 
?x 47 
.x 6 

procedure 50 
procedure activation 51,53 
procedure bodies 9,50 
procedure calls 51,52,54 
procedure declarations 50, 54, 56 
procedure invocation 51, 54 
procedure level 52 
procedure names 50 
procedure values 54 
procedures 4,9-10,43,47,50-53 
program character set 57 
program errors 62 
program execution 62 
program lines 56 
program listings 61 
program structure 56 



program termination 16,61 
program text 56 
program translation 61 
pull(a) 40 
programs 9,56-57 
push(a,x> 40 
put(a.x) 40 
queues 40 
quotation marks 4,22,48 
quoted strings 22, 23 
radix representation 15 
random number generation 47 
random element generation 47 
range specifications 29, 41 
random number seed 47 
read (f) 45 
reading data 45 
reads (f,i) 45 
real arithmetic 17 
real comparison 18 
real literals 17 
real numbers 4, 17 
real(x) 20 
record 42 
record fields 42-43 
record declarations 42-43, 56 
record types 42-43, 47 
records 4, 39. 42-43, 46, 47, 51 
referencing expressions 40, 43 

t[x] 41 
a[i] 40.59 
z.f 43 

remaindering 16 
repeat expr 8.9 
repeated alternation 12 

\expr 12 
repl(sj) 27 
replication of strings 27 
reserved words 2, 4, 42, 78 
results 6, 1 I 
return expr 52 
return from procedures 51-52 
reverse(s) 30 
reversible assignment 14 
reversible effects 14.36 
reversible exchange 14 
reversing strings 30 
right (s1,i,s2) 28 
scanned substrings 35 
scanning keywords 35-37 
scanning operations 36-37,60 
scope of identifiers 50-51 
selecting results 13-14 
semicolons 9, 14. 56 

shells 44,49 
size of strings 23. 31 
size of structures 48 
SL5 1,2 
SNOBOLlanguages 1,2.60 
sort (a) 43 
sort(t.i) 43 
sorting 22,25,43 
splitting of expressions 56 
stacks 40 
standard error output file 44 
standard input file 44 
standard output file 44 
static 50 
static identifiers 50, 51 
StOp(x1,x2,...,xn) 61 
storage allocation 2, 58 
storage limits 23,39,45 
string analysis 31-34 
string comparison 31 
string images 48 
string literals 57 
string replication 27 
string scanning 35-37 
string (x) 24-26 
strings 4,22-30,43,46,47,48,58 
structures 39 
subscripting expressions 29 
subscripts 40 
substrings 28-30.31-32,58 

s[i] 29 
s[i:j] 29 
s[i+:k] 29 
s[i- :k] 29 

subtraction 15 
success 1, 2, 7 
suspend expr 52, 60 
suspended procedures 52 
syntactic types 2, 75-76 
syntactic errors 61,83-84 
syntax notation 2 
system (s) 49 
tab characters 57 
tab(i) 36,37 
table (x) 4,47 
table references 41,43,47,58 
tables 4,39,41 
terminal substrings 28 
time 48 
trace messages 53 
tracing procedure activity 52, 53 
trailing arguments 6 
translation 61 
translation errors 61. 83-84 
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transposing characters 30 
trim(s,c) 30 
trim mi nil strings 30 
truncation 16, 19 
type checking 2 
type coercion 2. 6 
t\ pc conversion 6, 19-20. 24-26. 41, 45 
type determination 4S 
type(x) 6.48 
types 2,4.42,43 
undeclared identifiers 51,56 
underscores 57 
I'N'iX 2.44.61 
unti l c\pil do i:\pr2 8,9, 14 
upto(c) 36-37 
upto(c,s,i,j) 33 
values 4 
\ariables 4-5.39.40.41,42.52 
warnings 29, 37. 41. 44. 51. 56. 59-60 
whi le cv/i/7 do v.vprJ 7,9.14 
wr i te(x1 xn) 6.44 
writes(x1,... ,xn) 45 
writinu data 44-45.58 

-90 

file://i:/pr2
file:///ariables

