Reference Manual for the leon Programming Language
Version 5 (C Implementation for UNIX)*

Canv 1 Cowrant Ralph b Griswold,
and Stephen B Wanipler

IR &1-4a

December 1981, Corrected July 1982

Department of Computer Science
The Unnersity of Anizona

Tucson, Arizona 85721

*Ihis work was supported by the National Science Foundation under Grant MCS79-03890

Copyright © 1981 by Ralph E. Griswold
All rights reserved.

No part of this work may be reproduced, transmitted, or stored in any form or by any means without the prior
written consent of the copyright owner.

CONTENTS

Chapter I Introduction

11 Background !
12 Scope of the Manual 2
'Y AnOverview of leon 2
I'4 Syntax Notation 2
1S Orgamzation of the Manual 3
Chaptar 2 Basic Concepts and Operations
21 Ivpes 4
22 Lapressions 4
22 \ ariables and Assignment 4
222 kewwords 5
223 Functions 5
224 Operators 6
23 Iyaluation of Fxpressions 6
231 Results 6
232 Successand Failure 7
24 Baswic Control Stuctures 7
25 Compound Fxpressions 9
26 loopContiol 9
27 Procedures 9
Chaptar 3 Generators and [xpression Fyvaluation
31 Gencarators 11
32 Goal Dirccted Fyaluation 12
33 Ivaluation of xpressions 13
34 Thebstentof Backtrackimg 14
3 S Fhe Roversal of Fitcets 14
Chaptar 4 Numbers and Anithmetic Operations
41 Intcgas 15
411 I iteral Integers 15
412 lInteger Anithmetic 15
413 Intcger Comparson 16
42 Raal Numburs 17
421 I iteral Real Numbers 17
422 Real Anthmeuc 17
423 Compatison ol Real Numbers 18
43 Minad Modo Anthmetic 18
44 Anthmete Tyvpe Conversion 19
441 Conmvuarsionto Integer 19
442 Conversion to Real Numbe 20

49 Comarston to Numetic 21

Chapter 5 - Strings and Character Sets
5.1 Characters
5.2 Strings
5.2.1 Literal Strings
5.2.2 String Size
5.3 Character Sets

54

Type Conversion

5.4.1
54.2

Explicit Conversion
Implicit Conversion

Chapter 6 - Basic String Operations

Constructing Strings

Concatenation

String Replication

Positioning Strings

Character Positions and Substrings
Other String-Valued Operations

String Comparison
String Analysis

Identifying Substrings
Lexical Analysis

String Scanning

Scanning Keywords
Positional Analysis
Scanning Operations
Nested Scanning

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

6.2

6.3
6.3.1
6.3.2

Chapter 7

7.1

7.2

7.3

7.4

1.5

Generation During Scanning

Chapter &

8.1

8.3

8.4

Lists
8.1.1
8.1.2
8.1.3
8.1.4
¥.1.5
Tables
8.2.1
8.2.2

Records

8.3.1
8.3.2
8.3.3

Structures

Creation of Lists
Positional Access to Lists
Stack Access to Lists
Qucue Access to Lists
Operations on Lists

Creation of Tables
Accessing Table Elements

Declaring Record Types
Creating Records
Accessing Records

Sorting Structures

22
22
22
23
24
24
24
25

27
27
27
27
28
30
3
31
31
32

35
35
36
37
38

39
39
40
40
40
41
41
41
41
42
42
42

43

43

Chapter9 Input and Output

9] Files
92 Waotine Data to 1iles
93 Readmyg Data trom Tales

Chapter 10 Miscellaneous Operations

101 Fement Generation

102 Augmented Assignment Operators
103 Comparison of Objects

104 Copying Objects

105 Random Flement Generation
106 Dateand Lime

107 The Null Value

108 Iype Determimation

109 Strng Images

1O 10 Calbing a Shell

10 11 System Information

Chapter 11 Procedures

[T 1T Procedure Declarations

112 Scopeof ldentihers

3 Procedure Activation
1131 Procedure Invocation
1132 Return trom Procedures
1133 Procedure | evel
1134 Traang Procedure Activity

114 Tisung ldentifier Vatues

FES Procedure Names and Values

16 Fxternal Proceduies

Chapter 12 Program Preparation

Program Structure

I ayout of Program Jeat
Program Character Set
Signthicance of blanks
Comments

19 19 1w tu
N ot —

Chapter 13 Programming Considerations

131 Fihiaenoy Considerations
132 Programming Pitfalls

=

44
a4
18

46
46
47
47
47
48
48
48
48
49
49

50
51
51
51
51
52
52
54
54
55

56
56
57
57
57

58
59

Chaptar 14 Running fcon Programs

14 1 Translation

142 T inking

143 Program Fxecution
144 Program lermination
145 Frror Termination

Chapter 15 Sample Programs
151 Roman Numerals

152 Meandering Strings

153 Waord Intersections

154 Word Counting

155 Bmary Irees

156 Light Queens

157 Infin-to-Piefix Conversion

IS8 Recogmition of Context-Free Languages
159 Random Sentence Generation

Acknowledgments

References

Appendin A Syntax

Appendin B Built-In Opcrations

Appendix € Summain of Defaults

Appendin D Summary of Frror Messages

Inden

-1\ -

61
6!
6l
61
62

63
64
65
66
66
68
69
70
71

74

74

75

79

82

83

86

Chapter 1

Introduction

1.1 Background

Icon 15 the most recent 1n a series of programmuing languages that started with SNOBOL [I] SNOBOL was
a4 very simple language with only one data ty pe, the string, and a few pattern-matching statements expressed in
a nigid svntax The syntax of SNOBOL was primitive and its only control structure was the goto, which could
be conditional on the success of pattern matching and in which the target label could be computed One exotic
feature of SNOBOL was 1ts ability to construct identifiers during program execution and reference their
values indirectly

SNOBOI 2 [2] which was i use for only a short period of time, was a minor refinement ot SNOBOI
SNOBOI 3 [3] extended the onginal SNOBOL language with a repertoire of built-in functions and a
mechanism for programmer-defined procedures The concept of success and failure was generahized to include
a variety of comparison and testing operations SNOBOI 3 retained the single string data type, static pattern
matching and primitive control structures of the original SNOBOIL SNOBOIL 3 1s still in imited use

SNOBOI 4 [4] departed mote radically from the earher languages in the series It introduced a variety ol
data tvpes and the ability to construct and manipulate patterns as data objects dynamically during program
uvxecution Along with this facihty the pattern matching repertoire was substantially increased Arrays tables
and defined types (records) in SNOBOL4 added the ability to produce and process structures Tables at the
same time provided a facihty for associative reference of a more disciplined type than the indirect referencing
facilitn of SNOBOL although the latter was retained in SNOBOL4 An esoteric feature, originally planned
for SNOBOL was realized for the first time in SNOBOL 4 run-time compilation allowed strings to be
comerted into executable code in the course ol program execution Despite the advances in facility
SNOBOI 4 retained the primitive control structures of the earlier languages Because of new data tvpes and
operations SNOBOI 4 16 best characterized as a general-purpose language with a strong emphasis on string
processing whereas the earher languages were special-purpose string processing languages SNOBOL 4 15 1n
wide use at the present time {or a variety ol applications [5]

SES("SNOBOI 1 anguage 57) [6] was an even more radical departure from the earlier languages SL 5 has
o traditional Algol hke svntax with a large repertoiie of control structures The success fatlure signahin.
mcchanism of the eather SNOBOIL languages was oxtended to drive control structures in place of the morc
comventtonal use of Booledan values A notable characteristic of SIS 15 ats generahized procedure mechanism
[7] which provides coroutines as a natural consequence Patterns and pattern matching of the earhu
languages were replaced by the concept of string scanning in which coroutine environments operate 1n a god!
dirccted control regime [8] For the first time there was a mechanism tor programmer-defined string scannin.
ST S also has a repertonie of dementary string processing operations that arc lacking in the carher langu s
I he distribution of SIS was imited and 1ts use at the present time 1s minimal

lcon represents both a synthesis of earlier 1deas and a departure from trends in the earlier languages (The
name lcon incidentally 15 not an acronym and has no special significance - although one can imagine
rcdeyvant connotations)

I'he development of lcon as a language distinet from SL S was sparked by the design of a general goal-
directed cvaluation mechanism that allows the traditionally goal-oriented pattern matching and string
scanning dactivities to be mtegrated with more conventional computational activities This integration has the
clicet of uniiving formeriy disparate features At the same time, elementdary string processing operations as
introduccd in S15 have been unified with higher level string processing operations

I'he concept of success o1 Lailute of an operation as in the earlier languages is retained 1n Icon although
with o shehtly ditfarent interpretation Instead of operations returning a signal operations 1n Icon eitha
produce a result (“succeed™) ot they do not produce a result (*fall™) (The concept of a signal sull appears in

carlv lcon documentation) Some operations may generate sequences of alternative results A goal-directed
evaluation mechanism secks alternatives from such components ol an expression if other alternatives fail to
produce results In this way “trees™ of alternative results in complex expressions are “searched™ in the attempt
to produce an overall result (“success™)

1hke SNOBOL 4 and SIS lcon has a variety of data types and has facilities for creating and processing
stiuctures In many cases these facilities have been strengthened and sharpened above those of carher
languages lcon does not have a run-time compilation facility, however

A forewarning Icon contains some surprises Its goal-directed evaluation mechanism allows programming
stvles and techmiques that other languages do not As a consequence. learning to program in lcon 1s not just a
matter of learning a4 new syntax and mastering the detatls of new operations — Icon allows new ways of
formulating computations The natural tendency to translate programming techniques from famihar
languages to Icon may, in fact, lead to frustraion SNOBOL4 programmers, in particular, are cautioned not
to blindly imitate patterns by Icon expressions of similar appearance

1.2 Scope of the Manual

This manual describes Version 5 of the Icon programming language implemented in the C programming
language [9] and designed to tun under Version 7 of UNIEX*[10]on PDP-11 computers

The reader 1s assumed to have experience with other programming languages, a familiarity with current
programming language concepts, and a working know ledge of UNIX

This fist chapter gives an overview of fcon and describes the techmques for presenting features of the
language m this manual Subscquent chapters describe the language in detail There are a number of
appendices at the end of this manual that provide guick reference to frequently needed information

1.3 An Overview of Icon

lcon s a general-purpose programming language with an emphasis on string processing lcon supports a
variety ol data types and has faclities for creating and manipulating the commonly used kinds of structures
Storage management 1s automatic there are no exphiat allocation and deallocation directives The sizes of
objects are hmited only by the architecture and physical imitations of the computer on which Icon runs

Variables are “untyped™ as in SNOBOI 4 and SUS Thus a vanable may have values of any type Run time
type checking and coercion to expected types according to context are performed automatically

One of the unusual characteristics of lcon v goal-directed expression evaluation, which provides
automatic searching tor alternatives and a controlled lorm of backtracking This method of evaluation allows
concise, natural formulation of mam algorithms while avoiding the inetficiency of uncontrolled backtracking

Svntactically fcon s a language 1n the stvle of Algol 60 1t has an expression-based structure and uses
reserved words lor many constructs

1.4 Syntax Notation

In this manual, the syntax of Tcon s described in a semitormal manner with emphasis on cdanity ratha
than nigor For simple cases Fnghsh prose is generally used Where the syntax 1s more complicated, a tormal
metalanguage 1s used

In this metalanguage. svntactic classes are denoted by itahes For example, evpr denotes the class of
expressions The names of the syvntactic types are chosen to be mnemonic, but have no formal significance
Program textis givenn a sans sernif tvpe face (¢ g . write)

Alternatives are separated by bais (|) Brackets ([1) enclose optional items Ellipses () indicate
indetinite repetition of items The metalingwistic and hteral uses of bars, brackets, and periods are not mined
I any one usage and the meaning should be cear in context Where necessars ambiguity 1s resolhved by using
predetimed svntactic types For example bar denotes the svmbol | and the symbol [1s denoted by left bracher

FUNIN v tadamank of Bal D b v

1.5 Organization of the Manual

Ihis manual s organized into chapters that deseribe the major features of the language Fach operation
and tunction s described separately or is grouped with others of a similar nature Following the description,
examples of usage are given

The examples dare not intended to motivate uses of language features, but rather to provide concrete
instances, to show special cases that may not be clear otherwise, and to illustrate possibilities that may not be
obvious For these reasons, some of the examples are contrived and are not typical of ordinary usage

Where appropriate, there are remarks that are subsidiary to the main description These remarks dre
divided into nortes, warmngs, defaulis, farlure conditions, and error conditions The notes describe special
cases, details, and such The warnings are designed to alert the programmer to programming pitfalls and
hasards that might otherwise be overlooked The defaults describe interpretations that are made in the
absence of specified values or optional parts of expressions The fatluw e conditions specify situations in which
an operation may fail to produce a value The error condinons specify situations that are erroneous and cause
program termination The defaults and error conditions are summarized in Appendices C and D

It 15 not always possible to describe language features in a linear fashion, some circularity 1s unavoidable
This manual contains numerous cross references between sections In the case of forward references an
attempt has been made to make the referenced items clear 1n context even if they cannot be completely
described there For a full set of references, see the index

Chapter 2

Basic Concepts and Operations

2.1 Types
Icon supports several kinds of data, called 71 pes
integer procedure
real list
string table
cset null
file

Integers and real numbers (floating-point numbers) serve their conventional purposes Strings are sequences
of characters as in SNOBOL4, for example Csets are sets of characters in which membership 1s significant,
but order i1s not Files identify external data storage Procedures serve their conventional purpose, but it 1s
notable that they are data objects Lists and tables are data structures with different orgamizations and access
methods The null value, which 1s represented by the symbol @ in this manual, serves a special purpose as the
initial value of variables The null value 1s 1llegal in most computations In addition to the types listed above,
there 1s a facility for defining record ty pes

The first letters of type names are used 1n this manual to indicate values of the corresponding types For
example. I. S, and c are used to indicate integers, strings, and csets, respectively Following convention, Jand k
are also used to indicate integers Numerical suffixes are used when several values of the same type appear
together, such as s1 and s2 The letter a (*array”) 1s used in place of | for lists, since | 1s difficult to distinguish
in text The letter n s used to indicate numeric types (integer or real) X and Yy are used to indicate objects of
unspecified or undetermined type 2z 1s used for record types Where the emphasis 1s on expressions without
regard for the values that they may produce, expr, exprl, and so on are used Liberties are taken with these
conventions when the meaning 1s clear in context

Integers, real numbers, strings. and csets can be specified hiterally in the program text Integers and real
numbers are represented as constants in the conventional manner For example, 300 1s an integer, while 1 015
4 rea] number Strings are enclosed 1n double quotation marks, as in “summary” See Sections 41 1,42 I,
521, and 5 3 for further descriptions of the methods available for representing literals Values of types other
than these can be constructed and computed 1n a variety of ways, but they do not have literal representations

2.2 Expressions

Icon 15 an expression-based language The most primitive expressions are identifiers and literals More
complex expressions can be composed from functions, operators, control structures, and groupings The
following sections describe various kinds of expressions

2.2.1 Variables and Assignment

A variable 1s an entity that can have a value Varables provide a way of storing and referencing values that
arc computed during program execution

The simplest kind of variable 1s an idennfier Syntactically, an identifier must begin with a letter or
underscore. which may be followed by any number of other letters, underscores, and digits Corresponding
upper- and lower-case letters are distinct Reserved words, such as If, mav not be used as 1dentifiers See
Appendix A for a complete hst of reserved words

svatactically correct identifiers:

X
X

k00001
summary
Report1
node_link
_link

syntactically erroneous identifiers:

23K
report$
then
x0@s

There are various forms of variables other than identifiers. Some variables, such as the elements of a
structure, are computed during program execution and have various syntactic representations. See Sections
6.1.4,7.4,8.1.2,8.2.2, and 8.3.3.

One of the most fundamental operations is the assignment of a value to a variable. This operation is

performed by the := infix operator. Forexample, v := 3 assigns the integer value 3 to the identifier v.
Note: The assignment operator associates to the right and returns its left operand as a variable. Thus
multiple assignments can be made. For example, v1 = v2 = 3assigns 3 to both v1 and v2.

Any expression that yields a variable may appear on the left side of an assignment operation and any
expression may appear on the right. For example, v1 = v2 assigns the value of the identifier v2 to the
identifier v1.

Error Condition: If the expression on the left side of the assignment operation is not a variable, Error 111
occurs.
The infix operator :=: exchanges the values of its operands. For example, v1 :=: v2 exchanges the

values of v1 and v2.
Naote: The exchange operator associates to the right and returns its left operand as a variable.

Error Condition: If the expression on either side of the exchange operation is not a variable, Error 111
occurs.

2.2.2 Keywords

Keywords are used to designate important values and variables. Some keywords have constants as values,
others control the status of global conditions, while others provide values related to the environment in which
the executing program operates.

A keyword is composed of an ampersand (&) followed by one of a number of identifiers that have special
meanings. A typical keyword is &date, whose value is the current date.

Some keywords are variables, and values can be assigned to them to set the status of conditions. An
example is &trace, which controls the tracing of procedure calls (see Section 11.3.4). If &trace is assigned a
nonzero value, tracing is enabled, while a zero value disables tracing. Some keywords are not variables and
cannot be assigned values. An example is &date.

Error Condition: If an attempt is made to assign a value to a keyword that is not a variable, Error 111
occurs.

Keywords are described throughout this manual in the sections that relate to their use.

