
New Control Structures in Icon*

Stephen B. Wampler

TR81-U

July 1981

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant MCS79-03890.

>:<>-. t ••:•-. I

'$ J,{.

New Control Structures in Icon

1. Introduction
Expressions in Icon [7] are capable of generating sequences of results during the course of their evaluation.

For this reason, expressions in Icon are often referred to as generators. The primary control mechanism that
exploits generators is goal-directed evaluation [12], which provides control backtracking [8]. This paper
describes additional control mechanisms that have been added to Version 4 of Icon [2], an extension of
Version 3[1].

These mechanisms add increased usefulness to generators. Besides increasing the programmer's control
over generators, applications include the development of user-defined generators at the expression level,
generators of unlimited scope, and coroutine processing.

2. New Control Structures

2.1 Explicit Limitation

Several control structures still implicitly limit generators to their first result. For example, the control
clause of if-then-else is limited to producing at most one result. Generators may be explicitly limited with the
limitation control structure.

The syntax for explicit limitation is

exprl \ expr2

which limits exprl to at most expr2 results. For example,

every write (!x \ 3)

writes the first three elements of x.

2.2 Repeated Evaluation

The repeated evaluation control structure repeatedly evaluates its argument. The syntax for repeated
evaluation is

| expr

For example,

every writes(| (1 to 3))

prints

1231231231231...

Note that the argument of repeated evaluation is not limited.

\expr is not equivalent to the infinite expression

expr | expr \ expr | ...

In \expr, evaluation terminates if any evaluation of expr fails. Hence, while the expression

|1

produces an infinite sequence of results, each consisting of the integer 1, the expression

l -

file:///expr
file:///expr

I (1 > 3)

fails to produce a result. Likewise

|move(1)

terminates once the cursor reaches the end of the subject.

Because of this aspect of repeated evaluation,

| ("text" ~== readQ)

terminates if a line is input consisting of the word text, despite the fact that the argument might subsequently
succeed if evaluated again.

Repeated evaluation permits the construction of user-defined generators at the expression level. For
example, if afile is a file, the operation of

|read(afile)

is identical to that of the supplied operation lafile.

A generator that repeatedly cycles through the first three primes is

| (2 | 3 | 5)

As final example, consider

I (81 | 82)

this expression generates the infinite sequence of results s1, s2, s1 , s2, s1 It may be used, as in

s1 := s2 := ""
i := 0
every | (si | s2) \ *s ||:= s[i+:=1]

to decollate the string s into strings s1 and s2. Note that explicit limitation is used to limit the infinite
sequence of results to the size of the string S. An alternative method is to rewrite the every expression as

every | ((si | s2) ||:= s[i+:=1])

3. Co-Expressions

As stated earlier, generators in Icon are limited by the syntax of the language. This has the advantage of
providing straightforward means of controlling generators, as well as permitting efficient
implementation [12]. Further, the "first-in, last-out" activation of nested generators makes generators well
suited to combinatorial applications [8].

However, this has the disadvantage of fixing the evaluation of a generator to a single lexical point within a
program. For example, if alist is a list, then lalist is a generator for producing the elements in the list. As
such, it can be used as in

every write(lalist)

to print the elements in the list. However, because of the restrictions described above, this generator cannot be
used in a straightforward manner to print, for example, only every other element in alist.

Version 4 provides a mechanism for extending the scope of a generator beyond a single syntactically fixed
point. This permits generators to be used in a wider variety of applications than is possible in Version 3. In
addition, this mechanism provides facilities at the expression level for developing evaluation strategies similar
to those provided at the procedure level in languages with co-routines.

-2 -

3.1 Co-Expression Creation and Activation
The expression

create expr

creates a co-expression for evaluating expr. A co-expression is a data object consisting of an expression and
an environment in which to evaluate that expression. This environment becomes a separate copy of the
environment in which the create is performed, including copies of any dynamic local identifiers. As such, it
contains the state information necessary for the evaluation of the expression, independent of surrounding
context.

