A Tour Through the C Implementation of lcon*

Cary A. Coutant

Stephen B. Wampler

TR 80-9

ABSTRACT
This paper documents the C implementation of Version 3 of the Icon programming
language. The three major parts of the implementation — the translator, the linker, and the

runtime system — are described. An additional section discusses how the implementation
may be modified for new language features.

June 1980

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant MCS79-03890.

A Tour Through the C Implementation of Icon

Introduction

This paper describes an implementation of Version 3 of the Icon programming language [1] for PDP-11
computers running under UN1X.* This implementation is intended to be portable to other systems with C com-
pilers, but this is not a primary goal. The major objectives are an efficient implementation and ease of modifi-
cation. The implementation does, however, share much of its design with the portable Ratfor implementation
(2}

The implementation consists of three parts: the translator, the linker, and the runtime system. The transla-
tor converts an Icon source program into an intermediate code, called ucode. The linkert combines separately
translated ucode files and produces PDP-11 assembly language, which is then assembled and loaded with the
runtime system to form an executable object program.

This paper is intended to be used in conjunction with the source listings of the Icon system, although a gen-
eral overview of the system can be obtained from this document alone.

1. Translator

The Icon translator is written entirely in C [3]). The translator builds a parse tree for each Icon procedure,
then traverses the tree to generate code. The translator consists of eleven files of source code and nine header
files. Three of the eleven source files contain only data initialization and are automatically generated from
specification files. In addition, the LALR(]) parser is automatically generated by the Yacc parser generator
[4).

The translator produces two output files, both of which are processed by the linker: a file containing the
entire global symbol table, and a file of intermediate code.

The following sections discuss the four parts of the translator: the lexical analyzer, the parser. the code
generator, and the symbol table manager.

1.1 Lexical Analyzer

The lexical analyzer reads the Icon source program, breaking it into tokens, and delivers the tokens to the
parser as requested. A token is the basic syntactic unit of the Icon language; it may be an identifier, a literal, a
reserved word, or an operator.

Four source files comprise the lexical analyzer: lex.c, char.c, optab.c, and toktab.c. The last two of these
files contain operator and token tables, respectively, and are automatically generated from operator and token
specification files, described below. The file char.c contains character mapping tables and the file /ex.c con-
tains the lexical analyzer itself.

The parser requests a token by calling vy/lex, which finds the next token in the source program and deter-
mines its token type and value. The parser bases its moves on the token type: if the token is an operator or
reserved word, the token type specifically identifies the operator or reserved word: otherwise, the token type
indicates one of the five “primitive” types identifier, integer literal, real literal. string literal, or end-of-file. The
token value is a leaf node of the parse tree, which, for the primitive types, contains the source program
representation of the token. The token value node also contains the line and column numbers where the token
starts. A pointer to this node is placed in the global variable yychar, and yylex returns the token type.

*UNiX is a trademark of Bell Laboratories. :
+The term linker is actually a misnomer, so named for historical reasons. More appropriately, it is a second pass in the
translation process.

The lexical analyzer finds the next token by skipping all white space and comments. The first character of
the new token then indicates that it belongs to one of four classes. A letter or underscore begins an identifier or
reserved word; a digit begins an integer or real literal; a single or double quote begins a string literal; any other
character is assumed to begin an operator. An identifier or reserved word is completed by gathering all subse-
quent letters, digits, and underscores: all upper casc letters are folded into lower case. The reserved word table
is consulted to determine if the token is an identifier or a reserved word. A numeric literal is recognized by a
finite-state automaton, which distinguishes real from integer literals by the presence of a decimal point or the
letter “e™. A string literal is completed by reading until the opening delimiter is repeated, converting escapes in
the process and continuing to new lines as necessary. A table-driven finite-state automaton, described below,
recognizes operators.

An important task of the lexical analyzer is semicolon insertion. The grammar requires that semicolons
separate expressions in a compound expression or procedure body, so they must be inserted into the token
stream where they are omitted in the source program. This process is table driven. Associated with each token
type are two flags, BEGINNER and ENDER. The BEGINNER flag is true if a token may legally begin an
expression (i.c., if it may follow a semicolon). Similarly, the ENDER flag is true if a token may legally end an
expression (i.c., if it may precede a semicolon). When a newline appears between two tokens, and the ENDER
flag of the first is true, and the BEGINNER flag of the second is true, then a semicolon is inserted between the
two tokens.

The token table is initialized in the file tokiab.c. The table is divided into three sections: primitive types,
reserved words, and operators. The primitives types are fixed in the first five slots in the table, and must not be
changed, since they are referenced directly from the code. The reserved words follow, and must be in alphabet-
ical order. The operators follow in no special order. The last entry merely marks the end of the table.

Also in roktab.c is an index to reserved words. To speed up the search for reserved words, this table effec-
tively hashes the search using the first letter as the hash value. The search needs only to examine all reserved
words that begin with a single letter. :

The operator table, in oprab.c, describes a finite-state automaton that recognizes each operator in the
language. Each state is represented by an array of structures. Each structure in the array corresponds to one
transition on the input symbol. The structure contains three fields: an input symbol, an action, and a value
used by the action. The recognizer starts in state 0; the current input symbol is the first character of the opera-
tor. In a given state with a given input symbol, the recognizer searches the array associated with the current
state for an entry that matches the current input symbol. Failing a match, the last entry of the array (the input
symbol field is 0) is used. The recognizer then performs one of the following actions, depending on the value of
the action field: goto the new state indicated by the value field and get the next input character; issue an error;
return the value field as a pointer to the token table entry for the operator or return the value field, but push
the current input character back onto the input. The difference between the last two actions is that some
operators are recognized immediately (e.g., ;™). while others are not recognized until the character following
the operator is read (e.g., “=").

The token table, reserved word index, and operator table are automatically constructed by the SNOBOL4
program mkroktab.4. This program reads the file rokens and builds the file toktab.c. The file rokens contains
a list of all the tokens, their token types (given as defined constants), and any associated flags. This list is
divided into the three sections detailed above. The program then reads the file oprab and builds the file
optab.c. The former is a skeleton for the operator table; it contains the state tables, but the program fills in the
pointers to the token table entries,

1.2 Parser

The parser, in the file parse.c, is automatically generated by Yacc. The grammar and semantic actions are
contained in the file ucon.g. From these specifications, Yacc generates parser tables foran LALR(1) parser.

The file ucon.g contains, in addition to the grammar, a list of all the token types in the language and
declarations necessary to the actions. Yacc assigns an integer value to each token type, and generates define
statements, which are written to the file tzoken.h. These defined constants are the token types returned by the
lexical analyzer.

The grammar is context-free, with actions associated with most of the rules. An action is invoked when the
corresponding rule is reduced. The actions perform two duties: maintaining the symbol tables and construct-
ing the parse tree. The parse tree is built from the bottom up — the leaves are supplied by the lexical analyzer
and the actions build trees from the leaves and smaller trees with each reduction.

The parser requests tokens from the lexical analyzer, building a parse tree until it reduces a procedure. At
this point, it passes the root of the parse tree to the code generator. Once the intermediate code has been gen-
erated, the parse tree is discarded. and a new tree is begun for the next procedure.

Record and global declarations affect only the symbol table, and do not generate parse trees.

A complete parse tree is rooted at a proc node, which identifies the procedure, and points to the subtrees
for the initial clause (if any) and the body of the procedure. Each node in the parse tree represents a source
program construction or some implicit semantic action. A node can contain up to six fields, the first of which
is the node type. The second and third fields are always line and column numbers that are used for error mes-
sages and tracing. Any additional fields contain information about the construction, and possibly pointers to
several subtrees. Appendix A contains a description of all the node types.