2.2.3 Functions

Functions (built-in procedures) provide much of the computational repertoire of Icon. Function calls have
a conventional syntax in which the function name is followed by arguments in an expression list that is
enclosed in parentheses:

name ([expr [, expr] 1)

For example, type (x) produces the type of the object x, map (s1,52,83) produces a character mapping on s1
and write (s) writes the value of s

Asindicated, arguments may be expressions of arbitrary complexity

Different functions expect arguments of different types, as indicated above Automatic conversion
(coercion) s performed to convert arguments to the required types
Error Condition If an argument cannot be converted to a required type, an error with a number of the
form Inn occurs, where nn identifies the expected type See Appendix D

Defaults The null value, e, 1s provided for omitted arguments In some cases, null values are converted to
special default values This allows values that occur frequently to be omitted These cases are noted
throughout the manual and are summarized in Appendix C If trailing arguments are omutted, the trailing
commas may be omitted also

Note If more arguments are provided in a function call than are required by the function, the extra
arguments are evaluated, but their values are ignored

2.2.4 Operators

Operators provide a convenient abbreviated notation for functions There are two kinds of operators
prefix and infix Example of prefix operators are —i, which produces the negative of 1, and *x, which produces
the size of x Examples of infix operators are 1 + jand 1 * j, which produce the sum and product of i and |,
respectively

While all prefix operators are single symbols, some infix operators are composed of more than one
symbol Examples are v = X, 81 || s2 (which produces the concatenation of the strings s1 and s2) and
81 == s2(which compares strings s1 and s2 for equahty)

Blanks and parentheses may be used to avoid potential ambiguities when infix operators are followed by
prefix operators In the absence of blanks or parentheses, rules are used to interpret potentially ambiguous
expressions See Section 12 4 In addition, rules of precedence and associativity are used to determine which
operands are associated with which operators in complex expressions See Appendix A

As a class, prefix operators have the highest precedence (bind most tightly to their operands) For
example, —1 * J1s equivalent to (—1) * | Different infix operators have different precedences For arithmetic
operators, the conventional precedences apply Thus| + | * kisequivalenttor + (J * k) A complete list
of operator precedences 1s given in Appendix A

Infix operators also have associativity, which determines for two consecutive operators of the same
precedence, which one applies to which operand Most operators associate to the left For example,
I —) — kisequivalent to (1 — J) — k Assignment, however, associates to the right Thusvl = v2 = v3
1sequinalenttovl = (v2 = v3) A complete list of infix operator associativities 1s given 1n Appendix A

2.3 Evaluation of Expressions

2.3.1 Results

Some expressions produce variables The simplest example 1s an identifier such as delta Other
expressions, such as the Iiteral 13, produce values The term “result™ 1s used to refer to either a variable or a
value Values may be assigned to variables, and some operations, such as assignment, require operands that
produce variables

Conversely, many operations require values Thusn
s1 —= 82
the values of the variables 81 and s2 are compared

The process of obtaining the value of a vanable 1s called dereferencing In lcon, the arguments of
functions and the operands of operators are evaluated in a strictly left-to-right manner However,
dereferencing 1s not performed by functions and operators until all arguments and operands have been
evaluated Normally this does not affect the results of computation, but 1n cases where expressions have side
effects 1t may Consider, for example, the expression

f(x,x .= xx)

Here the second argument of fis an expression that changes the value of X The ettectis as i f(xx,xx) had bheen
cdlled. tegardless of the ongimal value of x, smee the fust argument ot s not dereterenced until the second
argument has been evaluated

I sphiat dereferencing may be obtained by the pretin L operator Thus
f(.x, x .= *x)

derelerences the first argument so that evaluation of the second argument does not affect the value of the first
dargument

Nore Thoopaand of the darelaenang operator need not be a vaniable

2.3.2 Success and Failure

Ihe evaluation of an expression may either produce a result (a vanable o1 a value), or it mav fail to
produce a result Failure to produce a result may occur for a variety of reasons, but it generally indicates that
some condition that 1s necessary for the production ot a result does not hold For example, the compaiison
operation 1= | Hails to produce a resultaf 115 not numernically equal to J Note that this s different from
COMPATISON 10 Mmost programming languages. where the result of comparison s a Boolean value, either rrue or
false. depending on whether o1 not the condition s satistied

In tcon. on the other hand the course of program execution is determined by whether or not expressions
produceresults Forexampleoin the fanuhiar control structure

if expi] then cvpr2 else e 3

expr2as evaluated tf expr / produces a result, while expr 3 s evaluated of expr 7 does not produce a result Note
that the effect of this method ol contiol i the same as the use of Boolean values The lcon mechanism
provides more generality, however. since 1t dallows operations to be conditional and at the same tume to
produce meanmgtul results For example, find (s1,82) returns the position at which 8115 a substring of 82
provided there s such a substimg but Lails to produce a result it there 1s not such a substring

In this manual the term “succeeds™ s used as an abbreviation tor “produces a result™ while "fails™ s used
das dn abbreviation for “lails to produce a result™ The term “outcome™ 18 used to reter to the conseqguances of
evaluatig an expression whether 1t be a resutt or tatlure

Faare of expression evaluation s a normal occurrence during the course of program execution Failurc s
not a programming error per se but simphy a wav ol selecting alternatinve paths of computation

Fhe hevword &fatlalwavs fails Tt may be usad i sitvations where exphat fatlure is desired

2.4 Basic Control Structures

fcon provides a number of traditiondl control structures as well as some that are specihically designed to
utthze the failure of an expiession to produce a 1esult
I Thecontrol structure
if expil then cvpi2 | else ey 3]
Oaluates expr I 1bexpr]l succeeds evpr 28 evaluated, otherwise ey 3 s evaluated The outcome of
if exprl then 12 else ey 3
is the outcome of expr 2 o1 expr 3 whichever is evaluated B the else clause 1s onutted and evpr 7 tails the if-
then cexpression fails
2 Phecontrol structune
while c\pi/ | do oy |

aaluates aaypr/oacepaatediy unul e fands Fach tme oy / suceeeds, evpr 2 s evaluated The outcome of
while-do is tatluie but sec Scction 2 6

3 1 he control structure
until exprl [do evpi2]

evaluates cypr [repeatediy untib it succeeds Each time expr 1 tails, expr21s evaluated The outcome of until-
do s failure but see Section 2 6

4 Ihe case control structure permits the selection of one of a number of expressions according to the value
ol a control expression The form of the case control structure 1s

case epr of { [case-clawse [, cave dlause] 1}
where evpi 1s the control expression Case clauses have the form
exprl L oevpr2

where expi I 15 a selector expression and expr2 1s an expression that is evaluated if evpr/ s selected There 15
also a detault case clause, which has the form default expr2 When the case expression 1s evaluated, the
control expression is evaluated first and 1ts value 1s compared to the values of the selector expressions. in
order. as given in the case clauses If a comparison is successful, the expression in the case clause 1s evaluated
and 1ts outcome becomes the outcome of the case expression If no comparison succeeds, the expression in
the default case clause, if present, 1s evaluated and becomes the outcome of the case expression

NVotos The default clause may appedr 1n any position with respect to the other case clauses although it s

customary for it to appear either first or last Only one defauit clause is allowed in a case expression It s

«valuated as o at appeated last The semicolons between case clauses may be omutted if the clauses are
placed on separate hines

Failure Condittons case tails if the control expression tails 1f no case clause 1s selected orif the selected
expression fails

Anecxample of a case expression 1s

case *s1 of |

1. m. =0
*x82. m =1
default. m = 2
}

which assigns 0 to mf the sizve of 8118 [, | to mif the size of s11s the same as the s17e of 2 (but not 1) and 2
to motherwise

S The control structure
repeat e\p

evaluates expr repeatedly repeat terminates only through a loop exit (see Section 2 6) or a procedure return
(see Section 11 32)

Votc repeat has no outcome per se
6 Thecontrol structure
not expn
produces @it expr fails but fails it expr succeeds For example,
If not expr/ then ey 2 else ey 3
IS equivalent to

if exprl then c\pr? else ey 2

2.5 Compound Expressions
I \pressions may be compounded to allow a sequence of expressions to appear in a context that requires a
single expression The outcome of a compound expression is the outcome of the last expression in the
sequence. A compound expression has the lorm
{[expr [;expr] ..]}
For example
if z=0then {x :=0; y ;= 1}
sets xtoOandyto Tifzw 0.
If the expressions in a compound expression are placed on separate lines, the semicolons are not necessary.
For example.

if z =20 then |
=0
=1

- < X

15 equivalent to the compound expression above. Sce also Section 12.2.

2.6 Loop Control

[here are two control structures for bypassing the normal completion of expressions m Joops. These
control structures may be used in repeat. while-do. until-do, and every-do (see Section 3.1).

1. The control structure next causes immediate transter to the beginning of the loop without completion of
the expression in which the nextappears.

2. Thecontrol structure
break c\pr
causes immediate termination ol the loop without the completion of the expression in which the break

appears. The outcome of expr becomes the outcome of the loop in which the break occurs.

Defardr Anomitted evpr defaulis to @

2.7 Procedures
A program s composcd of a sequence ol declarations. Procedure declarations, which contain the

excecutable portions of a program. have the form

procedure name ([argumeni-list 1)
procedure-bodh
end

The procedure name identities the procedure in the same way that functions are named. The argument hst
consists of the identifiers through which values are passed to the procedure. The procedure body consists ot a
sequence of expressions that are evaluated when the procedure is invoked. A return expression terminates an
imvocation of the procedure and returns a value.,

An cexample of a procedure s

procedure max(i,j)
if i > j then return 1 else return j
end

A procedure s invoked i the same fashion that a function is called. For example
m = max(xs1,xs2)

assigns to m the masimum of the sizes of 81 and s2.

file://I:/pres.sions

Program execution begins with an invocation of the procedure named main. All programs must have a
procedure with this name.

For a more detailed description of procedures, see Chapter 11.

-10-

Chapter 3

Generators and Expression Evaluation

3.1 Generators

Some expressions, called generarors, are capable of producing a sequence of results An example s
find (s1,s2), which produces the positions at which s1 occurs as a substring of s2 For example, in

find("th”,"this 1s the thesis")

there are three positions at which th occurs as a substring of the second argument 1,9, and 13 On the other
hand, in

find ("th","a single thesis”)
there 1s only one position, 10 In fact, there may be no position, as in
find ("th”,"we have none")

In this case, find cannot produce a result (it faills) Note that the number of results that a generator hke find
can produce depends on the values of its arguments

If 4 generator 1s used 1n a simple computational context, it produces only 1ts first result For example
1 = find("th”,”this 1s the thesis”)
assigns the value I to1 On the other hand, in
I = find("th"”,"we have none")

the function find fails and the value of 11s not changed

There are a number of contexts in which some or all of the results produced by a generator may be useful
The control structure

every expr] [do expr2]
evaluates expr2 for every result produced by expr! For example
every i = find(s1,s2) do write(1)

writes all the positions at which s1 occurs as a substring of 82
Nore The outcome of every-do itself 1s failure

As indicated, the do clause 1s optional The example above can be written more concisely as
every write(find(s1,s2))

Note that although write 1s not a generator itself, write 1s called for every value of its argument, which is a
generator The same situation occurs 1n the assignment operation above

There are a number of generators Two of the most fundamental generators are alternation and integer
sequencing

Alternation is a control structure that has the form
exprl | exnr2

This control structure produces the sequence of results produced by expr/ followed by the sequence of results
produced by expr? Forexample

every f(1 | 3)
cvadaates () and £(3)

In this case both the cyprossions moaltarmation are simple values o/ and cvr2 may be generators
which casc cach produces s sequence For example,

every wnite(find(s1,s2) | find(s3,54))

writes all the positions at which s1 occurs as a substring of s2 followed by all the positions at which 83 occurs
as da substring of 84 Similarly

every write(find(s1 | s2,83))

writes all the posittons at which s1 occurs as a substring of s3 followed by all the positions at which s2 occurs
as asubstring of 83

1 he operation
exprl to «ypi2 [by evpi 3]
generates the integers 1in sequence from the value of expr/ to the value of ey 2, inclusive, using the value of
expr $as anincrement For example

every write(0 to 10 by 2)

writes 0, 2.4, 6 8. and 10
frior Condinron 1 the value produced by cypr3 w0 Frror 211 occurs

Nores oyprl aovpr2 and a3 are avaluated only once Generation stops when cyr 218 exceeded evprs
may be negative i which case successive v smatlar values arc genarated until capr 2 s 1icached or passed
I he construction every |+ .= | to k do <y s similar to the for control structure found i mam
programming languages

Defaulr 1t the by dlause s omitted the merement detaults to |

In some cases 1t1s desirable to hmit the number of results produced by a sequence The control structure
aovl N ey ?
produces at most expr2 results from the sequence generated by ey / For example
every write(find(s1,s2) \ 10)

writes the first 10 positions at which 81 occurs as a substring of 82 Of course 1if there are fewer than 10
positions only those values are produced

Sometimes 1t s useful to repeatedly produce the sequence produced by a generator The repeated
alternation control stiucture

[c \p
Is equinvalent to

expr | expr | expi

except that iof expr ever fails (that 1s, 1l 1t ever produces no result), |eypr terminates (This may occur because
expr fails imtially or because of side effects that atfect the sequence produced by expr) For example

every write(|[find(s1,s2) \ 100)

writes the positions at which 81 occurs as a substring of s2 repeatedly, but terminates after 100 values have
been written

3.2 Goal-Directed Fyaluation

In every eypr/ do eypr 2 the complete sequence of results of expr/ s produced by the explicit use of every
Fapicssions i deon are evaluated in o goal-duccred tashion in which the results of generdtors are
automaticatly produced i sequence if that 1s necessary for an enclosing expression to succeed (that 1y to
producc aresult) A simple cxample of poal-directed evaluation is illustrated by

-12-

file:///expr

(x 1y)=>0

Here the ledt operand of the comparison operator s a generator capable of producing two results the
vattables x and y The value of the first result of the alternation s compared to 0 If this comparison
succeeds the entire expression succeeds However, if this comparison fails, the entire expression does not
necessarthy lail - Instead, the second 1esult of the alternation s produced and 15 compared to 0 Hence the
entire expression succeeds if the value of either x or y 1s greater than 0 (hence the term “alternation™)

This goal-directed cvaluation mechanism 1s completely general and applies to the evaluation of the
arguments and operands of all functions and operators For example

if (x | y| z) > (a| b) then wrnte("plateau reached")

writes plateau reached if any ol X y. or z1s greater than eitheraor b

3.3 Fvyaluation of Expressions

I'he arguments of functions and procedures, as well as the operands of operators, are evaluated from left
to right In goal-directed evaluation, if evaluation of an argument or operand fails to produce a result. conr o/
hachtraching takes place to the most recently evaluated argument or operand to obtain another result from its
sequence Forexample 1n

exprl + exp?2

expr] s evaluated tirst 1t expr/ fanls, the addition operation fatls If ey / succeeds, evpr2 1s evaluated It
expr2 lails however, the addition operation does not necessarily fail Instead, backtracking occurs and
another result from the sequence lor expr] 1s sought 1t such an alternative result exists, expr2 s evaluated
agamn Since the evaluation of cypr f mav aftect expr 2 (by means of side effects), expr2 may now succeed If so.
the addition s performed An example of such a situation 15

(x = ntom)+ find("1"x)

In the case ol a tunction call such as flexpr Leapr 2) o ayn 2 fanls, alternative results are sought for expr/ In
fact 1l cxpr] and exypr 2 both succeed but the function itself fails, alternatives are sought for the arguments
(st cypr 2 and faihng that ¢ypr 7y I any argument has an alternative, successive arguments dare re-evdluated
and the function s called agamn 1f the function continues to fail, 1t 1s called for all alternative values of the
arguments The overall expression fails only af the tunction fails for all alternative values of the arguments
1 his method of evaluation applies regardless of the number ot arguments in the function call Operands of
operators are evaluated i the same was as arguments of functions

In some cases backtiacking to achicve mutual results trom two expressions may be desired, even though
no computation s to be performed on the results The mhix operator & (“conjunction™) behaves like any
other inhiy operator with respect to backtracking, except that if expr I succeeds the outcome of expr/ & ey 2
is simply the outcome of expr?

I mutudl evaluation among several expressions 1s needed conjunction can be compounded. as in
eyl & eym? & & evpin

This notation becomes cumbersome especaially if the expressions are themselves complex Such compounded
conjunctions mav be ditficult to compose correctly and to understand An alternative method s muiual
avaluanion, denoted by

(Cxprdypi2, ovpin)

wihich ovaluates exprl oy 2 exprn qust hike the arguments in a function call If all the expressions
producc results the result of mutual evaluation s the result of exprn Otherwise, it {ails The effect s exactly
the same as ma compound conjunction

Somctumes a number of expressions need to be mutually evaluated, but a result other than the last 1s
destred The expression

aopilexpr a2, ovpin)

produces the result of ¢ypre whare the value of eps s the integer . provided all the expressions produce a

S 13-

result 1t any expression fails, however, the mutual conjunction fails For example, the value of
2(find(s1,s),find(s2,s),find(s3,s))
is the position of 82 as a substring of s provided s1 s2. and 83 all occur as substrings of s The value of expr
¢an be negative, in which case the result s selected from right 1o left - This method of selecting the result ol
mutual evaluation makes it casy to select the last result from a long hst For example
(=) (exprl, expr2, , exprn)
selects the result of expen The parentheses around —1 dare necessary, the expression
—Y(exprl, expn2, , expin)
produces the negative of the result of ¢\pr/!

Note that mutual conjunction has the same syntax as a function call There 1s no ambiguity, however If
the value of expris an integer ¢ the result of 1s the 1esult of expri If the value of expr s a function, however,
the function 15 apphied to the arguments and the outcome 1s the outcome of the tunction call

3.4 The I xtent of Backtracking

Backtracking 1s hmited in 1ts extent by syntactic constructions in the program The extent of backtracking
therefore can be determined by examination of the text of the program (that is the extent of backtracking 1s
not determined by the history of computation in the program)

In addition to the control structure expr] \ expr 2 that 1s described in Section 3 | several constructions
specifically hmit the extent of backtracking The semicolons that separate expressions in a sequence for
example, prevent backtracking from occurring between the expressions For example, in the sequence

exprl, expr2
fatlure of ¢ vpr 2 does not cause backtracking into expn /

The other contexts 1n which goal directed evaluation s imphaitly limited to one result are the first
(control) expressions in the case-of. if-then-eise not, until-do. and while-do

3.5 The Reversal of I ffects

As described above control backtracking to an earlier point in a computation mady take place in order to
obtain alternative results of generators There 1s, however, no implicit reversal of effects such as assignments
For example, in the expression

(y =1to10) & (y > 2)
il the value of 215 20 the value ot y after the failure ol the conjunction 1s 10 regardless of what the value of y
was before evaluation of the conjunction

I here are two assignment operators that do reverse their effects if failure occurs

I The inhix operator v.<— x assigns the value of X to v but restores the previous value of vif backtracking
causes latlure in the expression in which the reversible assignment occurred For example n

y =0, (y<— 11 10) & (y > 2)
il the valuce of 215 20 the value of y s restored to 0 when the conjunction fails

2 The intiy operator vl <—> v2 oxchanges the values of vl and v2, but restores their former values i

backtracking causes failure in the expression in which the reversible exchange occurred

Vorey The ravasible assignment and oxchange oparators associate to the night and return their ot
oparands as vartables

Lrver Condmons 1t the apression on the deft side of the raversible assignment operation or either
cvprossion i the reversible exchange oparation is not a vattable Frror [occurs

Chapter 4

Numbers and Arithmetic Operations

Icon provides integer. real. and mixed-mode anthmetic with the standard operations and comparisons

4.1 Integers

Integers in lcon are treated as they are in most programming languages
3

3
More Theallowable range of integer vatues s =2 to2 —|

4.1.1

Integers may be specified hiterally ina progiam in the conventional fashion

Literal Integers

Vores Taadimg zerocs are allowed but arcagnored Negative integers cannot be expressed hterallv but
they may be computed as the results of arithmetic operations

! vamples

CAPIENON valu
0 0
000 0
10 10
010 10
27524 27524

Integer hiterals such as those given above are i the base 100 Other radices may be speaihied by begimning the
integer literal with ar, where 2715 a number (base 10) between 2 and 36 that specifies the radix for the digits
that tollow For digits with a decimal value greater than 9, the letters a, b, © are used

Notes The digits used i the literal must be dess than the radin Fither ror R may bo used to ndicatc a
tadiv iteral Fathor upper- o Tower case lettars may be used tor “digits™

! xamplos

CAPIaOsion vali
ighl 3
8r10 X
10r10 10
16rif 255
16RFF 258
36rCat 15941

4.1.2

Ihe followmg intiy arithmetic operations are provided

cxpiession

Integer Arithmetic

operation

relative
precedence

assoclativil

+) addition] left
= subtraction | lelt
* | multiplication 2 left
/| division R4 left
I %) remaindering 2 lett
A exponentiation 3 right

-5 -

file:///oies

Aotes The remainder of integer division s discarded, that 1s, the result is truncated 1 % j produces the

remainder of tdivided by | The sign of the result s the sign oot

Livor Condimons 11 an attempt s made to divide by 0, Error 201 occurs
remaindering s zero, Frror 202 occurs

allowablc integer values, rror 203 occurs

! vamples

cypiession

B NN = =t DN = =

4

1400 % 1000

4

+2

ow—=NNp

> > > T~ T~ *

DN o
* ~
-t

2
2
-1
1-2)
A3 A2
% 3

/
/
/

—~

% 4

-4 % 3

4

There are two anithmetic prefix operations +i and —1. to form the positive and negative of i respectively
addition, the function abs(i) produces the absolute valuc of i.

I\

% -3
4 % -3

mples

expression

+100

100

+0
-0

(4 — 700)

abs(7)
abs(-7)

value

3
=1

S N

—em O == OC N

-
=

0

=2
262,144
|

400

0

-1

|

-1

value

100
=100
0

0
696

4.1.3 Integer Comparison

I here are siv operations for comparing the magnitude of integers.

