Control Mechanisms for Generators in Icon*

Stephen B. Wampler

TR 81-18

December 1981

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant MCS79-03890.

Chapter 1

Introduction

1.1 Expressiveness

The development of high-level languages for computer programming shows a consistent
trend toward increased expressiveness. Expressiveness is a measure of the ease of using a
particular language for describing a process from some problem domain. Expressiveness is not a
measure of language generality. The distinction between general-purpose and special-purpose
programming languages is one of applicability. Applicability is a measure of the number of
problem domains within which a language is expressive.

On a more abstract plane. an expressive language permits users to deal with problems at
a level close to their own perception of the problem, and to express solutions to problems in
concepts meaningful within the problem domain rather than within the implementation domain.

The acceptance by the programming community of a language is dependent upon a
number of factors. Certainly the availability of the implementation of the language has a large
impact, as does the efficiency of particular implementations. Nevertheless, the success or failure
of a language as a useful and viable tool is directly related to the expressiveness it provides within
its problem domain. A language that provides a high degree of expressiveness generally becomes
available on a host of machines, and efforts are undertaken to provide more efficient
implementations. For cxample, SNOBOL4 (Griswold, Poage, and Polansky 1971) is available on
a number of machines. Because of its popularity, there are now several reasonably efficient
implementations for SNOBOL4 (Dewar and McCann 1977; Gimpel 1973).

There are several fundamental aspects of expressiveness. Perlis describes three of these as
terseness, flexibiliry, and composability (Perlis 1977).

Terseness. In any expressive language. it should be possible to describe processes
succinctly. ldeally, there should be little information required of a programmer beyond the
minimum nceded to formulate the underlying algorithm. A programmer should not be forced to
provide information that is used solely to simplify translation or to increase efficiency. This is not
to say a programmer should be restricted from ever supplying such information, since such
information may indeed play a useful role. It is merely recognition of the fact that information
such as type declarations and the like belong to the implementation domain, not to the problem
domain.

Flexibility. High-level languages should have a sufficiently rich set of operations and
control structures to permit description of a process in a wide variety of forms. Human beings do
not think alike, and an expressive language should permit different persons to describe solutions
to problems as they view the solutions.

(%]

Composabiliry. The development of algorithms is an artistic endecavor requiring
imagination, foresight, and a clear grasp of the problem and the tools available for solving the
problem (Knuth 1974). A language should assist the user rather than be a hindrance. It should
help programmers to formulate and express ideas necessary for the implementation of an
algorithm.

A truly expressive language is onc in which people can directly compose algorithms and
processes. Indeed. it might be said that a person could think in such a language.

In order to be a useful tool, a language must be understandable. As such, it should
supply enough simplicity and consistency of structure for a person to comprehend all aspects of
the language without undue effort.

1.1.1 Current Trends in Expressiveness

Current high-level language design has developed along two distinct paths. The
conventional path places a premium on efficiency. For example, Algol and Pascal have block
structure, which permits an efficient stack organization within the runtime environment, as well as
having strict type declarations to permit compile-time type checking.

The philosophy of conventional language design is to provide expressive language features
in an cfficient manner, even at some cost in expressiveness. Most of the conventional languages
are written for production environments, where there is necessarily an emphasis upon efficiency.

The second path is that taken in more unconventional languages. In these languages, the
emphasis is upon the above aspects of expressiveness, often at the cost of efficiency. Languages
such us APL, LISP, SNOBOL4, SETL (Dewar, Grand, Liu, Schonberg, and Schwartz 1979), and
applicative languages such as POPLAR (Morris, Schmidt, and Wadler 1980) provide a great deal
of terseness and flexibility, but are most often used in environments where exccution speed is less
important, The fact that all these languages have devotees is an indication of the success of each
in providing terseness and flexibility, as well as indication of the importance of expressiveness.

1.2 New Language Concepts

Recently, several useful language features have been added to the repertoire available to
language designers. These features serve to increase the expressiveness of languages in which they
arc incorporated. Three features related to the research presented here arc goal-directed
evaluation, generators, and coroutines.

1.2.1 Goal-Directed Evaluation

Many problems are more easily solved using a combinatorial search instead of using a
strictly analytic approach. For example, nondeterministic problems are often best solved using
combinatorial algorithms (Floyd 1967). The problem solving process in the combinatorial case
proceeds through a series of decision points. At each decision point, one choice is made from a
set of possible choices. The selected choices describe a path through the decision points. A path
is complete when no more decision points can be added to the path. If the correct choice is made
at each decision point, then the correct solution is produced. An incorrect choice at any decision
point produces an incorrect solution. The collection of all possible paths through the decision
points is termed the solution space.

The combinatorial approach examines all possible paths through the solution space until
cither a correct solution is produced or all paths have been attempted. The intent of goal-directed
programming is to provide a means of automatically searching a solution space for a correct
solution,

Goal-directed evaluation is most often accomplished through some form of backtracking
(Lehmer 1957). If a point in the process of searching the solution space is reached where it can
be determined that no correct solution is possible by continuing along that path, the evaluation of
the program ‘backs up’ to the previous decision point and selects a new choice. Backtracking
provides a depth-first search of the solution space. There are two forms of backtracking found in
goal-directed evaluation: data backtracking and control backtracking.

Data backtracking is based upon the premise that when evaluation selects a choice from
some decision point, it must appear as though that decision point is being reached for the first
time, and that choice is the first choice being selected, regardless of how many times the program
has actually backtracked to that point. Data backtracking requires that all program data must be
‘remembered’ when a decision point is reached during evaluation, so that it can be reset during
backtracking. Typically, data backtracking is implemented cither by reversing the evaluation
process or by saving the state of the program data at each decision point. The {irst approach has
the advantage of requiring less storage, but requires every operation in the language have an
inverse, and may be considerably slower than the second approach.

While data backtracking is a theoretically clean technique with a precise mathematical
description, it has several shortcomings. First, data backtracking can be very inefficient. The
amount of information that must be restored or recomputed during backtracking can be
considerable. Most languages, such as MLISP2 (Smith and Enea 1973), that claim to implement
data backtracking do so in impure form, omitting such actions as restoring the contents of data
files during the backtracking process. One of the few languages to implement pure data
backtracking is SUMMER (Klint 1979). Second, data backtracking prohibits the decision making
process from taking advantage of information acquired during the evaluation of unsuccessful
paths. This prevents the use of acquired knowledge as an aid in the selection of intelligent
choices.

Control backtracking simply returns control to the last decision point and proceeds with
a new choice. This approach eliminates the problems associated with data backtracking, but lacks
the same cleanliness since side effects of evaluation can affect the decision making process.

4

Control backtracking can be casily extended to provide data backtracking capability.
The artificial intelligence language 1.PAK allows the programmer to explicitly declare what
information is to be restored during backtracking, thereby providing both data and control
backtracking (Mylopoulos, Badler. Melli, and Roussopoulos 1973). A dilferent approach is taken
in languages such as PLLANNER (Hewitt 1970), ECL (Prenner. Sptizen, and Wegbreit 1972),
SAIL (Reiser 1976), and Icon (Griswold, Hanson, and Korb 1981). These languages incorporate
control backtracking along with primitive operations for restoring data during the backtracking
process.

The acquisition of information during control backtracking has been used successfully to
speed up goal-directed evaluation (Lindstrom 1976; Montanegro, Giuliano, and Turini 1974).
Lindstrom's technigue is to allow decision points to remember partial computations, so that these
computations do not need to be redone during backtracking. Montanegro, Giuliano, and Turini
permit decision points to communicate with other decision points to help guide the search
through the solution space.

1.2.2 Generators

A number of languages, including Icon, have extracted the concept of decision points
from the process of goal-directed evaluation. In Icon, these decision points are called generarors
(Korb 1979). Generators can be used in conjunction with Icon’s control backtracking mechanism
to provide goal-directed evaluation.

Generators need not be used only with backtracking schemes. 1In [PL-V (Rand
Corporation 1961), for cxample, a generator consists of a subroutine that computes a sequence of
data values. Each time a value is computed. the subroutine invokes another routine to operate on
that value. CONNIVER (McDermott and Sussman 1972) eliminates backtracking by first
computing the set of choices of a generator, and then iterating over these choices. In Alphard
(Wulf, London, and Shaw, 1976), CLU (Liskov et al. 1977). and SUMMER generators are
independent of goal-directed evaluation. These languages restrict the use of generators to a few
special control structures.

1.2.3 Coroutines

Coroutines add power to programming languages by providing a means for programmers
to treat procedures similar to independent communicating processes (Conway 1963). According
to Conway, a coroutine treats all other coroutines with which it communicates as subroutines.
Thus cach coroutine can be treated as the main process in Conway’s view. A more general
definition of a coroutine is a process for which the values of local variables are retained even
when control is not within that process. and in which execution upon entry continues from the
point where control last left that process (Marlin 1980).

Coroutines have been incorporated in a number of programming languages, ot which
Simula (Dahl 1972), SAIL., and several extensions to Pascal (Lemon 1976; Kriz and Sandmayr
1980) arc the most widely used. Each of these languages is representative of 4 more gencral class
of programming languages designed for particular classes of problems: simulation. artificial
intelligence, and systems programming. SIS (Hanson and Griswold 1978) and ACL (Marlin
1980) includc general coroutine mechanisms.

1.3 Motivation for This Research

Although a number of languages contain features similar to Icon generators, most fail to
provide the control mechanisms necessary to fully utilize the capabilities of generators. In early
versions of Icon, generator-based control mechanisms were patterned almost exclusively on the
control structures in Algol-like languages. Two of the purposes of this research are to examine
generators in Icon in order to develop a better understanding of their operation, and to develop
additional control mechanisms to extend their expressiveness. Several of these new control
mechanisms have been incorporated into Version 4 of Icon (Coutant, Griswold, and Wampler
1981). A notation for describing some aspects of generator evaluation, descriptions of current
control mechanisms for generators, and several novel control mechanisms are presented in
Chapter 2.

The control mechanisms described in Chapter 2 extend the expressiveness of generators.
Nevertheless, the capabilities of generators remain limited by syntactic constraints. An evaluation
mechanism similar to that available with coroutines is needed to eliminate thesc syntactic
constraints. Previous research into coroutines has treated coroutine processing as an adjunct to
procedure invocation. where either coroutines are a special class of procedures, or vice versa. For
example, in both ACL and SL5 both conventional procedures and generators arc treated as
special classes of a more general coroutine facility. Part of the research presented in Chapter 3
shows that the fundamental operations involved in coroutine processing are more appropriately
part of expression evaluation, and that these operations can be treated independently of procedure
evaluation. Additionally, Chapter 3 discusses how these operations can be combined with
generators to provide increased expressiveness.

One of the problems associated with goal-directed evaluation has been a lack of efficiency
in implementation. Chapter 4 uses several models to develop an efficient implementation of
goal-directed evaluation. The most efficient model is used to describe the operation of several of
the control mechanisms presented in Chapter 2. The operations presented in Chapter 3 are then
incorporated into this model.

Chapter 2

Expression Evaluation

The evaluation of expressions is a fundamental aspect of any programming language.
Nevertheless, the differences in syntax and semantics among programming languages make
comparison of expression evaluation mechanisms difficult. This chapter discusses expression
evaluation and introduces a notation for the static description of expression evaluation in Icon.
This notation gives insight into the relationships between Icon control mechanisms and those
found in morc conventional languages. In addition, this notation is used to describe the
evaluation of various language primitives and control mechanisms of Icon. Finally, a set of
primitive control mechanisms from which the other control mechanisms can be formulated is
presented.

The control mechanisms presented in this chapter correspond to those found in Version 4
of lcon. No attempt is made to describe all of Icon, the reader is referred to the reference manual
for a detailed description (Coutant, Griswold, and Wampler 1981).

2.1 Expression Evaluation

Most programming languages contain expressions that are evaluated to produce resulls.
A result can be either a value or a variable. Expression evaluation in a conventional language
such as Algol always produces exactly one result. For example, the result of evaluating 1 + 3 is
the value 4. Control structures in such languages are driven by the values of their control
expressions. In the Algol expression

if x =y thenz =0

the comparison of x and y produces a Boolean value that is used to determine whether or not the
assignment to zis performed.

Expression evaluation need not produce a result. In SNOBOL4 expression evaluation may
produce no result at all. For example, the expression

EQ(1,0)

does not produce a result. The concept of failure in SNOBOL4 is equivalent to failure of an
expression to produce a result, while success corresponds to the production of a result,

SNOBOL4 lacks conventional control structures such as those in Algol, but instead relies
upon the presence or absence of results to control a conditional branching mechanism, as in

EQ(X,Y) :S(LABEL1)F(LABEL2)

which causes a branch to LABEL1if EQ(X,Y) produces a result and a branch to LABEL2 otherwise.

Failure is also used to control completion of the evaluation of enclosing expressions. For
example, in the evaluation of

Z=EQ(X)Y) 0
assignment of 0 to Zis performed only if X and Y are numerically equal.

The outcome of expression evaluation in Icon is either a result or failure to produce a result.
Expressions are evaluated in Icon with the goal of producing a result as the outcome (Korb 1979). If
the outcome of an expression evaluation is failure to produce a resuit, then the evaluation is said to
fail. otherwise the evalaation succeeds. As in SNOBOLA4, Icon control structures are driven by the
presence or absence of results. Forexample

if x =y thenz =0
assigns 0 to zif the expression x =y succeeds.

While several of the control structures in lcon resemble control structures in Algol, the use of
success or failure to drive control structures involves some subtle differences (Griswold 1980). In
particular, control structures in Algol are driven by Boolean values, and hence their control clauses
must be expressions that produce Boolean results. Thus,

x <y
produces a Boolean result in Algol. This, in turn, renders expressions such as
x<y<z

erroneous in Algol.

However, the outcome of an Icon expression is either failure or a computationally useful
result. For example, the expression

X<y

fails if x is not less than y, but produces y otherwise. This makes it possible to write expressions such
as

ifx<y<zthenz =xelsez =y

Failure may be used as it is in SNOBOL4 to abort the evaluation of enclosing expressions.
For example, the function read fails when attempting to read past the end of a file. f read fails during
evaluation of

write(read())

the function write is not invoked. and the entire expression fails. Hence

while write(read())

copies the input file to the output file.

Expressions in Icon are capable of producing several results in sequence and are termed
generating expressions (Griswold, Hanson, and Korb 1981). Context determines whether evaluation
of an expression produces more than one result. The expression every e is used to produce the entire
sequence of results for e. For example, the expression 1 to 10 is capable of producing the results
1.2, ..., 10. Evaluation of

every write(1 to 10)
writes the results 1, 2, ..., 10. However, in the expression
(1 to 10) >= 3

only the results I, 2, and 3 are produced during evaluation of 1 to 10, since the context only requires a
result greater than or equal to 3.

There are no constraints on the length of a sequence of results in Icon. The sequence may be
empty, as in evaluation of 1 =0, or it may contain an infinite number of results.

The expression evaluation mechanisms in Algol-like languages and SNOBOL4 are in a sense
subsets of the lIcon expression evaluation mechanism. Expressions in Algol-like languages
correspond to Icon generators that produce exactly one result. Except in pattern-matching,
SNOBOL4 expressions correspond to generators producing at most one result., The pattern-
matching component of SNOBOL4 constitutes a sublanguage (Griswold and Hanson 1980) in which
some patterns act as generators during the pattern-matching process. Patterns capable of producing
more than one result include the patterns for ARB, BAL, and the patterns produced by BREAKX(S)
(Dewar 1971) and P1 | P2.

2.2 Expression Instances

During the evaluation of an expression, there exist portions of the machine state that are
meaningful only during that evaluation of the expression. For example, temporary variables created
during that evaluation are not relevant except during that evaluation. These portions of the machine
state constitute the enmviromment in which that expression is evaluated. An expression instance
consists of an expression and an environment in which an evaluation of that expression occurs, just as
a procedure instance consists of a procedure and the environment in which an invocation of a
procedure occurs. The execution of a program proceeds through a sequence of expression instances
in much the same way that execution proceeds through a sequence of procedure instances.

There are five states of expression instances:

1. When an expression instance is initially formed, but evaluation has yet to take place within
the instance, it is created. An expression instance for an expression may be created at any
time prior to evaluation of that expression. Typically the expression instance is created just
prior to the time the evaluation starts.