Unlike conventional expressions, which are evaluated in environments that are lexically restricted to fixed
points in a program, an expression within a co-expression may be activated wherever a result is desired from
the evaluation of the expression. If x is a co-expression, then @x activates the expression to obtain a result.

For example, evaluation of the following expression assigns to the identifier x a co-expression for
producing the elements of alist.

x := create lalist

Activations of x produce successive elements from alist. For example

while write(@x)

writes all the elements of alist. Activation of a co-expression fails whenever the co-expression is unable to
produce any results. Hence, in the above example, activation of x fails after all the elements of alist have been
generated. Once activation of a co-expression has failed, subsequent attempts to activate the same co-
expression also fail.

Using the co-expression x, writing the even-numbered elements of alist may be accomplished with

while @x do
write(@x)

The activation operator itself is limited to at most one result. Hence, only one result is produced by the
expression

every write (@x)

However, repeated evaluation may be applied to a co-expression to achieve the effect of "unlimiting"
activation. For example, the following expression writes all the elements of alist.

every write(|@x)

As another example, consider the generator find(s1,s2). Creating a co-expression for find(s1,s2)
permits the results from evaluating find to be obtained when they are needed and where they are needed.
Hence

x := create f ind("ab", "abra cadabra")
write ("The first is at ", @x)
write ("The second is at ", @x)

outputs

The first is at 1
The second is at 9

Note that without co-expressions find (s1 ,s2) is re-evaluated each time it occurs. Thus

write ("The first is at ",f ind("ab", "abra cadabra"))
write ("The second is at ",find("ab", "abra cadabra"))

outputs

The first is at 1
The second is at 1

3.2 Operations on Co-Expressions

If x is a co-expression, then

*x

is the number of results that have been produced from x. For example,

x := create find ("text",Kile)
while write (@x)
count := *x

outputs the column positions of the string text in file, and assigns to count the number of occurrences of text.

The refresh operation (*X) returns a copy of the co-expression X with the environment portion being the
original environment of x. Hence

x := create f ind("ab", "abra cadabra")
write ("The first is at ", @x)
write ("The second is at ", @x)
x > ~x
write ("The first is still at ", @x)

outputs

The first is at 1
The second is at 9
The first is still at 1

3.3 Uses of Co-Expressions

The following examples show some applications of co-expressions.

3.3.1 Unbounded Selection
One of the simplest uses of co-expressions is in forming unbounded selection operations whose scopes are

not limited to a single site of evaluation. For example, the following code segment decollates a list, alist, into
two lists, odd and even. The elements of odd are the elements of alist with odd indices, and the elements of
even are those with even indices.

blist :---; create lalist
odd := list()
even := list ()

while put(odd, @blist) do
put(even, @blist)

Note that this process can be expressed more succinctly by replacing the while loop with

every |put(odd | even, @blist)

Similarly, the string decollation example given earlier may be rewritten

s1 := s2 := ""
nextchar := create !s
every |((s1 | s2) ||:= @nextchar)

3.3.2 Generative Co-Expressions
Because co-expressions exist indefinitely, many algorithms may be written using generators that could not

be written in this way otherwise.

Consider a procedure for supplying successive integer values. It is simple and natural to express this as a
generator, as in

procedure incr(n)

repeat {
suspend n
n +:= 1
}

end

Creating separate co-expressions for several different invocations permits use of this generator within
several independent co-expressions. For example, this procedure can be used as shown below to create a label
generator that generates successive labels of the form Lnnn (starting with L010).

genlab := create "L " || right(incr(10), 3, "0")

(Note that the precedence of create is identical to the precedence of repeat.)