=
>
>=)
<]
<=

equal to

not equal to

greater than

greater than or equal to
less than

less than or equal to

It the second operand of

It the result of an arithmetic operation exceeds the range of

In

All the comparison operators associate to the left and have lower precedence than any ot the anithmetic

The operations return the value of their right operand 1if the specified relation
between the operands holds and tail otherwise

computation operations

-16-

I yamplos

CAPLOSIon value

100 100 100

1 ~-1 none
1> 1 none
2> 1 |
1.2 2
2>=1 |
2<=2 2
2 < 3 < 400 400
2<3=4 none

4.2 Real Numbers

Real numbers are represented in floating-point format
Note Floating-point numbers are double precision

4.2.1 Literal Real Numbers
Redal numbers may be specified hterally in a program in the conventional fashions using either decimal or
exponent notation
AMotes For magnitudes less than I, a leading 7ero 1s required Additional leading zeroes are allowed but
are ignored Either e or E may be used in exponent notation

Frxampley

expression value
314159 314159
00 00

000 00
27e2 2,700 0

27¢ 6 0 000027
27e5 2,700,000 0
27E5 2,700.000 0

4.2.2 Real Arithmetic

The anthmetic operations available for real numbers are the same as those available for integers See
Section4 1 2

Frror Condinons In the case of real overflow, real underflow, or division by zero, Error 204 occurs If an
attempt s made to raise a negative real number to a real power, Error 206 occurs

-17-

Examples.

expression \'alue
10+ 20 30
10- 20 10
1.0+« 20 2.0
10/20 0.5
20/ 1.0 2.0
10-10-1.0 -1.0
1.0+20/20 10
1.0 /2020 1.0
47 % 20 0.7
25 % 10 0.5
+1.0 1.0
-10 -1.0
abs (7 0) 7.0
abs(-7.0) 7.0

4.2.3 Comparison of Real Numbers

The comparison operations available for real numbers are the same as those available for integers. See
Section 4.1.3.

Note Because of the imprecision of the floating-point representation and computation, comparison for
equality of real numbers may not always produce the result that would be obtained if true real anthmetic
were possible

Examples

epression value
1.0 = 1.0 10
10 ~- 1.0 none
10>10 none
20>10 1.0
10 220 2.0
20<=1.0 none
20 «<= 20 2.0
20< 30« 40 4.0
20 < 3.0<= 4.0 4.0
20.30-=40 none

4.3 Mixed-Mode Arithmetic

Except for exponentiation, if either operand of an infix operation is a real number, the other operand is
converted to a real number and real arithmetic is performed. In the case of exponentiation, a negative real
number may be raised to an integer power.

- 18-

Pyxamplo

CAprossion value
10+ 2 30
1+20 10
1 20 10
10+ 2 20
10/ 2 05
2/ 10 20
1-1-10 =10
1«20/ 2 10
1720+ 2 10
10/ 2% 2 10
20 A 2 10
20 A —1 05

4.4 Arithmetic Type Conversion

4.4.1 Conversion to Integer
The value of integer (x) is an integer corresponding to X where X may be an integer. real number o1 cset

|

By

Integers are returned unmoditied by integer (x)

Real numbers are converted to integer by truncation

Fartho ¢ Condimon Convarsion ol a teal numbar to an nteger farls o the valuce of the real number s out of
the allowablcrange of integars

/

3

/

/

vaniples

CAONIon vali
integer (2 0) 2
integer(2 5) 2
integer(25) =2
integer(2e35) N

Strmes are converted to mtegers i the same way that an integer hiteral s treated m program text
exceept that

() 1eading and trailing blanks are aliowed but are ignoted

(b)Y Alcading sign may be included

(¢) There must be at least one digit

I the stiing corresponds to a real iteral. real-to-iteger conversion 1s performed See Sectton 5 4

arlr ¢ Condinon integer (s) Lails 1 S 18 not a propur ieprosentation of an imteger o1 teal numba

vamplos

Ao on value
integer('10") 10
integer('8r10") N
integer ("—10") -10
integer (3) R
integer (” 0003") 3
integer ("3 5") 3
integer ('3 x") non
integer(3r4’) 1O

-19-

file://l:/ui
file:///aniples

4 (sets are hirst converted to strings and then tointegers See Section 5 4
1 atha ¢ Condinon integer (x) tails if the tvpe of x1s not one of those hsted above

For operations that require integers, impheit conversions are automatically performed for real numbers,
strings and csets

Tiror Condmon Hanimphat conversion to integer lails Frior 102 occurs

P yamples

CAPIeASION Vvali
1+ "0 I
2" A 40 16 0

4.4.2 (onversion to Real Number

The value of real(x) 1s a 1eal number corresponding to X, where X mady be a real number. integer, string, or
cset

I Real numbers are returned unmodtfied by real (x)

2 lIntegers are converted to the corresponding real values

{ vamples

expression valuc
real (10) 100
real(—10) =100
real (8r10) R0
real (27000) 270000

3 Strings are converted to 1eal numbers in the same way that real literals are treated 1n program text
cxeept that

(a) leading and trathing blanks are allowed but they are1gnored
(b) A leading stgn may be included

(¢) Aleading zeio s not required before the decimal point tor values whose magnitudes are less
than |

Nores 1 the string corresponds to an mteger hiteral integer-to-real converston is pertormed

D alurc Condmon real (S) tatls if S 1s not o propet representation ol a real number or integen

I xamples

CApression valuc
real (10 0") 100
real("—100") -100
real ("27000") 27 0000
real (" 307) 30
real (" 0003 0") 30
real("8r10”) 80
real ("3 x") no
real ("3r4") nos

4 Csetsare irst comverted to strings and then to real numbers Sec Section 5 4
Lathwr e Condnion real (x) fands f the tvpe of Xas not one of those histed above

Imphicit conversions are automatically performed (or integers strings, and csets 1in operations that requite
rcal numbcrs

Lrror Condmon TEan imphat convasion to real number fails Frror 102 occurs

-20-

Examples

expression value
10 + "100” 110
"20" A 3 80

4.5 Conversion to Numeric

The function numeric(n) returns the integer or real number corresponding to nif N 1s an integer. real
number. or if it 1s convertible to one of these types See Section 54 The function fails otherwise

Fyamples

expression value
numeric (100) 100
numeric (0 0) 00
numeric ("0") 0
numeric ("0 0") 00
numeric("a") none
numeric ("16Rff") 255
numeric ("3r4") none
numeric(" ") none

-21-

Chapter 5

Strings and Character Sets

5.1 Characters

Although characters are not themselves data objects in Icon, strings of characters and sets of characters
are. Strings form the heart of Icon's processing capabilities.

The character set used by Icon is based on ASCIL [11], There are, however, 256 different characters
available for use in Icon programs.

Note: The thirty-third character (octal code 40) is the blank (space). Since it has no visible representation,
the symbol O is used in this manual to represent the blank in contexts that otherwise might be confusing.

While it is customary to think of characters in terms of their graphic representations and control functions,
characters are basically just integers. Internally the integers corresponding to ASCII are represented by octal
codes from 000 through 177 (hexadecimal codes 00 through 7F). The order of characters is determined by
these codes and specifies the “collating sequence” of the ASCII character set. For example, Z comes before z
in the collating sequence. This order is the basis for comparing strings (see Section 6.2) and for sorting (see
Section 8.4). The full set of 256 characters similarly are represented by octal codes 000 through 377
(hexadecimal codes 00 through FF).

5.2 Strings

A string is a sequence of zero or more characters. Any character may appear in a string. There are many
ways of constructing strings during program execution. See Chapter 6.

§.2.1 Literal Strings

Strings may be specified literally in a program by delimiting (enclosing) the sequence of characters by
double quotes ().

Examples:
expression value
"X X
=i o
"abcd” abcd
"Isn'toitogreat?” Isn‘toitogreat?

Note: In this manual, string values are given in the body of the text without the delimiting quotation
marks, provided that the meaning is clear.

Some characters cannot be entered directly in program text because of their control functions or because
of the limitations of input devices. To allow specification of all characters in literal strings, an escape
convention is used in which the backslash (\) causes subsequent characters to have a special meaning as
follows:

YR

characrer code

backspace \b
delete \d
escape \e
tormfeed \f
linefeed \l
newline \n
carriage return \r
horizontal tab \t
vertical tab \v
double quote \"
single quote \’
backslash \\
octal code N\dlddd
hexadecimal code \Xdld
control code \A¢

The specification \ddd represents the character with octal code ddd. The specification \xdd represents a
character with hexadecimal code dd. Only enough digits necd to be given to specify the octal or hexadecimal
code. For example, \O specifies the null character and \xa is equivalent to \x0a. \Ac¢ represents the ASCII
character control-c. For example. \AA is the ASCII character control-A. In general, \Ac is the character
corresponding to the tive low-order bits of . f the character tollowing a backslash is not one of those hsted
above. the backslash is ignored.

Voies. The convention used here lor representing characters in hterals is adapted trom that used by the €
programming language [9]. The hincteed and newline characters are the same.

I vamples

expression value
"\"oops\" " "oops”
N "o
"\g" u}
"\a\z" az
"\132" Z
"\134\ 134" \\
"“\77a" ?a
"\1234" S4
"\x64" d
"N\ \

5.2.2 String Size
The size of a string s the number of characters it contains and is computed by the unary operator . The
empty string 1s the string consisting of no characters and has size zero. 1t may be represented literally by two
adjacent quotes, enclosing no characters.
Votest The maximum size of a string s 2|s—l. Fhe practical maximum s usually dictated by the amount
of memory available Sinee the empty string contams no characters, it has no visible representation In

this manual, the ssmbol @ v used to represent the empty string 1in contexts that otherwise might be
confusing Thus """ and ® both indicate an empty string

Fyamples

expresion value
*"abcd” 4
e |
e 0

-23-

file:///134/134
file:///1234

5.3 Character Sets

Whereas a string 1s an ordered sequence of characters in which the same character may appear more than
once, a character set (cset) 1s an unordered collection of characters The value of the keyword &cset 1s the set
of all 256 characters Other character sets are subsets of &cset and are useful for operations where specific
characters are of interest, regardless of the order in which they appear See Sections 6 32 and 7.3 Other
built-in character sets are &ascli, the first 128 characters of &cset, &lcase, the lower-case letters, and
&ucase, the upper-case letters

Error Condition The keywords &cset, &ascii, &lcase, and &ucase are not variables If an attempt 1s
made to assign a value to one of them, Error 111 occurs

Csets may be specified literally in a program by dehmiting (enclosing) the characters in single quotes (")
Duplicate characters in cset literals are ignored and the order of the characters 1s irrelevant The same escape
conventions that apply to string literals apply to character set Iiterals

Examples
expression \ u/m'
'abed’ abcecd
‘badc’ abcd
‘energy’ egnry
"\’ \

Note Values of csets in examples are given with separating spaces to distinguish them from the values of
strings

There are five operations on character sets
I ~c 1sthe complement of ¢ with respect to &cset
2 ¢l ++ c2 1s the union of ¢1 and c2
3 ¢1 ** c2 istheintersection of ¢1 and ¢c2
4 c1 — c2 sthedifference of ¢1and ¢2, that s, all of the characters in c1 that are not in ¢2

5 *c 1s the number of charactersin ¢

Fxamples
expression value
cl - 'drama’ admr
c2 = 'append’ adenp
cl ++ ¢c2 ademnpr
cl " ¢c2 ad
cl — ¢c2 mr
cl — ~c2 ad
“c1 4

Nore A character set may be empty, 1 € containing no characters Such a character set may be obtained
by " or ~&cset

5.4 Type Conversion

5.4.1 Explicit Conversion

The value of string(x) 1s a string corresponding to x, where X may be an string, integer, real number, or
cset

-24-

1. Strings are returned unmodified by string(x).

2. For integers and real numbers, the resulting string is a representation of the numerical value
corresponding to the literal representation that the numeric object would have in the source

program.
Examples:

expression value
string (10) 10
string (00010) 10
string (8r10) 8
string (2.7) 27
string (02.70) 27
string (27e-1) 2.7
string (2700000.) 2.7¢6
string (0.0000027) 2.7e-6

3. For csets, the result is a string of characters in the cset, arranged in order of collating sequence (see
Section 6.2).
Failure Condition: string(x) fails if x is not one of types listed above.
The value of cset(x) is a character set corresponding to x, where x may be an integer, real number, string,
orcset. If xis an integer or real number, it is first converted to a string as described above.
Failure Condition: cset (x) fails if the type of X is not one of those listed above.

Examples:
expression value
cset ("drama”) admr
cset (1088) 018
cset (3.14) .134

Nore: Conversion of a string to a cset and back to a string, as in

s := string(cset(s))

eliminates duplicate characters and sorts the characters of the string.

Examples:

expression value
string(cset(“ab"”)) ab
string(cset("ba")) ab
string (cset("mam”)) am
string (cset("a0ob")) Dab

5.4.2 Implicit Conversion }
In contexts that require strings, implicit conversion is automatically performed for integers, real numbers,
and csets.

Error Condition: 1f an object of any other type is encountered in a context that requires implicit
conversion to a string. Error 103 occurs.

Examples:
expression value
x10 2
*010 2
*100 3

-25-

For operations that require wsets, imphet conversion s performed automatically for integers, real
numbers, and strings Integers and real numbers are first converted to strings and then to csets

Frror Condmion If an object of any other type is encountered in a context that requires implicit
conversion to a cset, Error 104 occurs

=26 -

Chapter 6

Basic String Operations

6.1 Constructing Strings

There are a number of operations for constructing strings. Most of these operations are described in the
following sections. See also Sections 7.2, 7.3, and 7.4.

6.1.1 Concatenation

Since a string is a sequence of characters, one of the most natural string construction operations is
concatenation — appending one string to another. The value of s1 || s2 is a string consisting of 81 followed by
s2.

Note: The empty string 1s the identity with respect to concatenation. That 1s, the result of concatenating
the empty string with any string s 1s simply s

Examples
expression value
rlan || nzu az
u[u || nabcdn ” u]u [ade]
“abed” || " abcd

oo H "o]

6.1.2 String Replication
The value of repl (s,i) is the result of concatenating i copies of s.
Error Condinion. 1f 11s negative or greater than 2" I, Error 205 occurs.
Note The value of repl (s,0) 1s B.

Examples
expression value
repi("a"“,2) aa
repl ("= ",3) R
repl (&lcase,0) n

6.1.3 Positioning Strings

Positioning data in strings of a specified size 1s frequently useful, especially when printing output in
columns. There are three functions for doing this.

1. The value of left(s1,i,s2) 1s s1 positioned at the left of a string of size i. s2 is used to fill out the remaining
portion to the right of s1, and 1s replicated as necessary, starting from the right. The last copy of s2 1s
truncated at the left if necessary to obtain the proper size. If the size of 1 is greater than i, it is truncated at
the right end.

Defaulr. A null value for s2 defaults to O

Error Condinion 1f 115 negative or greater than 2'5~ 1, Error 205 occurs

_27-

Examples

expression value
left("abcd”,6,” O") abcd O
left ("abcd”,7,” D) abcdo O
left ("abcde”,7,” O") abcde D
left ("abcd”,6) abcdoD
left (&lcase,10) abcdefghi

2 The value of nght(s1,1,52) 1s similar to ieft(s1,1,82), except that s1 is placed at the right, s2 1s replicated
starting at the left, with the truncation of the last copy of s2 at the right if necessary. If the size of s11s greater
than 1, 1t 1s truncated at the left end

Default A null value for s2 defaults to O
5
Frror Condition If 11s negative or greater than 2"-1. Error 205 occurs

Examples
expression value
right(""abcd”,6,” 0") Dabcd
rght("abcd”,7,” 0") O abecd
nght(”"abcde",7,” 0") Oabcde
rnght(”abcd”,6) Doabed
right(&lcase,10) grstuvwxyz

3 The value of center(s1,1,52) 1s s1 centered 1n a string of size 1 $2 1s used for filling on the left and night as
for the functions above If the size of s1 1s greater than 1, 1t 1s truncated at the left and at the right to produce
1ts center section If s1 cannot be centered exactly, 1t is positioned to the left of center

Default A null value for s2 defaults to O
15
Error Condition 1f 11s negative or greater than 2 " -1, Error 205 occurs

Fxamples
expression value
center(”abcd”,8,” 0") Dabcd D
center("abcd”,9,” O") Dabcdo O
center("abcde”,9,” O") Dabcde O
center(”abcd”,6) Oabcdao
center (&lcase,10) Jkimnopgr
center (&lcase,11) nykimnopgrs

6.1.4 Character Positions and Substrings

I he positions of characters 1n a string are numbered from the left starting at | The numbering 1dentifies
positions between characters For example, the positions in the string HAT are

HAT

Note that the posttion after the last character may be specified

Positions may also be specified with respect to the right end of a string, using nonpositive numbers starting
at 0 and continuing with negative values toward the left

HAT

For this string, positions 4 and 0 are equivalent, positions 3 and —1 are equivalent, and so on

228 -

The positions that can be specified for a string s are in the range —+Sto *s + |, inclusive Values out of this
range are not allowable position specifications In general, the positive specification | 1s equivalent to the
nonpositive specification 1—(*s + 1)

Note The only allowable positions for the empty string are | and), which are equivalent

A substring 1s a sequence of characters within a string An mutial substring of s 1s one that begins at the
first character of s A rermunal substring of s 1s one that ends at the last character of s Substrings are
determined by beginning and ending positions, using a range specification There are four forms of range
specification

] the single character following position i

10 characters between positions 1 and |
1+ k k characters following position |
- k k characters preceding position |

In all cases, 1 and) may be given by positive or nonpositive specifications and k may be positive, negative, or
7ero

Note The range specifications | jand) 1 are equivalent

A substring 1s obtained by a subscripting expression of the form
string left-bracket range-specification right-bracket

The resulting substring consists of the characters given by the range specification

Failure Condinon A subscripting expression fails if either of the positions of the range specification do
not correspond to allowable positions in the string being subscripted In this case, the specification 1s said
to be our of range

Warnmg The internal representation of characters starts at 0, not 1, while the positions in a string start at
1 Consequently, there 1s a difference of | between the position of a character in &ascit and 1its (dectmal)
code value Thus &ascii[1] 1s the null character This difference may be an annoyance and also a source
of error It s the consequence of the techmque used for specifying positions from either end of the string
by unigue integers

Framples

c\pression value
&icase[1] a
&ucase[26] 4
&icase[1 2] a
&lcase(2 1] a
&lcase(1 1] []
&ucase[27] none
&lcase[27 28] none
&lcase[1-2] y
"abcd”[2 0] bed
"abcd"[2 7] none
"abcd”([1 0] abcd
"abcd[2+ 2] bc
"abcd"[3- 2] ab

If the string specified in a substring operation 1s a vaniable, assignment can be performed to replace the
specified substring and hence change the value of the variable
Aotes All forms of assignment can be used to replace substrings

Frior Condinon 1f an attempt 1s made to assign to a subscripting expression in which the string is not 4
variable Error 111 occurs

-29.-

Examples
expression

s = "abcd”
s[12] = "xx"
s[-10] - "~
s[1] — "abc”
s[1+2] = "y"
s[2] - s3]

value of s

abcd
xxbcd
xxbc
abcxbe
ycxbc
yxcbe

6.1.5 Other String-Valued Operations

I The value of reverse (S) 1s a string consisting of the characters of s in reversed order

Examples
expression

reverse ("abcd”)
reverse (&lcase)
reverse (" ")

value

dcba
zyxwvutsrgponmlkjihgfedcba
a

2 The value of trim(s,c) 15 a string consisting of the imual substring of s with the omission of the trailing
substring of s which consists solely of characters contained in ¢

Default A null value for ¢ defaults to 'D’

Examples
expression

trim ("abcdooo”,'a’)
trm("abcdoDO")

trim ("abcdoop”,'od’)
trim (“abedoono”,’d)
trim("abcdoDDB”,&ascit)

value

abcd
abcd
abc
abcdooo
[]

3 The value of map(s1,s2,83) 1s a string resulting from a character mapping on s1, where each character of
s1 that 1s contained 1n s2 1s replaced by the character in the corresponding position in 83 Characters of s1
that do not appear 1in s2 are left unchanged If the same character appears more than once 1n s2, the
rightmost correspondence with 83 applies If the sizes of 82 and s3 are not the same, Error 208 occurs

Defaults A null value for s2 defaults to &ucase and a null value for s3 defaults to &lcase