2. An expression instance is active whenever the corresponding expression is in the process of
being evaluated.

10

3. Becausc expressions contain other expressions, expression instances are often nested during
evaluation. Thus an expression instance may become passive while awaiting the result of
another instance. For example, assuming cvaluation of j + k occurs within a one expression
instance, an expression instance for the evaluation of i > (j+ k) becomes passive while the
instance for (j + k) is active.

4. When an expression instance computes a result but is capable of producing subsequent
results, it becomes inactive. An inactive expression instance may be reactivated o produce a
subsequent result. Evaluation within an inactive expression instance is suspended.

5. An expression instance that has produced all possible results is evhausted. Typically
expression instances are destroyed as soon as they become exhausted. An expression
instance existy between the time it is created and the time it is destroyed.

In Algol-like languages, expression instances become active as soon as they are created,
become exhausted as soon as a single result is produced, and are destroyed immediately upon
becoming exhausted. Thus all expression instances arc either active or passive in Algol-like
languages. In lcon, however, expression instances can exist in any of the five states,

Not all expressions require separate expression instances for evaluation, and it is possible to
coalesce the expression instance for such an expression with any surrounding expression instance,
The term subexpression is used to refer to an expression that has had its expression instance coalesced
with that of some enclosing instance. For example, evaluation of

X <y<z

occurs within a single expression instance and consists of two subexpressions: one comparing x and y
and the other comparing the result of the first subexpression with z.

Expression instances in Icon can be coalesced up to the points at which program control
decisions are made. Typical control decision points are the control clauses of control structures. For
example, in the expression

f(if x > y then 2*x else 2xy)

a new expression instance is created for the evaluation of x >y. However, since the outcome of the if-
then-else is the outcome of the selected clause (either 2#x or 2+y), the selected clause is treated as a
subexpression in the surrounding expression instance. There are two expression instances for the
above expression. One instance is used to isolate the evaluation of x>y from the evaluation
occurring in the surrounding instance. Thus the above expression evaluates as cither f(2#x) or f(2+y).

2.3 A Unified Syntax for Expression Evaluation

The syntax of Icon is designed to assist the user in the development of clear, understandable
programs. This is accomplished by providing both mnemonic forms for various control mechanisms
and a concise representation for expressions. Conciseness is obtained by providing an implicit
representation for the goal-directed evaluation control mechanism. Goal-directed evaluation is such
an inherent aspect of Icon expression evaluation that a visible syntax for it would be overbearing.
The use of mnemonic forms for control mechanisms is intended to enhance program readability.
Because this syntax is designed for program development, it is called @symax. Expressions written
in L-syntax are referred to as g.’»expressions.

When discussing the expression evaluation mechanism in Icon, however, B-syntax obscures
some of the underlying concepts. This section presents an alternative syntax for Icon. This syntax is
intended as a descriptive device to simplify subsequent discussions of the semantics of the Icon
expression evaluation mechanism. For this reason it is called &-syntax. Expressions written in
&-syntax are referred to as &-expressions.

2.3.1 Language Primitives

Literals, identifiers, and operators constitute the language primitives in lcon. Aside from
syntactic considerations, there is nothing that distinguishes operators from function- and procedure-
valued identifiers. The value of an operator is the function that the operator performs. In @»-syntax,
operators, functions, and procedures all have the same syntax, and are collectively termed functions.
Operators are represented by a name for the function that performs the indicated action. A function
bound with its arguments is a function call. A function call is represented in &symax as an n -tuple
as in LISP, where the first element of the 2 -tuple is the function, and the remaining elements are the
arguments of that function. For example, the L-expressions

write("hello world”)
show(x,y,z)

1+2

1to05

are written respectively as the 5-expressions

(write, "hetlo world”)
(show, x, y, z)

(add, 1, 2)

(to, 1, 5)

The sans-serif italic font is used to distinguish functions from the names of Icon identifiers. For
example, the initial value of the variable write is the function write.

2.3.2 Keywords

Keywords are expressions. The only keywords of interest here are the “£-expressions &null
and &fail. &null always evaluates to the nul/ value and has the &-syntax &null. The null value plays a
special role as the initial value of variables. Evaluation of &tail always fails to produce a result and
has the &-syntax &fail.
2.3.3 Control Regimes

The ‘f—syntax for conitrol structures represent control regimes. A control regime specifics a
particular method of expression evaluation. For example, sequential processing of expressions that
are separated by semicolons is a control regime in which expressions are evaluated from left to right.

The &-syntax for control regimes is

regime : arguments
where regime is the name of a control regime and arguments is a list of expressions constituting the
operands to that control regime. The names lor specific control regimes are chosen to be indicative of
the corresponding control structures, and are shown here in an Old English typeface. Thus the

n) .
L-expression

H 7])
if ¢ | then "2 else ¢ 3

is represented in &-syntax as
e ey,
and the ‘L-expression
every ¢, do e,
has &-syntax
Luery: e e,

Goal-directed evaluation, which has no explicit representation in SP—syntax, is the control
regime (hoal in G-syntax. (Goal is used in the evaluation of all functions. Thus the YL-expression

1 to 10
has (%-s_vnulx
WHuoal : to, 1,10

Arguments that are omitted in the “L-syntax are denoted by ¢ in the &G-syntax. Hence the
C’-exprcssion

13
e 1€
corresponds to the “L-expression
if e then e,
Brackets provide any necessary grouping in the &-syntax, so that the Leexpression
every 1 to 10
is written in &-syntax as
Ruery : [(hoal:to,1,10].¢
and the L-expression
if x >y then 1 to x
is the &-expression

Jf: [Boal:greaterthan,x,y 1,[Boal:to,].x],¢

2.4 Result Sequences

&-syntax makes it easier to compare common components of a language by describing these
components using a uniform syntax. &-syntax does not, in itself, provide much insight into the
semantics of expression evaluation. Insight into the static aspects of expression evaluation can be
gained from examining the sequences of results produced during expression evaluation. This section
presents a notation for describing these result sequences.

A result sequence is defined as the sequence of results that an expression is capable of
producing. The result sequence produced by the expression e is denoted by

}

where s, is the i th result generated during the evaluation of e . For example, the result sequence for 1
to 10is

5(e)={.s'|‘.s'2,...,v

n

{1.2.3,4,5,6.7.8.9, 10}

Subscripts are used to distinguish different expressions and their results. For example, the
result sequences for expressions e , and e, are denoted by

5("1)={”|,“"|,'""Sl }

2 "

(e y={s..8)
< A A PR
(€)= Sgpeneesy,
The empty sequence, §). is a sequence containing no elements and is denoted by ®. Another
common sequence contains exactly one elemer t, the null value. This sequence is denoted by A.

Subsequences are denoted using subscripts and superscripts, as in

Y, .
ife) {‘\i' e Smin(i.n)

}

If i =1, the subsequence is abbreviated as

Sﬂe)=5ﬂe)

If i =j, the subsequence is abbreviated as

Sie)=3,(e)

The size of a sequence is the number of elements it contains,
| Se)| =n
where) <n <oo
Concatenation of sequences is denoted by

5(91)65(%):{5“......\'I R PRERERE P! }

-m

Concatenations of a sequence with itself are represented using exponential notation. For example,
< < < 2
SDe)dD(e)=d(e)
-~ —~ . . - o
Se)dde)d® =d(e)

The empty sequence is the identity element with respect to the concatenation of sequences:
PO)=8(e)DDP=3(e)

Concatenation of result sequences from a number of expressions, as in
5&&@5@9@“'@5@9

is denoted by

n
J—
.:.@(el.)

i=1

The dot product of two sequences produces a sequence of pairs as defined by
(e I) b(ez) ={(s II..\'2,).(.8' I2.3‘22). R (.S‘l‘ Sy)}

where A =min(»n on). This can be generalized to the dot product of n sequences to produce a
sequence of n1 -tuples.

The cross product of two or more sequences also produces a sequence of 2 -tuples. For
example. the cross product of two sequences produces a sequence of pairs as given by

S(e l)><5(e2) ={(s 18 2').(s 1, 22), coeu (s 152)

"

(s I,'Sz,)‘(s lz..922), o (s P)

m

(s 1 ,szl),(s 5 S 22), v (s 3 ,szm)}

Certain operations produce result sequences from sequence elements. If p is such an
operation, the application of an arbitrary operation p to a sequence yields the concatenation of the
sequences resulting from applying p to every element in the original sequence. Application of ptoa
sequence is denoted by p:: (e), and application of p to a sequence element is denoted by p:s . That
is

p:d(e) =S(pis)e S(p:sz) ® - $§(p:sn)

= =S(ps;)

{

Ia] =

2.4.1 Result Sequences and Side Effects

Some expressions are not evaluated for their results, but rather for the side effects of their
evaluation. For example, the function write produces its last argument as its result, but it is almost
always used to produce output to a file. Furthermore, some operations rely upon side effects in order
to work properly. The function read. for example, advances a file pointer each time it produces a
result, so that subsequent evaluation produces a new result.

While side effects play a very real and important role in expression evaluation, they also tend
to obscure more fundamental aspects of an expression evaluation mechanism. Result sequences are
not intended to describe side effects, but rather to describe the static aspects of expression evaluation.

2.4.2 Result Sequences for Literals, Identifiers and Keywords
The result sequence for an identifier or literal consists of the identifier or the value of the

literal. Hence the result sequences for x and 3 are {x} and {3}, respectively. The @-expressions &null
and &fail have the result sequences A and &, respectively.

2.4.3 Result Sequences for Functions

Functions are evaluated by the function invocation operation, I'. T"is applied to a function
call to produce a result sequence, and is represented in &-syntax as

I': functioncall

For example, the conjunction operator, &, has as its value the function conj that returns its right
operand. Conjunction can be invoked as in the &-expression

I (conj.x.y)
to produce the result sequence {y}.

In lcon, the application of I' is integrated into the operation of goal-directed evaluation. No
attempt is made here to describe the actual evaluation of functions, except to note that I produces a
(possibly empty) sequence of results from a function call. For example, the result sequence for

I™: (to,1.,5)
is {1.2.3.4,5} and the result sequence for
I': (greaterthan.3,4)

is &,

2.4.4 Result Sequences for Control Regimes

A control regime takes a list of arguments consisting of expressions and determines the order
in which these arguments are evaluated. For example, one control regime may evaluate its arguments
from left to right, while another may usc the outcome of evaluating its first argument to select another
argument to evaluate.

L.ike primitive operations, control regimes have result sequences. However, unlike primitive
operations, control regimes deal with result sequences, not results. For example, the result sequence
for

3 € € 1€

depends upon the size of the result sequence for e and determines whether the result sequence for
this expression is the result sequence for e , or the one for e,

The result sequence of a control regime can be used to help characterize the evaluation of
that control regime. Describing the result sequence and its derivation for a control regime provides
some insight into the semantics of that control regime. The result sequences for some represcntative
control regimes in Icon are given below.

Sequential Processing. Sequential processing, represented by the Qrexpression
feyey ie,)
and the &-expression

Sequence:e .e......e

"2 a

is a control regime that evaluates its arguments in order from left to right. limiting all the arguments
except the rightmost one to at most one result. The resuit sequence for ﬁequextce is the result
sequence of its rightmost argument. Hence

S(Bequenceze e, ..., 0)= S(e")

n

Note that the result sequence for ,Stqumcc does not depend on the evaluation of e .6, €

2" n-l’

Goal-directed evaluation. The goal-directed evaluation control regime forms the cross
product of the result sequences for its arguments, constructing a sequence composed of function calls.
Function invocation is then applied to the function calls to produce a new result sequence. Formally,

S(Boale e,e)= I‘::S(eO)XS(eI)X‘ - XS(en)
For example,
(Boal : to,1,5
has the result sequence
S(®Buoal:to,1,5) = I':{to}X{1}X{5}
=T":{(to,1,5)}
={I"(to,1.,5)}
=1{1,2.3.4.,5}
Similarly, the Q—expression
3 < (1 tobh)
is written in &-syntax as
(Boal : less,3.[Boal:to,1,5]
From above,
S(Buoal:less,3.[Boal:to,1,5)) = S(Boal:less.3.{1.2, ..., 5}
= I:{less}X{31x{1.2, ..., 5}

= I":{(less.3,1).(/6ss,3.2), . . ., (/ess.3.5)}

={I"(less,3.1)} ® {I":(Jess.3.2)} & "~ & {I"(less,3,5)}
=000 PD {4} D {5}
={4.5}
As a final example of goal-directed evaluation, consider
(1105) & x
with &-syntax
®uoal : conj,[Buoal:to,1,5).x
From above,
S(oal:conj,[Boal:to,1,5].x) = I':{conj}X{1,2,3,4,5}X{x}
= I":{(conj,1,x),(conj2,x), ..., (conj5.x)}
={I"(conj1,x)} ® {I(conj.2.x)} ® "~ & {I":(conj.5.x)}

= {X.X,X,X,X}

Alternation. Alternation, e e is the control regime Alternation that simply concatenates
the result sequences for its arguments. That is

S(Alternation:e 1°€5) = e e C‘(‘,z)

If-then-else. The If control regime uses the size of the result sequence of its first argument to
determine which of the two remaining arguments, or arms. to evaluate. The result sequence for Jf is
the result sequence for the selected arm. That s

Se) il Se,) #

Yt 3|f:e0.e)=
- b(vz) otherwise

Outcome inversion. JInuert is the outcome inversion control regime denoted by the
D .
L-expression

not ¢
and the &-expression
Jnwert: e

The result sequence for Juuert is

A f S((') =

S Jerte) = ¢ otherwise
‘IS

19

That is, the result sequence for Jnuert is empty if its argument is the empty sequence, and A
otherwise.

Repeated evaluation. The repeated evaluation control regime, with Qfsyntax
|e

and @-syntax

Reval : e
has the result sequence

SRevale)=Se)”

In practice, side effects are relied upon to limit the size of the result sequence for Reval. If
b(e) represents the ith term in the expansion of S(e) and O(e). has the result sequence P, then

evaluation of Reval terminates after evaluating this term. Unless & (e) is @, only side effects can
cause S(e) to be ®fori>1.

Limitation. Limitation, with ‘;P»syntax
e\ e,
and @-syntax
Limit:e 1€
has the result sequence
I 5("2) [

~ lownd ~S2i
S(Limite e)= 2 & '(e)

i=l

Note that if Ié(e)| =1 and s, =k, then the result sequence for limitation is simply a
subsequence of the result sequence for e . Thatis,

S(Limit:e 1€y) = S* (e)

lteration. The iteration control regimes Euery, Hhile, Repeat, and Yutil are evaluated for
side effects. Hence the iteration control regimes produce the empty result sequence &.

S(Bueryze e)= S(Whilee 1€y = S(Repeate) = S(Xutil:e €,) =@
The iteration control regimes are all equivalent, in that %ucrg can be used to formulate the

other iteration control regimes. Furthermore, Lm‘rg can be constructed from (Goal and a few other
control regimes. These and other semantic equivalences are described below.

20

2.5 Supplementary Control Regimes

The following control regimes are constructed from the preceding control regimes and have
no direct £-syntax. They are described here to provide a convenient notation for the description of
subsequent control regimes.
2.5.1 Limitation to Exactly One Result

®neis a control regime that produces exactly one result. ®ue: e is equivalent to

(e | &null) \ 1

or.in G-syntax

Limit : [?\ltcrnatiﬁn:e J&null],1

Alternation is needed to guarantee that the result sequence for ®ue has at least one element, since
O(e) may be ®. Limitation provides the first result from this sequence, so that

| S(Pueze) | =1

2.5.2 Repeated First Result
First is similar to Ieval except that the argument to :Flrst is limited to at most one result.
As with 3Rvunl evaluation of Zﬁlrst terminates if its argument fdlls to produce a result. ;ﬁtrst e is
equivalent to the P-expression
lte N\ 1)
and the &-expression

Reval : [Limite 1]

First has a result sequence consisting of an infinite repetition of the first element in the result
sequence for its argument. That is, the result sequence for :ﬁtrst is given by

S(Firste)=S (e)”

subject to the same termination conventions as Reval.