The grammar, shown in Appendix B, has several ambiguities. The well-known “dangling else™ problem
exists not only in the if-then-else expression, but also in the while-do, until-do, and every-do expressions. In
each of these expressions, the last clause is optional, so that when the parser sees an else, for example, it does
not know whether to shift the token (associating it with the most recent if), or to reduce the preceding if-then
expression (leaving the else “dangling™. The latter choice is obviously incorrect, since the else would never be
shifted, and Yacc correctly resolves such conflicts in favor of the shift. Thus, each else is paired with the most
recent unpaired if. All the control structures (except case) have an additional ambiguity: they do not have a
closed syntax, yet they may appear in an expression at the highest precedence level. For example, the expres-
sion

x =y + if a=b then z else —z * 3
could parse in either of two ways:

v + (if a=b then 2z else (-z * 3))
v + (if a=b then z else —2) * 3

X
X

This problem, too, is resolved in favor of the shift, such that the first parse is always used. Thus, in the absence
of parentheses, the entire expression to the right of a control structure is part of the control structure,

Little attention has been paid to error recovery. A few error productions have been placed in the grammar
to enable Yacc to recover from syntax errors; the technique for doing so is described by Aho and Johnson [5].
The parser is slightly modified by the editor script pscript so that the parser state is passed to the routine yyver-
ror. This routine prints an error message from the file err.h that is associated with the current parser state.
This error table must currently be constructed by hand from the verbose listing of parser states obtained by
running Yacc with the -v option.

1.3 Code Generator

The parser calls the code generator upon recognition of each Icon procedure, giving it the root of the parse
tree. The code generator traverses the parse tree recursively, emitting code in the intermediate language.
ucode. Appendix C contains a description of the intermediate language.

The file code.c contains both the tree node allocation and the code generation routines. There are two
include files: code.h contains macros and definitions needed by the code generator, while rree.h defines the
tree nodes and the macros that allocate them. The macros in free.h provide the interface between the parser
and the code generator.

The tree traversal routine, traverse, is a recursive procedure with two arguments. The first argument is a
pointer to the root of a tree or subtree for which code is to be generated. The second argument is the failure
label. discussed below. The routine examines the type field of the root, and, through a switch statement, gen-
erates a sequence of ucode instructions as determined by the type. If the node has subtrees, traverse calls itself
recursively at the appropriate point to generate code for the subtree. For example, the code generated for a
binary operator first generates code for its two subexpressions, then emits the code that calls the appropriate

runtime library routine, and finally tests for failure.

Since the intermediate language and its underlying implementation are stack-oriented, all language opera-
tions produce one value (which may be the null value). The code generated for each operation has a net effect
of pushing a value onto the stack. For example, the code for the binary operators pushes the two operands
onto the stack, then calls the library routine for the operator. The library routine uses the two operands, pops
them off the stack, and pushes the result onto the stack. Thus, the net effect of the binary operation is to push
one valuc onto the stack.

The second argument to rraverse, the current failure label, is always the label of the drive instruction at the
end of the current “driven expression™. A driven expression is one within which backtracking is contained. As
defined by the language, all control structures (except every) contain their constituent expressions, as do the
semicolons in compound expressions. Driven expressions appear in the grammar as the non-terminals dexpr
or ndexpr. A drive node represents a driven expression, and causes a mark/drive pair of instructions to sur-
round the code generated by its subtree. Any failure within a driven expression causes a branch to the drive
instruction, which drives the expression for alternatives. Wherever code that might cause failure is generated,
a test for failure is generated that branches to the failure label. For most node types, the failure label for its
subtrees is the same as that for itself. For any node type that generates a mark/drive pair of instructions, a new
failure label is used for the surrounded code, and this label is emitted just before the drive.

The returned value of the traversal routine is used for counting elements of expression lists. If the root of
the tree being traversed is an elist node (expression list), rraverse returns the sum of the returned values of its
two subtrees. Otherwise, it returns 1. This count is used when generating code for procedure calls and literal
lists, which need to know the number of arguments that will be pushed onto the stack.

Two stacks are used by rraverse — a loop stack and a case stack. The loop stack contains the break and
next labels for loops. For each loop expression, the code generator allocates a break and a next label. and
pushes these labels onto the loop stack. The code for break and next nodes branches to the appropriate label
from the top of this stack. For each case expression, the code generator allocates a label for the end of the
expression and pushes it onto the case stack. When a default clause is encountered, its subtree is placed on the
top of the case stack to delay code generation for it until the end of the case statement.

1.4 Symbol Table Manager

The symbol table manager consists of the symbol table data structures and routines that operate upon these
data structures. The source code for the symbol table manager is contained in two files. The file keyword.c
contains only the keyword table and is automatically constructed from a keyword list file discussed below.
The remainder of the symbol table manager is located in the file sym.c.

The symbol table manager operates with two logical data structures, the symbol table proper and the string
space. When the lexical analyzer identifies a token as either an identifier or a literal, the lexical analyzer
requests the symbol table manager to enter the token into the string space. The symbol table manager returns
a pointer into the string space for that string. The lexical analyzer then places this pointer in the token value
node. To help keep the size of the string space small, all entries are hashed, and only one copy of any string is
kept. This has the added benefit that two strings may be compared by checking only the pointers into the
string space. '

The parser determines the context of the token, and requests the symbol table manager to enter the token
into the symbol table proper. It is the responsibility of the symbol table manager to verify that the use of the
token is consistent with prior use. Appropriate diagnostics are issued if the use is inconsistent.

The symbol table proper is physically divided into three separate structures: the global, local, and literal
tables. Each of these tables is hashed, using the pointer into the string space as the key. Since this pointer is an
offset into the string space, hashing is simply and effectively performed by taking the rightmost n bits of the
offset (where 2" is the size of the hash vector for the table).

The global table contains identifiers that have been declared as globals, procedures, or records. The local
table holds all identifiers declared as locals, formal parameters for procedure declarations, field names for
record declarations, and all undeclared identifiers. The literal table contains entries for literal strings, integers,
and floating-point constants.

Both the local and literal tables are associated with the current procedure being parsed, and are written to
the ucode file when the procedure has been successfully parsed. If a record declaration has been parsed, then
the local table, containing only the field name identifiers, is written to the global declarations file. After all
procedure, record, and global declarations in a Icon source file have been parsed. the global table is written
into the global declarations file.

An entry into any of the three symbol table sections is a structure with three fields: a link, a name, and a
flag. The link field holds the pointer to the next entry in the same hash bucket. The name is the pointer to the
identifier or literal name in the string space. The flag field contains the type (formal parameter, static local,
procedure name, etc.) of the entry. Global table entries have a fourth field, an integer providing the number of
formal parameters for a procedure declaration, or the number of fields in a record declaration.

Lookup in the local and global tables is merely the process of following a hash chain until an entry of the
same name is found, or until the hash chain is exhausted. If a previous entry is found, the flags of the existing
and new entries are compared, and diagnostics are printed if the use of the new entry conflicts with the previ-
ous usage. The new entry is ignored whenever such an inconsistency is found.

The literal table uses the same lookup procedure, except the search down the hash chain stops when an
entry is found with the same name and flag fields. Thus the string literal “123" and the integer literal 123 have
separate entries in the literal table, even though they have the same string representations. An unfortunate
consequence of this technique is that the integer literals 123 and 0123 have separate entries in the literal table,
even though they have the same numeric value. Since most programmers use a reasonably consistent style
when expressing literals, this technique should not produce an unreasonable number of duplicate constants.

A final task of the symbol 1able manager is the identification of keywords. The symbol table manager
maintains a list of the legal keywords and, upon request, returns a numeric identification for a keyword iden-
tifier to the parser. An automatic procedure exists for creating the keyword table: the SNOBOL4 program
mkkeyiab.4 reads a list of keywords from the file keywords and produces the keyword table in keywords.c.
The file keywords is simply a list of the keywords and a numeric identification for each. Since the number of
keywords is small, and only a few references to keywords are typical in an Icon program, lookup in the key-
word table is done using a linear search.

The sizes of the respective portions of the symbol table may be altered with command line arguments to the
lIcon translator. Some thought has been given to allowing automatic expansion of the symbol table on over-
flow, but this enhancement has been omitted from the current version.

2. Linker

The linker performs three tasks: combining the global symbol tables from one or more runs of the transla-
tor. resolving undeclared identifiers, and translating the ucode to assembly code. The first task is done first;
the resulting combined global symbol table is used for determining the scope of undeclared identifiers during
the second task. The second and third tasks are done during a single pass over each intermediate code file. A
single file of assembly code is produced.