At the same time, a second co-expression may use the same generator as in

nextint := create incr(0) % maxcycle

to repeatedly cycle through a sequence of integers.
The nodes of a linked list can be represented with records declared by

record Inode (value, link)

A generator for sequencing through elements of a linked list is shown below. Creating an co-expression that
invokes this procedure results in an unbounded selection operation for generating the elements from a linked
list.

procedure nextelement(llist)

repeat {
suspend .Hist.value
Hist := .Hist.link | break
}

fail
end

Co-expressions permit the separation of an algorithm from the situations in which it is to be used. This
generally results in clearer, more concise code. For example, there are many applications, such as the "same
fringe" problem [11] that require access to the leaves of a binary tree. If the nodes of a binary tree are
represented with records declared by

record node (data, Itree, rtree)

then the procedure

procedure leaves (t)

if /t.ltree & /t.rtree then return t.data
suspend leaves (\t.ltree | M.rtree)

end

generates the values of the leaves of the tree. (Values are generated because suspend dereferences its
argument.) The operation of the procedure depends upon the fact that node fields have no value until one is
assigned.

leaves may be used in any application requiring access to the values of the leaves of a tree, as in

every write (leaves (tree))

By creating a co-expression of an invocation of leaves, this same procedure may be used as an unbounded
selection operation. For example, the following code is equivalent to the every expression given above.

nextleaf := create leaves (tree)

while write(@nextleaf)

In turn, unbounded selection permits the procedure to be used in more complex situations, such as in the
procedure compare given in the next section.

3.3.3 Controlling the Evaluation of Multiple Generators

Goal-directed evaluation provides a cross-product [8] form of analysis when several generators are present
in the same expression. This cross-product analysis is effectively a depth-first search for results among a set of
possible results. While goal-directed evaluation is extremely useful in combinatorial applications, it provides
little assistance in situations where the results need to be interleaved. By permitting the order of evaluation of
generators to be specified by the programmer, co-expressions provide the capability of interleaving the results
of generators.

A procedure may activate two or more co-expressions in parallel, providing dot-product analysis to
complement the cross-product analysis provided by simple goal-directed evaluation.

For example, in a solution to the same-fringe problem, two or more trees can be walked in parallel to
determine if their leaf nodes have the same values in the same order. The following procedure determines if
two trees have exactly the same leaves in the same order. If so, the procedure returns the number of leaves in
each tree.

Note that when the repeat loop terminates, the same number of activations have been attempted on the
two co-expressions. If the number of results supplied by the co-expressions differs, then the trees have an
unequal number of leaves.

- 6 -

file:///t.ltree

procedure compare (treel, tree2)
local leafl, Ieaf2, nextleafl, nextleaf2

nextleafl := create leaves (treel)
nextleaf2 := create leaves (tree2)

repeat {
leafl := @nextleaf1 | {@nextleaf2; break}
Ieaf2 := @nextleaf2 | break
if leafl ~=== Ieaf2 then fail

return *nextleaf1 = *nextleaf2

end

If e1 and e2 are two co-expressions

every | (@e1 | @e2)

alternates activations of the two co-expressions. The results generated by

|(@e1 | @e2)

consist of alternating results from e1 and e2. If activation of either co-expression fails, the remaining co-
expression continues to produce results until its activation also fails.

For illustrative purposes, (there are more efficient methods using character sets and string mapping
techniques [4]), consider a procedure merge that interleaves the characters from two strings. If the strings are
of equal length, then merge collates the two strings. If the strings differ in length, then the extra characters in
the longer string are appended to the resulting string.

The procedure merge may be written as shown below

procedure merge (s1, s2)
local e1, e2, s

e1 :=
e2 :=

create
create

s := ""

every

return
end

s || := I

I s

!s1
!s2

(@e1 I @e2)

The technique of using repeated evaluation to interleave activations of co-expressions naturally generalizes
for any number of co-expressions. For example, code for interleaving four strings is obtained by the
replacement of the repeated evaluation expression given above with

| (@e1 | @e2 | @e3 | @e4)

3.4 Co-Expressions as Coroutines
There is a close correspondence between semi-coroutine systems [3] and the capabilities of co-expressions

that have been described in the previous sections. In a semi-coroutine system, program control can be passed
between some master process and a number of subordinate coroutine processes. The subordinate processes
may not pass control among themselves, however.