Note If s11s a transposition (rearrangement) of the characters of 82, then map(s1,52,53) produces the

corresponding transposition of s3

Examples
expression

map (“abcda”,”a","=")

map (“abcda”,”ad"”,” «»")
map (“abcda”,”ad"”,"s ")
map ("abcda”,"ax","* ")
map ("abcda”,"yx"," "= "

map ("abcd”,”bcad”,”1234")
map ("acda”,"aac"”,”123")

value

=bcd=
*bDCxx
*bC »
«bcds
abcda
3124
23d2

map ("wxyz" "zyxw" "abcd”) dcba

6.2 String Comparison

Strings, like numbers, can be compared, but the basis for comparison 1s lexical (alphabetical) order rather
than numerical value Lexical order includes all characters and 1s based on the collating sequence If a
character ¢1 appears before c2 in collating sequence, c11s lexically less than ¢2 The lexical order for single-
character strings 1s based on this ordering Thus X 1s less than x, but z 1s greater than x For longer strings,
lexical order 1s determined by the lexical order of characters in corresponding positions, starting at the left
Two strings are lexically equal if and only if they are 1dentical, character by character. If one string 1s an initial
substring of another, then the shorter string 1s lexically less than the longer one

Note The empty string s lexically less than any other string

The operation 81 << 82 succeeds 1f s1 1s lexically less than 2 and fails otherwise The value returned on
success 1s S2 In all, there are six lexical comparison operators

s1 << 82 lexically less than

81 <<= 82 lexically less than or equal

st >> s2 lexically greater than

s1 >>= 82 lexically greater than or equal

s1 == 82 lexically equal

§1 ~== 82 lexically not equal
Examples

expression value

X" << X" X

X" <<= "X" none

X" S>> X" none

XX << X" X

"xx'" >>= "xX" xX

"xx!" << "xxx" XXX

"xx" << "xxX" xxX

T o~== XM X

R »

6.3 String Analysis

Most programming operations on strings involve analysis rather than synthesis, and the repertoire of
analytic operations is correspondingly large

6.3.1 ldentifying Substrings
There are two functions for identifying spectfic substrings

1 1f s11s an mitial substring of s2[1], the function match (s1,s2,1,)) returns the position of the end of the
substring

Fatlure Condition match(s1,s2,1,)) fails if s11s not an initial substring of s2[1 }]

Defaults A null value for t defaults to 1 and a null value for j defaults to 0

-31-

{ namples

expression value
match ("a"”,”abc",1) 2
match("a”,”abc") 2
match(”a"”,"”abc",2) none
match ("ab”,"abc",1,2) none
match ("bc”,”abc",1) none
match ("bc”,"abc”,2) 4
match ("becd”,”abc”,2) none
match (" ”,"abcd"”,1) l
match (" ”,”abcd”,5))

2 The value of find(s1,s2,1,)) 1s the leftmost position in $2 where S1 occurs as a substring 1n 2[1:)]
Failure Condinion find (s1,s2,1,)) fails if s11s not a substring of s2[i §]
Defaults A null value for 1 defaults to 1 and a null value for) defaults to 0

Examples
expression value
find("a","abcd”,1) 1
find ("a","abcd") 1
find (“bc”,"abed”,1) 2
find("a","abcd”,2) none
find(""ab”,”abcd”,1,2) none
find ("'de”,"abcd” 1) none
find (" " "abcd”,3) 3

The function find 1s a generator that produces the sequence of the positions, from left to right, at which s1
1s a substring of s2[i |]
Examples
expression values in sequence

every find("a","abaaa") .3 4.5

1
every find("abcd”,”abcdeabc”) I
every find("bc”,”abcdeabc”) 2,7
every find("bc”,"abcdeabc”,3) 7

6.3.2 Lexical Analysis

Lexical analysis involves sets of characters rather than substrings There are four lexical analysis
functions

I If the first character of S{t)]s contained in the character set C, the value of any (C,s,1,)) 1s 1+ 1

Fatlure Condinton any (c,s,1,)) fails if the first character of s{1 j] 1s not contained 1n the character set ¢
Defardty A null vatue for 1 defaults to 1 and a null value for j defaults to 0

-32-

I xamples

eApression value

any (‘abc’,”abcd”,1) 2
any (‘abc’,”abcd”) 2
any (‘abc’,”dcba") none
any (~'abc’,”"dcba’) 2
any (‘abc’,”"dcba”,2) 3
any (‘abcd’,”abed”,1,2) 2

2. The value of upto (c,s,i,j) is the leftmost position in s of the first instance of a character of ¢ in s[i:j].
Fatlure Condition. upto (c,s,1,j) faus if no character in s[i:j}1s contained n c.
Defaults- A null value for i defaults to | and a null value for j defaults to 0.

Examples
expresston value
upto('a’,”abcd”,1) I
upto (‘a’,"abcd”) |
upto (‘abc’,"abecd”) |
upto(~'abc’,”abcd"”) 4
upto('d’,"abcd”,2) 4
upto('d’,"abcd”,2,3) none
upto(‘a’,"abcd”,2) none

The function upto is a generator that produces the sequence of the positions, from left to right, at which a
character of ¢ occurs in s[i:j].

Fryamples
expression values in sequence

every upto('abcd’,"abcd") 1,2 3 4
every upto('a’,"abcad”) 1
every upto(‘ab’,”abcd”,2) 2

3.

every upto(~'ab’,"abcd") 4

3. The value of many (c,s,1,j) s the position in s after the longest initial substring of s[i:j] consisting solely
of characters contained in €

Fatlure Conditton many (c,s,1,j) fails if the first character of s[i:J] 1s not contained in ¢

Defaults A null value for 1 defaults to | and a null value for j defaults to 0.

Evamples
expression value
many (‘ab’,"abed”,1) 3
many (‘ab’,”abcd") 3
many (‘ab’,”abcd”,2) 3
many ('ab’,”abcd"”,2,3) 3
many (‘ab’,"abcd”,3) none

4 The value of bal(c1,c2,c3,s,i,j) 1s the position in s after an initial substring of s[i:j] that s balanced with
respect to characters in ¢2 and c3, respectively, and which is followed by a character in c1.

In determining balance, a count is kept, starting at 0. Characters in s[i:j] are processed from left to right If
the character being processed is contained in ¢1 and the count is zero, the process is complete at that point
Otherwise, a character in €2 causes the count to be incremented by 1, while a character in €3 causes the count
to be decremented by I. All other characters leave the count unchanged.

Failure Conditions 1f the count ever becomes negative or if the substring being examined 15 exhausted
with a positive count, bal fails

Note Characters 1n c2 are examined before characters in €3, so that if a character occurs in both ¢2 and
c3, 1t 1s treated as 1f it occurred only in €2

Defaults A null value for 1 defaults to | and a null value for) defaults to 0 A null value for ¢1 defaults to
&cset, a null value for c2 defaults to (', and a null value for c3 defaults to ')’

Example
expression \(I’H(’
bal('+.,'(",')"," (a)+(b)") 4
bal('+',,,"(a)+(b)".1) 4
bai('+',,,"(a)+(b)") 4
bal('+,,,"(a)+(b)",2) none
bal(,_'v-|”(a)+(b)”) none
bal(..."(a)+(b)") 1
bal(.'(['.'])"."(a)+(b)") 1

The function bal 1s a generator that produces the sequence of positions, from left to night, at which
successively longer balanced strings terminate

Examples
expression values in sequence

every bal(,,." (a)+(b)+(c)") 1,4,5 8,9
every bal('+',," (a)+(b)+(c)") 4,
1,

8
every bal(,,"abcd") 2,3, 4

-34-

Chapter 7

String Scanning

String scanning 1s a high-level facility for the analysis and synthesis of strings that permits the string being
operated on to be implicit, thus avoiding much of the notational detail that would otherwise be required

The string scanning expression
exprl ? expr2

evaluates exprl and establishes 1ts value as the string to be scanned expr2 1s then evaluated to perform the
scanning The outcome of the string scanning expression is the outcome of expr2

7.1 Scanning Keywords

During string scanning, the string being scanned 1s the value of the keyword &subject The implicit posi-
tion 1n &subject is the value of the keyword &pos The value of &subjectis automatically set to the value of
exprl and the value of &pos 1s set to I, corresponding to the beginning of &subject Subsequently. values
may be explicitly assigned to &subject and &pos Assignment of a value to &subject automatically sets
&posto I, as does assignment to a substring of &subject

Note A nonpositive position specification may be used in assignment to &pos, but the corresponding
positive value is actually assigned

Failure Condinon An attempt to set &pos to a value that 1s out of the range of &subject fails
The function pos (1) returns the positive equivalent of the position 1 in &subject, provided &pos is at this
position
Fatlure Condition pos (i) fails iIf &pos is not at position |

Frxamples
expression value value of &pos
&subject = "abcd” abcd 1
pos (1) I 1
pos (—4) l 1
pos (3) none 1
&pos = —1 4 4
pos(-1) 4 4
&subject[2 4] = ' x" X 3
&subject = "ab” ab 1

7.2 Positional Analysis

There are two functions that change &pos automatically and return the substring between the previous
and new values of &pos

[The result of move (1) 15 the substring between &pos and &pos+i, and &pos 1s incremented by |
Failure Condition 1f &pos+11s out of range move (1) fails and &pos 1s not changed

-35-

Examples:

expression value value of &pos
&subject := "abcd” abcd 1
move (2) ab 3
move (3) none 3
move (-1) b 2
move (-2) none 2
move (0) a 2
&pos = 0 5 5
move (1) d 4

The assignment made to &pos by move (i) is a reversible effect. If move (i) succeeds, but the expression in
which it appears fails, &pos is restored to its original value.

Examples:
expression value value of &pos
&subject ;= "abcd” abcd 1
move (2) & move (3) none 1
move (2) ab 3
move(-1) & pos(3) none 3

2. The result of tab (i) is the substring between &pos and i, and &pos is set to i.
Failure Condition: If i is out of range, tab (i) fails and &pos is not changed.

Examples:
expression value value of &pos
&subject = "abcd” abcd 1
tab(2) a 2
tab (0) bed 5
tab(1) abced |
tab (-5) none]

The assignment made to &pos by tab (i) is a reversible effect.

Examples:
expression value value of &pos
&subject = "abcd” abcd]
tab(0) & move(1) none I
tab(0) & move(-1) d 4

7.3 Scanning Operations

Several functions have defaults that provide implicit arguments for string scanning:

form interpretation

any(c) any (c¢,&subject,&pos,0)
bal(c1,c2,c3) bal(c1,c2,c3,&subject, &pos,0)
find (s) find (s,&subject,&pos,0)

many (c) many (c,&subject,&pos,0)
match (s) match (s,&subject,&pos,0)
upto(c) upto(c,&subject,&pos,0)

Thus in each case the default interpretation applies to &subject starting at &pos and continuing to the end of
&subject. The values returned by these functions are integers representing positions in &subject, but &pos
1s not changed.

-36-

Nore The delault intarpictations for the last two arguments apply only 1f the argument that spectfies the
string to bo oxamined s onitted o1t @ Sce Appendin €

P yamplos

Aprosion value valuc of &pos
&subject .= "abcd” abcd |
upto('c’) 3 |
upto(a’)] |
many (‘abc’) 4 1
any ('d’) none |

Lhese tunctions may be used as arguments to tab to change the value of &pos and to obtain a substring
between the new and old values of &pos

I vamples

expression vali value of &pos
&subject = "abcd” abcd !
tab (upto('c’)) ab 3
tab(upto('a’)) none 3
tab(many (‘c’)) c 4
tab(any('d’)) d S

In additon =s1s provided as a ssnonym for tab (match (s))

P vamplos

aproson value valuc of &pos
&subject = "abcd’ abcd I
="ab" ab 3
="ab" none 3
="c" c 4
="d" d S
=] 5
="d" o S

7.4 Nested Scanning

Fhe values of &subject and &pos are saved on entry to string scanning and are restored upon exit
Consequently, nested scanning s possible For example, suppose words contains a sequence of words
followed by blanks Then the following code segment assigns @ similar string to twords. but with onlv thosc
words contaming a t It also assigns the total number of words to weount

o

twords =
wcount = 0
words ?
whiie tab(upto('a’)) ? {
if upto('t'y then twords
wcount = wcount + 1

!

do move (1)

.= twords || &subject || “O"

Warnmmmg 1Thevalues ol &subject and &pos arc not restored 1l stiime scannimg s cxited by a break next
o1 a procedure return

-17-

file:///alues

7.5 Generation During Scanning

[1he i any other opesation, both operands in stying scanning can be generators. For example,
every write((s1 | s2 | s3) ? upto(cl | c2))

wiites every position at which a chatacter of ¢1 or ¢2 occurs in s1, s2, and s3. The order in which the values
are produced 1s not the same as in

upto(ct | ¢2, s1 | s2 | s3)

since the order 1n which the arguments are reactivated to produce alternatives is different.

- 38 -

Chapter 8

Structures

Structures are aggregates of variables Ditterent kinds of structures have different organizations and
ditfcrent methods for accessing these variables Structures are data objects and mav be assigned to variables
like other data objects Structures are not copied when they ate assigned to variables

Vore There are speafic hmuts to the sizes of structures as noted 1n subsequent sections In practice
maximum sizes are usualhy imited by the amount of available memory

8.1 lists

1 ists are sequences of variables that can be rederenced by position or mantpulated by stack and queue
access methods When referenced by positions hists appear to be one-dimensional arrays - When manipulated
by stack and queue access methods hists expand and contract as nceded Positional and access methods for
Itsts can be used in combination

8.1.1 Creationof lists
A bist1s created during program execution by an expression of the form
left-bracker expr [, expr] right-hracher
where the values of the expressions provide the initial values of the hist elements

Fhe value of *a gives the number of elements in a

Aore The valucof [s anempty st contaiming no ddements In othar cases omitted arguments default
tothe ® For oxample | Jisa bistol two null-valued clements

Fyamples

CAPrOSIon valie

tripte = {0,0 0] [000]

=triple 3

line =]) EEX XY

*line 3

seq .= [1,2345678] [1234567K]
*seq 8

unit =[] []

*unit 0

[1sts are also created by the function hst(i,x) where 11s the size of the hist and x 15 the imtial valuc of cach
cdement of the ist
Defaulr A nulbvalud tor rdedaults to 0

1S
Pivor Condimony 1 size ot the st s greatar than 20 —1 Trior 205 occurs

I yxamples

CApIession value

imt .= list(50) [00000]
octave .= list(8) [spee0eesee]
count .= hst(0) {1

*init 5

+octave s

+count 0

-39.

8.1.2 Positional Access to Lists

An element of a list may be accessed by specifying the position of the element in a referencing expression of
the form

list left-bracket expr right-bracket

where the value of expr i1s the position of the element 1n /ist Element positions are also called subscripts
Assignment may be made to an element of a hist to change its value

Failure Condiion A referencing expression fails if the subscript does not reference an element between
the 1 and the size of the list, inclusive In this case the subscript 1s said to be out of range

Note Negative subscripts can be used to reference elements relative to the right end of the hst For
example, — | references the last element of a list

Examples
e\pression value
seq[3] =1 1
seq[5] = seq[3] = 5 5
seq[0] none
seq[-1] 8
seq[—-4] S
unit[1] none

8.1.3 Stack Access to Lists

The functions push(a,x) and pop(a) provide stack access to lists push(a,x) prepends X to the left end of
the Iist a and returns a as its value pop(a) removes the left-most element from the list a and returns this
element as its value a[1]1s the top of the stack

Failure Condinion pop(a) fails if a 1s empty, thats, if its size 1s zero

Fxamples
expression value
laundry = [] []
+laundry 0
push(laundry,”shirts") [shirts]
push(laundry,”pants”) [pants,shirts]
*laundry 2
pop(laundry) pants
pop(laundry) shirts
*laundry 0
pop(laundry) none

8.1.4 Queue Access to Lists

The functions put(a,x) and get(a) provide queue access to hsts put(a,x) appends x to the right end of the
list @ and returns a as its value get(a) removes the left-most element from the list a and returns this element as
its value a[1] s the head of the queue For completeness, pull(a) removes the right-most element from the
list @ and returns this element as 1ts value

Failure Condinons get(a) and pull(a) fail if a 1s empty
Note pop(a) and get(a) are synonymous

- 40 -

I yamples

aApression value
laundry .= {} [1
put(laundry,”shirts") [shirts]
put(laundry,”pants”) [shirts.pants]
get(laundry) shirts
get(laundry) pants
get(laundry) none

8.1.5 Operations on Lists
In addition to the operations above, there are operations for concatenating and sectioning lists
The operation a1 ||| a2 produces the result of concatenating the hsts a1 and a2
Aote The list produced by al | || a2 s physically distinet from the hsts aland a2

! vamiples

expression value
[1.2] 111 [3.4) [1.2.3.4]
(1 1 ["a"] (a]

Range specitications are used to produce lists that are sections of other hsts (see Section 6 1 4)

Notes A bist produced by st sectioning 1s physically distinet from the hst to which the range specitication
is apphied 1 1st sections are nror sublists

Warmng a[ths the ith element of the hst a, it is ot a list section

F xamples

expression value

a .= [1,234] [1.234]
a[1:2) (1]
a[3:0] [3.4]
a[2+.2} [2.3]
af[0—-:2) [3.4]

8.2 Tables

A table 1s an aggregate of elements that resembles a hist A table, however, can be referenced (subscripted)
by an object of any type The clements ol a table are not ordered by position Thus a table can be thought of as

an assoctative hist

8.2.1 Creation of Tables

lables dre created during program exccution by the function table (x) When a table ts created. it 1s empt)
and has no elements Elements may be added at will and tables grow automatically Non-existent elements

are accessed as if they had the value x

8.2.2 Accessing Table Elements
An clement of a table 1v accessed by specifving a referencing value in an expression of the form

rable fefr-bracher expr righi-hracher

wheie the value of expr references rable The referencing value may be of any type For example t["n”]

references the table twith the string n

Vore No tvpe conmversion is pertormed on the value used to reference the table For example t[1] and
t{"1"“Trelerence ditterent elements See also Section 10 3

Avalue mav be assigned to a table element in a manner similar to that for hists For example

- 41 -

t{"n"] =3
assigns the integer 3 to the clement referenced by the string n

A table grows automatically as assignments are made to referenced elements that are not already in the
table Table elements are only created, however, when values are assigned to them

The value of #t1s the number of elements in the table t

Fyamiples

expression value
op .= table() tahle
*0Op 0
op[“add”] .= "c273" c273
*0p |
op["“sub”] .
op[“sub”] = "c274" c274
*0p 2

ct .= table() tahle
ct{"four”] = "four” four
ct["score”] .= "twenty" twenty
*Ct 2

8.3 Records

Records are aggregates of variables that resemble lists, but the elements are accessed by name rather than
by posttion

8.3.1 Declaring Record Types

A record type is declared in the form
record record-name (| freld-name [, field-name '} 1)

Ihe record name specities a new type, which s added to the repertoire of types See Section 108 The tield
names provide names by which the fields of the record may be referenced

Vores A record declaration cannot appear within a procedure declaration or within another record
decdaration The same tield name mav be used in more than one record declaration and the positions need
not he the same Field names do not contlict with identificr names

An example of a record declaration is
record complex (real,imag)

which declares complex to be a record ty pe with two fields, real and imag

8.3.2 (reating Records
A record s created during program execution by an expression of the form

npe (expr [, ey])
where the tvpe is one declared in a record declaration and the values of the expressions provide the values of
the helds of the record 1n the order corresponding to the hield names The values may be of any type For
example,

z .= complex(10,25)
ASSIENS Lo Z a complex tecord with a value of 1 0 tor the real hield and a value of 2 5 for the imag field

Detardr Null-valued arguments in a record creation cxpression default to

I'he value of #z1s the number of helds declared for the type of record z

8.3.3 Accessing Records

A record 1s accessed by field name, using the infix . operator Continuing the example above, the value ol
z real 1s 1 0 The infix dot operator binds more tightly than any other infix or prefix operator and associates
to the left For example, ab ¢ d and ((a b) ¢) d are equivalent Assignment can be made to a field reference
to change the value of that field of the record

Records can also be accessed by position like lists For example, z[1] 1s equivalent to Z real Negative
position specifications can be used to access fields relative to the end of the record For example, z[-1] 15
equivalent to z imag

Fatlure Condimmion z[1] fails if the magnitude of 11s greater than the number of fieldsn z

Fyamples
expression value
z1 = complex (0 0) complex
z2 = complex (3 14,2 0) complex
z1 real 0
z1real + z2 1mag 20
z1real = z2real 314
z2[2] 20
22(3] none
z1[-2) 314

8.4 Sorting Structures
The function sort(a) produces a copy of the list a with the elements 1n sorted order

In sorting, strings are sorted in non-decreasing lexical order (see Section 6 2), while integers and real
numbers are sorted 1n non-decreasing numerical order (see Sections 4 1 3 and 4 2 3) The ordering of values of
other types 1s unspecified

In heterogeneous lists containing values of different types, values are first sorted by type and then among
the values of the same type The order of types in sorting is

®

integers

real numbers
strings

csets

files
procedures
hsts

tables

record types

A table 15 converted to a sorted list by sort(t,1) If the size of t1s |, the result 1s a list of | elements Each
element of this list 1s 1tself a hist of two elements, the first of which 1s the reference of a table element and the
second of which 1s the corresponding value If 1 1s 1, these two-element lists are in the sorted order of the
references of the table If 11s 2, these two-element lists are in the sorted order of the values of the table

Note 1ftisempty, sort(ti) returns an empty list

Default A null value for 1 defaults to |

Error Condinions In sort(x) 1f x 1s not a hst or a table, Error 115 occurs In sort(t,i). if t1s not | or 2
Error 205 occurs

Chapter 9

Input and Output

9.1 Files

The values of &input, &output, and &errout are the standard input, standard output, and standard error
output files, respectively.