21

2.5.3 Multiple Conjunction

The conjunction operator can be used to provide mutual goal-directed evaluation of two
expressions. This generalizes to any number of expressions, but quickly becomes notationally
unwieldy in &-syntax. For example, the $-expression

e e yhe be,
has the equivalent &-expression
®oal : conje [(ﬁnul:conj,ez. [Boul:conje,.e,]]

The function mulconj is an n -ary function that can be used to replace the multiple use of
conj in situations where the &G-syntax becomes unwieldy. The function mulconj produces its
rightmost argument. That is

d(T': mulconj.x,y.z) = {z}
For example, the Q—expression given above can also be represented by the @-expression

oal : mulconj.e €€ 1.6,

The function mulconj extends naturally into the mutual goal-directed evaluation function
mgde with L-syntax

)

where e evaluates to an integer instead of a procedure. The &-syntax more accurately reflects the
fact that mgde is simply another function. The &-syntax is

I‘:mgde,eo. e,

The integer value of e determines which of the remaining arguments produces the result of mgde.
For example,

&(T': (mgde,3.x.y.2)) = {z}

(8]
o

2.6 Equivalences among Control Regimes

Some control regimes can be expressed in terms of others. For example, the supplementary
control regimes given above were formulated using the control regimes Baal, If, Alternation. Reval,
and Limit.

These five control regimes are sufficient, in combination with conj, &fail and &null, to
describe other control regimes. The control regimes listed above are referred to as the basic control
regimes.

2.6.1 Sequential Processing

Sequence evaluates its arguments from left to right and has the result sequence of the last
argument. Because all the arguments except the last have no effect on the outcome of ®equence,
they are be limited to exactly one result. Thus

dequencee, ..., e, e

may be expressed as

Gual : muiconj[Pueze],. .., [Ouee,].e

2.6.2 Outcome Inversion
Fuuert:ie may be expressed as

It e &fail . &null

2.6.3 Iteration Regimes

All of the iteration regimes can be expressed in terms of the basic regimes. However, the
approach is simplified by first expressing the iteration regimes in terms of each other.

ILepeat only terminates because of side effects. That is,
Wepeat: e
is expressible as
While : [One:e)@

where Mue prevents failure in the evaluation of e from terminating the evaluation of While.
Similarly.

23

Intil: e e,
is expressed as
While : [Inverte Je,
Expressing ¥hile in terms of Buery is simplified by the use of Hirst. That is,
While: ¢ e,
is expressed as
Every : [Firste 1,
or
®Goal : mulconj[Firste][HLimite ,.1].& fail
Finally,
Euerg:e e,
can be expressed
Goal : mulconj.e | [Limite ,,1].& fail
It is interesting to note the similarity between the basic regime formulation for Mhile and the
formulation for Buery. The only difference between the two is that the first argument to hile
repeatedly produces its first result, while the first argument to Iﬁwr_g produces its entire result
sequence.
2.7 Additional Control Regimes
Generating cxpressions are notationally concise and have a great deal of computational
power. However, the lack of sufficient ‘generator-based’ control regimes often limits the use of
generators. For example, the expression

every f(lalist)

invokes f on cvery element of alist, but to invoke f on just the even-numbered elements, or on the tenth
through twentieth elements, requires a radically different expression such as

every f(alist[2 to *alist by 2]
Result sequences suggest a1 number of interesting control regimes that provide additional
control over generators. This section describes several of thesc control regimes and presents possible

) ~ .
“L-syntax forms for these regimes.

The control regime 2ubsequence with @-symax

24

Bubsequence : e 1€ 2:€
and proposed L-syntax
e\ [eye,]

has a result sequence that is a subsequence of the result sequence for its first argument. For example,

S(Subsequenceze ,5,10) = &J%e)

Note that ﬁlxhsrqumttv is a generalization of Wimit. That is,
Timtitc o ¢ = B . s - p

Winit: e €5 SBubsequence : ¢ e,

The %-syntax

e \[e ,:0]
represents the proposed control regime given by the (%-expression

Subsequence: e 19€ 90
so that

(1 to 10) \ [7:0]
has the result sequence {7, 8,9, 10}. Finally,

every f(lalist \ [10:20])
invokes fon the tenth through twentieth elements of alist.

A generalization ofﬁ*ubsequmtr is ,_:.Vcinsequvucr with &-syntax

Atinsequmrr: €.,
and proposed “L-syntax

¢, A\ e,

If the result sequence for e, consists of integers in strictly increasing order. the result
sequence for ;'Nptusequvurv is composed of those elements from the result sequence for e that are

indexed by the values of the elements of the result sequence for ¢,. Formally,

S(Netusequencee [€5) = 5\ (¢,)® S ()@ " @ 5_ (¢))
':I \:: Ny

"

For example. the “£-expression

e
1N\ (‘)2tov})

is the same as
e\ [eye,]
except when the result of e is 0,
As a final example,
every f{lalist \ \ (2 to #alist by 2))

invokes fon the even-indexed elements of alist.

25

Chapter 3

Co-Expressions

Generators in Icon are limited by the syntax of the language. This has the advantage of
providing straightforward means of controlling generators, as well as permitting efficient
implementation. Further, the ‘first-in, last-out’ activation of nested generators makes gencrators
well suited to combinatorial applications (Griswold, Hanson, and Korb 1981).

The evaluation of a generator is restricted to a single lexical site within a program,
however. Furthermore, every evaluation of a genecrator produces clements from the result
sequence for that generator from the first element on. For example, if alist is a list, then lalist is a
generator that produces the elements in the list. However, there is no straightforward way to use
this generator to print, for example, only every other clement in alist, because there is no way to
evaluate lalist at several sites within a program, without reproducing the result sequence from the
beginning.

This chapter describes a mechanism that frees the evaluation of a generator from its
lexical site. Freeing the evaluation of a generator allows the programmer to access the elements
of the result sequence for that generator as needed. where needed. This makes it possible to write
clearer, more concise programs in many situations. In addition, this mechanism provides facilities
at the expression level for developing evaluation strategies similar to those provided at the
procedure level in languages with coroutines.

3.1 Co-Expression Creation and Activation
The expression
create expr

creates a co-expression containing expr. A co-expression is a data object consisting of an expression
and an environment in which to evaluate that expression. This environment is a copy of the
environment in which the create is performed and includes copies of any dynamic local identifiers (as
opposed to static local identifiers) referenced by the expression. As such, the co-expression contains
the state information necessary for the evaluation of the expression, independent of surrounding
context.

Unlike conventional expressions, which are evaluated in environments that are lexically
restricted to fixed locations in a program, an expression within a co-expression may be activared

wherever a result is desired from the sequence produced by the evaluation of the expression. The
expression

@x

activates x to obtain the next result from the result sequence for the co-expression.

27

28

For example, evaluation of the following expression assigns to the identifier x a
co-expression for producing the elements of alist.

X = create lalist
Activations of x produce successive elements from alist. For example
while write (@x)

writes all the elements of alist, and writing the even-numbered clements of alist may be accomplished
with

while @x do
write (@x)

Activation of a co-expression fails once its result sequence has been generated. Subsequent

attempts to activate the same co-expression also fail. Hence, in the above examples, activation of x
fails after all the elements of alist have been generated.

The activation operator itself is limited to at most one result. Hence, only onc result is
produced by the expression

-every write (@x)

However, repeated evaluation may be applied to a co-expression to achieve the effect of ‘unlimiting’

activation. Repeated evaluation is effectively a means of obtaining results from a looping expression.

If that expression is a co-expression activation, then repeated evaluation iterates over the result

sequence of the co-expression. For example, the following expression writes all the elements of alist.
every write(|@x)

As another example, consider the generator find(s1,52). Creating a co-expression for
find (s1,52) permits the elements of the result sequence produced by evaluation of find to be obtained
when and wherc they are needed. Hence

x .= create find(”ab”, "abracadabra”)
write (“The first is at ", @x)
write("The second is at ", @x)

outputs

The first is at 1
The second is at 8

Note that without co-expressions find (s1,s2) is reevaluated each time it occurs. Thus

write ("The first is at “,find ("ab", "abracadabra”))
write (“The second is at “,find(“ab”, "abracadabra”))

outputs

29

The first is at 1
The second is at 1

3.2 Operations on Co-Expressions
If x is a co-expression, then
*X
is the number of results that have been produced from the result sequence for x. For example,

x = create find("text” !file)
while write (@x)
count = »x

outputs the column positions of the string text in file, and assigns to count the number of occurrences
of text.

The refresh operation, Ax, returns a copy of the co-expression x with the environment
portion being the same as when x was created. Thus the refresh operation provides a means of
repeating the result sequence of a co-expression. For example.

x .= create find("ab"”, "abracadabra”)
write (“The first is at ”, @x)

write ("The second is at “, @x)

X = Ax

write ("The first is still at *, @x)

outputs
The first is at 1

The second is at 8
The first is still at 1

3.3 Generators and Co-Expressions

One of the simplest uses of co-expressions is in forming unbounded selection operations
whose scopes are not limited to a single site of evaluation. For example, the following code segment
decollates a list, alist, into two lists, odd and even. The elements of odd arc the elements of alist with
odd indices. and the elements of even are those with even indices.

blist ;= create lalist
odd = list()
even .= list()

every | (put(odd, @biist) | put(even, @blist))

A more succinct form of the above every expression is

30
every |put(odd | even, @blist)
Similarly, string decollation can be accomplished with
s1 (=882 ="
nextchar .= create !s

every | ({(s1 | s2) ||:= @nextchar)

Because co-expressions exist indefinitely, many algorithms can use generators that could not
without co-expressions.

Consider a procedure for supplying successive integer values. It is simple and natural to
express this as a generator, as in

procedure incr{n)

repeat {
suspend n
n+=1
}
end

Creating separate co-expressions for several different invocations of incr permits use of this
generator within several independent co-expressions. For example, incr can be used to create a label
generator that generates successive labels of the form Lann starting with LO10.

genlab = create ("L" || right(incr(10), 3, "0"))
At the same time, a second co-expression can use incras in
hextint .= create (incr(0)} % maxcycle)

to repeatedly cycle through a sequence of integers.

Linked lists provide an example in which the generation of elements is more complicated.
Because there is no linked list datatype in lcon, they must be simulated using existing datatypes. The
nodes of a linked list can be represented with records declared by

record Inode(value, link)

A generator for sequencing through clements of a linked list is shown below. Creating a
co-expression that invokes this procedure results in an unbounded selection operation for generating
the clements from a linked list.

procedure nextelement(llist)
repeat {
suspend llist.vaiue
llist := \llist.link | fail
}

end

31
(In lcon, the expression \x succeeds only if the value of x is non-null.)

Co-expressions permit the separation of an algorithm from the situations in which it is to be
used. This generally results in clearer, more concise code. For example, there are many applications,
such as the *same fringe’ problem (Hewitt and Patterson 1970) that require access to the leaves of a
binary tree. If the nodes of a binary tree are represented with records declared by

record node(data, itree, rtree)
then the procedure

procedure leaves (t)
if /t.itree & /i.rtree then return t.data
suspend leaves (\t.ltree | \t.rtree)
end

gencrates the leaves of the tree. The operation of the procedure depends upon the fact that node fields
have null values until another value is assigned. (The expression /x succeeds if the value of xis null.)

The procedure leaves may be used in any application that requires access to the values of the
leaves of a tree in sequence, as in

every write (leaves (tree))

By creating a co-expression [or an invocation of leaves, this same procedurc may be used as
an unbounded sclection operation. For example, the following code is equivalent to the every
expression given above.

nextleaf .= create leaves (tree)

while write (@nextleaf)

In turn, unbounded sclection permits the procedure to be used in more complex situations, such as in
the procedure compare given in the next section.

3.4 Co-Expressions and the Evaluation of Multiple Generators

Goal-directed evaluation provides a cross-product form of analysis when several generators
are present in the same expression (Griswold, Hanson and Korb 1981). This cross-product analysis is
effectively a depth-first search for results among a set of possible results. While goal-directed
evaluation is extremely useful in combinatorial applications, it provides little assistance in situations
where the results necd to be interleaved. By permitting the order of evaluation of generators to be
specified by the programmer, co-expressions provide the capability of arbitrarily interleaving the
results of generators.,

A procedure may activate two or more co-expressions in parallel, providing dot-product
analysis to complement the cross-product analysis provided by simple goal-directed evaluation.

32

For example, the following procedure determines if two co-expressions produce equivalent
result sequences, assuming that the sizes of the two result sequences arc the same. (A more general
solution is presented in Chapter$5.)

procedure compare(cx1, ¢x2)
local r1, r2
while r1 = @cx1 & r2 = @cx2 do
if r1 ~=== r2 then fail
return

end

This procedure can be used in a solution to the same-fringe problem to walk two trees in parallel to
determine if their leaf nodes have the same values in the same order:

if compare (create leaves(treel), create leaves(tree2)) then
write(""same fringe”)

else
write("different fringe")

In addition to this simple form of dot-product analysis, co-expressions can be used with
repeated evaluation to interleave the result sequences from two or more expressions. The result
sequence for

[(@el | @e2)

consists of alternating results from e1and e2. If activation of either co-expression fails, the remaining
co-expression continues to produce results until its activation also fails. An example of interleaving
results is the procedure merge that interleaves the characters from two strings.

procedure merge(s1, s2)
local el, e2, s

el .= create !si
e2 .= create !s2

— un

S .

|:= |(@el | @e2)

every s
return s

end

If the strings are of equal length, then merge collates the two strings. If the strings differ in length,
then the extra characters in the longer string are appended to the resulting string. This approach is
straightfoward. although there are more efficient methods using character sets and string mapping
techniques (Griswold 1980a).

The technique of using repeated evaluation to interleave activations of co-expressions
gencralizes to any number of co-expressions. For example, code for interleaving four strings is
obtained by

[(@e1 | @e2 | @e3 | @e4)

33

3.5 Co-Expressions as Coroutines

There is a close correspondence between semi-coroutine systems (Dahl 1972) and the
capabilities of co-expressions that have been described in the previous sections. In a semi-coroutine
system, program control can be passed between some master process and a number of subordinate
coroutine processes. The subordinate processes may not pass control among themselves, however.

Activation of a co-expression interrupts evaluation of the activating expression and
continues evaluation of the co-expression. Suspension from a co-expression interrupts evaluation of
the co-expression and continues evaluation of the activating expression. Thus co-expressions and
generators represent primitives from which semi-coroutines can be constructed.

Besides this semi-coroutine method of evaluation, a co-expression can also activate other
co-expressions, producing a general coroutine style of evaluation. The effect of one co-expression
activating another is simply that evaluation is interrupted in the first, and continued in the second,
thus providing capabilities at the expression level that are similar to the capabilities provided by
coroutines at the procedure level in languages such as SLS (Hanson and Griswold 1978), and ACL
(Marlin 1980).

3.5.1 Built-in Co-Expressions

There are two co-expressions provided by the [con system as aids in the use of co-expressions
in a general coroutine style. These co-expressions are represented by the keywords &main and
&source.

Program execution in lcon is initiated by an implicit call to the procedure main. The
keyword &main is a co-expression for this call. Activation of &main from any co-expression returns
control to the point of interruption in the evaluation of the call to main.

&source is a co-expression for the activating expression of the currently active co-expression.
Control can be explicitly transferred from a co-expression to its activating expression by activating
&source.

Access to &main and &source permits any co-expression to transfer control to any other
co-expression, providing a general coroutine facility.

3.5.2 Providing Results to Co-Expressions
A result can be supplied to the activation of a co-expression by

exprl @ expr2

which supplies the result of expr/ to the activation of the co-expression that is the result of expr2.
(‘This result is ignored if the co-expression is being activated for the first time.)

3.5.3 Examples of Co-Expressions as Coroutines

The following problem was originally posed by Grune (1977) to illustrate a number of
coroutine facilities.