7-

Activation of a co-expression interrupts evaluation of the activating expression and continues evaluation
of the co-expression. Suspension from a co-expression interrupts evaluation of the co-expression and
continues evaluation of the activating expression. Thus co-expressions and generators represent primitives
from which semi-coroutines can be constructed.

A co-expression can also activate other co-expressions, producing a general coroutine style of evaluation.
The effect of one co-expression activating another is simply that evaluation is interrupted in the first, and
continued in the second, thus providing at the expression level capabilities similar to the capabilities provided
by coroutines at the procedure level in languages such as SL5 [10], and ACL [15].

3.4.1 Additional Language Features for Co-Expressions

The Icon programming provides some additional facilities intended to aid in the use of co-expressions in a
general coroutine style. These are the keywords &main and &source, and the ability to pass results between
co-expressions.

Program execution in Icon is initiated by an implicit call to the procedure main. The keyword &main is a
co-expression for this call. Activation of &main from any co-expression returns control to the point of
interruption in the evaluation of the call to main. A typical use of &main is as a means of exiting a cycle of
co-expression evaluations.

For example, compare

global line, in, out

procedure main()

in := create |{line := readQ | @&main; @out}
out := create |{@in & write(line)}
@out

with

end

global line, in, out

procedure main()

in := create |(line := read() & @out)
out := create |(@in & write(line))
@out

end

both of which copy standard input to standard output.

When the read in the first version fails, control is explicitly returned to &main, and processing terminates
normally. In the second version, failure of the read causes failure of the activation of in in out. This in turn
results in failure of the co-expression out, causing control to return to the expression that last activated out.
If there was any input at all, this activating expression is in, but in cannot produce any results, so control
returns to out, etc.!

&SOUrce is a co-expression for the activating expression of the currently active co-expression. Control
may be explicitly transferred from a co-expression to its activating expression by activating &SOurce.

A result can be supplied to the activation of a co-expression by

exprl @ expr2

which supplies the result of exprl to the activation of the co-expression that is the result of expr2. (This result
is ignored if the co-expression is being activated for the first time.)

3.4.2 Examples

To illustrate a number of coroutine facilities, Grune [9] posed the following problem:
Let A be a process that copies characters from some input to some output, replacing all occurrences of aa
with b, and a similar process, B, that converts bb into c. Connect these processes in series by feeding the
output of A into B.

The following program is a solution to this problem using co-expressions,

global A, B

procedure main()

A := create compress ("a", "b" , create | reads (), B)
B := create compress("b", "c", A, &main)

while writes(@B)

end

procedure compress(d, c2, in, out)
local ch

repeat {
ch := @in
if ch == d then {

ch := @in
if ch == d then

ch := c2
else

d @ out
}

ch @ out

end

This solution is similar to a solution originally presented in Simula by Lynning[13], and translated into
ACL by Marlin [15]. Like their solutions and those proposed by Grune, it assumes an infinite stream of input.
Like these solutions, the one above creates two instances of the same procedure for the operation of both A
and B. The Icon version is simplified slightly by the ability to transfer results between co-expressions,
however.

The following example uses co-expressions to implement a prime number sieve. The technique is based
upon a similar one used by Mcllroy [14] to illustrate a use of coroutines.

The organization of the sieve is to supply an infinite stream of integers through a cascade of "filters", each
of which checks to see if the integer is divisible by a specific known prime. Each filter activates the next filter
in the cascade if the integer passes its test. If a filter finds an integer that is a multiple of its prime, the filter
activates the source of integers and the cascade is restarted on the next integer. If the integer passes through
the entire set of filters successfully, it is output as a prime and a new filter is added to the cascade to test
subsequent integers against this prime.

The major uses of co-expressions are in source, which generates the integers and starts the cascade on
each integer, the filters in the cascade, and in sink, which processes new primes, sink is actually treated as the
last filter in the cascade. An additional co-expression is used to sequence through the filters in cascade using
the selection operator.