Error Condition: These keywords are not variables. If an attempt is made to assign a value to one of them,
Error 111 occurs.

A file must be opened to be written or read. In addition, the status of the file must be established; some
files are designated for input and others are designated for output. All files are automatically closed when
program execution is terminated.

Note &input, &output. and &errout are automatically opened when program execution begins.

The function open(s1,s2) opens the file with name s1 according to the options specified by s2 and
returns that file as its value. The possible options are represented by characters as follows:

open for reading

open for writing

open for reading and writing (bidirectional)

open for writing in append mode

create and open for writing

pipe to/from a command (s1 is given to a shell to execute)

TDoMOs -

In the case of the w option, writing starts at the beginning of the file, causing any data previously
contained in the file to be lost. The a option allows data to be written at the end of an existing file. The b
option usually applies to interactive input and output at a terminal that behaves like a file that is both written
and read.

Warning: File names are interpreted by UNIX Strange file names may produce strange results

Default A null value for 82 defaults to r

VYores 11 a file s opened for writing but not for reading. create 1s implied Create and append have no
effect on pipes Pipes may not be opened for simultaneous reading and writing.

Failure Condition: open (s1,s2) fails if the file with name s1 cannot be opened with the options specified
by s2

Error Condinon: If the option specification 1s invalid, Error 209 occurs.

The function close(f) closes f and returns f as its value. This has the effect of physically completing
output (emptying internal buffers used for intermediate storage of data). Once a file has been closed, 1t must
be reopened to be used again. In this case, the file is positioned at the beginning (rewound).

9.2 Writing Data to Files

The function write(x1,...,xn) writes strings to files. Arguments are processed from left to right. If xi is a
string or can be converted to one (see Section 5.4), it is written. If xi is a file, subsequent strings are written to
that file until another file argument is encountered. Thus strings can be written to several files by a single call
of write. Output is written to &output in the absence of a specified file. The strings are written one after
another as a single line, not as separate lines (i.c., they are not separated by line terminators). The effect is as if
the strings were concatenated and written as a single line. A line terminator is added after the last string
written on each file. The value returned by write is the last string written.

Note No actual concatenation 15 performed by the write function Since strings output to a file

frequently are composed of several parts. the write function may be used to avoid concatenation that
otherwise might be necessary A significant amount of processing time may be saved tn this way.

-44 -

writes (x1, ,xn) wiites in the manner of wnite(x1, . ,xn). but no hne terninators are appended Thus
several strings can be placed on the same hine of a file with successive calls of the writes tunction One use of

this |
same

9.3
I

unction 1s to provide prompting at a terminal manteractive mode. allowing the user to respond on the
(visual) ine that the inguiry s written

Dcfandis Null-valued arguments for write and writes default to the empty string, B 1f the last argument
s a file an addittonal @ s supplied

Firor Condrion 1t an attempt 1s made to write on g file that is not open for wrniting, Frror 213 occurs

I xamples

cApression value value written file writien
out = open("data txt","w") [ile none none

flag = "»" * none none

sep = "." . none none
write () [] [] &output
write (out)] n data txt
write (out,flag,”a”,sep,"b") b *a.b data txt
write (flag,”a" ,sep,”b") b *a.b &output
write (out,”x",sep,"y",sep,"z" flag) * X.y.2Z* data txt
write (1,sep,2 0,sep,”2") 2 1.20:2 &output

Reading Data from Files

w function read (f) reads the next line from the file f Linc terminators are not included 1n the returned

string

1
result
than i

latlhire Condimion When the end of a hle s rcached (that 18 when there are no more hines in the file)
read (f) tails

Default A nullvalue tor fdefaulis to &input

Vore The maximum mput hne length s 257 an mput hine 1s longer than 257 characters only 257
characters arc read Subsequent characters are read on subsequent reads

Frvor Condinon 11 an attempt s made to read from a file which s not opened tor reading Error 212

aceurs

1c function reads (f,1) reads the next 1 characters trom the file £ 1ine terminators are included 1n the
It fewer than 1 characters temain on the hile . the remaining characters are read and the result is shorte

Farhe e Condinon reads tails if no characters rtemain to be read
Defaulis A null vatue tor fdelaults to &nput A null value tor tdctaults to

Vore There is no init to the masimum valuce ol 1 except the amount of memory available to store the
string

is
Frror Condinons 1 s less than Tor greater than 27~ Firor 205 occurs 1 an attempt 1s made to read
Irom a hile which s not opencd tor reading [rror 212 oceurs

file://I:/aniplcs

Chapter 10

Miscellaneous Operations

10.1 Element Generation

The expression !x generates successive elements of X as required. X may be a string, structure, or file.

For strings. successive characters are generated. Assignment to !s may be performed in the same manner
as to s[i}.

Examples:

expression \'dlut'\ mn S('([U(’H('(‘
every !"abcde” a. b c d e
every !&lcase[10:15] jo kol mon

For lists. the order of generation is from the first (left-most) element to the last (right-most) element. For
example,if ais a hst

every write(la)
writes the elements of ain order from the first to the last.

For tables. all elements are generated. but the order of generation is unpredictable. For records. the order
of generation is the same as for lists. For all structure types, assignment to !x may be used to change the value
of an element.

For tiles, successive lines of input are generated. For example,
every write (!&input)

copies all the lines in the standard input file to the standard output file.

10.2 Augmented Assignment Operators

Once of the commonest operations is the modification of the value of a variable by performing some
computation on its previous value. For example

=i+ 1
increments the value of i.

To simplify such computations, augmented assignment operators are provided in which the computation
and assignment operators are combined 1n a single operator. For example, the value of i is incremented by

i+=1

Note exprl + = expr2 has the same meaning as expr [.= exprl + expr2 except that e vpri s evaluated only
once
Phere are augmented assignment operators for all infix operations except except the assignment operators
themselhves Forexample
s 7= expr

scans s and changes its value to the value of expr.

frror Condinton 1t the expression on the lett side of an augmented assignment operator s not a variable.
Error 111 oceurs

-46-

10.3 Comparison of Objects

Most comparison oparations such as 1= Jand s1==82 are concerned with comparison of values In thesc
Gases mphiait ty pe conversion acctrs pros ta the compatison

Ihe two operations X ===y and x ~===y arc concerned with the equivalence ol objects x ===
succeeds if X and y are of the same type and are equivalent Simularly, x ~===y succeeds If X and y are of
different ty pes or if they are not equivalent [n both cases, the value of the right operand 1s returned in the case
ot successful comparison

The meanming of the term “equivalent™ as used here depends on the type Integers, real numbers. strings
and csets are considered to be equivalent if they have the same values, regardless of how they are computed

For procedures. files, hists, tables, and record objects. obhject comparison fails regardless of value, unless X and
y are the same object

Aot The kind of comparison used in X ===y 15 also used to determine whether two table references are
the same See also Section 82 2

Framples

cApression value
("abc” || "def’) === "abcdef” abcdef
7 === (6+1) 7

7 ==="7" none
‘amy’ === 'may’ amy
[10,10] === [1010] non
IXx ==y .= hst(10) x ===y} g

10.4 Copying Objects
Assignment does not copy objects, but rather assigns the same object to another vaniable For example

= hst(10)
= al

al
a2

assign the same Iist to @1 and a2 Subsequently, a1[3] and a2[3] reference the same element of the same list

An object mayv be copied by the tunction copy (x) Forexampleif al1s a list
a2 = copy(al)

assigns a copy of alto a2 This copy 1s the same si7e as @l and the values of all the elements are the same but
al and a2 are distinct objects Subsequently a1[3] and a2[3] reference elements in the corresponding
posions of different objects

Norc Any tvpe of object may be copied In the case of integers real numbers strings files procedures
osets and @ the result s not a phyvsically distinet object but this difference 18 undetectable See Section
103

10.5 Random Flement Generation

The operation ?x returns a randomly selected value trom x 1t X 15 a positive integer | ?x produces an
integer from a pscudo-random sequence n the range of 1 < ?x <1 ?0 produces a real number r from a
pscudo-random sequence in the range 0 0 <r< 10

It x 15 a string, ?x returns a randomly selected one-character substring of x

It X is a hist table o1 record ?X returns a randomly selected element of x

Vere Forstructures vaniablos are produced and assignment can be made to them

Fhe pseudo-random scquence s generated by a linear congruence relation starting with an imitial secd
valuc ol O This sequence s the same from one program exccution to another, allowing program testing in a
reproducible envitonment The seed may be changed by an assignment to &random For example

&random = 0

rescts the seed toits imtial value

_47-

C g 15 '
Error Condition: If the value of iin ?i is less than Qor greater than 2 "1, Error 205 occurs.

10.6 Date and Time

The value of the keyword &date is the current date in the form yyyy/mm/dd. For example, the value of
&date for December 1, 1981 is 1981/12/01.

The value of the keyword &clock is the current time of day in the form hh:mm:ss. For example, the value
of &clock for 8:00 p.m. is 20:00:00.

The value of the keyword &dateline is the date and time of day in a readable format. An example is Fri-
day, December 4, 1981 7:42 am .

The value of the keyword &time is the elapsed cpu time in milliseconds starting at the beginning of pro-
gram execution.
Nore: The value of &time includes only user time, not system time.

Error Condition: &date, &clock, &dateline, and &time are not variables. If an attempt is made to assign
a value to one of them. Error 111 occurs.

10.7 The Null Value

The null value, o, is the initial value of all identifiers and is provided as the value for omitted expressions in
function and procedure calls, as well as in some control structures. In addition, the value of the keyword
&nullis e

The null value is illegal in most computational contexts, although it defaults to commonly used values for
the arguments of some functions. See Appendix C.

There are two operations that can be used to test for e:
/expr returns expr if the value of expr is ®, but fails otherwise.

\expr returns expr if the value of expr is not e, but fails otherwise.

Note: If expr produces a variable, these operations return that variable. For example, /v = 0 assigns 0
to vifthe valueof vis e,

10.8 Type Determination
The function type (x) returns a string that is the name of type of x.

Examples:
expression value
type(1) integer
type (2.0) real
type (" ") string
type (‘armada’) cset
type (trim) " procedure
type (main) procedure
type () null

10.9 String Images

The function image (x) produces a string that represents the value of x. For strings and csets, this includes

enclosing quotes anq escapes as necessary. For structures, their current size is given. Keywords are given in
place of their values in several cases.

- 48 -

file:///expr

I xamplos

CAprasNion value

image (1) 1

image (2 0) 20

image ("abc") "abc”

image (" ") "

image (‘drama’) ‘admr’

image (&lcase) &lcase

image () &null

image (&input) &input

image (open(“data”,"w")) file (data)

image ([1,0,11]) st (3)

image (hst(10)) list(10)

image (complex (3 1,1 0)) record complex (2)
image (trim) function trim
image (main) procedure main
image (complex) record constructor complex

Nore Note that 1image(x) can be used to dwstinguish between functuons procedures and record
CONSLTUCLOTS

10.10 Calling a Shell

L he function system (s) calls a shell to execute the string § For example. system (Is”) hsts the current
directory The value returned by system (s) 18 the exit status returned by the shell

[1101 Condinon 11 the size of Sas greater than 256 1 rror 210 occurs

10.11 System Information

The value of the kevword &host s the host location, operatuing svstem and computer on which Icon iy
runmng An example 1s University of Arizona, UNIX Version 7, PDP-11/70

The value of the keyword &version s the name and version number of the lcon implementation An
example is lcon Version 5 0 interpreter, December 1981

Prror Condinon &host and &verston are not variables 1t an attempt s made to assign d value to one of
them Frror T occurs

- 49 -

file:///alue

Chapter 11

Procedures

11.1 Procedure Declarations
A procedure declaration has the form
procedure identifier ([idennfier [, identifier] 1)
[local-declaranion ;]
[tmmal-clause |]

[procedure-body]
end

NVore 1 he semicotons in a procedure declatation may be omitted if the components are placed on separdte
hines See also Section 122

The identifier following procedure gives the name of the procedure A local declaration has the form
local-specification idenuifier [, idennfier]

A local specification may be local. dynamic, or static
Aore local and dynamic are equivalent

! xamples

local x, vy
dynamic count
static state, basis

Ivinamicadentitiers exist only during each invocation ot the procedure Static identifiers come 1nto existence
at the tirst call of the procedure m which they are declared and 1emain n existence after return from the
procedure so that their values are retained between calls of the procedure

Nore Tdentifiers in the argument hist arc dynanmic
I'he imitial clause has the form
initial e
The expression in the mitial clause 15 evaluated once when the procedure 18 called the first time The imitial
clausc s usetul for assigning values to static identifiers
1he procedure body consists of a sequence of expressions that are executed when the procedure 15 called
Two enamples of procedure declarations follow
procedure max(i,})

iIf 1 > | then return 1 else return |
end

procedure accum (s)
local static t

"o

ihal t == ",

t :: S ll H’II
return t
end

-50-

11.2 Scope of Identifiers

As indicated 1in the preceding section, identifiers declared in a procedure are accessible only to that
procedure H andentitier in a procedure 1s not declared, 1ts scope is determined by global declarations that
apply to the entirc program

global idennficr |, dentifier)
specihies that the histed identitiers ate to be interpreted as global in those procedures in which they are not

explicitly declared to be local The values of such variables arc accessible to all such procedures

Vores A tocal declaration tor anadentifier in a procedure overnides a global declaration for that identifier
Global declarations cannot occur mnside other declarations but they otherwise may occur anywhere i the
program Record names have global scope, but this scope can be overnidden by local declarations kield
names dare not identifiers, they apply to the entire program and are not affected by scope declarations

T he scope of an identificr for which there 1s neither a local nor a global declaration 1s local

11.3 Procedure Activation

11.3.1 Procedure Invocation

Procedures are invoked in the same form that functions are called

expr (Lewpr [,eyr] 1)

where the expression before the parenthesized list has a procedure value This expression usually s an
identfier For example. the procedure max given in the example above might be used as follows

m = max(*X,*y)

Argument transmission 1s by value When a procedure 1s called. the expressions given in the call are evaludted
from the lett to the nght The values of the expressions in the call are assigned to the corresponding identifiers
n the argument hist of the procedure Controlis then transterred to the first expression in the procedure body

Vore 1 more exprosstons are given in the call than are speatied in the procedure declaration the excess
expressions are evaluated but then vatues are discarded I lewer expressions are given in the call than arc
specitied in the procedure dedaration @18 provided for the remaming arguments

11.3.2 Return from Procedures

W hen a procedure is called the expressions in the procedure body are executed until a return expresston is
cncountered There are three forms of return expression

return [expi]
fail
suspend [ey]
Ddfaudts Anomitted evpr inarcturn expresston detaults to 1 control tlows olf the end of a procedure
body without anesphat return the proceduie call returns no result (that 1s at lails)
Warmme Fatlure to provide an exphat retwrn from a procedure body mav lead to unexpected and
crronecous results
I he expression return evpr terminates the call of a procedure and returns the outcome of evaluating ey
It cvpr tails, the procedure call fails Otherwise the value of exypr becomes the value ot the calling expression
Foresxample

) = max (xX,x*y)
assigns to) the size of the larger of the two objects xand y

[he expiession fail terminates the call of a procedure without returming a result, causing the calling
capression to Latl Consider the lollowing procedurc

procedure typeq(x,y)
if type(x) == type(y) then return else fail
end

Ihis proccdute compares the types of X and y, returning @ 1l they are the same and failing otherwise On the
other hand

return type(x) == type(y)
also fails 1f the types are not the same, but returns the type instead of @ if the types are the same

The expression suspend expr is similar to return evpr, except that the procedure call is left in suspension
so that it may be resumed tor additional computation Execution of the procedure body is resumed 1f the
context in which the procedure call occurs requires an alternative result Thus suspended procedures are
generators Consider the following procedure

procedure timer(t)
while &time < t do suspend
end

This procedure suspends evaluation until the ime exceeds a specified imit, in which case it fails Therefore
every timer(&time + 1000) do evpr

evaluates eapr repeatedly during an interval of approximately 1000 milhiseconds

L ike every suspend produces all alternatives of expr as required For example

suspend (1 |2 | 3)
suspends with the values 1. 2, and 3 on successive activations of the procedure in which it appears It the
procedure 1s actin ated again, evaluation continues with the expression following the suspend
Aot The suspend expression itsell fails once all alternatives of expr have been produced

I the expression in return or suspend is a global identifier or a computed variable (such as a list element).

the variable 18 not dereferenced Local identitiers are dereferenced. however, and only their value 1s returned

An assignment can be made to the result of a procedure call that returns a variable Consider the following
procedure

procedure maxel(x,1,))
if x[1] > x[J] then return x[1]
else return x[)]

end

An assignment to a call of this procedure such as
maxel (roster,k,m) == n

changes the value of the maximum of the clements k and min roster

11.3.3 Procedure lLevel

Sinee procedures can invoke other procedures before they return, several procedures may be invoked at
any onc time The value of the keyword &level is the number of procedures that are currently invoked
frior Condiions There s no specific hmit to the number of procedures that may be invoked at any one
ume but storage s reguired for procedure invocations that have not returned 1f available storage 15

exshausted Error 304 occurs - &level is not a vanable [an attempt 1s made to assign a value to it, Frror
P oceurs

11.3.4 Tracing Procedure Activity

Iracing of proccdure mvocation 1s controlled by the keyword &trace If the value of &trace 1s nonzero a
diagnostic message s written to &errout cach ume a procedure s called and each time a procedure returns or
sispends - The value of &trace is decremented for each trace message

-5

Defawdr 1he imtial, delault value ol &trace s 0

Aotes. Tracing stops automatically when &trace s decremented to 0 If a negative value s assigned to

8\t§race. tracing continues indefimtely U the value assigned to &trace is less than =2 or greater than

2 =1, the actual value assigned s —1

In the case of a procedure call, the trace message includes the name of the procedure and string images ol

the values of its arguments. The message 1s indented with a number of vertical bars equal to the level from
which the call is made (&level). In the case of procedure return, the trace message includes the function name.
the ty pe of return, and the value returned, except in the case of failure. All trace messages include the name of
the hile containing the procedure that 1s traced and the line number in that file from which the call or return s
made

An example is given by the following program, which 1s contained in the file acker.icn.

procedure acker(m,n)
if (m | n) < 0 then fail
if m = 0 then return n + 1
if n = 0 then return acker(m — 1,1)
return acker(m — 1,acker(m,n — 1))
end

procedure main()
&trace = -1
acker(1,3)

end

I he trace output produced by the, program s

acker.icn.10 acker(1,3)
acker.icn.5 acker (1,2)
acker.icn:5 acker(1,1)
acker.icn:5 acker (1,0)
acker.icn:4 | acker(0,1)

acker.icn:.3
acker.icn:.4
acker.icn:5

l

|

|

\

|

| | acker returned 2

I

|
acker.icn.3 |

|

I

I

l

|

I

|

I

I

| acker returned 2
| acker(0,2)

| acker returned 3
acker returned 3
acker(0,3)

acker returned 4

acker.icn:s
acker.icn.5

l
[
Il
||
|1
|
|1
|1
{1
[
acker.icn.3 ||
| a
|
|

acker.icn:5 cker returned 4
acker.icn:5 acker (0,4)
acker.icn.3 acker returned 5
acker.icn:5 | acker returned 5

acker.icn:11 main failed

Note that the procedure main. which has no explicit return, produces no result (that is, it fails).