The linker consists of eight files of C source code and four header files. The symbol table module, in the
file sym.c, is similar to the symbol table module of the translator, except that there is an additional table for
storing field names of records. The input module, in the file /ex.c, recognizes the instructions in both the glo-
bal symbol table files and the intermediate code files. The global symbol tables are merged by the routine in
glob.c, and the intermediate code files are produced by the routines in code.c. Of the remaining source files,
ulink.c and mem.c contain the main program, miscellaneous support routines, and memory initialization. The
files builtin.c and opcode.c contain table initializations for the list of built-in procedures (or functions) and the
ucode operations, respectively.

The first phase of the linker consists of reading the giobal symbol table file from each translator run, and
entering all the global symbols into one combined table. The format of a global symbol table file is described
in Appendix C. This phase also builds the record/field table that cross-references records and field names, and
sets the trace flag for execution-time tracing if any of the files being linked were translated with the =t option.

As records are entered into the global symbol table and the record/field table, they are numbered. starting
from 1. These record numbers are used to index the record/field table at runtime when referencing a field.

The second phase reads each intermediatc code file in sequence, emitting assembler code as each procedure
is encountered. Appendix C describes the intermediate code. The intermediate code contains a prologue for
each procedure, beginning with a proc opcode, followed by a series of loc opcodes describing the local symbol
table, a locend opcode terminating the focal symbol table, and a series of con opcodes describing the constant
table. The local symbol table contains not only local symbols, but all identifiers referenced in the procedure —
global, local, or undeclared. When an undeclared identifier is entered into the local symbol table, its scope is
resolved by the following steps: (1) if the identifier has been entered in the global symbol table, it is entered
into the local symbol table as a global variable; else (2) if the identifier matches the name of a function, it is
entered into the local symbol table as a function; else (3) it is entered as a local variable and a warning is issued
if the linker was run with the -u option. The constant table contains an entry for each literal used in the pro-
ccdure.

Once the prologue has been processed, a procedure data block (see Section 3.1) is emitted into the assem-
bler code. The initial value of the procedure variable has type procedure and will point to this block.

Opcodes following the prologue represent execution-time operations, and cause code to be emitted. Most
assembler code is emitted through the routine emir, which outputs code according to several templates. This
routine is called with an arbitrary number of arguments, a list of template calls. Each template call is a tem-
plate name, defined in the file code.h, followed by parameters to that template. The last template call must be
followed by a 0 to indicate the end of the argument list to emir. For example, the following code, taken from
the processing for the mark opcode, causes the assembler output shown to be emitted.

emit(C_MOVI, -1, “_usignal”,
C_PUSH, "re",
C_MOV, "sp”. “r4”,
C_PUSH, "r3",
C_CLR, "r3",

o).
maov $-1,_usignal
moy rd,=(sp)
mov sp.,r4
mov r3,~(sp)
cir r3

The end opcode signals the end of a procedure, and causes the linker to emit data blocks for real numbers
and iong (32-bit) integers in the procedure's constant table. Literal references to these data types generate code
that builds a descriptor (see Section 3.1) that points to these blocks. References to short (16-bit) integer literals
generate code that builds a descriptor containing the value. References to string literals generate code that
builds a descriptor pointing into the identifier table (see below).

When all the intermediate code files have been processed, the linker emits procedure data blocks for all
record constructors and functions, followed by the record/field table, initial values and names for all global
and static variables, then the identifier table.

The record/field table is a doubly-indexed table, first indexed by a field number assigned to each identifier
that is used as a field name, next by a record number assigned to each record type. The value at the selected
position in the table is the index of the field in a record of the given type, or -1 if the given record type does not
contain the given field.

The initial value for global and static variables is the null value unless the global variable is a procedure,
function, or record constructor, in which case the initial value is a descriptor of type procedure pointing 1o the
appropriate procedure data block. The values output use the data representations described in Section 3.1.

The names of global and static variables are output as string qualifier descriptors (see Section 3.1), and are
uscd by the function display. Allstring qualifiers contained in the generated procedure data blocks and global
and static names point into the identifier table, which is just a static string space for that purpose.

3. Runtime System

The runtime library is a collection of routines that collectively provide support for the execution of an Icon
program. This library is searched by the loader for those routines necessary for a particular lcon program.
The assembly code generated by the linker contains subroutine calls to library routines to perform most high-
level operations where in-line code would be inappropriate. An executable program is crcated by assembling
the linker output, then loading a startup routine and the assembler output with the runtime library and a
tailored version of the C library. The startup routine, runtime library, and C library together form the runtime
system,

The runtime library has a two-level structure. The top level, lib, contains routines which relate directly to
source language operations. For example, plus performs addition and invoke performs procedure invocation.
Underneath /ib is r¢, which contains routines for performing common operations needed by many routines in
lib. In particular, rr contains routines that handle storage allocation and reclamation, type conversion, data
comparison, integer arithmetic with overflow checking, program initialization, generator suspension, and
tracing. ‘

Well over 90 percent of the runtiine system is coded in C; the remainder is coded in assembly language. Of
the routines coded in assembly language, one is the startup routine, one does integer arithmetic with overflow
checking (C does not provide this), and the rest modify the stack in ways that C does not allow.

3.1 Data Representations

Icon has two elementary forms of data objects — values and variables. Values can often be converted from
one data type to another; when done automatically, this is called coercion. There are three kinds of variables.
each discussed below: natural variables, created variables, and trapped variables. The process of obtaining
the value referred to by a variable is called dereferencing.

In this implementation of Icon, all data objects are represented by a two-word descriptor, which may,
depending on the type of the object, refer to some other area of memory for the actual value. The first word of
the descriptor always indicates the data type, and the second word either contains the value or a pointer toit.
There are six descriptor formats, pictured in Appendix D: null, string qualifier, short integer, value, variable,
and trapped variable. These formats are distinguished from one another by the first few bits of the first word
{except that a null descriptor is distinguished from a siring qualifier only by the contents of the second word).
Among short integer, value, and trapped variable descriptors, the low-order six bits of the first word identify
the type of object represented: the remaining bits in the first word contain flags classify the object as numeric,
integer, aggregate (e.g.. list, table, stack), and whether or not the second word is a pointer (historically, a
“floating address™[6)).

The null descriptor represents the null value. A siring qualifier represents a string, and contains the length
of the string and a pointer to the first character of the string. A short integer descriptor represents an integer
small enough 1o fit in the second word of the descriptor; all larger integers are represented by a value descrip-
tor, which represents values of all data types other than string and null. The value descriptor contains a
pointer to a daia block of appropriate format for a value of the given type. The data block formats for each
data type are shown in Appendix D.

A variahle descriptor represents either a natural variable or a created variable. A natural variable contains
a pointer to a descriptor at a fixed location (for a global variable) or a location on the stack (for a local vari-
able) where the value of the variable is stored. A created variable, formed by a table or list reference, contains
a pointer to a descriptor in a table or list block, where the referenced element is located. Since table and list
elements are often in the heap, created variables also contain an offset which indicates the distance (in words)
from the beginning of the data block to the referenced descriptor. This offset is used during the marking phase
of garbage collection, discussed in Section 3.3.

A trapped variahle [7] descriptor represents a variable for which special action is necessary upon dere-
ferencing or assignment. Such variables include substrings, non-existent elements of open lists and tables, and
certain keyword variables. Each type of trapped variable is distinguished by the first word of the descriptor.

Substring trapped variables, created by a section or subscripting operation, contain a pointer to a data
block which contains a variable descriptor identifying the value from which the substring was taken, an integer
indicating the beginning position of the substring, and an integer showing the length of the substring. With

this information, assignment to a substring of a variable can modify the contents of the variable properly.
Substrings of non-variables do not produce substring trapped variables since assignment to such substrings is
meaningless and illegal; instead, taking the substring of a non-variable produces a string qualifier.

Table and list element trapped variables, formed by referencing a non-existent element of an open table or
an element one position beyond the end of an open list, similarly contain a pointer to a data block that con-
tains enough information for assignment to add the element to the referenced list or table,

Trapped variables for the keywords &pos, &irace, and &random need no additional information. It is suf-
ficient to know the type of trapped variable on dereferencing — the value of the keyword can be accessed and
returned. On assignment, the new value is coerced to integer type, checked for validity, and assigned to the
keyword. The trapped variable for the keyword &subject is similar to a substring trapped variable, except that
the original variable is unnecessary, This trapped variable is used only when a substring of &subject is formed
by the function move, tah, or insert, or by the prefix = operator. Assignment to a subject trapped variable
causes cocrcion of the new value to string type, and an automatic assignment to &pos.