9-

global num, cascade, source, nextfilter

procedure main()

source := create {
every num :- 2 to huge_number do

@@(nextfilter := create Icascade)
@&main
}

cascade := []
push (cascade, create sink())

@source

end

procedure sink()
local prime

repeat {
write(prime := num)
push (cascade, create filter (prime))
@source
I

end

procedure filter(prime)

repeat
if num % prime = 0 then @source
else @@nextfilter

end

Note that each filter is invoked exactly once. From then on, control is simply passed between source and the
various filters (including sink).

Actually, there is no need for any of the procedures other than main. This example can be written as

- 10-

global num, cascade, source, nextfilter

procedure main()
local prime

source := create {
every num := 2 to huge_number do

@@ (nextfilter := create Icascade)
@&main
}

cascade := []
push (cascade, create

repeat {
write(prime := num)
push (cascade, create

repeat
if num % prime = 0 then @source
else @@nextfilter)

(©source

@source

end

This version does not show the logical divisions of the algorithm as well as the previous version, however.

Note that this version works only because co-expressions maintain their own copies of local identifiers.

Acknowledgement
I am indebted to Cary Coutant. Ralph Griswold, and Dave Hanson for their discussions on co-expressions

and control structures. Cary Coutant provided invaluable assistance with the implementation.

11 -

References

1. Coutant, Cary A., Ralph E. Griswold, and Stephen B. Wampler. Reference Manual for the Icon
Programming language Version 3 (C Implementation for UNIX). Technical Report TR 80-2,
Department of Computer Science, The University of Arizona. May 1980.

2. Coutant, Cary A., Ralph E. Griswold, and Stephen B. Wampler. Reference Manual for the Icon
Programming Language; Version 4 (C Implementation for UNIX). Technical Report TR 81-4,
Department of Computer Science, The University of Arizona. July 1981.

3. Dahl, O.-J., and C. A. R. Hoare. "Coroutines", Structured Programming, Academic Press, London,
1972. pp. 184-193.

4. Griswold, Ralph E. "The Use of Character Sets and Character Mappings", The Computer Journal, Vol.
23, No. 2 (May 1980). pp. 107-114.

5. Griswold, Ralph E. Expression Evaluation in Icon. Technical Report TR 80-21, Department of
Computer Science, The University of Arizona. August 1980.

6. Griswold, Ralph E., and David R. Hanson. "An Alternative to the Use of Patterns in String
Processing", ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2 (April, 1980).
pp. 153-172.

7. Griswold, Ralph E., David R. Hanson, and John T. Korb. "The Icon Programming Language; An
Overview", SIGPLAN Notices, Vol. 14, No. 4(April 1979). pp. 18-31.

8. Griswold, Ralph E., David R. Hanson, and John T. Korb. "Generators in Icon", ACM Transactions on
Programming Languages and Systems, Vol. 3, No. 2 (April 1981). pp. 144-161.

9. Grune, D. "A View of Coroutines", SIGPLAN Notices, Vol. 12, No. 7 (July 1977), pp. 75-81.

10. Hanson, David R. and Ralph E. Griswold. "The SL5 Procedure Mechanism", Communications of the
A CM, Vol 21, No. 5 (May 1978). pp. 392-400.

11. Hewitt, Carl, and Michael Patterson. "Comparative Schematology", Record of Project MAC
Conference on Concurrent Systems and Parallel Computation, June 1970.

12. Korb, John T. The Design and Implementation of a Goal-Directed Programming Language. Technical
Report TR 79-11, Department of Computer Science, The University of Arizona. June 1979.

13. Lynning, E. letter to the editor, SIGPLAN Notices, Vol. 13, No. 2 (February 1978), pp. 12-14.

14. Mcllroy, M. Douglas. Coroutines. Technical Report, Bell Telephone Laboratories, May 1968.

15. Marlin, Christopher D. "Coroutines", Lecture Notes in Computer Science, Vol. 95. Springer-Verlag.
New York, 1980.

12