“Let A be a process that copies characters from some input to some output, replacing all
occurrences of aa with b, and a similar process, B, that converts bb into c. Connect these processes in
series by feeding the output of Ainto B.™

Using co-expressions, this problem can be solved as follows.
global A, B

procedure main ()

A = create compress(”a”, “b", create |reads(), B)
B = create compress(“b”, "c”, A, &main}

while writes (@B)
end

procedure compress(cl, c2, in, out)

local ch
repeat {
ch = @in
it ch == c1 then {
ch = @in
if ch == ¢1 then
ch = c2
else
c1 @ out
}
ch @ out
}
end

This solution is similar to a solution originally presented in Simula (Lynning 1978) and
translated into ACL. by Marlin (1980). Like their solutions and those proposed by Girune, it assumes
an infinite stream of input. Like these solutions, the one above creates two instances of the same
procedure for the operation of both A and B. The Icon version is simplified slightly by the ability to
transfer results between co-expressions, however.

The following cxample uses co-expressions to implement the Sieve of Erastothanes. The
technique is based upon a similar one used to illustrate a use of coroutines (Mcllroy 1968) and filtered
variables (Hanson [978).

The sieve supplies an infinite stream of integers through a cascade of “filters’, each of which
checks to see if the integer is divisible by a specific known prime. Each filter activates the next filter in
the cascade if the integer passes its test. If a filter finds an integer that is a multiple of its prime, the
filter activates the source of integers and the cascade is restarted on the next integer. If the integer

35

passes through the entire set of filters successfully, it is output as a prime and a new filter is added to
the cascade to test subsequent integers against this prime.

global num, cascade, source, nexffilter

procedure main ()
cascade .= list()

source .= create # root of sieve
every num = 2 to huge_number do {
nextfilter = create Icascade # sequence of filters
@@nextfilter # get first filter and activate it
push (cascade, cieate sink()) # sink starts as only filter
@source # start the sieve
end

procedure sink()

local prime
repeat {
write (prime = num)
push (cascade, create filter(prime)) # add filter to cascade
@source # start processing next number
}
end

procedure filter(prime)

repeat
if num % prime = 0 then @source # try next num
else @@nextfilter # get next filter and activate it.
end

The co-expression source generates the integers and starts the cascade on each integer. Each
filter in the cascade is a co-expression testing the potential prime against a specific known prime. The
co-expression sink processes new primes and is always the last filter in the cascade. An additional
co-expression is used to sequence through the filters in cascade using the sclection operator. Note
that each filter is invoked exactly once. From then on, control is simply passed between source and
the various filters (including sink).

Actually, there is no need for any of the procedures other than main. This example can be
written as

36

global num, cascade, source, nextfilter

procedure main ()
local prime
cascade .= list()
source = create {
every num = 2 to huge_number do
@@ (nextfilter = create !cascade)
@&main
}
push(cascade, create
repeat {
write (prime = num)
push(cascade, create repeat
if-num % prime = 0 then @source
else @@nextfilter)
@source
]

@source
end

This version does not show the logical division of the algorithm as well as the previous version,
however, and works properly only because co-expressions maintain their own copies of local
identifiers.

fa

e

Chapter 4

Implementation

While generating expressions are a fundamental aspect of Icon, their use is not restricted
to Icon. The language Cg (Budd 1981), which integrates generators and goal-directed evaluation
into the C programming language. demonstrates that generators can extend more conventional
languages. The integration of generators and goal-directed evaluation into languages with stack-
based implementations can be accomplished in a straightforward and efficient manner.

Implementation of generators and co-expressions consists of two parts: run-time support
and generated code. The run-time support includes the primitive actions needed for the
evaluation of generators and co-expressions. The generated code organizes these primitives into
control regimes.

This chapter presents models for the implementations of generators and co-expressions.
The first model of generating expressions provides the most straightforward implementation, but
requires the use of two physically distinct stacks. The second model merges the two stacks of the
first model into a single stack, providing greater efficiency and simplifying the implementation of
co-expressions. The model given for the implementation of co-expressions is based on the second
model for generator cvaluation. An interpreter based upon the second model has been written in
Icon for a subset of Icon and appears in Appendices A and B. Appendix A contains a recursive
descent parser for translating “-syntax into an intermediatc code. Appendix B contains an
interpreter for this intermediate code.

The second model of generating expressions and the corresponding model of
co-expressions arc compared to the actual implementation of these features in Icon and Cg.
Appendix C contains an intermediate code interpreter more closely matching an actual
implementation. Restrictions imposed on the actual implementations by scoping conventions and
machine architecture are also discussed.

4.1 Implementation of Expression Instances

Expression instances in Algol-like languages are relatively uninteresting, amounting to
little more than storage for temporary values that are used during cvaluation of the expression.
Furthcrmore, because expressions in these languages produce exactly one result, expression
instances only exist while they are either passive or active. Thus a single stack can be used to
maintain expression instances. In Icon. however, expression instances must contain more
information concerning the state of the evaluation of that instance, and an Algol-like stack is no
longer sufficient to maintain expression instances.

While the information associated with an expression instance may vary depending upon
language features and implementation techniques, information typically associated with lcon
expression instances includes:

38

I. A passive instance pointer pointing to a linked list of enclosing passive expression
instances.

2. An inactive instance pointer pointing to a linked list of inactive subexpressions.
3. An activation address acting as a pointer into the program code. The activation address
assumes different meanings depending upon the state of the expression instance and is

explained in more detail later.

4. An expression stack used to hold any temporary results created during evaluation of the
expression.

The first threc items are referred to collectively as the expression marker. In practice,
expression stacks are nol separate entities, but simply represent areas on some systern stack that
are separated by expression markers. Nevertheless, it is convenient to view the system stack as a
stack of expression instances, with each expression instance maintaining its own expression stack.

Expression instances are coalesced by factoring the expression markers out to an
enclosing expression instance, Thus subexpressions correspond to expressions that have had their
expression markers factored to some enclosing expression instance.

4.1.1 Operations on Expression Instances

Various implementation schemes for generators can be formulated in terms of operations
upon expression instances. lcon program segments are used here to model several schemes.

Besides the standard features of Icon, the following operations involving expressions
instances are assumed to be features of the implementation language.

1. Creating an expression instance is accomplished by

create_instance()

which returns a created expression instance of the form

passive

inactive

save_pc

estack

The field labelled passive holds the passive instance pointer for that expression. The field
labelled inactive holds the inactive instance pointer. The field labelled save_pc holds the
activation address. Finally, estack is the expression stack area. Changes to this form
dictated by different implementation approaches arc indicated where appropriate.

o

An expression instance, i, is copied by

copy(i)

‘e

39

3. The fields of an expression instance are accessed using the field reference operator of Icon.
That is,

i.passive .= &null

clears the passive instance pointer field of instance i, and
\i.inactive

succeeds if the inactive instance pointer of i is non-null.
4. Expression instances can be manipulated as data-objects. Because expression instances are
maintained on stacks (most notably the system stack), pushing and popping them on to and
off of a stack are accomplished with
push(stack,i)

and
pop(stack)

respectively. Another useful stack operation is
popto(stack,object)

which pops stack so that object is on top of the stack, and fails if object is not on the stack.
The stack is left unchanged if popto fails.

5. Finally, the global identificrs pc and active are the machine location counter and a pointer to
the currently active expression instance, respectively,

4.2 Goal-Directed EFvaluation

Any temporary results that are present when a subexpression produces a result are restored
when that subexpression is reactivated. For example, in the expression

5+ (1 to 10) > x

the value 5 is present as a temporary result in the currently active expression instance when the
subexpression 1 to 10 produces a result. The addition operation replaces both 5 and the result
produced by 1 to 10 with their sum. However, if 1to 10 is reactivated to produce a subsequent result,
5 must be prescnt in the active instance in order for evaluation to proceed properly. The information
necessary to continue processing in a reactivated expression corresponds precisely to the information
maintained as part of the expression instance for that expression,

When an expression is to be evaluated. an expression instance is created for that expression
and evaluation proceeds within that instance. When a subexpression produces a result. a copy of the
active expression instance is saved as an inactive expression instance and evaluation proceeds using
the produced result. As an implementation optimization, copies of the active expression instance are
saved only when the subexpression that has produced the result has the potential of producing

40

subsequent results. This is accomplished by making each subexpression responsible for saving the
active expression instance whenever that subexpression produces a result and is capable of producing
additional results.

If failure occurs during evaluation, the currently active expression instance is destroyed and
the most recently inactivated copy of that expression instance is activated. If there are no inactive
copies of that expression instance, failure occurs in the evaluation of the enclosing instance.

When evaluation of an expression produces a result (as opposed to a subexpression
producing a resuit), the result is provided to any enclosing instance. The currently active expression
instance is destroyed, as are any inactive instances of that expression. The enclosing expression
instance becomes the active expression instance.

4.2.1 The Two-Stack Model of Goal-Directed Evaluation

In the original implementation of Icon, two physically distinct stacks are used to implement
goal-directed evaluation (Korb 1979). All expression instances that exist, but that are not inactive,
are maintained on a sysrem stack, denoted SYSSTK. The currently active expression instance is on
the top of SYSSTK. The second stack, or control stack, is used to store inactive expression instances.
The control stack is denoted CTLSTK.

There is no need for the passive instance pointer in expression instances, since passive
expression instances arc maintained in proper order on SYSSTK.

The activation address for expression instances on SYSSTK is the address to which program
control is transferred whenever failure of a subexpression to that instance occurs. For instances on
CTLSTK, the activation address is the address at which evaluation is to resume if the instance is
reactivated.

There are three routines used to implement goal-directed evaluation:
I. The procedurc mark creates a new expression instance on SYSSTK and activates it.

procedure mark(failure_lab)

push(SYSSTK, create_instance())
top(SYSSTK).save_pc .= failure_lab
active .= top(SYSSTK)

end

IfSYSSTK and CTLSTK prior to the call of mark are

SYSSTK CTLSTK
a o
active ——{ inactive inactive
save_pc save_pc
estack estack

then after the call they are

SYSSTK CTLSTK
o o

inactive inactive

save._pc save_pc

estack estack
. B ——
active —————1 inactive
save_pcC
estack

2. The procedure save saves a copy of the currently active expression instance on CTLSTK.

procedure save()

push(CTLSTK, copy(active))

top(CTLSTK).inactive .= active.inactive

top(CTLSTK).save_pc .= pc
active.inactive .= top(CTLSTK)

end

1f SYSSTK and CTLSTK before the call to save are

SYSSTK CTLSTK
o o
inactive inactive
save_pc save_pc
estack estack
. B ——
active | inactive
save_pc
estack
after the call they are
SYSSTK CTLSTK
o o
inactive inactive
save_pc save_pc
estack estack
. B —— B —
active ———e1 inactive inactive
save_pc save_pc
estack estack

The result of the subexpression is then pushed onto the expression stack for the active
instance and processing continues after the call of save().

3. The procedure drive handles success or failure of expression evaluation and depends upon
the use of a global flag variable failure to signal success or failure of evaluation.

procedure drive()
pop(SYSSTK)
if \failure then {
it \active.inactive then {
push(SYSSTK, pop(CTLSTK))
pc .= top(SYSSTK).save_pc
failure = &null
}
}

else
popto(CTLSTK, top(SYSSTK).inactive)

active .= top(SYSSTK)
end

Note that the value of pc after drive is different in

cvaluation of the expression is successful.

If SYSSTK and CTLSTK before the call to drive are

42

the case of failure than it is when

SYSSTK CTLSTK
a o
inactive inactive
save_pc save_pc
estack estack
. B —— B —
active ———————wd inactive inactive
save_pcC save_pc¢
estack estack
then if failure occurs, the stacks after the call are
SYSSTK CTLSTK
a o
inactive inactive
save_pc save_pc
estack estack
. B ——
active —————ad inactive
save_pc
estack
I there is no failure, the stacks after the call are
SYSSTK CTLSTK
o a — -
active —————+! inactive inactive
save_pcC save_pc
estack estack

43

Calls to the routines mark and drive cnclose the code for each expression requiring an
expression instance. A new expression instance is created by mark upon entry to the code for an
expression and is destroyed by drive upon exit from the code for that expression.

Initially, failure has the null value, indicating that no failure has occurred. 1f a subexpression
fails, failure is set to a non-null value and processing continues. After every subexpression that can
conceivably fail, there is a test of the variable failure in the gencrated code. If this test detects failure,
control branches immediately to the drive at the end of the expression.

In practice, this mechanism has proven to be unwieldy. Because the names of functions are
global identifiers, the Icon translator can determine if a subexpression is capable of failing only when
the subexpression contains only operators. In all other situations, it must be assumed that the
subexpression might fail, and the code testing the failure condition must be inserted after all function
and procedure calls. One improvement to this mechanism is to have operations directly perform the
actions taken upon failure. This eliminates the need for the tests of failure after every subexpression
and simplifies the translator. This enhancement is one of several presented in the following model for
goal-directed evaluation, although it is not essential to the model.

4.2.2 The One-Stack Model of Goal-Directed Evaluation

Using two stacks as described above provides an effective implementation for goal-directed
evaluation. Nevertheless, there are several disadvantages to using two distinct stacks. First, the use
of a second stack complicates memory management for some machine architectures. Second, moving
expression instances on to and off of the control stack involves additional overhead. It is possible to
merge the control and system stacks into a single physical stack. The result is a more efficient
implementation in both space and time.

The technique is to ‘hide’ inactive expressions instances in place on the system stack.
Whenever a subexpression performs a save operation, a new expression instance is created containing
a copy of the information necessary to continue processing (including the result being supplied from
the subexpression). The new expression instance then becomes the active expression, and processing
continues.

This approach has several advantages over the two-stack model. First, there is no need to
copy an inactive instance back to the system stack when it is reactivated, since that instance is already
on the system stack. Sccond, the amount of information that must be copied for an inactive instance
is less than that required in the two-stack model.

As an example, consider evaluation of the expression
5+ (1to10) > x

Just before the to operation suspends. the active instance contains the value 5 as well as temporaries
formed during evaluation of 1 to 10. (These temporaries arc used to ‘remember’ the last result
produced. the final result to produce, and the increment.) In the two-stack model, all of this
information must be copied as part of the inactive expression instance. The one-stack model requires
only copying the value S and the result produced by 1to 10 into the new active instance, since that is
all the information necessary to continue evaluation of the expression. The function
copy-information copies the appropriate information from the currently active expression instance
into the newly created expression instance.

44

The combination of the system and control stacks into a single stack is accomplished through
a slight change in the expression marker: There is no longer any need for the inactive instance
pointer. In those situations in the two-stack model where an active instance pointer points to an
inactive instance, that inactive instance is now located immediately below the active instance.
However, there is now a need for a passive instance pointer, since the next passive instance may not
be the next instance on the stack.

Another change to expression instances is in the use of the activation address. Whereas the
activation address in the two-stack model provides the point at which control is to resume in that
instance, the activation address in the one-stack model provides the location at which control is to
resume in the next expression on the stack when failure occurs in the current instance. While this
change is mostly cosmetic, it simplifics the implementation of some control structures.

The estack field of expression instances is unchanged. Since expression stacks represent
areas on the stack of expression instances, they do not affect the actual number of stacks needed in
the implementation,

These changes necessitate some modifications to the routines that control goal-directed
evaluation. In preparation for the presentation of additional language features, the global identifier
active_stack is used to refer to the system stack.

I. The procedure mark is the same as before, except that the passive instance pointer is set to
point to the currently active instance.

procedure mark(failure_lab)

push({active_stack, create_instance(})
top(active_stack).passive .= active

top(active_stack).save_pc .= failure_lab
active .= top(active_stack)

end

If the stack just before a call to mark is

active ——a- passive
save_pc
estack
then after the call the stack is
a .
passive
save_pc
estack
. B .
active ———————»4 passive
save_pcC
estack

o

The procedure save hides the currently active instance in place on the stack when a
subexpression suspends.