Strings formed during program execution are placed in the siring space; string qualifiers for these strings
point into this region. Substrings of existing strings are not allocated again; instead. a string qualifier is
formed that points into the existing string. When storage is exhausted in the string space, the garbage collector
(sec Section 3.3) is invoked to reclaim unused space and compact the region; if enough space cannot be
reclaimed. the region is expanded if possible.

Data blocks formed during program execution are placed in the heap. Data blocks have a rigid format dic-
tated by the garbage collection algorithm. The first word of the block always contains a type code which iden-
tifies the structure of the rest of the block. Blocks that contain pointers to other blocks always use variable
descriptors for the pointers, and the descriptors always follow all non-descriptor information in the block. If
the size of the block is not determined by its type, the size (in bytes) is contained in the second word of the
block. When storage is exhausted in the heap, the garbage collector is invoked to reclaim unused space and
compact the heap; if enough space cannot be reclaimed. the heap is expanded if possible.

3.2 Stack Organization

The system stack is the focus of activity during the execution of an Icon program. All operators, built-in
{functions, and lcon procedures expect to find their arguments at the top of the stack, and replace the argu-
ments with the result of their computation. Local variables for Icon procedures are also kept on the stack.
The arguments, local variables, and temporaries on the stack for an active lcon procedure are collectively
called a procedure frame. This is one of several kinds of srack frames discussed in this section. Appendix E
summarizes the layouts of all the stack frames.

Before an lcon procedure calls another lcon procedure, the caller pushes the procedure to be called (a
descriptor — procedures are data objects in Icon) onto the stack. The caller then pushes each argument (also a
descriptor) onto the stack. leftmost argument first. Since the stack starts in high memory and grows down-
ward, the arguments appear on the stack in reverse order. The caller then pushes one word onto the stack indi-
cating the number of arguments supplied, which may be different from the number of arguments expected.
The runtime library routine invoke is then called, which checks that the first descriptor pushed above actually
does represent a procedure or a variable whose value is a procedure. This descriptor points to a procedure
data block, which contains various information about the called procedure, including the number of argu-
ments expected. the number of local variables used, and the procedure’s entry point address. /nvoke next
adjusts the number of arguments supplied to match the number expected, deleting excess arguments or supply-
ing the null value for missing ones. It then dereferences the arguments. A procedure marker is then pushed
onto the stack, and the procedure frame poinier is set to point to the new procedure marker. The procedure
marker contains, among other things, the return address in the calling procedure and the previous value of the
procedurc frame pointer. Next, the null value is pushed onto the stack as the initial value for each local vari-
able. Invoke then transfers control to the procedure’s entry point, and execution of the lcon program resumes
in the new procedure.

When a procedure is ready to return to its caller, it pushes its return value (a descriptor) on the stack. It
then transfers control to the routine urer. which moves the return value to the location occupied by the descrip-
tor that represented the called procedure; that is, the return value is stored in place of the first descriptor that

was pushed at the beginning of the calling sequence described above. The return sequence then restores the
state of the previous procedure from the current procedure marker (the procedure marker that the procedure
frame pointer currently points to). This includes restoring the previous value of the procedure frame pointer,
retrieving the return address, and popping the returning procedure’s local variables, procedure marker, and
arguments. Thus, when the calling procedure regains control, the arguments have been popped and the return
value is now at the top of the stack.

Functions and operators are written in C, and therefore obey the C calling sequence. By design, the lcon
calling sequence described above is similar to the C calling sequence. When an Icon procedure calls a func-
tion, a boundary on the stack is introduced, where the stack below the boundary is regimented by Icon stan-
dards, and the stack above the boundary contains C information. This boundary is important during garbage
collection: the garbage collector must ignore the area of the stack above the boundary, since the structure of
this area is unknown, whereas the structure of the area below the boundary is well-defined. In particular, all
data below the boundary is contained in descriptors or is defined by the structure of a frame, so that all
pointers into the heap or string space may be located during a garbage collection.

Functions and operators are written to “straddle” the boundary. From below, they are designed to resem-
ble Icon procedures; from above, they are C procedures. An Icon procedure calls a function in much the same
way as it calls another Icon procedure; in fact, functions are procedure-typed data objects just as Icon pro-
cedures are. When invoke recognizes that a function is being called, it bypasses the argument adjustment,
since the number of arguments expected by a function is not fixed. Instead, the field in the procedure data
block that indicates the number of arguments expected contains -1, which identifies the procedure as a built-in
function to invoke. It also does not push local variable initializations for functions since the C procedure allo-
cates its own stack space. C procedures have an entry sequence that creates a new procedure frame; since the
invoke routine has already done this, the entry point for functions is four bytes past the actual beginning of the
code (the entry sequence consists of a 4-byte jsr instruction).

Functions are written with one argument, nargs, which corresponds to the word that contains the number
of arguments supplied. A macro, A RG(n), is available that uses the address and contents of this word to cal-
culate the location of the nth argument. Thus, A RG(]) accesses the first argument (as a descriptor), and
A RG(nargs) accesses the last argument, Each function is responsible for checking that arguments were actu-
ally supplied. for supplying defaults for missing arguments, and for dereferencing arguments that are vari-
ables. Because of the calling protocol, 4 RG(0) accesses the location where the return value should be stored.
Functions must place their result there, then return through normal C conventions, which transfers control to
the routine crer. This routine merely restores the previous procedure state, and returns control to the calling
lcon procedure, where the arguments are popped.*

Operators are written like functions, with two exceptions. The syntax demands a certain number of argu-
ments, so operators always have the correct number of arguments. Also, since operators are not variables (as
function and procedure names are), the name of the operator is known at translation time, and the lcon pro-
cedure calls it directly (at its normal entry point) without going through invoke. Thus, there is no procedure-
typed descriptor on the stack referring to the operator, and the proper place to return a value is in A RG(!).
Although the nargs argument is not strictly necessary for operators, the convention was preserved for unifor-
mity.

When an operator or function fails to produce a value, it sets the global variable usignal to zero. The
descriptor for the return value is still on the top of the stack, but its value is meaningless. Icon procedures
check usignal after every operator that can fail, and after every function or procedure call. (The translator
does not know whether a given function or procedure can fail, so it assumes that it can.) If usignal is zero, then
failure has occurred, and the current “driven expression™ fails (unless dormant generators exist, as described
below).

Driven expressions (see Section 1.3) are evaluated within an expression frame. When the evaluation of a
driven expression is complete, whether it has produced a result or failed, the expression frame must be popped

*The Icon procedure has no way of knowing that it was calling a function. It contains an instruction, immediately after
the jsr Lo invoke, that pops all the supplied arguments from the stack. If the procedure being called was not a function,
then urer pops the arguments, and returns to the instruction following the stack pop. If the procedure was a function,
then crer returns to the instruction that does the pop.

from the stack and the result of the expression must be pushed back onto the stack. The expression frame
marks the stack height at the point that the expression began to be evaluated, so that the stack may be restored
1o its original state when the evaluation of the expression is complete. The stack would normally be restored
to the original height (that is, the pops would match the pushes) except when an expression fails at some mid-
point in its evaluation. The expression frame is also used to limit the backtracking: backtracking is restricted
in the language to the current driven expression only.

When cvaluation of a driven expression begins, an expression marker is pushed on the stack, the expres-
sion frame pointer is set to point to it, and the generator frame pointer, discussed below, is cleared. The
marker contains the previous values of the expression and generator frame pointers. When exiting the expres-
sion frame, the result of the expression, on the top of the stack, is popped and saved. Then the stack is popped
to the expression marker, and the previous values of the two frame pointers are restored. The marker is
popped, and the result of the expression is pushed back onto the stack, now a part of the previous expression
frame. If the expression failed. the actions are the same, except that the descriptor for the result contains no
meaningful value.

If an expression has any generators, then there is a generaior frame within the current expression frame for
¢ach generator that is dormant (that is, that has produced a value but is not yet exhausted). A generator frame
prescrves the state of the stack at the point just before the generator (whether it be operator, function, or pro-
cedure) suspended (went dormant). If a failure occurs in a driven expression, control transfers to code at the
end of the expression, which calls the runtime library routine drive. The drive routine examines the generator
frame pointer to see if there are any dormant generators within the current expression frame. If there are not,
the expression frame is exited as described above; if there are, the stack is restored to the state preserved in the
most recent gencrator frame, and the generator is reactivated.