In trace output, values are imaged tn a manner similar to that produced by image(x) (see Section 10.8) In
order to prevent trace output from being unwieldy. hiteral strings and csets are truncated to 16 characters and
tollowed by ellipses (...) to indicate the tiuncation For lists and records. values are shown for up to siy
clements If the size of a hist or record is greater than six, the tirst three and last three elements are shown. with
cllipses indicating the omitted elements. Various additional intormation 1s shown, such as where variables are
returned dand the ranges [or substrings

11.4 Listing Identifier Values

The function display (1,f) prints a list of all identifiers and their values in the | levels of procedure
invocation starting at the current procedure invocation The output i1s written to f

Notes display (&level f) displays the identifiers 1n all procedure invocations leading to the current
invocation display (0,f) displays only global rdentifiers display (1,f) returns ® as its value

Defaults A null value for 1 defaults to &ievel A null value for f defaults to &errout
Error Condition 1f the value of 11s less than 0, Error 205 occurs

As an example of the display of i1dentifiers, consider the following program

global hexd

procedure main()
local label
hexd = "0123456789ABCDEF"
label = "hex(61)="
write (label,hex ("61"))
end

procedure hex(x)

display (&level)

return &ascu[16 * find(x[1], hexd) + find(x[2], hexd) — 16]
end

The output of display (&level) 1s

hex local identifiers
x = "61"

main local identifiers
label = "hex(61)="

global identifiers
main = procedure matin
hexd = "0123456789ABCDEF”
hex = procedure hex
write = function write
display = function display
find = function find

Global identifiers are listed at the end of every display output, regardless of whether or not the global
identifiers are referenced by the displayed procedures

11.5 Procedure Names and Values

A procedure declaration establishes an object of type procedure as the initial value of the global identifier
that 1s the procedure name This object can be assigned to another vanable and the procedure can be called
using the new variable For example imax = max assigns to imax the procedure for max as given earler
Subsequently, imax (1,}) can be used to compute the maximum of 1 and)

Any expression that produces a value of type procedure may be used in a call For example, if procs s a
list whose elements are procedures, such as

procs[1] = max
then
procs1)
computes the maximum of t and |

The names of functions are global 1dentifiers with predefined values The declaration of a procedure or
record with the same name as a function overrides the predefined value A local declaration for a function

-54-

name has the same effect within the procedure in which the declaration occurs

11.6 Faternal Procedures

Procedures written in C can be included i an Icon program by the declaration
external idenufier |, wdenufier |

where sdentifier 1s the name ol a C procedure Fxternal procedures have the same status as Icon functions See
Reterence 12 for coding conventions that must be used in writing external procedures

-55.

Chapter 12

Program Preparation

12.1 Program Structure

A program 1s a sequence of declarations The declarations may appear in any order 1he exccutable
components of a program are contained in procedure declarations Every program must contain a procedure
named main

A program may be divided into a number of files, but every declaration must be completely contained in a
sigle file When a multi-tile program 1s processed. the scope of identitiers 15 the same as if the program had
been contained in a single file

Warmme A global dodaration in one file of a program may alfect the interpretation of an undeclared
identitier inanother hic

Vore Record and proccdure dedarations imphatly declare therr tecord and procedure names
respeetiney 1o be global

12.2 1 avout of Program Text
Since a file s a sequence of hines 1t 18 usually convenient and ndtural to parallel the logical structure of a

sequence of expressions by the physical structure of a sequence of lines in the tile

Semicolons are used in a number of places to separate expressions See Appendix A If a semicolon falls at
the end of a himeo it may be omutted. provided that the svntactic token at the end of the line can legitimately end
an expression and the token at the beginning ol the next hne can legitimately begin an expression Thus most
semicolons can be omitted at the ends of lines and long expressions can be written on several lines without
dithicuity

Nore Hasanicolon can be legitimate v inserted m the place of o newhine character in program text this s
donc automatically by the Feon transiaton

For example
x. =1y .=2,2z2.=0

can also be written as

N < X
I AT
o=

Because ol the way than the translator interprets ends ol hines, 1if an infix operation 1s split into two hines the
opcerator should be placed at the end of the first hine, not at the beginning of the second | or example

s1 ||
s2

is the concatenation of the values of two identifiers, winle

s1
Il s2

s two expressions the first ot which is a loncadentifier and the second of which is two repeated alternations of
dasecond wdentihier!

Warnm. Carc should be taken not to sphit cxpressions at places where components are optional For
ovample

-56-

return ¢y
and

return
CAp?

arc quite difterent

Identifiers may be arbitrarily long, but must be contained on one line A quoted literal may be continued
from onc line to the next by entering an underscore (_) as the last character of the current ine When a line 1s
continued in this way, the underscore as well as any blanks or tab characters at the beginning of the next line
arc 1ignored to allow normal indentation and visual layout conventions to be used

Aore The total length of a string hieral 1s hmited only by the memory available to the translator There 1s
no practical limit

12.3 Program Character Set
lIcon uses the ASCII character set [11] In program text, tabs and blanks are syntactically equnalent All
other characters are distinct
Nore Inhiteral strings blanks and tabs are distinct

12.4 Significance of blanks

Blanks (and tabs) in program text, except in string literals, serve to separate tohens that otherwise would
appear 1o be a single token Blanks are otherwise optiondl between tokens and may be used for indentation
and to produced desired visual effects in program text Blanks are necessary to separate reserved words,
identiticrs and where an infix operator that s followed by a piehx operator would be ambiguous For

examplc
X——y

is terpreted as the character set ditference of X and y, while
X= 7y

isanterpreted as X minus the negatine ol y

12.5 (omments

A comment s text in the line of a program that is not part of the program ttself but 15 included to describe
the program or to provide other auxihary information Fhe character # causes the rest of the line on which it
appudrs to be treated as a comment The following program scgment illustrates the use of comments

These procedures print all the intersections of two words
cross uses nested every constructs to find all intersections and
calls xprint to print each intersection

procedure cross (word1, word2)

local j, k
every | .= upto(word2, word1) do # location in word1 of
every character in word2
every k .= upto(word1[j], word2) do # and for each, all
positions in word2
xprint(word1, word2, |, k) # print the result
end
procedure xprint(word1, word2, |, k)
every write (nght(word2[1 to k — 1 1,})) # up to position In word1
write (word1) # then word1
every write(right(word2[k + 1 to *word2],))) # then rest of word2

end

-57-

file://i:/pr

Chapter 13

Programming Considerations

13.1 Efficiency Considerations

Many of the considerations in writing efficient Icon programs are the same as for other languages: use of
good algorithms, good program structure, appropriate data representations, and so on. There are, however,
idiosyncrasies of the Icon language and its implementation that warrant specific attention:

1. Any operation that causes the allocation of a significant amount of storage.may adversely affect running
speed, since that storage must eventually be reclaimed by garbage collection, a relatively expensive process.
While a detailed understanding of storage allocation and garbage collection requires extensive knowledge of
the implementation of Icon, common sense provides a good guide to programming practices. Some specific
aspects of storage allocation are mentioned below.

2. Long strings are expensive to manipulate. Operations that construct strings require storage allocation and
the movement of data. Appending to the last string constructed is a comparatively inexpensive process,
however.

3. Creation of a substring does not require a significant amount of storage and involves no movement of
data. Assignment to a substring, however, is a form of string creation.

4. Several strings can be appended in output without concatenation by using write and wrifes. This
technique frequently can be used to avoid considerable amounts of storage allocation. Note that multi-line
output can be produced in a single output expression by using "\n" to generate newlines.

5. lIcon stores integers in the range of —2'3 to 2'5—1 in one word. One-word integers do not require the

allocation of storage. For integers beyond this range, two words are used. Two-word integers do require the
allocation of storage.

6. lcon provides automatic type conversion (coercion) where possible. Such type conversions, although not
directly evident, may be the cause of significant inefficiencies. The worst potential problems are in cset-to-
string and string-to-cset conversion. For example, evaluation of upto (“aeiou") causes the string aeiou to be
converted to a cset every time the expression is evaluated. If such an expression occurs in a frequently
executed inner loop, overall program performance may be significantly affected. It is good programming
practice to use cset literals or to perform an explicit out-of-line conversion in such cases.

7. Augmented assignment operations, such as i +:= 1, should be used wherever possible to avoid two
evaluations of the variable to which the assignment is made. This is particularly important in the case of table
references (for example, t[”"n"] +:= 1), since table references are comparatively slow.

8. Case selector expressions are evaluated in the order in which they appear (except for default).
Consequently, selector expressions should be ordered according to likelihood of selection.

9. Compound comparisons should be ordered so that unnecessary comparisons are avoided if the final
outcome is failure. For example '

0 = ft(x) = g(x)

is generally more efficient than

- 58 -

f(x) =g(x) =0

since f(x) and g(x) may produce the same, but nonzero, value This consideration 1s particularly important
when expressions tn the comparison may have many alternative results

13.2 Programming Pitfalls

Since Icon has several unusual features, the novice Icon programmer is likely to encounter a number of
problems that would not come up in other programming languages Some of the problems that may be
encountered are described below

I Generators are reactivated for successive alternatives in a last-in first-out manner As a result, all possible
alternative results are produced, if necessary, in the goal-directed mode of evaluation used by Icon However,
the order of evaluation that results from last-in, first-out reactivation of generators 1s different from that in
conventional left-to-night, precedence-determined evaluation of expressions In particular, if a generator 1s
reactivated for an alternative result, only those components of the expression that follow the reactivated gen-
erator are re-evaluated If generators are used 1n complicated combinations, unexpected results may occur for
these reasons In particular, 1t 1s bad programming practice to use generators to produce side effects in an
every clause

2 The referencing expression x[y] 1s polymorphous, allowing x to be a string, list, table, or record object If
x 1s not of the type that 1s expected, unusual results may occur In particular, 1t 1s a common programming
practice for X to be a list and for an expression of the form x *= x[1] to be used to link through a structure If
x[1] 1s a string instead of a list (perhaps as a result of an error in building the structure), an endless loop may
result

3 Assignment does not copy structures Thus, if a1 1s a list, a2 = a1l assigns the same hist to a2 Thus
assignment to an element of a1 changes that element of a2 Similarly, the effect of

a = hlst(3,list(5))

15 10 assign the same list of five elements to each of the three elements of a

4 Exiting string scanning whether by next, break, or a procedure return, does not restore the previous
values of &subject and &pos Unless this effect 1s specifically desired or known to be safe, 1t 1s not good prac-
tice to exit from string scanning

5 Since return from a procedure by flowing off the end of the procedure body causes the call of the pro-
cedure to fail unexpected results may occur if the call is used 1n a context where 1ts outcome 1s significant
Such failure may cause an enclosing expression to fail 1If the call i1s 1n a goal-directed context, the function
may be called again for other values of its arguments

6 Since dereferencing 1s not performed until all arguments of a function or operation are evaluated, unex-
pected results may occur if side effects change the values of variables during argument evaluation For exam-

ple
write(s s ;= "a”)

writes aa regardless of the value of s prior to the evaluation of the write function The explicit dereferencing
operator . may be used to avoid this problem

7 Since the outcome of loop control structures 1s failure, their use in contexts where this failure is significant
may produce unexpected results For example, if expr2 inexpr! ? expr2issuch a control structure the entire

scanning expression fatls Similarly, 1f exprl then expr2 fails if expr/ fails

N Inoawprl 2 expy? neither ¢xprl nor expr2 1s hmited in the number of results it may produce in 4
poal directed context In particular 1f expr2 fails, backtracking to exprl occurs

-59-

9. The functions move (i) and tab (i) restore the value of &pos if they are activated to produce an alternative
result, If this effect is not anticipated, the consequences may be mysterious. For example

suspend move (1)

produces only one result, but if an alternative is sought (by goal-directed evaluation at the cite where the pro-
cedure containing this suspend is called), &pos is restored.

10. Since o is illegal in most computational contexts, failure to assign an appropriate value to a variable
before it is used usually results in a run-time error.

1. The names of functions are global identifiers with predefined values. If such a name is declared to be local
in a procedure, it may be used as an identifier like any other name, but the corresponding function is inaccessi-
ble within that procedure. If such a declaration is made unintentionally, the resuits may be mysterious.

12. In splitting long program lines, binary operators should be placed at the end of line, not the beginning.
Otherwise the translator may interpret the lines as syntactically correct, but differently from the way intended
by the programmer.

13. SNOBOLA4 programmers are prone to omit the || operator that is required for concatenation in Icon. The
result is usually a syntax error. A more subtle error is the use of = in place of := for assignment. This error
may produce undetected program malfunction or a run-time type error.

Chapter 14

Running Icon Programs

There are four phases in processing an Icon program translation, hinking, loading, and execution

14.1 Translation

An Icon program is first translated into an intermediate form The translator may detect a variety of
crrors Most of the errors that the translator can detect are syntactic ones — illegal grammatical
constructions The translator can also detect a few semantic errors, such as muluply declared dentifiers See
Appendix D for a list of translator error messages

Notes Some grammatical errors are not detected until after the location of the actual cause of the error
For example 1l an oxtra left brace appears 1 an expression the error 15 not detected unul some
constiuction occurs that requires the matching but missing right brace As a result of this phenomenon
the translator message mav not properly indicdte the cause or location of the error Similarlv some kinds
of errors may cause the translator to mistakenly interpret subsequent constructions as erroncous when in
tact they are correct Several diagnostic messages referring to locations in proximity should be suspect
It the translator detects a syvntactic ertor the translation process 1s continued, but the program i not
exccuted There are aiso overflow conditions that cause termination of translation at the point of overtlow

See Appendix D

14.2 1inking
Once an Icon program has been translated into its intermediate form, there 1is a hnking phase in which the
scope of identitiers is resolved and i which a form suitable for execution 1s produced

In the C implementation there arc two options nterpretation and compilation The linker for the
interpreter produces a compact representation of the program that is executed interpretively The hnker for
the compiler produces exccutable machine language The translation and linking processes for the interpreter
are fast and the program sets into exccution quickly - Compilation s considerably slower but the code 1t
produces executes somewhat faster - One advantage of the compiler 1s that it allows sepdrately tianslated
program secgments to be hinked together and external procedures to be included In order to produce
exccutable code the compiler has additional assembly and loading phases 1 oading (“hnk editingd™) 15 done
by the UNIX program /d [10] At this time external procedures are added to the Icon run-time svstem and
linked program

Ihe error message text overflow from /d indicates that there 1s not enough memory available to run the
lcon program

14.3 Program F xecution
Program execution is initiated by invoking the procedure main
I there are any arguments on the UNIX command line used to mitiate program execution main is
mvoked with one argument which consists of a st of strings Each string corresponds to one argument on the

command hine (not including the “zeroth™ argument)

Vore Hthere s no argument on the command Iine mam is invoked with an empty hist

14.4 Program Termination

Program execution termimates automatically on return from the initial call of the procedure main

\ore Thoeovitstatus onreturn from main s 0

Program termimation may also be caused by stop (x1, ,xn) The function stop writes i the fashion of
write (sce Section 9 2) and thon causes termindtion

-6l -

Vores The stop tunction can be used to terminate program exccution at an arbitrary place and is a
convenient way of handhing errors ot abnormal conditions that are detected during program cxccution.
stop produces anexit status ot |

Defaudr 11 the hirst argument to stop s not a hile. output s wiitten to &errout until a hle argument 15
cncountered

I he tunction exit (1) terminates program execution with an exit status of'i.

14.5 FError Termination

Frrors that occur during program execution may result from logical mistakes, invalid data, and so forth.

It such an error occurs, an error number and an explanatory message are printed. In some cases. the offending

value 1s shown. See Appendix D tor a list of run-time error messages. A run-time error terminates program
exccution with an exit status of 2.

Chapter 15

Sample Programs

Thiv chapter contains a number ol sample programs. These programs illustrate various aspects of
programming in Icon. No cluim is made that the programming technigues or the algorithms used here are the
best. but they are all running programs and they were written by programmers who have used lcon tor some
tme

The programs are preceded by problem statements and discussions of the methods used for the solutions.
Discussions follow the programs. lcon idioms and points of special interest are noted. Exercises include
suggested extensions, improvements. and related problems.

The programs themselves have been stripped of most comments for better tvpographic presentation. In
most cases, error checkhing and embellishments have been omitted also. These amenities can be provided by
the interested reader.

All the programs in this chapter are included in the lcon distribution system for UNIX.

15.1 Roman Numerals

Descriprion: This problem is a simple one: write a program to convert Arabic numerals to corresponding
Roman numerals.

Solution: The method ot solution 1s due to Gimpel [13]. Each digit of the Arabic number is mapped into 1t~
Roman cquinvalent. The multiplication by 10 represented by successive positions in the Arabic number 1S
retlected in the correspondmg Roman numeral by shifting to the next “octave™ using character replicement
Ihe occurrence ot an asterish in the result indicates & number that is too large to be represented by a4 Roman
numeral.

#
ROMAN NUMERALS
#

This main procedure takes Arabic numerals from standard input and writes
the corresponding Roman numerals to standard outout.

procedure main ()
local n
while n := read() do
write (roman(n) | “"cannot convert”)
end

procedure roman (n)
local arabic, result
static equiv
initial equiv = [TH IV OV VI VI X
integer(n) > 0 | fail
result ;= "~
every arabic = In do
result := map (result,”IVXLCDM","XLCDM=+") || equiv[arabic+1]
if find("*",result) then fail else return result
end

-63-

fxeranes:

I Rewtue the every loop to clinumate the focat wenntier arabic

2 Modily equivso that the addition ot s not necessany whenits referenced.

3 Consider alternative data representations tor equiv, includig stiings and tables,

4. Write a procedure to convert Roman numerals to Arabic numerals.

15.2 Meandering Strings

Description:

A string over an alphabet of A characters is said to be an n-meander if it contains every possible

substring ot length »# from the alphabet [14]. For example, 0001111011001010000 is a 4-meander for the
alphabet 01.

The problem here is to write a procedure to compute meandering strings of minimal length (the example
ginen above is minimal).

Solunon:

#
#
#

I*T

In Reference 14. it is shown that the length of the minimal meandering string is A”+n—1I and an
algorithm is given to generate such a string. The algorithm is basically an enumerative one, systematically
constructing substrings, but discarding ones that already occur in the result.

MEANDERING STRINGS

This main procedure accepts specifications for meandering strings
from standard input with the alphabet separated from the length by

a colon.

procedure main ()

local line, alpha, n
while line = read() do |

line ? if alpha := tab(upto(':’)) then {

move (1)

if n = integer(tab(0)) then write(meander (alpha,n))
else write("erroneous input”)

J

else write(“erroneous input”)

end

procedure meander (alpha,n)

local result, t, i, ¢, k
i = k := *alpha

t = n1

result := repl(alphal1].t)
while ¢ = alpha[i] do |

it find(result[-t:0] || c,result)

then i —= 1

else {result ||:= ¢c; i =

}

return result

end

Ivercnes:

kj

b Iy tomiprove the algonthm used in the solution above,

-64 -

2 Apph the concept of meandering strings to produce space-ethicient technmigues for telegraphic codes

15.3 Word Intersections
Descnipnion Given two strings. display their intersections in common characters

Solunon The approach s to consider one stiing as a set of characters and look for occurrences of these
characters in the other string

#
WORD INTERSECTIONS
#

This main procedure accepts word pairs from standard input, with
the words separated by semicolons.

procedure main ()
local line, |
while line = read() do |
write ()
) = upto(':',hine)
cross (line[1:j],line[j+1:0])
}
end

procedure cross(s1,s2)
local |, k
every | = upto(s2,s1) do
every k = upto(s1[)],s2) do
xprint(s1,s2,),k)
end

procedure xprint(s1,s2,},k)
write ()
every write (nght(s2[1 to k—1],))
write (s1)
every write (right(s2[k+1 to xs2],)))
end

Comments The procedure cross(s1,s2) provides a good illustration of generators and particularlv how
nested generators can be used to formulate a search over many alternatives The procedure xprint(si,s2,).k)
prints 81 honzontally and 82 vertically, crossing at the point of intersection For example, the output of
cross ("fish","school”) s

f h

— 00O W

_..
7
—Q O 0w

I\ercises.