45

procedure save()
push(active_stack, create_instance())
copy—information(active, top(active_stack))
top(active_stack).save_pc .= pc

active .= top(active_stack)
end

If the stack just betore a call to save is

a .
passive
save_pc
estack
: B ,
active ———————f passive
save_pcC
estack
then after the call, the stack is
a .
passive =
save_pc
estack
B .
passive —
save_pc
estack
B .
active ———————»{ passive =
save_pc
estack

As stated earlier, subexpressions call the failure-handling mechanism directly when they fail.
The routine failure handles all failures and is invoked by the subexpression that fails. [t
makes no difference when failure occurs whether or not there are any inactive instances for
the currently active expression. The appropriate instance to reactivate is always the next
instance on the stack, and the current save_pc is the location at which execution is to
continue within that instance.

procedure failure()

pc .= active.save_pc
pop(active_stack)
active = top(active_stack)

end

Il the stack before a call to failure is

46

a .
passive e
save_pc
estack
B .
passive —
save_pc
estack
. B :
active —————» passive -
' save_pc
estack
then after the call the stack is
a .
passive
save_pc
estack
B .
active ~——————»1 passive
save_pc
estack

Because all expression failures are handled by failure, drive need only ensure that successful
evaluation of an expression returns control to the next passive expression. The procedure
drive is renamed unmark here. It does nothing more than pop the active stack to the passive
expression instance.

procedure unmark()

popto(active_stack, active.passive)
active = top(active_stack)

end

If the stack before a call to unmark is

passive e,
save_pcC
estack

passive =

save_pcC
estack

. B . 1
active ———————»{ passive

save_pc

estack

Then after unmark the stack is

47

o
active ————»1 passive
save_pc
estack

4.2.3 Generated Code in the One-Stack Model

The code generation for a language using generators and goal-directed evaluation is
straightforward. Because expression instances are created only at the points at which control
decisions need to be made, most of the code production is identical to that in more conventional
languages.

Control structures are another matter. The use of success or failure to control expression
evaluation is directly reflected in the implementation of control structures. This section presents the
generated code for some typical Icon control structures. A simple intermediate code, called ucode, is
used to describe the code gencrated for these control structures.

The ucode instructions push, pop, goto. and invoke have conventional meanings. For
simplicity, it is assumed that all operators, functions, and procedures are invoked through the same
mechanism, For example, the ucode produced for the expressions

1+3

1 to 10

write(3)

is

push 1
push 3
invoke +
push 1
push 10
invoke to
push 3
invoke write

In the code shown here, comments and annotations are enclosed in braces, and labels are
terminated by colons, e.g.

lab1: goto fab1 {tight endless loop}
While opcrations that produce results do so by placing the result on the active expression
stack, for convenience it is assumed that the location result also contains the result of the last

operation,

I'he remaining ucode instructions deal exclusively with gencrators and goal-directed
evaluation and correspond to the procedures described in the preceding section,

. The instruction mark lab is the ucode form of the procedure mark(/ab). The global label flab

48

is assumed to be the address of an invocation of failure(). Thus, mark flab propagates failure
to the first pussive expression instance upon failure of the marked expression instance.

)

The instruction unmark performs the same function as the procedure unmark ().
3. The instruction fail corresponds to the procedure failure().

4. The procedure save() presented carlier is used within operators and functions to provide a
result to the current active expression instance, and has no corresponding ucode
representation. However, some control structures require that the active expression instance
provide a result to the enclosing passive instance, without destroying any inactive instances
of the currently active instance. The ucode instruction esave is used in these situations and
corresponds to the procedure

procedure esave()

pop(active_stack)

push(active_stack, copy(active.passive))
top(active_stack).save_pc .= active.save_pc
active .= top(active_stack)

end

The approach is to replace the current active expression instance with a copy of the first
passive expression instance (which then receives the result of the current active expression
instance) and to continue processing.

4.2.4 The Generated Code for Control Regimes
3If: one of the simplest control structures is
it exprQ then exprl [else expr?]
If there is an else clause, the generated code is

mark lab1
{code for expro}
unmark
{code for exprl}
goto lab2
lab1:
{code for expr2}
lab2:

If expr(produces a result, the unmark pops the active stack to the first passive expression instance,
and the then clause is evaluated in that instance. If expro fails to produce a result, that same passive
instance becomes the active instance. Control then branches via the failurc mechanism to lab1 and
the else clause is evaluated.

If the else clause is omitted and the control clause fails, the entire expression fails. Thus the
code generated when the else clause is omitted is

‘e

mark flab
{code for expr0}
unmark

{code for expr!}
While: the generated code for

while expr(} do exprl

is
lab:

mark flab
{code for expr0}

unmark

mark lab
fcode for exprl}

unmark

goto lab

Note that while-do itself does not produce a result.
Repeat: the generated code for

repeat expr

lab:
mark lab
{code for expr}
unmark
goto lab

In this case. if expr fails, control branches to the same point as when it succeeds.

Euery: the generated code for

every expr(} do exprl

mark flab
{code for expr0}

pop

mark flab
{code for expri}

unmark

fail

49

50

The pop after the control clause simply removes the result computed by that clause, since that result is
ignored. Evaluation of the do clause takes place within a separate cxpression instance to limit
cvaluation to at most one result from that clause. A fail instead of an unmark occurs at the end of the
code sequence and is evaluated in the expression instance for the control clause. This forces any
inactive instances of the control clause to be reactived using save_pc as the reactivation address.
Again, note that every-do itself does not produce a result.

reak and Next: the break and next control regimes are context sensitive operations that
require special treatment during code generation. The break or next may appear in an expression
instance that is nested within the instance in which the action is to take place. The code generator
must know the depth of this nesting and issue enough unmarks to ensure that the operation of break
or next occurs within the proper instance.

In the casc of
break expr

the evaluation of expr occurs in the expression instance for the iteration control regime being exited.
If expr is omitted. the outcome of break is failure. If the outcome of expr is success, program
evaluation proceeds with the expression following the iteration control regime. On failure, goal-
directed evaluation reactivates any generators in the active expression instance (the expression
instance enclosing the evaluation of the iteration control regime). For example, in

every line .= !&input do {
if line == "stop” then
break write("stop found")

the evaluation of break write(”stop found”) occurs within the expression instance for the do clause.
Two unmarks are needed to make the instance enclosing the every the active instance in which
write("stop found”) is evaluated. The generated code for break write("stop found”) in the cxample
above is

unmark
unmark

{code for write("stop found”)}
goto brklab

where brklab is the address of the expression following the every. If the argument to break is omitied,
the generated code consists of the appropriate number of unmarks followed by fail.

The code generated by next is similar to that for break. In the case of all the iteration control
regimes cxcept every the gencrated code consists of the proper number of unmarks to make the
instance enclosing the iteration control regime active. These unmarks are followed by a branch to the
start of the code for the iteration control regime. 1[the next occurs in the do clause of an every
cxpression, one fewer unmark is generated so that the expression instance for the first argument to
every becomes active. If the next occurs in the first argument of every. no unmarks are generated. In
either case, a branch to flab is then generated to activate any inactive instances in the first argument.

51

Nut: the generated code for

not expr
1S
mark lab
{code for expr}
unmark
fail
lab:
push &null

The generated code for

exprl | expr2

mark lab1
{code for exprl}
esave
push result
goto lab2
lab1.
{code for expr2}
lab2.

The instruction esave is used to make the expression instance for evaluating the left control
expression inactive, so that failure in the surrounding expression instance reactivates the left control
expression before attempting evaluation of the right control expression.
Limit: the generated code for
exprl \ expr2
is more complicated and requires the introduction of two new ucode instructions, limitand Isave.

The procedural form of limitis

procedure limit()
it result <= 0 then failure()
end

The procedure limit checks the current result and succeeds if the result is positive. The procedure limit
Icaves this result upon the stack to function as a counter of results left to produce from expr!.

The instruction Isave is responsible for maintaining the count of results produced. The top of
the stack of temporaries for the first passive expression instance is the count of results left to produce.

52

If the last result is being produced, then Isave is similiar to unmark. If it is not the last result, then

Isave performs the same function as esave.
The procedural form of Isave is

procedure |save()

top(active.passive.estack) —:= 1

if top(active.passive.estack) > 0 then
esave()

else
unmark()

end
The generated code for
exprl \ expr?
is thus

{code for expr2}

limit

mark flab
{code for expri}

Isave

pop

push result

The last two instructions replace the count of remaining results with the result of expr/.

Reval: as a final example of generated code, consider

lexpr

The difficulty in implementing repeated evaluation arises when the control expression fails to produce
any result, in which case repeated evaluation fails rather than attempting to evaluate the control

expression anew. If this condition were removed, the generated code would be

lab:
mark lab
{code for expr}
esave
push result

With the failure condition, the code is

53

lab:
mark flab
{code for expr}
chfail lab
esave
push result

The ucode instruction chfail changes the activation address from flab to lab after the control
expression has produced a resuit. Thus if no result is produced by the control expression, the failure
is propagated to the first passive instance enclosing the repeated cvaluation. If at least one result is
produced, chfail insures that subsequent failure causes the expression to be evaluated anew.

To force re-evaluation of the expression, chfail changes the activation address of the
expression instance immediately following the passive instance awaiting a result from the repeated
evaluation. This activation address is the point at which evaluation continues in the passive instance
when failure occurs in the repeated evaluation. An additional primitive operation is used to gain
access to that activation address. The function one_above(i) returns a pointer to the expression
instance containing the activation address that is used when reactivating expression instance i.

The procedural form of chfail is

procedure chfail(failure_label)
one_above(active.passive).save_pc .= failure_label
end

4.3 Co-Expressions

Co-expressions can be added to languages that do not include generators or goal-directed
evaluation. Much of the expressiveness of co-expressions is lost in such a situation, however,
reducing co-expressions to a conventional coroutine facility. When integrating co-expressions into a
language that includes generators. the ease of implementing co-expressions depends to a large degree
on the implementation chosen for generators.

Forming a co-expression from an expression involves the creation of a co-expression
instance that encapsulates the the evaluation of the expression. While co-expressions can be
implemented using cither the one- or two-stack model of goal-directed evaluation, implementation
using the one-stack model is simplest, and it is used here.

A co-expression instance encapsulating an expression can be viewed as the stack used to
maintain any expression instances created during evaluation of the expression and a location counter
for that expression. It is convenient to treat the location counter and stack in which program
execution is initiated as a co-expression instance. The expression in which evaluation of an Icon
program is initiated consists of an invocation of the procedure main. The co-expression instance in
which program evaluation is currently taking place is termed the current co-expression, and its stack
is termed the active stack. Thus each co-expression maintains its own version of the system stack.

The current co-expression is pointed to by the global variable current. Evaluation, or
activation, of a co-expression is a straightforward process of switching current from one
co-cxpression instance to another. The first co-expression instance is termed the acrivaror of the
second. The expression instance on top of the stack for the activator becomes a passive instance,

54

awaiting a result from the activated co-expression. The instance on top of the activated co-expression
stack becomes the active expression instance.

When the activated co-expression produces a result, that result is transmitted back to the
activator, where processing continues.

The ucode instruction create /ab produces a co-cxpression instance for evaluating the
co-expression whose code begins at lab. This co-expression instance is represented as

activator

pc
sstack

and is modeled as a record
record coexpr(activator, pc, sstack)

where activator points to the current activator of that co-expression, pc is the location counter for
that instance, and sstack is the system stack for expressions instances formed during evaluation of the
co-expression.

The instruction create has the procedural form

procedure create_coexpr(first_instr)

push(active.estack, coexpr(&null, first_instr, stack()))
push(top(active.estack).sstack, create_instance())

end

Note that an initial expression instance is built into the co-expression instance stack. This is done so
that the activation process need not determine whether or not the co-expression instance stack is
empty.

The procedure activate switches to a new co-expression instance. Any co-expression that is
the activator of some other co-cxpression has a passive expression instance on the top of its stack.
Since passive instances are waiting for a result to be provided from some other instance, it is
reasonable to transmit a result to the new co-cxpression instance. The procedure activate provides
the current result to the new co-expression instance. { the activated co-expression is not the activator
of some other co-expression, the result is ignored.

procedure activate(coexpr)

coexpr.activator = current

current.pc = pc

current = coexpr
active_stack = current.sstack
active = top{(active_stack)

pc = current.pc
push(active.estack, result)

end

55
The procedure coreturn provides i result from one co-expression to its activator,

procedure coreturn()

current.pc .= pc

current .= current.activator
active_stack = current.sstack
active = top(active_stack)
pc = current.pc
push(active.estack, result)

end

There are few differences between activate and coreturn. The procedure activate sets the activator
ficld of the activated co-expression, while coreturnsimply returns control to its activator.

If a co-expression becomes exhausted. failure is reported to the activator. The procedure
cofail is invoked when a co-expression fails.

procedure cofail()

current.pc .= pc
current .= current.activator
active_stack .= current.sstack

active .= top(active_stack)
failure()

end
4.3.1 The Generated Code for Co-Expressions

The ucode operations create, coreturn, and cofail correspond to the procedural forms given
earlier. Activation,

exprl @ expr2
is like any other binary operator, and has generated code
fcode for expr!}
{code for expr2}
invoke activate
The generated code for
create expr
is a bit more complex than that generated for co-expression activation. The approach is to branch
around the code generated for the co-expression and do a create with a pointer to the code for the
co-cxpression. Hence the Icon expression

create expr

produces the ucode instructions

56

goto lab2
labt:

pop

mark clab

{code for expr}

coreturn

fail
lab2:

create lab1

The pop at the beginning of the co-expression code removes the result provided by activate,
since that result is ignored when the co-expression is first activated.

When a co-expression is exhausted, it fails any time that it is subsequently activated. The
mark clab causes a branch to the universal label clab when the co-expression is exhausted. The code
atclabis

clab:
cofail
goto clab

which repeatedly transmits failure back to any activator of the co-expression.

Finally, the fail after coreturn forces the co-expression to produce its next result the next time
itis activated.

4.4 Implementation Details

For pedagogical purposes, a ucode generator and a ucode interpreter for a small subset of
lcon have been written using the above routines and are contained in Appendices A and B,
respectively. The use of Icon obscures a number of practical considerations that are encountered
when implementation is attempted using a conventional system implementation language, however.
A major difficulty arises because system stacks are typically addressed in terms of machine words or
bytes, not expression instances as in the lcon model.

This section describes modifications to the models that are necessary to add goal-directed
evaluation and co-expressions 1o a language based upon conventional implementation techniques.
The modified models reflect the general approaches taken in the implementation of Cg and lcon,
though both Cg and lIcon include features and optimizations not presented here. Appendix C
contains a ucode interpreter based upon the modified one-stack model.

57

4.4.1 Goal-Directed Evaluation

Because conventional implementation languages treat the system stack as a stack of words or
bytes, expression instances arc represented by expression markers separating expression stack areas.
In the one-stack model, it is assumed that active and any passive instance pointers point to expression
markers. Expression markers are of some fixed length, while expression stack areas vary in size
depending upon the number of temporary results created when each instance is active. The modified
one-stack model assumes this more conventional lavout of system stacks.

In a conventional system stack, the top of the stack is pointed to by the srack pointer. Inthe
modified one-stack model, this stack pointer corresponds to a pointer to the top of the cxpression
stack for the active expression instance, and is represented by the global identifier sp.

When expression instances are popped from the system stack, two actions occur. First,
active is changed to point to the expression marker for the new active instance. Second, sp is changed
to point to the top of the new active instance.

When there are no inactive instances of the current active expression, these two operations
are accomplished by setting sp to the current value of active, and setting active to the current passive
instance pointer. These actions are sufficient regardless of whether or not the active instance is
producing a result. They arc not sufficient, however, when there are inactive instances of the current
active expression.

There are two cascs to consider when there are inactive instances of the current expression.
1. If the active expression has failed to produce a result, then active is changed to point to the

next expression marker on the stack, and sp is changed to point to the top of the expression
stack area for this new active instance.

o

If the active expression has succeeded in producing a result for some passive instance, then
active is changed to point to the expression marker for that passive instance, and sp is
changed to point to the top of the expression stack arca for that passive instance.

Accomplishing the proper operation in both cases requires that expression markers include
two supplemental pointers. First, an inactive instance pointer is needed for resetting active during
reactivation. Second, a saved stack pointer is needed for resetting sp to the top of the expression
stack area in the enclosing passive instance.

An expression instance in the modified one-stack model has the form

passive
inactive

save_sp
save_pc
estack

with the first four fields constituting the expression marker.

Given these changes, the primitive operations on expression instances can be rewritten for a
conventional system stack. The assumptions are that the system stack is addressed on a word basis

58

and that all pointers into the stack are negative offscts from the base of the stack. Hence push
decrements sp and pop increments sp.