A generator suspends itself by calling the runtime library routine save. This routine preserves the state of
the stack by duplicating the current expression frame, bounded on one end by the current expression frame
(cxcluding the expression marker), on the other end by the top of the stack. A generator marker is pushed
onto the stack, followed by the duplicate expression frame. The save routine then returns to the suspending
generator with the value 1. The generator then performs a normal return sequence.

When reactivated by drive, the stack is restored to the generator marker, which is used to restore the vari-
ous frame pointers; then the marker is popped. The stack is then in the same state that it was in when save was
called. Drive then returns to the generator with the value 0, as if the call to save had returned 0. Thus, the fol-
lowing outlinc is typical of operators and functions that generate a sequence of values.

compute first value,
while (not exhausted) |
if (save()) |
store return value,
return;
!
compute nexi value,
}
usignal = 0;
return;

The effect of driving an expression containing generators is that save returns | on its initial call, and the gen-
crator returns a value. If alternatives are needed, backtracking occurs, and the effect is, as far as the generator
can tell, that save has returned 0, not I, and the generator computes the next value, and suspends with that
valuc. When the generator is exhausted. it merely fails without suspending, which just passes-the failure back
to the next most recent dormant generator, if any.

The alternation operator is handled only slightly differently. The sgve routine assumes that the operator,
procedure, or function that called it is suspending. This is not the case with alternation, so the runtime library
routine c¢save is called to handle alternation. This routine does nothing but call save, and relays the return
value back to the Icon procedure. The lcon procedure then skips the alternative if the return value was 1, or
evaluates the alternative if the return value was 0.

-10-

There is one other type of frame — a loop frame. When a loop is entered, a loop marker is pushed onto the
stack, and the loop frame pointer is set to point to it. The loop marker saves the values of all three frame
pointers, so they can be restored upon break or next. For every loops with a do clause, two copies of the
expression and generator frame pointers must be saved, one for break and one for next. At the beginning of
the do clause, the copy used by next is updated so that the generators in the every clause are reactivated at the
proper points.

3.3 Storage Allocation and Reclamation

During program execution, storage allocation is necessary when a data object is created. The two primi-
tive routines allocare and alcsir allocate storage in the heap and string space, respectively. Both routines
return pointers to the beginning of the newly allocated regions. Neither routine is responsible for ensuring that
enough space remains in the data regions. Ensuring that enough space remains in the data regions is the
responsibility of a prediciive need strategy described below.

In the heap, allocate(n) returns a pointer to n contiguous bytes of storage. Because a wide variety of
objects may reside in the heap. a number of support routines are provided to simplify the storing of various
objects. There is a specific routine to allocate a block for each datatype in the heap. Where appropriate, these
routines have the actual values to be stored as their arguments. All of the routines call allocate to obtain
storage for the object, and establish the block header for that datatype within the newly allocated region.

In the string space, alcsir(s,!) allocates room for a string of length / and copies the string pointed to by sinto
this space. Since some routines such as left, right, and center need room in the string space in which to con-
struct a string, a call to alcstr with the defined constant NULL as the first argument results in the allocation of
storage without attempting to copy a string.

Source code for all of the allocation routines is contained in the file rr/alc.c. Almost all interaction with
the storage management is made through these routines. Two exceptions occur in string concatenation and
reading a fixed number of bytes. In each case, it is simpler and more efficient to have these operations deal
directly with storage management.

As mentioned earlier, a predictive need strategy is employed to ensure that enough room remains for data
storage. Simply put, predictive need states that it is the responsibility of any routine that calls an allocation
routine both to ensure that enough room remains in the proper data region and to maintain the validity of any
temporary pointers into the data regions, should a garbage collection be necessary to free up storage space.

Since the check for storage space only needs to occur before the allocation takes place, each routine may
perform this check at its convenience. This approach permits the minimization of the number of temporary
pointers that must be protected during garbage collection. As an aid, space for several descriptors is automati-
cally protected by the procedure invocation mechanism, and is usually used to hold information pertaining to
the arguments of the procedure (see Section 3.4).

Routines 1o ensure space are provided for each of the two storage regions. The routine sneed(n) ensures
that at least n bytes of storage remain in the string space, and Aneed(n) performs the same function in the heap.
If either routine finds that there is insufficient storage remaining, it will invoke the garbage collector in an
attempt to obtain that storage. If that fails, then program execution is aborted with an appropriate diagnostic.

Garbage collection, or storage reclamation, is a process that identifies all valid data in storage and com-
pacts that data in order to provide a contiguous area of unused storage. The algorithm used for identifying
valid data is based upon the algorithm described by Hanson [6]. Only the more novel features are discussed
here.

Whenever a predictive need request discovers that insufficient storage remains in either the heap or string
space, the garbage collector is invoked to free up space in both regions. This approach is more efficient in
situations where both regions are heavily allocated, and only slightly less efficient otherwise.

The approach is to sweep through the permanent data regions and the stack, looking for descriptors that
are either pointers into the heap or string qualifiers. When a string qualifier is found, a pointer to that qualifier
is saved in a temporary data region at the end of the heap. If the descriptor is a pointer into the heap. then that
heap data block contains valid information. The block is marked as valid, the descriptor is placed on a back
chain headed in the block, and the marking process is called recursively on any descriptors within that block.
Blocks that are already marked as valid are not processed a second time. To simplify the marking of heap

-11-

blocks, all data blocks have been designed so that all descriptors within them exist as a contiguous section at
the end of the block. Thus to sweep through the descriptors within a block, the marking algorithm need need
only know the size of the block and the location of the first descriptor. Information concerning a data block's
size, as well as the offset for the first descriptor is maintained in the file rr/dblocks.c.

After the marking phase is completed, the string region is compacted. The algorithm used is described by
Hanson [8]. The pointers to the string qualifiers are sorted so that the order of all valid strings within the
string space is identified. The string qualifiers are then processed in order, and modified as the valid strings are
compacted. If this compaction does not free up enough space within the string space to satisfy the request, the
hcap must be moved in order to provide more room in the string space. An attempt is also made to provide
some additional “breathing room™ in the string space to permit future expansion.

The heap cannot be moved until after the valid pointers into it are adjusted and the storage is compacted.
The pointer adjustment and heap compaction phases are two linear passes through the heap which must be
performed during standard heap garbage collection. The only difference when the heap is to be moved is that
the adjusted pointers point to where that data will be after the heap has been moved. If not enough breathing
room is freed in the heap, then a request for more space is requested from the operating system. As a last step,
if the string space needs more room, the heap is relocated.

This method has proved to be quite satisfactory for most applications. A shortcoming of the implementa-
tion is the absence of a process for decreasing the size of a data region, should it become too large. It is also
possible that insufficient room would be available for storing the pointers to the string qualifiers, even though
enough storage would become available if the heap were collected separately. In practice, this has not been a
problem. The source code for the garbage collector is maintained in the file rr/ge.c.

3.4 Coding Conventions

The use of usignal and save to implement generators and the backtracking mechanism has been discussed,
as well as accessing arguments and the predictive need allocation scheme. Several other aspects of the runtime
system require more detailed explanations.

There are several linked files in the runtime system, providing some communication between the various
portions of the lcon system. Two sets of linked files bear special notice. The file /ib/lib.h is linked to rt/rt.h,
and lib/kevword.his linked to the translator file iran/keyword.h.

The file lib/lib.h. (or its link r¢/re.h) is included by every source file in the runtime system, and contains
mauchine-dependent defined constants, runtime data structure declarations, external declarations and defined
constants and macros for flags, type codes, argument accessing, and bit manipulations.

The macros 1sth and seth are the basic primitives used in conversions between csets and strings. These are
dcfined as macros rather than as procedures for efficiency: both appear within tight loops where the overhead
for calling procedures would be a significant portion of the processing time. However, because the arguments
appear several times within the macro expansion, care must be taken to avoid auto-incrementing the argu-
ments.