1. Fxtend the solution to handle the mutual intersections of several words.

2 I atend the solution to the generation of Kriss-kross puzztes [15]

15.4 Word Counting

Descriprion: One of the simplest illustrations of the utility of string scanning, as opposed to more primitive
string analysis methods, is counting the words contained in a file of text. For the purposes of this problem. a
“word™ 1y defined to be a sequence of letters. The output is a listing of words in alphabetical order, together
with a count of the number of imes each word occurs in the file.

Solutnion: Stiing scanning tabs up to a letter. The subsequent sequence of letters references a table and the
count is incremented. When processing of the file is complete, the table is sorted and printed, using a column
width that is supplied as an argument to the procedure. The text to be processed comes from standard input
and the results are written to standard output.

#

WORD COUNTING
#

This main procedure processes standard input and writes the results
with the words in a column 20 characters wide.

procedure main()
wordcount (20)
end

procedure wordcount(n)
local t, line, x, y
static letters
initial letters = &lcase ++ &ucase
t ;= table(0)
while line = read() do
line ? while tab (upto(letters)) do
t[tab (many (letters))] +:= 1

x = sort(t)
every y = Ix do write(left(y[1].n).y[2])
end

Comments. Note the use of augmented assignment to update the count without having to reference the table
twice.

Fyercney:

I Modily the solution so that a suitable column width 1s computed by the procedure wordcount

2 Revise the solution so that the output 1s ordered by decreasing count.,

3 Revise the solution so that the output s broken down into sections of words having the same count and
with the words Iisted alphabetically in cach section

15,5 Binary Trees
Desciption Write a program to construct and traverse binary trees

Solunion The nodes i a binary tice can be represented by records. in which one field is devoted to the
contents of the node and two other tields point to the left and right subtrees. For input output purposes. trees
are represented by strings inowhich parentheses and commas specity the skeleton of the tree and the contents
of the nodes are ginen between punctuation characters. For example. a(b,c) represents a tree with a root
node contaiming aand two leaves containing b and €. respectively.

- 66 -

BINARY TREES

3* It 3

k-

This main program accepts string representations of binary trees from
standard input It performs a tree walk and lsts the leaves of
each tree

3+

record node (data,ltree,rtree)

procedure main()

local line, tree

while line "= read() do {
tree = tform(line)
write ("tree walk")
every write (walk (tree))
write ("leaves”)
every write (leaves(tree))

}

end

procedure tform (s)
local value,left,right
if /s then return
s 7 if value .= tab(upto('(’)) then {
move (1)
left '= tab(bal(',’))
move (1)
right = tab(bal(')))
return node (value,tform (left),tform (nght))
}
else return node(s)
end

procedure walk (t)
suspend walk(\t Itree | \trtree)
return t data

end

procedure leaves (t)
if not(\tltree | \trtree) then return tdata
suspend leaves (\t itree | \trtree)

end

Commenty The procedure tform constructs the binary trec ftom a string representation of the type
descnibed above The procedures walk and leaves walk the tree and generate the leaves, respectively Notc
that these procedures are generators allowing successive nodes to be obtained as desired

Faaraises

[Modily the procedure tform to allow trailing commas to be omitted to indicate the absence ot 4 right
subtice
2 Modily the procedure walk to walk the tree invarious different orders

¥ Add error cheching to the procedure tform to deteet syntactically incorrect input

-67-

file:///t.rtree
file:///t.rtree
file:///t.ltree
file:///t.rtree

4 Winte a procedure to convert a binary tree into s stiing representation.

15.6 Eight Queens

Descripion: The classic example used to illustrate backtracking is the eight-queens problem [18,19], which

is to determine the number of ways that eight queens can be placed on a chess board such that none can attack
another.

Solution: The solution imvolves trial placements of the eight queens with backtracking from attacking
positions.

#
EIGHT QUEENS
#

procedure main ()

every write(q(1),q9(2),q(3),9(4),q(5),9(6).9(7).a(8))
end

procedure q(c)
suspend place(1 to 8,c)
end

procedure place(r,c)
static up, down, rows, upoff, downoff
initial {
up = list(15,0)
down = list(15,0)

rows = list(8,0)
upoff ;= 8
downoff ;= —1

}
if rows[r] = up[upoff+r—c] = down[downoff+r+c] = 0 then
suspend rows[r] <— up[upoff+r—c] <— down[downoff+r+c] <— r
end

procedure q(c)
suspend place(1 to 8,c)
end

procedure place(r,c)
static up, down, rows, upoff, downoff
initial {
up := list(15,0)
down = list(15,0)
rows = list(8,0)
upoff ;= 8
downoff = —1
}
if rows[r] = up|upoff+r—c] = down|downoff+rtc] = 0 then
suspend rows[r] <— up[upoff+r—c] <— down[downoff+r+c] <— r
end

Commenrs: The three hists heep track of the free rows, the upward-facing diagonals, and the downward-
tacing diagonals. Free squares are indicated by sero values, while occupied squares are indicated by the value
onc Note that goal-directed evaluation forces the tunction write to be called for all combinations of

- 68 -

arguments that have values (for which q (i) returns a value).
Lyercines:

I Wiite an analogous procedure for four rooks.

2 Write a procedure to display the solutions in the format of a chess board.

15.7 Infix-to-Prefix Conversion

Descripnion: - Write a program to convert arithmetic expressions from infix form to fully parenthesized
prefix form. The desired conversions are illustrated by the following examples:

X X

x+1 +(x,1)

((x+1)) +(x,1)

x—y-z —(=(x,y),2)
3xdelta+1 +(*(3,delta),1)
2A2AnN A(2,A(2,n))
(xAn)/(z+1) /(A (x,n),+(z,1))

Solurnion: Since the infix expressions may not be fully parenthesized. the precedence and associativity of the
infix operators must be considered. In addition, the infix expressions may contain superfluous parentheses
that must be removed. Separate procedures are provided to remove such superfluous parentheses and for
handling lett- and nght-associative operators according to their conventional precedences. Once an expression
has been decomposed into 1ts operators and operands. the corresponding prefix expression is easily obtiuined

#
INFIX-TO-PREFIX CONVERSION
#

This main procedure accepts infix expressions from standard input and
writes the corresponding prefix expressions to standard output.

procedure main{)
while write (prefix (read ()))
end

procedure prefix(s)

s = strip(s)

return lassoc(s,'+—' | 'x/') | rassoc(s,’A’) | s
end

procedure strip(s)
while s ? (=" (" & s <— tab(bal(')’)) & pos(-1))
return s

end

procedure lassoc(s,C)
local j
s ? every | ;= bal(c)
return form (s,\j)
end

S 69 -

procedure rassoc(s,c)

local |

return form(s,s ? bal(c))
end

procedure form(s,k)
local a1, a2, op

s ? |
al = tab(k)
op ‘= move(1)
a2 .= tab(0)
}
return op |] "{" || prefix(al) || ",” || prefix(a2) || ")"
end

Comments This solution illustrates a number of lacets of string scanning and the use of the function balin
particular Note the use of conjunction in Strip to assure that the balanced string ends 4t a terminal
parenthesis

fyercnves

I Modity the procedure prefix to avoid calling 1assoc and rassoc in case s does not contain any operators

(]

Write a procedure to convert from pretfix form to infix form
Fxtend the solution given above to handle pretix operators and functional forms

Write a program to perform sy mbolic differentiation

[IS SY)

Write a program to perform general symbolic evaluation Provide for simphfication of the results

15.8 Recognition of Context-Free | anguages

Desaiprion Given a context-lree grammadr, write a program to recognize sentences from the corresponding
language

Solunon In SNOBOI 4 there 15 an isomorphism between the productions of a context-free grammar and
corresponding recogmtion patterns {207 Provided there 1s no left recursion, there 1s a similar isomorphism in
lcon, in which recognition procedures take the place of patterns This 1somorphism s illustrated by the
following simple grammar

<s>'= a<s> | <t>b | ¢
<t>.=d<s>d|e|f

A program contaimning recognition procedures Sand t corresponding to <s> and <t> follows

#
CFL RECOGNITION
#

This main procedure takes strings from standard input and determines
whether or not they are sentences in the language defined by <s>

procedure main ()
local line
while hne = read() do
if recogn(s,iine) then write ("accepted”) else write ("rejected”)
end

=70 -

procedure recogn (goal,text)
return text ? (goal() & pos(0))
end

<s> ma<s> | <t>b | cC

procedure s()
suspend (="a" || s()) | (t() |l ="b") | ="c”
end

<t>.=d<s>d |e|f

procedure t()
suspend (="d” [| s() || ="d") | ="e" | ="f"
end

Comments Terminal symbols are matched by expressions of the form =x, while nonterminal symbols are
matched by calls on the corresponding recognition procedures For each successful match. a recognition
procedure suspends with the value matched

Lhe procedure recogn succeeds or fatls. depending on whether or not text s a sentence in the goal
grammar Note that the goal procedure 1s an argument of recogn This demonstrates the uselulness of
procedures bemg data objects

The use of conjunction and a test for a position at the end of &subject are necessary to prevent spurious
recogmition of an mmtial substiing
Fercises
I Note that the recogmuon procedures return the substiing that they match Run the program with tracing
and varous input. observing how the recognition process proceeds
2 Wite d program to aceept ¢ grammar as input and generate corresponding recognition procedures

3 Procedures of the tyvpe used here are not himited to recognition Adapt them to the generation ol parse
trees

15.9 Random Sentence Generation

Deschpnion Wiite a program to aceept a context-free grammar as input and generate randomh selected
sentences from the corresponding language

Solution The solution here is patterned after the one given in Reference 21, which should be consulted for a
more detatled description

Grammatical specitications are read in and analyzed A list of alternatives 1s created for each defimtion
tach alternative. in turn, 15 1epresented by a hst of subsequents (termingl and nonterminal syxmbols) The
name ol a nonterminal 15 assoctated with 1ts structure through a table Terminals are represented by strings
while nonterminals arce represented by records

Generation spectfications are represented by a nonterminal followed by a count For example. <s>10
specities the generation ol 10 sentences from the language defined by <s>

lhe generation process starts with a generation hst consisting of the desired nonterminal Flements are
removed from the left end of this st 11 an clement 18 a nonterminal, the subsequent hist for one of s
tandomly selected alternatives s prepended to the generation list 1f an element 1s 4 terminal. 1t 1s appended to
the evolving result

-7 -

#
RANDOM SENTENCE GENERATION
#

global def
record nonterm (ntname)

procedure main()
local line
def = table()
while line = read ()do
enter(line) | generate(line) | write("+*x syntax error”)
end

procedure enter(s)
local name
return s ?
it ="<" then |

name .= tab(find (">::=")) | fail
move (4)
def[name] := buildalt(tab (0))
}

end

procedure buildalt(s)
local k
k=[]
every put(k,buildsub (genalt(s)))
return k
end

procedure buildsub (s)
local k
k= 1]
every put(k,gensub(s))
return k

end

procedure genait(s)
local t
s ? while t ;= tab(upto('|’) | 0) do |{
suspend t
move (1) | break

!

end

7.

procedure gensub(s)
local t
s ? repeat {
t = tab(upto('<’) | 0)
if t =="" then {
move (1) | break
t := nonterm (tab (upto('>")))
move (1)
}
suspend t

}

end

procedure generate(s)
local name, count

s ? {
="<" | fai
name = tab(upto('>')) | fail
move (1)
count = integer(tab(0)) | fail
}
every 1 to count do write(synthesize (name))
return
end

procedure synthesize(s)
local sentence, nexts, t, x
sentence ‘= ""
nexts = [nonterm(s)]
while t ;= get(nexts) do

if type(t) == "nonterm” then |
x = \def[t ntname] | {write ("*** <" t.ntname,”> undefined"”), fail}
nexts := ?x ||| nexts
}
else sentence ||'=t
return sentence

end

Comments The analvsis of the grammatical specthications illustrates moderately complicated string
scanning In the scanning expressions, terminators are appended so that successive items can be handled
uniformly Note that genalt and gensub generate values for buildalt and buildsub, respectively This
organization of the analvsis activities 1s not necessary, but it partitions logically distinct activities and allows
the program to be adapted to other uses by changing the definitions of buildalt and buildsub See the
CACILISeS °

fyaranes

[Provide a way for allowing the metalinguistic characters |, <, and > to be included in grammars

t9

Using the preceding extension, write a grammar that generdtes random grammars

3 Recursive grammars such as those that describe arithmetic expressions., tend to lead to endless growth ot
the generation st Provide a mechanism for biasing the selection of alternatives to mitigate this problem

4 Some hinds of context sensitivity are casily added to the program above Explore such possibilities

S Modiy the program above to generate recognition procedures

Acknowledgments

I'he Tcon programming language was designed by the authors in collaboration with Dave Hanson and Tim
Korb Muany othar persons too numcrous to hst here have provided criticism and suggestions that have been
incotporated in the current version of the language

References

| Farber David }. Ralph E Griswold, and Ivan P Polonsky “SNOBOL. A String Manipulation
I anguage™ Jow nal of the ACM, Vol 11, No | (January 1964) pp 21-30

2 Farber. David 1. Ralph E Griswold, and Ivan P Polonsky SNOBOL 2 Technical report, Bell 1 abs
Holmdel New Jersey April 1964

1 Farber David J, Ralph E Griswold, and Ivan P Polonsky “The SNOBOL 3 Programming Language™
The Bell Svstem Technical Journal, Vol XLV, No 6 (July-August 1966) pp 895-944

4 Grniswold Ralph E James F Poage, and Ivan P Polonsky The SNOBOL4 Programnung Language
sceond edition Prentice-Hall Inc Englewood Chffs, New Jersey 1971

5 Grniswold Ralph F Bihliography of Documents Related 1o the SNOBOL Languages Technical Report
1R 78-18a Department of Computer Science The University of Arizona, Tucson, Arizona September 1979

6 Gnswold Ralph E and David R Hanson “An Overview of SLS”, SIGPLAN Notices, Vol 12 No 4
(April 1977) pp 40-50

7 Hanson David R and Ralph E Griswold *The SLS Procedure Mechanism™, Communications of the
AC VM Vol 21 No 5(May 1978) pp 392-400

8 Grnswold Ralph F “String Analysis and Synthesis in SLS™, Proceedings of the ACM Annual
Confcarence October 1976 pp 410-414

9 Kernighan Brian W oand Dennis M Ritchie 7he € Programming [anguage Prentice-Hall Inc
Fnglewood Chitfs, New Jersey 1978

10 Kermighan Brian W and M D Mcllroy UNIN Programmer s Manual Seventh Ediion Bell
I aboratories, Murray Hill New Jersey January 1979

Il American National Standards Institute USA Standard Code for Informanon Interchange, X3 4-1977
New York New York 1977

12 Coutant Carv A and Stephen B Wampler 4 Tow Through The ¢ Implemcntation of lcon Version S

Iechmical Report TR 81 11a Department of Computer Science, The University of Arizona, Tucson Arizona
Dccembar 1981

13 Gimpel lames F o 4lgornluns in SNOBOIL4 John Wilev & Sons New York, New York 1976 pp 25 26

14 Gimpel James Foand Wilham Kewster Mummal Meandering Strings Technical report Bell Labs
Holmdel New Jersey Tuly 1970

15 Wetherell Charles Frudes for Programmers Prentice-Hall, Inc, Englewood Cliffs, New Jersey 1978
pp 30-31

16 Gimpel James F o Algoruhns in SNOBOIL4 John Wiley & Sons. New York, New York 1976 pp 253-
273 -

17 Guswold Ralph E “Programmung Techniques Using Chardcter Sets and Chdracter Set Mappings in
lcon™ The Computer Journal Vol 23 No 2 (May 1980) pp 107-114

18 Wuth Niklaus d/lgorithms + Data Structures = Programs Prentice-Hall, Inc, Englewood Chits New
Juisey 1976 pp 143 147

19 Hanson David R A Procedure Mechanism for Backtrack Programming™. Proceedmngs of the 4C M
tanual Confercnce October 1976 pp 401-405

200 Guiswold Ralph T and David R Hanson “An Alternative to the Use of Patterns in String Processing™
LCM Tramsactions on Programnung anguages and Systems Vol 2, No 2 (April 1980) pp 153-172

21 Goswold, Ralph B Strne and st Processing in SNOBOIL 4 Techniques and Applicanions Prentice-
Hall Inc Fnglewood Clitfs New Jersey 1975 pp 192-200

-74 -

Appendix A

Syntax

Formal Syntax

The tollowing tormal syntax for lcon describes only macroscopic teatures Complete hsts of operators and
keywords are included in Appendix B. Sce Section 2.2.1 for a description of 1dentifiers and Sections 4 1 1.
4.21. 52 1. and 5.3 for a description of literals Record types are context sensitive; see Section 8 3 See
Chapter 12 lor equivalence ol characters, situations in which semicolons may be omitted. the continuation of
string Iiterals over line terminations, and the treatment of blanks.

The syntactic tvpes period. lefi-bracket, and right-bracher indicate occurrences of the characters
. [. and] .which have metalinguistic uses in the syntax description language.

program U= declaration ...

global-declaration | external-declaranion | record-declaration
procedure-declaration

declaration

global-declaranion = global identifier-list

wdennifier-lise 2= adennfier | | wdentifier] ..
external-declaranion = external identifier-hist
record-declaranion = record idennfrer ([identifier-list 1)

piocedwe-declaration = procedure-header ;[local-declaranon ;] . [iminal-clause ;]

[procedure-body ;] end
procedure-header = procedure lenufier ([wdenifier-list])

local-declaranion = local-specification identifier-list

local-specification 7=

mnal-clavse

procedur e-bodh
oprexm

expi

lueral .

operatton

local | static | dynamic
inhial expr
optexpr [opreapr] ...

Lewr]

fueral | idennfier | hevwaord | operation | call | reference
substring | It | record-object | contiol-struct | return |

compound-expr | (optexpr)

mieger-tueral | real-lueral | quoted-hicral

prefix-oper expr | expr infix-oper expi

-75-

call

expr-list

refoerannc

substing ..
range .