. The procedure mark pushes a new expression marker onto the stack.

procedure mark(failure_lab)

local sactive
sactive = sp
push(active_stack, active)
push(active_stack, &null)
push(active_stack, sactive)
push(active_stack, failure_lab)
active .= sactive

end

If the stack before a call to mark is

a
active ———— i passive
inactive
save_sp
save_pc
sp -
after the call the stack is
a
passive ey
inactive
save_sp
save_pc
. - |
active ————— passive "
inactive
save_sp -
save_pc
sp -
2. T'he procedure save must update inactive and save_sp as it “hides” the current active

instance. Note that the routine copy_information is replaced by a simple every loop.

procedure save()
local sactive

sactive .= sp

push(active_stack, active_stack[active])

push(active_stack, active)

push(active_stack, active_stack[active-2])

push(active_stack, pc)
every

push(active_stack, active_stack[active-4 to sactive+1 by -1])

active .= sactive
end

[f the stack before a call to save is

passive

inactive

save_sp

save.pc

active ————————

passive

¥

inactive

save_sp

save_pc

sp

then after the call the stack is

59

60

passive e
inactive
save_sp
save_pc

passive

inactive

save_sp -
save_pc

active passive -1-

inactive —

save_sp -
save_pc

sp

The changes to esave are similar to those required by save. esave must ensure that inactive
points to the next expression marker on the stack.

procedure esave()
local passive, inactive, ssp, spc

passive .= active_stack[active]
inactive = active_stack[active-1]
ssp .= active_stack[active-2]
spc .= active_stack[active-3]
sp .= active
push(active_stack, active_stack[passive])
push(active_stack, \inactive |passive)
push(active_stack, active_stack[passive-2])
push(active_stack, spc)
every
push(active_stack, active_stack[passive-4 to ssp+1 by -1])

end

If the stack prior to a call of esave is

active

sp

passive

inactive

save_sp

save_pc

passive

[)] I

inactive

save.sp

save.pc

| passive

inactive

save_sp

save_pc

then after the call it is

61

passive

inactive

save_sp

save_pc

passive

inactive

save_sp

save_pc

active ——————»

passive

inactive

save_sp

save_pc

sp -

62

The procedure failure determines whether there is an inactive instance to reactivate. If there
one, it is reactivated. Otherwise, failure reactivates the enclosing passive instance and sets pc
to the value of save_pc for that passive instance.

procedure failure()
pc .= active_stack[active-3]
sp = active
if \active_stack[active-1] then
active .= active_stack[active-1]
else
active = active_stack[active]
end

If the stack before a call to failure is

passive

inactive

save.sp

save_pc

passive

§ 1

inactive

save_sp

save_pc

active —— 5

passive

inactive

save_sp

save_pc

sp

then after the call the stack is

passive

inactive

save..sp

save_pc

active ———— &

passive

[

inactive

save_sp

save..pc

sp -

The procedure unmark pops all inactive instances of the active instance from the stack.

63

procedure unmark()

sp := active_stack[active-2]
active := active_stack{active]
end

If the stack before a call to unmark is

passive

inactive

save_sp

save_pc

passive

L}

inactive

save_sp

save_pc

active ———————

passive

inactive

save_sp

save_pc

sp -

then after the call the stack is

active

passive

inactive

save_sp

save_pc

sp —

The procedure Isave works as in the original one-stack model.

65

procedure lIsave()
local top_passive
top_passive .= active_stack[active-2]
it (active_stack[top_passive+1] —= 1) > 0 then
esave()
else
unmark()
end

7. Finally, chfail is able to access the appropriate activation address directly.

procedure chfail(failure_lab)
local one_above

.

one_above .= active_stack[active-2]
active_stack[one_above-3] = failure_lab
end

These are all the changes needed to implement the one-stack model of goal-directed
evaluation using a conventional system stack. However, interfacing goal-directed evaluation with
other language features may require additional modifications. Storage reclamation is the most
notable example in Icon. The storage reclamation algorithm must locate all valid data items. To do
so requires that the system stack be tended (searched for valid data) (Hanson 1977).

In the modified one-stack model, all expression stack areas contain valid data and must be
tended. This is not difficult in itself; the pointers active and sp as well as the pointers in the expression
markers are sufficient to locate all the expression stack areas. The problem is that not all of the
information within an expression stack area is necessarily valid Icon data. Inactive instances may
contain information left by run-time support routines, which must be skipped over during tending.

Fortunately, the information to be ignored is always at the top of the expression stack area,
and an additional pointer can be associated with inactive instances to give the separation point
between valid Icon data and information left by any run-time support routines. This pointer is called
the expression area boundary (Coutant and Wampler 1981).

Besides assisting in the storage reclamation process, the boundary helps distinguish functions
and operators from user defined procedures. An inactive instance with information above its
boundary is an instance for evaluating a suspended function or operator. An instance with no
information above its boundary is an instance for the evaluation of a procedure. This information is
also useful in Icon’s tracing mechanism, which traces procedure reactivation, but not function or
operator reactivation.

66
4.4.2 Co-Expressions

Co-expressions can be implemented as described previously, with the exception that active
and sp must be prescrved with cach co-expression. The simplest solution is to push active and sp onto
the co-expression stack cach time that co-expression activates some other co-expression and get the
new active and sp from the top of the activated co-expression. A particular machine architecture may
cause severe problems with the implementation of co-expressions; an example is the PDP-11/70. The
PDP-11 does not have stack-based addressing for stack operations. Rather, pointers into the stack
reference absolute memory locations within the user’s data region. This makes relocation of stacks
during lcon’s storage reclamation process difficult, as all pointers into each stack must be tended.

Tending the pointers within the expression markers is possible, since they are known to be
pointers into the stack. However, inactive instances may contain information above their boundary,
and this information may contain pointers into the stack that are unknown to the storage reclamation
process. It is therefore impossible to relocate co-expression stacks. The problem of identifying
unknown pointers also makes it impossible to copy a co-expression with the Icon function copy.

In the implementation of co-expressions used in lcon, a fixed-sized space is allocated for each
created co-expression to serve as the co-expression stack. This space is never relocated during the
storage reclamation process, but is tended.

A final difficulty with co-expressions arises from their use as data objects. As a data object,
the lifetime of a co-expression may exceed the lifetime of the procedure in which it is created.
Variables that are local to the procedure and that are referenced within the co-expression must exist
as long as the co-expression exists. A co-expression is provided copies of all the current local
variables when that co-expression is created. These copies are maintained with the co-expression,
freeing the scope of the co-expression from the scope of the creating procedure and eliminating any
problem similar to the FUNARG problem in LISP (Moses 1970).

4.5 Performance of the Implementation

The performance of the implementations given here is difficult to measure. Programs written
using goal-dirccted evaluation or co-expressions differ greatly in style and approach from similar
programs written without these language featurcs. A few observations are possible, however.

4.5.1 Goal-Directed Evaluation

In situations in which there are no inactive instances. the system stack differs little in
appearance from the system stacks for conventional stack-based languages. Only a few extra words
(the expression marker) are added to separate expression instances. The number of expression
markers is reduced because expression instances are only needed at points of program flow control.
Some of the information within the expression marker is needed only for inactive instances, and can
be removed from other expression markers, reducing the number of words per expression marker.

Finally, both mark and unmark are simple operations, and can be implemented with a few
machine instructions. Thus the impact on the efficiency of other language features is slight, especially
in light of the expressiveness added by the language features implemented with these operations.

It is when an expression instance becomes inactive that the two major sources of inefficiency
in the pertormance of generators occur. First, there is the overhead involved in hiding that instance

67

on the stack. This overhead is reduced slightly by only copying the required portion of the expression
instance.

Second, an instance cannot suspend with a variable pointing to information contained within
the expression stack area for that expression, since that arca may not exist by the time the variable is
referenced. Such a variable must be dereferenced when the instance suspends. Since the same
situation occurs when a procedure returns a result, this problem is not endemic to generators.

Unmarking, reactivating, and propagating failure are all efficient operations amounting to
little more than resetting the system stack pointer to the appropriate place. Note that reactivation in
the one-stack model is thus considerably more efficient than reactivation in the two-stack model,
which must copy the reactivated instance from the control stack back onto the system stack.

4.5.2 Co-Expressions

Co-expression creation and refreshing are fairly expensive, though relatively infrequent,
operations. Space for the co-expression stack must be allocated and the local variables for the
current procedure must be copied. However, activation of a co-expression is a simple operation,
accomplished in a few machine instructions. As with goal-directed evaluation, the major source of
incfficiency with co-expression activation is that variables pointing to values within the activating
co-expression must be dereferenced.

The impact that co-expressions have on other language features depends in part upon the
sophistication of the underlying machine architecture. The source of the impact is in detecting stack
overflow of the co-expression stack.

Again, the PDP-11/70 provides a case in point. The hardware of the 11/70 provides stack
overflow checking for the primary system stack by detecting when a push operation causes the stack
pointer to cross into the user’s data region. However, the stack spaces for additional co-expressions
lie entirely within the user’s data region, and the hardware does not detect overflow on these stacks.
Adequate stack overflow detection of co-expression stacks on the 11770 requires that software checks
be inserted into the code. Since it cannot be determined whether a section of code will be executed in
the main system stack or another co-expression stack, these checks must be inserted throughout the
code, degrading the performance of all language features. This is not a problem on machines such as
the DEC-10, which permit the specification of an upper bound for each stack.

Chapter 5
Conclusions

5.1 Generating Expressions and Co-Expressions

Generating expressions are a powerful programming facility because they add
expressiveness to a programming language. The ability to produce a sequence of results during
the cvaluation of a single expression instance increases the information density of expressions.
Increasing the amount of information that can be described in an expression provides a more
concise representation for a wide variety of algorithms. This permits programmers to concentrate
more on the development of an algorithm, and less on the details of its implemention.

In ecarly versions of lcon, the capabilities of gencrating expressions were not well
understood. Most control regimes for the evaluation of gconerators were patterned after the
control regimes in more conventional languages. The only control regimes that were designed
entirely upon the operation of generators were Alternation, Every, and Boal. Alternation permits
the programmer to form new generators at the expression level by concatenating result sequences
to form new result sequences. Ruery permits programmers to explicitly process the entire result
sequence of a generating cxpression. (hoal directs the focus of attention in an expression toward
the final result, leaving much of the computational detail necessary to attain that result to the
operation of (boal.

The concept of result sequences has led to better understanding of generators. This, in
turn, has resulted in the development of additional control regimes that provide increased
flexibility in the manipulation of generating expressions. Control regimes such as Limit and Reuval
extend the programmer's ability to form new generators at the expression level by providing
additional methods for the construction of new result sequences.

Result sequences can be used to describe the operation of control regimes found in other
languages. For example. as an extension to SNOBOL4 patiern-matching, Doyle introduces the
concept of forward alternation to avoid unnecessary processing that occurs in many uses of
ordinary alternation (Doyle 1975). Forward alternation is similar to ordinary alternation, in that
alternatives are evaluated until one succeeds. Once an alternative of forward alternation succeeds,
however, the remaining alternatives are discarded. Whercas Doyle had to introduce another
operator to achieve this, forward alternation is merely an instance of limiting the result sequence
of a generating expression.

Forward alternation, with Doyle's syntax

. '
can be represented as the “L-expression

(e, 1 e\ I

69

70
and the equivalent &-exprcssion
Limit: [Alternation: ol.ez] W

That is, forward alternation simply limits the result sequence of Alternation to at most one result.
The use of result sequences to describe forward alternation is not only succinct, it is more precise
than the explanation given by Doyle. Forward alternation is one example of fasthack
backtracking (Allison 1978). Fastback backtracking simply limits the result sequence of an
expression 10 at most one result. As shown above, Limit provides a generalized form of fastback
backtracking.

Co-cxpressions represent a significant step in increasing the functionality of generating
cxpressions, since they free the evaluation of generating cxpressions from their lexical sites and
permit accéss to the elements of the result sequence for a generating expression when and where
needed. In this sense, co-expressions represent the instantiation of result sequences into the
programming language as data objects that can be manipulated in much the same way as other
data objects are manipulated. Expressions can be formed that interleave elements of two result
sequences, or to access subsequences of result sequences.

Co-expressions also provide insight into the operation of coroutine facilities. Most
languages that incorporate coroutines do so by associating the coroutine mechanism with
procedures. In actuality, it is the expression instance containing the invocation of a procedure
that functions as the coroutine. Co-expressions make this clear by associating the coroutine
mechanisny with expression instances, rather than with procedures.

The concept of expression instances is also a useful descriptive tool leading to a better
understanding of the operation of goal-directed evaluation and co-expressions. Considering
expression evaluation as occurring within expression instances and then examining goal-directed
evaluation and co-expressions as operations upon expression instances simplifies the development
and analysis of implementation, techniques for these language features.

5.2 Future Research

The development of new control regimes for the evaluation of generating expressions is a
research arca that is still relatively unexplored. At this point, there are only a handful of control
regimes for composing generators at the expression level (Alternation, Limit, and Rewval). and only
two language features for constructing generators at the procedure level (suspend and fail).

Besides developing new control regimes, extensions to the current control regimes should
be examined. Goal-directed evaluation is such a powerful programming feature that alternatives
and extensions to this control regime might prove useful. For example, one of the difficulties in
controlling generators with goal-directed evaluation is that there is no mechanism for limiting the
result sequences for individual operations without also limiting the result sequences for arguments
to that operation. Consider the expression

every find("icon”, line = |&input) do

write (line)

which outputs any input line containing the substring icon. However, if an input line contains more

71

than one occurrence of icon, that line is output more than one time. The problem is that the result
sequence for find (s1, $2) contains the locations of all occurrences of s1in s2.

Attempting to limit find to at most one result in the above example also limits !&input to at
most onc result, Thus,
every find(“icon”, line .= &input) \ 1 do
write (line)

outputs only the first line containing icon. One solution to this problem is to split the expression into
its component parts as in

every line .= !&input do
it tind("icon", fine) then
write (line)

Another solution might involve the use of an alternative form of function invocation that
permits limitation of specific operations. without limiting the arguments., Let T denote this
alternative function invocation mechanism, with the following relationship to I™

T: function = Limit:[T:function].|
That is, T produces at most one result from the invocation of a function.

T may be applied during goal-directed evaluation in place of I'" to limit a particular operation
without limiting the arguments to that operation. The operation of T is an excellent example of how
goal-directed evaluation can be extended, and provides insight into several aspects of goal-directed
evaluation that must be considered in any extension.

The application of T, as with the use of goal-directed evaluation, is implicit in “L~syntax.
Allowing the specification of multiple function invocation mechanisms means that some
representation must be used-to make the mechanism explicit in “£-syntax. For example, an operation
that is to be invoked with T instead of I" might be tagged in “L-syntax with V. For example, the
following “L-expression would output every input line that contains the string icon, with no line being
output more than once.

every Vfind("icon”, line := |&input) do
write(line)

As a second example of an application of T, the following code segment converts strings of
the form hih-mni-ss into seconds.

secs .= 0
scan s using
every secs .= Vtab (upto('-')|0) + 60 * secs do
move (1)

Here the invocation of tab is performed by T, thereby limiting tab without limiting the invocation of
upto. Without T, this code segment must be rewritten as

72

secs .= 0
scan s using
every secs .= xtab(upto('-')|0) + 60 * secs do
move (1)

where the procedure xtab is used to isolate the invocation of tab so that tab can be limited to one
result without limiting upto. The procedure xtab can be written

procedure xtab (pos)
return tab (pos)
end

Other alternatives to the current goal-directed evaluation control regime might include using
a qucue in the implementation to hold inactive instances instead of a stack. The use of a queue would
not affect the size of the result sequence for an expression but it would affect the order in which
results are generated if the expression contains multiple generating subexpressions. The single-stack
implementation presented here could not be used to implement a queue-based goal-directed
evaluation scheme, although a more general single-stack model could be used (Bobrow and Wegbreit
1973).

Another area for additional research is result sequences. Result sequences have already
suggested a number of control structures for generators, as well as providing insight into the
relationship between Icon’s expression evaluation mechanism and those of other languages. Resuit
sequences represent the first attempt at introducing a useful formal semantics for generators and
goal-directed evaluation. Result sequences are too specialized to provide a general formal semantics
for these language features, however, since they describe only some of the static aspects of expression
evaluation.