During the execution of an Icon program, many type conversions are done on temporary values, where
data storage is not required beyond the bounds of the current operation. For this reason, the type conversion
routines all operatc with pointers passed to them that reference buffers in the calling procedure. Any routine
calling for type conversion must determine if heap or string space storage is needed, and perform the alloca-
tion. Most of the conversion routines return the type of the result or NULL if the conversion cannot be per-
formcd. One exception is cvsir which, in addition to NULL, returns 2 if the object was already a string, and |
if the object had to be converted to a string. This distinction makes it possible to avoid a large number of
predictive need checks. The second exception is cvaum which returns either real or long integer, and makes no
attempt to distinguish between short and long integers.

As mentioned in Section 3.3, there is space set aside to hold temporary descriptors and to protect the vali-
dity of these descriptors during garbage collection. The garbage collector knows about this region, and tends
it during storage reclamation. The region is defined in the file r¢/start.s, and is bounded by the labels tended
and etended. To simplify access while programming in C, several global variables point into this tended
region. The most commonly used is the array of descriptors arg, which is used to hold the dereferenced values
of arguments to functions and operators. Examination of any of the function or operator procedures shows

-12-

the use of arg. There is room for six descriptors in arg, since that is the maximum number of arguments to any
function or operator. Since a garbage collection can occur only during a call to sneed or hneed, or between
suspension and reactivation, the only places where C routines need to ensure that all pointers into the heap or
string space are tended are just before calls to sneed, hneed, or save.

In addition to arg. there are several other variables in the tended region. To keep the size of the tended
region small, these have been equivalenced to arg. The cquivalences are defined in rf/siart.s.

All Icon procedure and function names are folded by the translator to lower-casc with a capitalized first
letter. This prevents name collisions between Icon procedures and other routines, such as those for operators,
type conversions, and storage management. It is also the only remaining motivation for the equivalence of
upper- and lower-case letters in Icon source programs.

4. Modifying the Implementation

This section is intended to serve as a brief guide for those who wish to modify the Icon system. It is not
comprehensive; it only points to various parts of the implementation that need to be considered when making
various kinds of changes.

Perhaps the most common kind of change that one might expect to make is to add new functions (built-in
procedures). To add a function, first write it according to the conventions described in Section 3.4. (Use an
existing function similar to the new one as a prototype.) Be especially careful to observe the rules concerning
storage allocation and tended descriptors. Then prepare to add the new function to the runtime library by
moving the source code into the /ib directory and adding its name to lib/ Makefile (the name must be added in
three places — there are many examples already in the makefile). Then add the name to the file link / builtin.c
in proper alphabetical order for use by the linker.

The makefile bin/Makefile is set up to compile whatever needs to be compiled to make a new system.
When all changes have been made to the source code, simply change to the bin directory and run make. This
runs make in each of the four system directories — tran, link, lib, and rt — and then copies the new versions
into the hin directory.

Adding new operators is more complicated — this is described in detail since many other kinds of modifi-
cations require many similar changes. Again, the first step is to write the routine, place it in the /ib directory,
and add its name to the makefile. Next, the operator must be added to the translator, as follows:

(1) Add the operator to the operator table in tran/opiab; the structure of the table is described in Section 1.1.

(2) Create a unique name for the new token and make a new token table entry in fran/toktab in the operators
section of the table. Although the operators section of the table is in alphabetical order by token name as
distributed, there is no need to preserve this order. (Do not put any tabs in the file toktab if it is to be pro-
cessed by the SNOBOL4 program discussed in Section 1.1.)

(3) 1f SNOBOLAJ is not available, edit the files tran/optab.c and tran/i1okiab.c to correspond to the changes
made in steps | and 2. This sometimes involves a renumbering of token table entries in both files (but
nowhere else).

(4) Add the operator to the grammar in tranfucon.g. The token name must be added to the list of terminal
symbols at the beginning of the grammar file, and the operator must be inserted into the syntax at the
appropriate precedence level. If the precedence is the same as that of an existing operator, simply add the
operator as an alternative to the existing production; otherwise, insert a new production, and change the
production at the next lower precedence level to refer to the new one. The semantic action should create
either a BINOP or a UNOP node in the parse tree; use existing actions as a prototype.

(5) The new operator must now be added to the code generator in tran/code.c. Insert a case in either of the
routines hinop or unop for the new token name that assigns a new intermediate code opcode to name, as
for other operators — this causes the new opcode to be emitted into the ucode. The opcode should have
the same name as the library routine that performs the operation. If the evaluation of the operator can
fail, then increment the variable fail — this causes a failure test to be emitted after the operator.

The new intermediate code opcode must also be added to the linker. Add a defined constant to link Jopcode.h;
order here is not important. Then add the opcode name and the defined constant to link/opcode.c;

-13-

alphabetical order must be preserved, since a binary search is used. Then edit the code generator in
link | code.c, adding a case in the routine gencode with either the binary or the unary operators. The standard
processing here emits code that evaluates the operand(s). then calls a library routine with the same name as the
intermediate code opcode. The system is then be ready to be made as described above.

Adding a new control structure is similar in nature to adding a new operator. Most often, a new reserved
word must bc added to tran/iokens; this part of the token table must be kept in alphabetical order. The new
token must be added to the grammar, and productions must be added, usually at the highest precedence level
(the same as if, for example). The semantic action for the new production will probably involve creating a
parse trce node of a new type. The new node type should be added to tran/tree.h and a new case in the routine
traverse (in tran/code.¢) should be added to generate intermediate code. The intermediate code generated can
usc any of the existing opcodes or can usc new ones created specifically for the new control structure. If new
opcodes are crcated, they must be added to the linker as described above, and a new case in the routine gen-
code must generate code for it. The gencrated code can be either entirely in-line or can call a new library rou-
tine (sec, for example, the generated code for scan expressions). If new code generation templates are nceded,
modify the routine emit in link [code.c and the list of templates in link /code.h. If the code calls a new library
routine, add it to /ib as described above, then the system is ready to be made.

Modifying the semantics of existing control structures, operators, or functions, often involves changing
only the gencrated in-line code or a library routine. Modifying the syntax without disturbing any semantics
usually requires only a change to the grammar.

Adding a new datatype means making many of the above changes. A new datatype code must be added to
lib}lib.h, and a new data block format must be defined. if necessary. The size and location of the first descrip-
tor of the new data block must be entered in rt/dblocks.c so that the garbage collector knows how to treat the
block. The routines in lib/image.c and rt/outimage.c must be extended so that images of the new datatype can
be produced. New functions and operators need to be created, and possibly new coercion routines must be
addced to r1.

Adding a new keyword entails a change to tran/keywords (and, if SNOBOL4 is not available, to
tran/ kevwords.h) and a new casc in lib/kevwd.c. The file lib/keywords. h is a link to tran/keywords. h, so the
two arc modified simultaneously. Many keywords require trapped variables, which requires changes to
lib/lib.h, lib[asgn.c, and ri/deref.c. the trapped variable for &subject serves as a good model.

As mentioned above, the examples in this section are intended to identify what parts of the system are
affected by certain kinds of changes or extensions. A thorough understanding of the system is suggested, how-
cver, for other than minor changes.

-14-

Acknowledgements

Many features of the current implementation of Icon are based upon the original Ratfor implementation
by Dave Hanson, Tim Korb, and Walt Hansen [2, 9). We would like to thank Ralph Griswold and Dave Han-
son for their many suggestions regarding the implementation and for many careful readings of this paper.

References

[1] Coutant, Cary A., Ralph E. Griswold. and Stephen B. Wampler. Reference Manual for the Icon Pro-
gramming Language, Version 3. Technical Report TR 80-2, Department of Computer Science, The
University of Arizona, Tucson, Arizona, May 1980.

[2] Hanson, David R., and Walter J. Hansen. Icon Implemeniation Notes. Technical Report TR 79-12a,
Department of Computer Science, The University of Arizona, Tucson, Arizona, February 1980.

(3] Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1978.

[4] Johnson, Stephen C. “Yacc: Yet Another Compiler-Compiler.™ Unix Programmer’s Manual, Seventh
Edition. Bell Telephone Laboratories, Inc., Murray Hill, New Jersey, 1979.

[S] Aho, A.V..andS.C. Johnson. “LR Parsing.” Computing Surveys 6, 2 (June 1974), 99-124.