Ine i
record-object .

control-srruct 3.

if-then-else .
wihile-do .

wunil-do

ever -do

repeat

case .

cave-claunve 2.

not .

to-by

next o

hieah

return .

compound-expi

it

expr (expr-iist)

optepr[, optexpr]

expdfe brackerovpr vight biacker | ovpr period identificr
expr left-bracher expr range expright-brachet

R

lefi-bracket oprexpr right-brack et

record-npe (expr-list)

if-then-else | while-do | until-do | ever\-do | repeat | case |
not | to-by | next | break

ifexpr then expr[elseevpr]
whileexpr[doepr]

until exprdoespr]

everyeym [doeypr]

repeat ey

case expr of { case-clawse [, case-clawse]}
expr Ceapr | default:expr

noteypr

exprtoepr[byevpr]

next

break oprexm

return oprepr | suspend oprepr | fail

{oprexpr ,optexpr]

- 76 -

Precedence and Associativity

The relative precedence of control structures, operators, and expression-hist delimiters arranged n
ascending order. tollows Forintix operators, the associativity 1s hsted also

precedence npe associarivin

if-then-else 1

while-do !

until-do |

every-do l

repeat !

case |

breah 1

return |

saspend |

farl l

& 2 inhix lett
? 3 infix left
= 4 nfix right
<— 4 infix right
= 4 infix right
<> 4 nfiy right
&= 4 intin right
+ = 4 infix night
- = 4 infi right
* = 4 infix right
/= 4 infix right
% = 4 infix right
A= 4 infix rnight
== 4 infin right
>== 4 i right
> = 4 infix right
<== 4 infix right
<= 4 infix right
~== 4 infix right
[| 4 infix right
=== 4 infin right
>>== 4 infiy right
> = 4 inlix rght
<= = 4 mhis nght
<< = 4 intfix rnght
~== = 4 mnfix right
7= 4 infix right
++ = 4 mfin right
- = 4 mfin right
% = 4 infin right
I = 4 inhx 1ight
=== = 4 inhix right
~==== 4 nfix right
10-h) 5

| 6 mnfin left
= 7 mfix left
~= 7 infix left
< 7 173N left
<= 7 intiy left

-77-

>>=

<<=

[
il
+

++

hot

D * Qo

+

/
\

expr(
expr |

Reserved Words

OO O WO OCOC NN NN NN

infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
prefix
prefix
prefix
prefix
prefiy
prefix
prefix
prefix
prefix
prefix
prefix
prelix
prehx

infix

left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
right
left

left

The tollowing are reserved words, which cannot be used as identifiers

break
dynamic
fail

next
repeat
to

by
else
global
not
return
until

case
end

if

of
static
while

-7 -

default
every
initial
procedure
suspend

do
external
local
record
then

Appendix B

Built-In Operations

1 he following sections hist the built-in operations of lcon, with citations to primary section references

Functions
/HH(Hon section
abs (n) 412
any(c,s.1,)) 632
bal (c1,c2,c3,s,1,)) 632
center (s1,1,5s2) 613
close (f) 91
copy (x) 10.4
cset(x) 5.3
display (1,f) 114
exit() 145
find (s1,s2,1,)) 631
get(a) 814
image (x) 109
integer (x) 441
left (s1,1,s2) 613
list (1,x) 811
many (c,s,1,}) 632
map (s1,52,s3) 615
match (s1,s2,1,)) 6131
move (1) 72
numeric (n) 4.5
open(s1,s2) 91
pop(a) 813
pos (1) 71
pull(a) 81d
push (a,x) 813
put(a,x) 814
read (f) 93
reads (f,1) 93
real (x) 442
repl(s,1) 612
reverse (s) 615
rnght(s1,,s2) 613
sort(x,1) 84
stop (x1, ,xn) 145
string (x) 541
system (s) 10 10
tab (1) 72
table (x) 821
trim (s,c) 615
type (x) 10 8
upto(c,s,1,)) 632

-79 -

write (x1,...,xn) 9.2
writes (x1,...,xn) 9.2

Infix Operators

operator section
= 2.2.1
<— 3.5
= 2.2.1
<> 35
&= 10.2
+= 10.2
== 10.2
* = (0.2
/= 10.2
%= 10.2
n= 10.2
== 10.2
>== 10.2
>= 10.2
<== 10.2
<= 10.2
~—== 10.2
[[:= 10.2
== 10.2
>>== 10.2
>>1= 10.2
<<== 10.2
<<= 10.2
~=== 10.2
= 10.2
++I= 10.2
-= 10.2
*F (= 10.2
[]:= 10.2
==== 10.2
~==== 10.2
& 33
+ 4.1.2
- 4.1.2
* 4.1.2
/ 4.1.2
n 4.1.2
% 4.1.2
= 4.1.3
~= 4.1.3
> 4.1.3
>= 4.1.3
< 4.1.3
<= 4.1.3
++

|
t
[FERRPS RN

Prefix Operators

operatol

=

S~ D o *

Keywords

heyword

&ascii
&clock
&cset
&date
&dateline
&errout
&fail
&host
&input
&licase
&ievel
&null
&output
&pos
&random
&subject
&time
&trace
&ucase
&version

611
8 1.5
6.2
6.2
6.2
6.2
6.2
6.2
10.3
103
833

seclion

seclion

5.3
10.6
5.3
10.6
10.6
91
232
10 11
9.1
53
1133
107
9.1
7.1
10.5
7.1
106
1134
53
10 11

- 8] -

Appendix C

Summary of Defaults

Omitted Expressions

Omitted expressions detault to o. For example
break
1s equnvalent to

break &null

Similarly, omitted arguments in function and procedure calls default to e, For example left(s,i) is equivalent
o left(s,1,&null) In some tunctions, null-valued arguments default to commonly used values. These defaults
apply whether the argument s expheitly omitted or whether evaluation of the expression given for the
argument produces For example, left (s,i) and left(s,1,&null) are equivalent so far as interpretation of the
third argument s concerned Defaults tor null-valued arguments are hsted below Arguments that are not
shown as @ are assumed to be non-null Note that tor the string analysis functions, the default for the initial
position depends on whether the argument specitying the string being exanuned 1s ®. In all other cases. the
detault tor a null-valued argument 1s independent of the values of the other arguments.

ubbreviared form

any(c,ee)
any(c,s,ee
bal(e,ee 00
bal (o,o,o'syo,o)
center (s,1,9)
display(e,e)
find (s,e,e)
find (s1,52,0,9)
left (s,i,®)
list(e)

many (c,e,e.e)
many (c,s,e,e)
map (s,e,e)
match (s,e,e
match (s1,s2,0,0)
open(s,e)
read (e)

reads (e,e)
right(s,i,e)
sort (x,e)
stop(...,e,...)
trim (s)
upto(c,e,ee)
upto(c,s,e,e)
write (...,e,...)
writes(...,e,...)

(’([UI\'(I/(‘I” CAPression

any (c,&subject,&pos,0)
any(c,s,1,0)

bai (&cset,'(',’)’,&subject,&pos,0)

bal (&cset,'(’,'}',s,1,0)
center(s,i,"0")

display (&level,&errout)
find (s,&subject,&pos,0)
find (s1,82,1,0)
left(s,,”0")

list (0)

many (c,&subject, &pos,0)
many (c,s,1,0)

map (s,&ucase,&Icase)
match (s,&subject,&pos,0)
match(s1,52,1,0)
open(s,"r")

read (&input)

reads (&input,1)
right(s,i,”0")

sort(x,1)

stop(...,"",...)

trim(s,'0")

upto (c,&subject,&pos,0)
upto(c,s,1,0)
wnte(...,”",...)
writes(...,"",.)

Appendix D

Summary of Error Messages

Translator Error Messages

Messages that may occur during translation because of syntax errors in the program are listed
below. The translator continues following detection of an error. but the translated program cannot be
executed.

end-of-file expected

global, record, or procedure declaration expected
inconsistent redeclaration
invalid argument fist

invalid by clause

invalid case clause

invalid case control expression
invalid character

invalid context for break

invalid context for next

invalid context for return or fail
invalid context for suspend
invalid create expression
invalid declaration

invalid default clause

invalid digit in integer literal
invalid do clause

invalid else clause

invalid every control expression
invalid field name '
invalid global declaration
invalid if control expression
invalid initial expression

invalid integer literal

invalid keyword

invalid keyword construction
invalid local declaration

invalid operand

invalid operand for unary operator
invalid operand in alternation
invalid operand in assignment
invalid operand in augmented assignment
invalid radix for integer literal
invalid real literal

invalid reference or subscript
invalid repeat expression
invalid section

invalid then clause

invalid to clause

invalid until control expression
invalid while control expression
missing argument list in procedure declaration
missing colon

missing end

missing field list in record declaration
missing identifier

missing left brace

missing of

missing procedure name
missing record name

missing nght brace

missing right bracket

missing right parenthesis
missing semicolon

missing semicolon or operator
missing then

more than one default clause
unclosed quote

unexpected end of file

Translation may be terminated because of various kinds of overflow:

—_

out of globai symbol table space
out of loca! symbol table space
out of string space
out of constant table space
out of tree space
yacc stack overflow
I here s one warning message issued by the translator:
redeclared identfier

Unbike the messages above. this warning does not prevent the use of the translated program.

Linker Error Messages
There are two programming errors that are detected by the linker:

inconsistent redeclaration
invalid field name

These errors prevent the program from being run. There 1s also a way to request the linker to detect identifiers
that have not been declared. The message produced s

undeclared identifier

Fhis message s only a warning. it does not prevent the use of the hinked program

Errors During Loading

t riors that occur duning loading arce issued by the loader, which 1s not part of the Icon system itselt Errors
may occur because insuthicient memory 1s avatlable or because of errors 1n external procedures (for example,
unresohved references). In the case of loader errors, attempts to execute the resulting program may causc a bus
error or other maltunction.

Program Error Messages

Program errors are divided into several major categories, depending on the nature of the error.

-84 -

Category 1: Invalid Type or Form

101 integer expected

102 numeric expected

103 string expected

104 cset expected

105 file expected

106 procedure or integer expected
107 record expected

108 list expected

109 string or file expected

110 string or list expected

1 variable expected

112 invalid type to size operation
113 invalid type to random operation
114 invalid type to subscript operation
115 list or table expected

116 invahid type to element generator
117 missing main procdure

Category 2: Invalid Argument or C omputation

201 division by zero

202 remaindering by zero

203 integer overflow

204 real overflow underflow, or division by zero
205 value out of range

206 negative first operand to real exponentiation
207 invalid field name

208 second and third arguments to map of unequal length
209 invalid second argument to open

210 argument to system function too long

211 by clause equal to zero

212 attempt to read file not open for reading
213 attempt to write file not open for writing

(ategory 3: Capacity Fxceeded

301 insufficient storage in heap

302 insufficient storage in string space

303 insufficient storage for garbage colection
304 insufficient storage for system stack

INDEX

abs(n) 16 constiucting strings ~ 27-30
absolutevalue 16 continuation of quoted hterals - 57
aceessimg hists 40 control characters 23
accessing records 43 control expressions 8
accessing tables 41 control structures 4
addition 15 conversion to integer 19
alternation 1 conversion to numeric 2!

exprl | expr2 11 conversion to real number 20
alternatives 58,59 copy(x) 47
any(c) 36-37 copying objects 47, 59
any(c,s,i,j) 32 creation of lists 39
argument transmusston 51 [x1,x2,...,xn] 39
arguments 5,6 creation of records 42
arithmetic 15-21 creation of table elements 41
arithmetic operations 17 creation of tables 41
ASClE 22,57 cset(s) 24
assignment 5, 14,29, 40, 47 date 48
associativity - 6,15, 16. 77 decimal notation 17
augmented assignment 46, 58 declarations 42-43, 50-51. 56
backslashes 22,23 default 8
backtracking 13,14 default case clauses 8
bal(c1,c2,c3) 36-37 default values 6
bal(c1,c2,c3,s,1,j) 33-34 defaults 6,9, 12,27, 28, 30, 31, 32, 33, 34. 36,
balanced strings 33-34 39.42,43,44,45,51,52,54, 62,82
blanks 22,57 defined types 4243, 47
Booleanvalues 1.7 dereferencing 6, 52, 59
break e\pr 9 display (i,f) 54
bullt-in character sets 24 diviston 15
C 223 dynamic 50
case ey of 8.14 dynamic identifiers 50
case selectors 8, 58 efficiency 58
casc control expressions 8 element generation 46
center(s1,1,s2) 28 Ix 46
character codes 22 empty hists 39
character equivalences 57 empty strings 4, 23, 27,29, 31
character graphics 22 end 50
character positions 28-29 equivalence of objects 47
character set conversion 24 equivalent characters 57
character sets 4, 20, 24, 25, 32-34. 43,47, 58 error conditions 5.6, 12, 14, 16, 17, 20, 24, 25,
characters 22 26,27, 28,29, 39,43, 44, 45, 46, 47, 48, 49,
close(f) 44 52,54
closing tiles 44 error messages 61, 83-85
collating sequence 22, 25, 31 error termination 62
command lines 61 errors 61,62
comments 57 escape conventions 22, 48
comparison operators 16, 18, 31,47, 58 every expr] do expr2 9,11,12,52.59
compound expressions 9 exception errors 62
computed procedures 54 exchanging values S, 14,15
computed variables 52 exit status 61
concatenation 27,44, 60 exit(i) 62
conjunction 14 exponent notation 17,25

-86-

exponentiation 15, 17,18 vl =1 v2 §
expresstons 4-14 v<—x I4

external 55

external procedures 55 v &= x 46
extiaarguments 5l v +=i 46
fail 51 vV == 1 46
ladure 107,51 vV ai= 0 46
tatlure conditions 8, 19, 20, 25, 29, 31, 32, 33, v /=1 46
35.36.40.43,44. 45,60 v %= i 46
field names 42 vV A= 46
tile names 48 v ==1 46
file option specifications 44 v>==1i 46
files 4.43.44-45.47.48 v>=1i 46
find(s) 36-37 vV <=1= 1 46
find (s1,s2,i,j) 11.32 v <=1 46
floating-point representation 17, 18 v ~== 1] 46
functions 5-6. 54, 60. 79-80 vV ||i=s 46
generators 11,32,33,34, 52,59 v ==I=5 46
get(a) 40 v >>==f 46
global 5i vV >>= 8 46
global declarations 51,56 vV <<=I=§ 46
globahidentitiers §2, 54, 60 V <<= § 46
goal-directed evaluauon 1,2, 12,13, 14,52, 59 v ~===8§ 46
hexadecimal codes 22,23 v 7.=s 46
identifier declarations 50-51 vV ++= C 46
identitiers 4.5, 50, 51 v ——I= ¢ 46
if exprl then eypr2 else expr3 7,14 vV xxi= € 46
image(x) 45, 4% v ||l:= 46
intix operators 6. 15,16, 80 Vo= — _ x40
at ||f a2 41 R O)
ct ++ c2 24 x &y 1314
¢l —— c2 24 X ===y 47
cl *x c2 24 X ~===y 47
= 16047 z.f 43
I ~= 16 initial 50
<) 16 initial clauses 50
L <=1} 16 mitial substrings 28, 31-32, 33
1> 16 ininating execution 61
I >=) 16 input 44,45
I input line length 45
I T integer anthmetic 15-16
%) 15 integer comparison 16-17
y /) 1S integer division 16
1% j 15016 integer literals 15
LAy LS integer scquences 12
s1 || s2 6.27 exprl to expr2 by evpr3 12
st ? s2 35-37.59 integer(x) 19-20
81 == s2 6.31.47 integers 4, 15-17.43,47, 58
s1 << s2 131 keywords 5.6.23.24.35.44. 47,48, 52,81
51 <<= 82 13 &asci 24.29
s1 >>= s2 3| &clock 48
s1 >> s2 1] &cset 24
s1 ~== g2 1] &date 5.4
v =x § &dateline 48

-87-

&errout 44

&faill 7

&host 49
&input 44,45
&icase 24
&level 52,53,54
&null 48

&output 44,45
&pos 35-37.59, 60
&random 47
&subject 35-37,59
&time 48

&trace 5,52
&ucase 24
&version 49
left(s1,,s2) 27
letters 24
lexical analysis 32
lexical order 31,43
Iimiting evaluation 12
exprl \ expr2 12
line terminators 44,45
hnking 6l

hst elements 39

a(i] 40

list sections 41

afiyy] 41

ap+y] 41

ahi—:y) 4l

list(1,x) 4,39,47
lists 4, 39-41,43,46, 47
hiteral character sets 24
hterals 4.8,15,17,24
loading 61

locai 50
local declarations 50, 51
localidentifiers 52
loop control 9

main procedure 10, 56, 61

many(c) 36-37
many (c,s,l,}) 33
map (s1,82,s3) 6,30
mapping characters 30
match(s) 36-37
match (s1,s2,1,)) 31-32

mixed-mode anthmetic 18

move (1) 35
multiplication [§

multutal evaluation 13-14

nested scanning 37
newline characters 23, 58
next 9

not expr 8,14

null character 29

null value () 4,51
numeric(n) 21
object comparison 47
octal codes 22,23
omitted arguments 6, 51
open options 44
open{si,s2) 44
opening files 44
operands 6
operators 6
order of evaluation 13, 5]
out-of-range references 40
outcome of evaluation 7, 8,52
output 44

overflow conditions 61
parentheses 5

PDP-11 2

pipes 44

polymorphous operations 59
pop(a) 40

pos(1) 35

positional analysis 35-36
positioning of strings 27
positions in strings 28-29
precedence 6, 16,77
precision of real numbers 17
prefix operators 6, 16, 81

~Cc 24

+ 16

-1 16

&k 5

=s 37

/x 48

«X 6,23,39,41

Ix 46

\x 48

x 47

X 6

procedure 50
procedure activation 51,53
procedure bodies 9, 50
procedure calls 51,52, 54

procedure declarations 50, 54, 56

procedure invocation 51, 54
procedure level 52
procedure names 50
procedure values 54
procedures 4,9-10, 43, 47, 50-53
program character set 57
programerrors 62
program execution 62
program hines 56
program listings 61
program structure 56

program termination 16, 61
programtext 56

program translation 61
puli(a) 40

programs 9, 56-57
push(a,x} 40

put(a,x) 40

queues 40

quotation marks 4,22, 48
quoted strings 22,23

radix representation 5
random number generation 47
random element generation 47
range specifications 29,41
random number seed 47

read (f) 45

reading data 45

reads (f,1) 45

real arithmetic 17

real comparison 18

real literals 17

real numbers 4,17

real(x) 20

record 42

record fields 42-43

record declarations 42-43, 56
record types 42-43,47

records 4, 39,42-43 46,47, 51
referencing expressions 40, 43

t[x] 41
ali] 40 59
z.f 43

remaindering 16

repeat expr 8 9

repeated alternation 12
lexpr 12

repl(s,1) 27

replication of strings 27

reserved words 2, 4,42, 78

results 6,11

return expr 52

return from procedures 51-52

reverse(s) 30

reversible assignment 14

reversible effects 14, 36

reversible exchange 14

reversing strings 30

right(s1,1,s2) 28

scanned substrings 35

scanning keywords 35-37

scanning operations 36-37, 60

scope of identifiers 50-51

selecting results 13-14

semicolons 9,14 56

-89 -

shells 44,49

size of strings 23,31
si7e of structures 48

SLS 1,2

SNOBOLI. languages 1,2,60

sort(a) 43
sort(t,) 43
sorting 22, 25,43

splitting of expressions 56

stacks 40

standard error output file 44

standard input file

44

standard output file 44

static 50

static identifiers 50, 51

stop (x1,x2, ,xn)
storage allocation
storage hmits 23,

61
2,58
39,45

string analysis 31-34

string comparison
string images 48
string literals 57
string replication

31

27

string scanning 35-37

string(x) 24-26

strings 4, 22-30, 43,46, 47,48, 58

structures 39

subscripting expressions 29

subscripts 40
substrings 28-30.
s[1] 29
s[1z)] 29
s[i+:k] 29
s[i—k] 29
subtraction 15
success 1,2,7

31-32, 58

suspend expr 52,60
suspended procedures 52
syntactic types 2, 75-76
syntactic errors 61, 83-84

syntax notation 2
system(s) 49
tab characters 57
tab (1) 36.37
table(x) 4,47

table references 41,43, 47,58

tables 4, 39,41
terminal substrings
time 48

trace messages S3

28

tracing procedure activity 52, 53

trailing arguments
translation 61
translation errors

6

61 83-84

file:///expr

transposing characters 30
trim(s,c) 30

timming stings 30
ttuncation 16,19

wpe checking 2

tvpecoercion 206

tpe conversion 6, 19-20,24-26. 41, 45
type determination 48
type(x) 6.48

tipes 2.4.42.43

undeclared identifiers 51,56
underscores 57

UNIX 2.44,61

until exprl do exp2 8.9, 14
upto(c) 36-37

upto(c,s,i,j) 33

values 4

variables 4-5.39.40.41.42,52
warnings 29.37.41.44.51. 56. 59-60
while ¢yl do expn2 7,90 14
write (x1, .., xn) 6. 44

writes (x1, . ,xn) 45

witing data - 44-45. 58

-90 -

file://i:/pr2
file:///ariables