One area in which research has already begun is the incorporation of generators and goal-
directed evaluation into other languages. The language Cg shows that generators can be a useful
addition to more conventional languages (Budd 1981). However, more work is needed to determine
both the impact and the limitations involved when goal-directed cvaluation and generators are
integrated with the features of other languages.

Finally, co-expressions are a fertile ground for research. For instance, the control regimes
for co-expressions are currently based upon the control regimes for generators, and are occasionally
ill-suited to co-expression analysis. As an example, the procedurc compare presented in Chapter 3
works only if the result sequences for its arguments are the same length. Using the current control
regimes. a more general solution is not straightforward. with or without co-expressions. However, if
there is a control regime that guarantees the same number of activations are attempted on two (or
more) co-expressions, then there is a straightforward solution.

A conjunction control regime with proposed ﬁf-syntax
exprl and expr2
could evaluate both expr! and expr2, failing if evaluation of either fails. Unlike the conjunction

operator, and would evaluate expr2 cven if expr/ fails. The conjunction control regime could then be
used in a more general version of compare:

procedure compare(cx1, cx2)
local r1, r2

while r1 = @cx1 and r2 = @cx2 do
if 1 ~=== r2 then fail

if *cx1 ~= *¢cx2 then fail

return

end

In this version, a simple comparision of the sizes of cx1 and ¢x2 is used to determine if their result
sequences are the same length. This test is sufficient since it is known that the same number of
activations were attempted on both co-expressions.

Appendix A — A Translator for a Subset of Icon

The following program is a sample translator for a subset of Icon. The program reads an
Icon expression and produces the corresponding ucode. A recursive descent parser recognizes
valid expressions from a representative subset of Icon. The parser does not handle semicolon
insertion and treats the input as a compound cxpression. Once the expression is parsed
successfully, the ucode is generated. The program runs under Version 4 of Icon.

main(args) - parse an Icon expression and generate ucode
procedure main()
gencode(parse(getline()))
end
getline() - gets source lines.
Essentially, standard input is treated as a compound

statement (getline supplies opening and closing braces).

procedure getline()

local line
line = “{"
every line ||:= " " || &input
return line j| " }”

end

parse tree node declarations

record Binop(opcode, left, right)
record Unop{opcode, e)
record Noop(opcode, e)
record Break(e)

record Next()

record Compound(left, right)
record Create(e)

record Every(ctl, docls)
record ldent(var)

record If(ctl, tcls, ecls)
record Not(e)

record Or(left, right)

record Limit(left, right)
record Reval(e)

record While(ctl, docls)

75

parse(line) - root of recursive descent parser
Parse only recognizes a limited subset of
lcon.

procedure parse(line)
scan line using
return expr()
end

procedure expr()

local left

© left = expri()
sb()
="&" & return Binop("&" left,expr())
return left

end

procedure expri()

local left
sb()
="create " & return Create(expri())
left .= expr2()
sb()

="'=" & return Binop(":=",left,expri())
return left
end

procedure expr2()
local left
left .= expr3()
sb()
while ="\\" & left :
return left
end

i

Limit(left,expr3())

procedure expr3()
local left
left = exprd()
sb()
while ="to " & left ;= Binop("to”,left,exprd())
return left
end

|

procedure exprd()
local left
left (= expr5()
sb()
="|" & return Or(left,expr4())
return left
end

76

77

procedure expr5()

local left
left ‘= expr6()
sb()
while left .= Binop(=("="|"~="{"<="["<"|">="|">"),
left,expré())
return left
end

procedure expr6()

local left
left (= expr7()
while left (= (sb{) & Binop(=("+"|"-"),left,expr7()))
return left

end

procedure expr7()

local left
left = expr8()
while left (= (sb() & Binop(=("*"|"/"|"%"),left,exprs()))
return left

end

procedure expr8()

local left
left (= expr9()
while left = (sb() & Binop(="@",left,exprd()))
return left

end

procedure expr9()
sb()
="not"” & return Not(expr9d())
="|" & return Reval(expr9())
="@" & return Binop("@","",expr9())
return Unop(="1", expr9()) | expri0()
end

78

procedure expri0()

loc
sta

al e, el

tic alpha, digits

initial {
digits = '0123456789.r'
alpha = &ucase ++ &lcase ++ digits
}

sb()

="if " & return exprii()

="while " & return expr12(While)

="every " & return expri2(Every)

="break” & return Break{expr() | &null)

="next" & return Next()

="write(" & e = expr() & sb() & =")" & return Unop("write”, e)
="writes(” & e .= expr() & sb() & =")" & return Unop("writes", e)
="read()" & return Noop(“read")

="\"" & e .= tab(upto("\"")) & move(1) & return e

="{" & e = expr13() & sb() & ="}" & return e

="(" & e .= expr() & sb() & =")" & return e

return numeric(tab(many(digits))) | identifier(tab(many(alpha)))

end

pro

cedure exprii()

local ctl, tcls, ecls
ctl = expr()
sb()
="then " & |

tcls = expr()

sb()

="glse " & ecls = expr()
return If(ctl.tcls,ecls)

}

stop("Error in <if> expression”)
end

pro

cedure expri2(pnode)

local ctl, docls
ctl = expr()
sb()
="do " & docls = expr()
return pnode(ctl,docis)
end

procedure expri3()
local e
e .= expr()
sb()
="" & return Compound(e,expri4())
return e

end

procedure identifier(s)
static reserved

initial reserved .= ["break”, "create”, "do”,

v n

uelse , every", "if“,
"next", "nOt", "then".

"to", “while"]
if s = Ireserved then fail
return ident(s)
end

procedure sb()

static blanks
initial blanks = ' \t\n’
tab(many(blanks))
return

end

skip blanks

gencode(parsetree) - generate ucode from the parse tree

record loop(type, brkiab, nxtiab, ninstance)

procedure gencode(ptree)
local lab, lab1
static newlab, loopstk
initial {
loopstk =[]

newlab = create "L"||(0 to 9)||{0 to 9)||(0 to 9)

lab = @newlab
write("mark ”, lab)
gencode(ptree)
write(”label ", lab)
write("stop”)
write("“label Flab")
write("fail")
write(”label Clab")
write("cofail")
write("goto Clab”)
return

}

case type(ptree) of {
"null” :

write(”push ")
“integer” |
"real” |
"string”

write("push " ptree)

generate code

universal failure

universal co-expression failure

79

“Binop” .
{
gencode(ptree.left)
gencode(ptree.right)
write("invoke ", ptree.opcode)

}

"Unop”
{
gencode(ptree.e)
write(”"invoke ", ptree.opcode)

}

“Noopll :
write("invoke ", ptree.opcode)

“Break” .
{
if \loopstk[1] then {
every 1 to loopstk[1].ninstance do
write("unmark")
if \ptree.e then {
saveloop .= pop(loopstk)
gencode(ptree.e)
push(loopstk, saveloop)
write("goto “, loopstk{1].brklab)
}
else
write("goto Flab")
}

else

write("*** illegal context for break")

}

“Compound”
{
write("mark ", lab = @newlab)
\(loopstk[1]).ninstance +:= 1
gencode(ptree.left)
\(loopstk[1]).ninstance -:= 1
write("unmark”)
write("1abel ", lab)
gencode(ptree.right)
}

80

rn

"Create"”
{
push(loopstk, &null)
write("goto ", lab = @newlab)
write("label ", lab1 = @newlab)
write(""pop")
write("mark Ciab”)
gencode(ptree.e)
write("coreturn®)
write(”fail”)
write(“label “, lab)
write("create ", lab1)
pop(loopstk)
}

"Every”:

{

lab = @newiab

push(loopstk, loop(“every”, lab, "Flab", 1))

write("mark Flab")

gencode(ptree.ctl)

if \ptree.docls then {
write("pop”)
write("mark Flab")
loopstk[1]).type = "everydo”
loopstk[1].ninstance +:= 1
gencode(ptree.docls)
write("unmark”)
}

write(“fail")

write("label “, lab)

pop(loopstk)

}

"ldent"
write("pushv “, ptree.var)

81

B)
{
if \ptree.ecls then
write("mark ", lab = @newlab)
else
write("mark Flab")
\(loopstk[1]).ninstance +.= 1
gencode(ptree.ctl)
\(loopstk[1]).ninstance -:= 1
write(“unmark”)
gencode(ptree.tcls)
if \ptree.ecls then{
write(“goto “,labl = @newlab)
write("label ", lab)
gencode(ptree.ecls)
write("label ",lab1)

}
}
"Next” :
{
if \loopstk[1] then {
if loopstk[1].type ~== "every” then {
every 1 to loopstk[1].ninstance-1 do
write("unmark”)
it loopstk[1].type ~== "everydo"” then
write("unmark”)
}
write("goto “, loopstk(1].nxtiab)
}
else

write("*** illegal context for next”)

}

“Not"
{
write("mark “, lab = @newlab)
\(loopstk[1]).ninstance +:= 1
gencode(ptree.e)
\(loopstk[1]).ninstance -:= 1
write("unmark”)
write("”fail”)
write(”label ”, lab)
write("push 0")

}

"Or
{
write("mark "lab = @newlab)
\(loopstk[1]).ninstance +:= 1
gencode(ptree.left)
\({loopstk[1]).ninstance -:= 1
write("esave")
write("“pushr”)
write("goto “,lab1 = @newlab)
write("label “, lab)
gencode(ptree.right)
write("label " lab1)
}

“Limit" :
{
gencode(ptree.right)
write("limit")
write("mark Flab")
\(loopstk[1]).ninstance +:= 1
gencode(ptree.left)
\(loopstk[1]}).ninstance -:= 1
write(“Isave”)
write("pop”)
write("pushr”)

J

"Reval”:
{
write("label ", lab = @newlab)
write(“mark Fiab")
\(loopstk[1]).ninstance +:= 1
gencode(ptree.e)
\(loopstk{ 1]).ninstance -:= 1
write("chfail *, lab)
write("esave")
write("pushr”)

)

83

"While":
{
lab .= @newlab
lab1 = @newlab
push(loopstk, loop("while”, lab1, lab, 1)) .
write("label “, lab)
write("mark Flab")
gencode(ptree.ctl)
write("unmark”}
if \ptree.docls then {
write("mark ",lab)
gencode(ptree.docls)
write("unmark”)
}
write("goto “, lab)
write(“label “, lab1)
pop(loopstk)
}

default.
write("+** unimplemented: ", image(ptree})

!

return
end

84

Appendix B — A One-Stack Model Interpreter

The following program interprets ucode for a subset of lcon, using the one-stack model
of goal-directed evaluation.

record coexpr(activator, spc, sstk)
record instance(passive, spc, estk)
record op(opcode, operand)
record var(varname)

global current, active, pc, result
globai code, labels, vars

main - interpret ucode

procedure main(args)
initial current = coexpr(1, &null, list())
assemble()
eval()

end

assemble ucode, resolving references

procedure assemble()

local cp
labels = table()
code = list()
cp =1

every scan !&input using {
tab(many(' "))
metacode = tab(upto(’ ')|0)
tab(many(’))
metavalue = tab(0)

} do {
if metacode == "label” then
labels[metavalue] = cp
else {
put(code, op(metacode, metavalue))
cp +i=1
}
}
return

end

85

eval - interpret ucode

procedure eval()

local metacode, metavalue

static opcodes

initial {

opcodes .= table()
opcodes["@"] = activ;
opcodes[”:="] = assign;
opcodes[“&"] = conjunc;
opcodes[”+"] = add;
opcodes["”-"] := subtract;
opcodes[”+"] = multiply;
opcodes["/"] = divide;
opcodes[”%"] :
opcodes[“to"] = step

}

vars .= table()
pc =1
while 1 <= pc <= *code do

remainder;

86

opcodes{“write"] = out
opcodes["writes"] = outs
opcodes[“read”] = in

opcodes[“>"] = more
opcodes[”<"] = less
opcodes["="] = equal

opcodes["“>="] = moreequal
opcodes["<="] = lessequal

{

metacode .= code[pc].opcode
metavalue = code|pc].operand

case metacode of {
"chfail";
"cofail”.
"coreturn”:
"create”:
"esave"!
"tail”:
"goto”:
"invoke":
"limit":
"Isave".
"mark”:

" e

pop".
“push’;
“pushr”.
"pushv”:
"stop”.
"unmark"”,
}
pc +:=1
}
return
end

chfaii(labels[metavalue])
cofail()

coreturn()
creat(labels[metavalue])
esave()

failure()

{pc = labels[metavalue]; next}
opcodes[metavalue]()
limit()

Isave()

mark(labels[metavalue])
pop(active.estk)
push(active.estk, result =
push(active.estk, result)
push(active.estk, var(metavalue))
return

unmark()

metavalue)

The following routines represent the primitive operations
of an Icon machine.

procedure creat(spc)
push(active.estk, coexpr(&null, spc-1, list()))
push(active.estk[1].sstk,
instance(&null, &null, list()))
return
end

procedure mark(fiab)
push{current.sstk, instance(active, fiab, list()})
active = current.sstk[1]
return

end

The routine failure() decrements the reactivation pc,
since the main interpreter loop in eval() is going
to increment it immediately.

procedure failure()
pc .= active.spc - 1
pop(current.sstk)
active := current.sstk[1]
return

end

procedure unmark()
popto(current.sstk, active.passive)
active = current.sstk[1]
return

end

procedure save()
push(current.sstk,
instance(active.passive, pc, copy(active.estk)))
active .= current.sstk[1]
return
end

procedure esave()
pop(current.sstk)
push(current.sstk,
instance(active.passive.passive, active.spc,
copy(active.passive.estk)))
active = current.sstk[1]
return
end

87

procedure limit()
if deref(1) <= 0 then failure()
return

end

procedure Isave()
if (active.passive.estk[1] -:= 1) > 0 then
esave()
else
unmark()
return
end

procedure chfail(flab)
current.sstk[one_above(active.passive)].spc = flab
return

end

procedure activate(coexpr)
current.spc .= pc
coexpr.activator .= current
current = coexpr
pC .= coexpr.spc
active = current.sstk[1]
return

end

procedure coreturn()
current.spc == pc
current ;= current.activator
active = current.sstk[1]
pc .= current.spc
push(active.estk, result)
return

end

procedure cofail()
current.spc .= pc
current = current.activator
active .= current.sstk[1]
failure()
return

end

procedure popto(stk, pointer)
if /pointer then stop(”bad pointer”)
while stk[1] ~=== pointer do pop(stk)
return

end

88

procedure one..above(pointer)

local i
i=0
while current.sstk[i+:=1] ~=== pointer
return i - 1

end

operators and functions

procedure conjunc()
result = pop(active.estk)
pop(active.estk)
pusn{active.estk, result)
return

end

procedure assign()

local variable, value
value = dpop()
variable .= pop(active.estk)
vars[variable.varname] = value
push(active.estk, result .= variable)
return

end

procedure add()
result .= dpop() + dpop()
push(active.estk, result)
return

end

procedure subtract()

local left, right
right = dpop()
left = dpop()
result = left - right
push(active.estk, result)
return

end

procedure multiply()
result ;= dpop() * dpop()
push(active.estk, result)
return

end

procedure divide()

local left, right
right = dpop()
left = dpop()
result = left / right
push(active.estk, result)
return

end

procedure remainder()
local left, right
right ;= dpop()
left := dpop()
result = left % right
push(active.estk, result)
return
end

procedure step()
if deref(2) <= deref(1) then |}
result (= active.estk[2]
active.estk[2] +:= 1
if active.estk[2] <= active.estk[1] then
save()
pop(active.estk)
pop(active.estk)
push(active.estk, result)
}
else
failure()
return
end

procedure out()
if type(active.estk[1]) == “var” then
write(.vars[active.estk[1].varname])
else
write(active.estk[1])
return
end

procedure outs()
if type(active.estk[1]) == “var” then
writes(.vars[active.estk[1].varname])
else
writes(active.estk[1])
return
end