(6] Hanson, David R. “Storage Management for an Implementation of SNOBOL4." Software— Practice
and Experience 7, 2 (March 1977), 179-192.

(7] Hanson, David R. “Variable Associations in SNOBOL4." Sofiware— Practice and Experience 6, 2
(April 1976), 245-254.

[8] Hanson. David R. The Manipulation of Variable- Length String Data in Fortran IV. Technical Report.
Department of Computer Science, The University of Arizona, Tucson, Arizona, May 1975.

[9] Korb, John Timothy. The Design and Implemeniation of a Goal-Directed Programming Language.
Ph.D. Dissertation, Technical Report TR 79-11, Department of Computer Science, The University of
Arizona, Tucson, Arizona, June 1979,

-15-

Appendix A
The Parse Tree

The parse tree is a collection of nodes, described below, rooted at a proc node. Nodes have a common for-
mat: the first field contains the node type, the second and third fields contain a line and column number relat-
ing the node to the source program, and the next zero to four fields contain node-dependent information. The
line and column numbers are usually those of the first token or the central token of the construct; for example,
in binop nodes, they are the location of the operator; in if nodes, they are the location of the if token.

The following list of node types gives a brief description of the node and a list of the node-dependent fields
and their uses. The fields are named val if they contain an integer value, str if they contain a pointer to astring,
or tree if they contain a pointer to another node (a leaf or subtree). A digit between 0 and 3 is appended indi-
cating its position in the node.

Six of the nodes — id, int, op, real, res, and str — are leaf nodes. These nodes, allocated and returned by
the lexical analyzer, represent source program tokens. The remaining nodes contain one or more pointers to
other nodes, either leaves or subtrees.

alt An alternation (the | operator).
tree The left operand.
tree] Theright operand.

and A conjunction (the & operator).
tree0 The left operand.
treel The right operand. ~

augop An augmented assignment,
treeQ The operator (pointer to an op node).
treel The left operand.
tree2 The right operand.

binop A binary operation.
tree0 The operator.
tree] The left operand.
tree2 The right operand.

break A break expression.

case A case expression.
tree0 The control expression.
tree] The list of case clauses. If there is only one case clause, this field points to the ccls node; if
there are more, it points to a clist node.

ccls A case clause, as in el: e2.
treeQ The case selector expression, e/. For a default clause, this field points to a res node that
contains the reserved word default.
treel The expression, e2, that is executed if the selector matches the control expression.

clist A list of case clauses. The list is represented as a binary tree, with left branches pointing to case
clauses and right branches pointing to a list of the remaining case clauses. The right branch of the
last clist node points directly to a ccls node.
tree) A case clause (pointer to a ccls node).
tree] Pointer to another clist node, or to the last ccls node in the list.

drive A driven expression.
treeQ The driven expression.

-17-

elist

empty
field

int

invok

key

list

loop

next

op

proc

real
res

ret

An expression list, as in a list construction or the argument list in a procedure call. An expression
list, like a list of case clauses, is represented as a binary tree.

tree(Anexpression.

treel Pointer to another elist node, or to the last expression in the list.

This node is used as a placeholder for missing expressions in control structures and expression lists.

A field reference to a record (the . operator)
tree) The left operand.
rreel Pointer to an id node, containing the field name.

A leal node representing an identifier.
str() - The name of the identifier.

An if expression.
rreel) The control expression,
treel The then clause.
tree2 The else clausc.,
A leal node representing an integer literal.
str) The string representation of the literal.

A procedure call (invocation).
tree() The expression naming the procedure.
treel The argument list. If there is one argument, this field points to the expression; if there are
more, it points to an elist node.

A kevword reference.
val0 The index of the referenced keyword, defined in the file rran/keyword.h.

A list construction, as[e/. e2. ...].
trec0 The list of elements. If there is one element, this field points to the expression; if there are
more, it points to an elist node.

A loop expression.
tree0) The style of loop. This field points to a res node, which identifies the reserved word that in-
troduced the loop.
tree! The control expression.
tree2 The do clause.

A next cxpression.
A lcaf node representing an operator.
vall) The token type of the operator.
A procedure. This node is always at the root of the parse tree.
tree@ The procedure name. This field points to an id node containing the name.
rreel The initial clause.
tree? The procedure body. If there is one expression in the procedure body, this field points to it;
if there are more, it points to an elist node.

A leaf node representing a real number literal.
str0 The string rcpresentation of the literal.
A leaf node representing a reserved word.
val0 The token type of the reserved word.

A return or fail expression.
tree0 The type of return. This field points to a res node, which contains the reserved word return
or fail.
tree] The expression following return, or a pointer to an empty node.

- 18-

scan A scan or transform expression.
tree0 The reserved word scan or transform.
tree]/ The control (scanned) expression.
tree2 The using clause.

sect A section operation, as el[e2:e3).
treet) The first operand, el.
treel The second operand, e2.
tree2 The third operand, e3.

slist A list of expressions separated by semicolons, as in a procedure body (a statement list). This list. like
expression lists and case lists, is represented as a binary tree.
tree0 Anexpression in the list.
treel A pointer to another slist node, or to the last expression in the list.

str A leaf node representing a string literal.
str) The string value of the literal.
vall The length of the string, necessary because the string may contain the ASCIl null character,
which would otherwise terminate the string.

susp A suspend expression.
tree0 The expression following the suspend.

toby A to-by operation.
tree0 The initial value expression.
tree] The toclause.
tree2 The by clause.

to A to operation.
tree0 The left operand.
treel The right operand.

unop A unary operation.
tree). The operator.
treel The operand.

-19-

Appendix B
Icon Formal Syntax

The following grammar describes the lcon language. Reserved words are shown in boldface; all operators
are shown in Roman. The non-terminals ident, literal, and emp1y are left undefined in the syntax.

program — decls

decls — empty
— decls decl

dec! — record
- proc
— global

global — global idlist
record — record iden: (arglist)
proc — prochead ; locals initial nprocbody end
prochead — procedure ident (arglist)

arglist — empty

— idlist
idlist — ideni

— idlist |, ident
locals — empty

— locals retention idlist

retention — local

— static

— dynamic
initial — empty

— initial dexpr ;

nprochody — empiy
— procbody

procbody — ndexpr
~ procbody ; ndexpr

ndexpr — empty
— dexpr

dexpr — expr

nexpr — empily
— expr
expr — exprl
— expr & exprl
exprl — expr2
— expr2 opl exprl
— expr2 opla exprl

-21-

opl — =] :=]|<-|<->]| =
opla — +i=| —i=| e=]| /i=| %= li=| 4= | ——:= | wmi= | =

expr2 — expr3
— expr2 to expr3
— expr2 to expr3 by expr3

expr3 — exprd
— expr3 | exprd

exprd — exprS
— exprd opd exprs

01)4—-<|<=|=|>=l>|~=l==[~== ===|~===

exprs — exprb
— exprS || expr6

expr6 = expr’
— expr6 opb expr7

op6 — +| -] ++| --

expr] = expr8
~ expr7 op? expr8

op? —~ | /]| % | e
expr8 — expr9
— expry | expr8

expr9 — exprl0
— expr9 fails

exprl0 — exprll
~ apl0 expri0

opl0 — | [+|-]~]=
exprll — ident
— literal
- & idem

— exprll . ident

~ exprll [expr)
— exprll (exprlist)
— [expriist]

- (expr)

— | prochody |

~ while
- until
— every
~ repeal
— next
— break
- i

~ case
- scan
— return
~ section

-22-

while

until

every

repeat

if

case

caselist

cclause

scan

return

section

seciop

exprlist

while dexpr
while dexpr do dexpr

until dexpr
until dexpr do dexpr

every expr
every expr do dexpr

repeat dexpr

if dexpr then dexpr
if dexpr then dexpr else dexpr

case dexpr of { caselist }

cclause
caselist ; cclause

default : dexpr
expr : dexpr

scan dexpr using dexpr
transform dexpr using dexpr

fail
return ndexpr
suspend nexpr

exprll [expr sectop expr |
o+ -

nexpr
exprlist , nexpr

-23-

Appendix C

The Intermediate Language

The intermediate language generated by the Icon translator, ucode, resembles a stack-oriented assembler
Janguage. A ucode program is a sequence of labels and instructions. A label marks a location in the program
to which other instructions may transfer control. Labels are of the form “lab Ln™, where n is a decimal
number. A ucode instruction either describes an imperative operation or communicates information to the
lIcon linker. Instructions consist of an opcode followed by zero or more arguments. Arguments can be
decimal or octal integers, names, or label references.