90

procedure in()
push(active.estk, read())
return

end

procedure more()
local left, right
right = dpop()
left .= dpop()
if result = (left > right) then
push(active.estk, result)
else
failure()
return
end

procedure less()
local left, right
right = dpop()
left = dpopl)
if result = (left < right) then
push(active.estk, result)
else
failure()
return
end

procedure equal()
local left, right
right .= dpop()
left .= dpop()
if result = (left = right) then
push(active.astk, result)
else
failure()
return
end

procedure moreequal()
local left, right ‘
right = dpop()
left = dpop()
if resuit = (left >= right) then
push(active.estk, result)
else
failure()
return
end

91

procedure lessequal()
local left, right
right = dpop()
left = dpop()
if result = (left <= right) then
push(active.estk, result)
else
failure()
return
end

procedure activ()

local left, right
right = dpop()
left = dpop()
activate(right)
push(active.estk, result = left)
return

end

procedure deref(loc)
if type(active.estk[loc]) == “var” then
active.estk[loc] = vars[active.estk[loc].varname]
return .active.estk[loc]
end

procedure dpop()

local tmp
tmp = deref(1)
pop(active.estk)
return tmp

end

92

Appendix C — A Modified One-Stack Model Interpreter

The following program interprets ucode for a subset of Icon, using the modified one-stack
model of goal-directed evaluation.

record coexpr(pc, sp, active, activator, stk)
record op(opcode, operand)
record var(varname)

global current, resuit
global code, labels
global vars

procedure main()
initial current = coexpr(1, -1, -1, &null, list(300))
assemble()
eval()

end

assemble ucode, resolving references

procedure assemble()
local cp
labels = table()
code = list()
cp =1
every scan !&input using |
tab(many(' '))
metacode .= tab(upto(’ ‘)|0)
tab(many(’ ‘))
metavalue = tab(0)

} do {
if metacode == "label” then
labeis[metavalue] = cp
else |
put(code, op(metacode, metavalue))
cp +i=1
}
}
return

end

eval - interpret the ucode

procedure eval()
local metacode, metavalue
static opcodes
initial {
opcodes .= table()
opcodes["@"] = activ;

opcodes[":="] = assign;
opcodes[”8&"] = conjunc;

opcodes["+"] = add,

opcodes[”-"] = subtract;
opcodes[”*"] = multiply;

opcodes[”/"] = divide;

opcodes|["write"] = out
opcodes[“writes”] = outs
opcodes{“read”] = in
opcodes[">"] = more
opcodes["<"] = less
opcodes["="] = equal
opcodes[”>="] = moreequal

opcodes{”%"] = remainder; opcodes["<="] = lessequal

opcodes[“to"] = step

}

vars = table()

while 1 <= current.pc <= *code do {
metacode .= code[current.pc].opcode
metavalue = code[current.pc].operand

case metacode of {
"chfail":
"cofail".
“coreturn”.
"create".
"esave”.
"fail"!
"goto”.
"invoke".
“limit"”:
"Isave”.
"mark".
“pop”.
"push".
“pushr”.
“pushv".
"stop”.
“unmark”.
}

current.pc +:= 1

}

return
end

chfail(labels[metavalue])
cofail()

coreturn()

creat(labels[metavalue]-1)
esave()

failure()

current.pc .= labels[metavalue] & next
opcodes[metavalue]()
timit()

Isave()
mark(labels[metavalue})
spop()

spush(result ;= metavalue)
spush(result)
spush(var(metavalue))
return

unmark()

94

The tollowing routines represent the primitive operations
of an lcon machine.

procedure mark(flab)

local sact
sact = current.sp
spush(current.active)
spush({&null)
spush(sact)
spush(fiab)
current.active .= sact
return

end

procedure save()

local sact
sact .= current.sp
spush(current.stk[current.active])
spush(current.active)
spush(current.stk[current.active-2])
spush(current.pc)
every

spush(current.stk[current.active-4 to sact+1 by -1])

current.active .= sact
return

end

procedure esave()

local passive, inactive, ssp, spc
passive = current.stk[current.active]
inactive = current.stk[current.active-1]}
ssp .= current.stk[current.active-2]
spc .= current.stk[current.active-3]
current.sp .= current.active
spush(current.stk[passive])
spush(\inactive|passive)
spush(current.stk passive-2])
spush(spc)
every spush(current.stk[passive-4 to ssp+1 by -1])
return

end

95

96

The routine failure() decrements the reactivation address,
since the main interpreter loop in eval() is going to
increment it immediately.

procedure failure()
current.pc .= current.stk[current.active-3] - 1
current.sp .= current.active

it \current.stk[current.active-1] then # reactivating
current.active = current.stk|current.active-1]
else # failing
current.active = current.stk[current.active]
return
end

procedure unmark()
current.sp .= current.stk[current.active-2]
current.active .= current.stk[current.active]
return

end

procedure limit()
if deref(1) <= 0 then failure()
return

end

procedure Isave()
local top_passive
top_passive .= current.stk[current.active-2]
if (current.stk[top_passivet1] -:= 1) > 0 then
esave()
else
unmark()
return
end

procedure chfail(flab)

local one_above
one_above = current.stk[current.active-2]
current.stk[one_above-3] = flab
return

end

procedure creat{spc)
spush(coexpr(spc, -1, -1, &nuli, list(100)))
return

end

‘o

procedure activate(coexpr)
coexpr.activator .= current
current = coexpr
return

end

procedure coreturn()
current = current.activator
spush(result)
return

end

procedure cofail(}
current .= current.activator
failure()
return

end

procedure spush(value)
current.stk[current.sp] = value
current.sp -:== 1
return value

end

procedure spop()

current.sp +:= 1

return .current.stk[current.sp]
end

operators and functions

procedure conjunc()
result = spop()
spop()
spush(result)
return

end

procedure assign()

local variable, value
value = dpop()
variable = spop()
vars[variable.varname] = value
spush(result = variabie)
return

end

97

98

procedure add()
result = dpop() + dpop()
spush(resuit)
return

end

procedure subtract()
local left, right
right = dpop()
left = dpop()
result = left - right
spush(result)
return
end

procedure multiply()
result = dpop() * dpop()
spush(result)
return

end

procedure divide()
local left, right
right = dpop()
left = dpop()
result = left / right
spush(result)
return
end

procedure remainder()
local left, right
right = dpop()
left = dpop()
result = left % right
spush(resuit)
return
end

procedure step()
local sp
Sp .= current.sp
if deref(2) <= deref(1) then {
result = current.stk[sp+2]
current.stk[sp+2] +:= 1
it current.stk[sp+2] <= current.stk[sp+1] then
save()
spop()
spop()
spush(result)
}
else
failure()
return
end

procedure out()
local top
top = current.stk[current.sp+1]
if type(top) == "var” then
write(vars[top.varname]))
else
write(top)
return
end

procedure outs()
local top
top = current.stk[current.sp+1]
if type(top) == "var” then
writes(.vars| current.stk[top.varname]])
else
writes(top)
return
end

procedure in()
spush(read())
return

end

100

procedure maore()
local left, right
right = dpop()
left .= dpop()
if result = (left > right) then
spush(result)
else
failure()
return
end

procedure less()
local left, right
right = dpop()
left := dpop{)
if result = (left < right) then
spush(resuit)
else
failure()
return
end

procedure equal()
local left, right
right = dpop()
left = dpop()
if result ;= (left = right) then
spush(result)
else
failure()
return
end

procedure moreequal()
local left, right
right = dpop()
left (= dpop()
if result 1= (left >= right) then
spush(result)
else
failure()
return
end

procedure lessequal()
local left, right
right = dpop()
left (= dpop()
if result = (left <= right) then
spush(result)
else
failure()
return
end

procedure activ()

local left, right
right = dpop()
left = dpop()
activate(right)
spush(result = left)
return

end

procedure deref(loc)
loc = current.sptloc
if type(current.stk[loc]) == “var” then
current.stk{loc] = vars[current.stk[loc].varname]
return .current.stk[loc]
end

procedure dpop() .
local tmp
tmp = deref(1)
spop()
return tmp
end

101

References

Allision, Lloyd. “Phrase Structures, Non-Determinism, and Backtracking”, Information
Processing Letters, Vol. 7, No. 3 (April 1978) pp. 139-143.

Atkinson, Russ. Toward More General Ilteration Methods in CLU. CLU Design Note 54, MIT,
Project MAC (September 1975).

Bobrow., Daniel G. and Ben Wegbreit. “A Model and Stack Implementation of Multiple
Environments™, Communications of the ACM, Vol. 16, No. 10 (October 1973) pp. 591-
603.

Budd., Timothy A. An Implementation of Generators in C. Technical Report TR 8§I-5,
Department of Computer Science, The University of Arizona. (August 1981).

Conway, Melvin. “Design of a Separable Transition-Diagram Compiler”, Communications of the
ACM, Vol. 6, No. 7 (July 1963). pp. 396-408.

Coutant, Cary A., Ralph E. Griswold, and Stephen B, Wampler. Reference Manual for the lcon
Programming lLanguage; Version 4 (C Implementation for UNIX). Technical Report TR
81-4, Department of Computer Science, The University of Arizona. (July 1981).

Coutant, Cary A. and Stephen B. Wampler. 4 Tour Through the C Implementation of Icon;
Version 4. Technical Report TR 81-11, Department of Computer Science, The University
of Arizona. (July 1981).

Dahl, Ole-Jahn and C. A. R. Hoare. “Coroutines”, Structured Programming, Academic Press,
London. (1972). pp. 184-193.

Dewar, Robert B. K. SPITBOL Version 2.0. Technical Report S4D23, Illinois Institute of
Technology (February 1971).

Dewar, Robert B. K. and Anthony P. McCann. *“MACRO SPITBOL - A SNOBOL4 Compiler™,
Sofiware— Pracitice and Experience, Vol. 7, No. | (January 1977). pp. 95-113.

Dewar, Robert B. K., Arthur Grand, Ssu-Cheng Liu, Edmond Schonberg and Jacob T. Schwartz.
“Programming by refinement, as exemplified by the SETL representation sublanguage™,
ACM Transactions on Programming Languages and Systems, Vol, |, Na. 1 (July 1979).
pp. 27-49.

Doyle, John Nicoll. A Generalized Facility for the Analysis and Synthesis of Strings, and a
Procedure-Based Model of an Implementation, Master's Thesis, The University of
Arizona, (1975).

103

104

Floyd. Robert. “Nondeterministic Algorithms™, Journal of the ACM. Vol. 14, No. 4 (October
1967). pp. 636-644.

Gimpel, James F. SITBOL.; Version 3.0, Technical Report S4D30b, Bell Tcelephone Laboratories,
Inc., Murray Hill. (June 1973).

Griswold, Ralph E. *“The SL5 Programming Language and Its Usc for Goal-Directed
Programming”, Proceedings of the Fifth Texas Conference on Computing Systems
(October 1976). pp 1-5.

Griswold, Ralph E. “The Use of Character Sets and Character Mappings™, The Computer
Journal, Vol. 23, No. 2 (May 1980). pp. 107-114.

Griswold, Ralph E. Expression Evaluation in Icon. Technical Report TR 80-21, Department of
Computer Science, The University of Arizona. (August 1980).

Griswold, Ralph E., and David R. Hanson. “An Alternative to the Usec of Patterns in String
Processing™, ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2
(April, 1980). pp. 153-172.

Griswold, Ralph E., David R. Hanson and John T. Korb. “Generators in lcon™, ACM
Transactions on Programming Languages and Systems, Vol. 3, No. 2 (April 1981). pp.
144-161.

Grune, Dick. “A View of Coroutines™, SIGPLAN Notices, Vol 12, No. 7 (July 1977). pp. 75-81.

Hanson, David R. “Storage Management for an Implementation of SNOBOL4.” Software—
Practice and Experience Vol. 7, No. 2 (March 1977). pp. 179-192.

Hanson, David R. “Filters in SL5", Computer Journal, Vol. 21, No. 2 (May 1978). pp 134-143.

Hanson, David R. and Ralph. E. Griswold. *“Language Facilities for Programmable
Backtracking™, Proceedings of the Symposium on Artificial Intelligence and Programming
Languages, (August 1977). pp. 94-99.

Hanson, David R. and Ralph E. Griswold. “The SLS5 Procedure Mechanism®™ Communications
of the ACM, Vol, 21, No. 5 (May 1978). pp. 392-400.

Hewitt. Carl, and Michael Patterson. “Comparative Schematology™ Record of Project MAC
Conference on Concurrent Systems and Parallel Computation, (June 1970).

Ichbiah, J. D. and S. P. Morse. “General Concepts of the Simula 67 Programming Language™,
Annual Review in Automatic Programming. Vol. 7, No. | (1972). pp. 65-93.

Klint. Paul. *“An Overview of the Summer Programming Language™. Seventh Annual ACM
Svmposium on Principles of Programming Languages. (January 1980). pp. 47-55.

105

Knuth, Donald E. “Computer Programming as an Art”, Communications of the ACM, Vol. 17,
No. 12 (December 1974). pp. 667-673.

Korb, John T. The Design and Implementation of a Goal-Directed Programming Language.
Technical Report TR 79-11, Department of Computer Science, The University of
Arizona. (June 1979).

Kriz, J., and Sandmayr, H. “Extension of Pascal by Coroutines and its Application to Quasi-
parallel Programming and Simulation™, Software - Practice and FExperience, Vol. 10
(1980). pp. 773-789.

Lampson, B. W., Mitchell, J. G., and Satterthwaite, E. H. “On the Transfer of Control Between
Contexts™, Programming Symposium, B. Robinet, editor. Springer-Verlag, New York.
1974. pp. 181-203.

Lehmer, Derrick H. *“Combinatorial Problems with Digital Computers™, Proceedings of the
Fourth Canadian Mathematical Congress. 1957. pp. 160-173.

Lemon, Michaei J. Coroutine PASCAL: Case Study in Separable Control. Master’s Thesis,
Department of Computer Science, University of Pittsburgh. December 1976.

Lindstrom, Gary “Backtracking in Generalized Control Settings”, ACM Transactions on
Progranuming lLanguages and Systems, Vol. 1, No. | (July 1979). pp. 8-26.

Lynning. E. in letter to the editor. SIGPLAN Notices, Vol. 13, No. 2 (February 1978), pp. 12-14.

McDermott, Drew V. and Gerald J. Sussman. “From PLANNER to CONNIVER - a Genetic
Approach™, Proceedings of the FJCC. 1972. pp. 1171-1179.

Mcllroy, M. Douglas. Coroutines. Technical Report, Bell Telephone Laboratories. (May 1968).

Montanegro, Carlo, Giuliano Pacini, and Franco Turini. “A Model for Structured Parallel
Processing in Block-Structured Programming Languages®, Programming Symposium, B.
Robinet, editor. Springer-Verlag, New York. 1974. pp. 350-361.

Morris, James H., Eric Schmidt, and Philip Wadler. “Experience with an Applicative String
Processing Language™, Seventh Annual ACM Symposium on Principles of Programming
Languages, (January 1980). pp. 32-46.

Moses. J. “The Function of FUNCTION in LISP™, SIGSAM Bulletin, No. 4, (July 1970). pp.
13-27.

Mylopoulos, John, Norman Badler. Lucio Melli, and Nicholas Roussopoulos. “l1.PAK: A
SNOBOI.-Based Programming Language for Artificial Intelligence Applications™,
Proceedings of the International Joint Conference on Artificial Intelligence, No. 3, 1973.
pp. 691-696.

106

Perlis, Alan J. *In Praisc of APL: A language for Lyrical Programming”, S/IAM News, (June

1977). pp. 44-47.

Prenncr. Charles J.. Jay M. Spitzen, and Ben Wegbreit. “An Implementation of Backtracking for

Programming Languages™, S/GPI.AN Notices, Vol. 7, No. |1 (Nov 1972). pp. 36-44.

Reiser, John F. S$A/L. Technical Report, Stanford Artificial Intelligence Laboratory, Computer

Shaw,

Smith,

Science Department. (August 1976).

Mary. Wm. A. Wulf, and Ralph L. London. *“Abstraction and Verification in
ALPHARD: Defining and Specifying lteration and Generators™, Communications of the
ACM, Vol. 20, No. 8 (August 1977). pp. 553-564.

David C., and Horace J. Fnca. “Backtracking in MLISP2™, Proceedings of the
International Joint Conference on Artificial Intelligence, No. 3, 1973,
pp. 677-685.