The intermediate language operates exclusively on the stack. There are several kinds of objects that can
appear on the stack: descriptors, which represent Icon values and variables; procedure frame markers, which
mark the beginning of a new procedure frame; expression frame markers, which delimit driven expressions;
generator frame markers, which mark dormant generators; and loop frame markers, which mark the stack for
loop exits. For more details about the stack, refer to Section 3.2.

The opcodes and their arguments are described in three groups below. The global symbol table file has a
format similar to the ucode file; the opcodes used there are described in the fourth group.

Imperative Instructions

The instructions below, together with the operators described in the next section, represent runtime actions
for which code must be generated.

bevery
Save the contents of /prop on the stack and create a new loop frame for an every-do loop.

bloop
Save the contents of /prop on the stack and create a new loop frame for an every (without a do clause),
while, or until loop.

bscan
Save the scanning subject and position on the stack, and establish a new subject and position.

ccase
Duplicate the value on the top of the stack after creating a new expression frame. Used in case expres-
sions.

drive
Drive the current expression, as delimited by this opcode and the matching mark above it, to success.
That is, if the signal is failure and alternatives exist, reactivate the most recent dormant generator. Oth-
erwise, exit the current expression frame.

dup
Duplicate the value on the top of the stack. Used in augmented assignments,

eevery
Restore the value of [prop from the stack and exit the current loop frame. The null value is pushed onto
the stack, and the signal is set to success.

eloop
Same as eevery.
escan
Restore &subjecr and &pos from the stack.
every
Update the second copy of the stack heights saved in the current every-do loop frame. This is done
between an every clause and its do clause, so that next statements work properly.

225

evnext lab
Reset the expression and generator frame pointers from the second copy of the stack heights saved in
the current every-do loop frame, then go to /ah, which is the next label for the current loop.

field name
Access the field name from the record object on the top of the stack.

file name
Set the file name to name for use in error messages and tracing. Used at the beginning of each pro-
cedure and after every procedure call,

goto lab
Transfer control to the instruction following label /ab.

init?> /ah
If the initialization statement for the current procedure has already been executed once, go to /ab.

int n
Push the integer literal at constant table location n onto the stack.

invoke n _
Invoke a procedure or create a record. The number of arguments or fields on the stack is given by n.
The procedure or record creation object is on the stack, just beyond the arguments. After invocation,
the arguments are popped from the stack, and the returned value is pushed (see return).

invsig
Invert the signal. If it was success, make it failure; if it was failure, make it success and replace the top
of the stack with the null value.

keywd n
Push a value or trapped variable representing keyword n onto the stack. (See keyword.h for keyword
numbers.)

line n
Sct the linc number to n for use in error messages and tracing,.

llist n
Create a list of n literals. The literals arc popped from the stack and the created list is pushed back onto
the stack.

Ipnext lub
Reset the control stack pointer and the stack marker from the current loop frame, then go to /ah, which
is the next label for the current loop. '

mark
Save the current expression and generator frame pointers on the stack, then create a new expression
frame. This opcode and the matching drive below it define the boundaries of a driven expression.

pnull
Push the null value onto the stack.

pop
Pop the top element off of the stack.

pushl
Push the integer | onto the stack.

real »n
Push the real literal at constant table location n onto the stack.

return
Return from an Icon procedure (see invoke). The value on the top of the stack is saved, the stack is re-

stored to the previous procedure frame, and the saved value is pushed onto the stack as the returned
value of the returning procedure.

-26-

save lab
Create a new generator frame, so that a generator may be reactivated at /ab. This opcode effectively
creates a “dormant” generator:; it is used for alternation, so that the second alternative may be activated
when needed. The other generators, except for suspend, are part of the runtime library, and create a
new control stack frame implicitly.

sig=0
Set the signal to failure.
sig=0? lab

If the signal is failure, go to /ab.
sig=1

Set the signal to success.
sig=1? lab

If the signal is success, go to lab.

str n
Push the string literal at constant table location n onto the stack.

susp
Suspend the current procedure. This opcode creates a new control stack frame, so that the suspending

procedure becomes a dormant generator, then returns.

var n
Push the descriptor for the variable at location n in the Jocal symbol table onto the stack.

xform
Assign the value of &subject to the variable being scanned, then restore the previous &subject and &pos
from the stack.

Operators

The instructions below perform the functions corresponding to the indicated Icon operator. The operands
are evaluated and pushed onto the stack from left to right, so that the topmost element of the stack is the right-
most operand. The operands are popped before the result of the operation is pushed onto thestack. Allopera-
tions dereference their operands as necessary, but only after all operands have been evaluated and pushed onto
the stack. All operations attempt to convert their operands to an appropriate type. 1f this implicit conversion
fails, an error is issued. Relational tests fail if the specified condition is not met; the result of a successful com-
parison is the right-hand operand. Arithmetic operations cause an error to be issued if the result overflows or
underflows. If an operation cannot be performed for some other reason, the signal is set to failure.

abs Ix numgt x>y
asgn x =y numle X <=y
bang Ix numlit x<y
cat x|l y numne x ~=y
compl ~X plus x +y
diff xX—y power x1ty
div x/y rasgn x <—y
eqv X ===y rswap x &=>y
inter X »% p sasgn x u=y
minus x -y sect x[y:2]
mod x y strne X ~==y
mult x sy streq x ==y
neg -x subsc x[y]
neqv X ~===y swap x =y
numeq x=y tabmat =x
numeric +x toby xtoyby:z
numge X >=y unioncs X ++y

-27-

Non-Imperative Instructions

The following instructions generate no executable code. Instead, they communicate various information
to the linker about the procedure and its symbol table. An Icon procedure is translated into a sequence of
ucode instructions beginning with a proc instruction, followed by a sequence of local instructions, a locend
instruction, a sequence of con instructions, then the imperative instructions describing the procedure body.
An end instruction terminates the procedure.

proc name
Begin a new procedure with the indicated name. The local and constant tables are initialized. The pro-
cedure block is not generated at this time, since the local identifiers have not yet been declared.

local n,flags.name
Enter name into the current procedure’s local symbol table at location n. The symbol’s flags indicatc its
scope, retention. and other information. All identifiers referred to in a procedure appear in the local
symbol table. If an identifier is undeclared, its scope is determined by consulting the global symbol
table and a list of functions.

locend
Signal the end of the local declarations. The procedure block is generated at this point.

con nflags,value
Enter value into the current procedure’s constant table at location n in the table. The type of the con-
stant (integer, real, or string) is indicated by flags. For integer and real literals, value is an 11-digit octal
number: for string literals, it is a comma-separated list of 3-digit octal numbers, each representing one
bytc in the string.

end
Signal the end of a procedure.

Global Symbol Table Instructions

A single global symbol table file is output during each translation. Record declarations appear first in the
file; they are output as they are encountered in the Icon source program. The first instruction following the
record declarations is impl, which may be followed by a trace instruction, then by the global declarations. The
global declarations arc output at the end of translation.

record name.n
Declare a record with the indicated name and n fields. One line for each field follows this line, each
containing the field number and name.

impl scope
Declare the implicit scope as indicated. Scope can be either local or error. If the implicit scope is error,
undeclared identifiers are flagged as warnings during linking; otherwise, they are made local variables.
The implicit scope is error if the -u switch was given on the translator command line, otherwise it is lo-
cal.

trace
Enable runtime tracing. This instruction is present if the -t switch was given on the translator com-
mand line, and causes the keyword &irace to be initialized to -1.

global n
Begin the global symbol table. There are n global declarations following, one per line. Each global de-
claration contains a sequence number, the flags, the identifier name, and the number of formal parame-
ters (for procedures) or fields (for records).

-28 -

Appendix D

Data Representations

Descriptor Formats

The figures below depict each of the six descriptor types mentioned in Section 3.1. Each descriptor is two
16-bit words long;: the first word is shown on top of the second.

Null 0

String Qualifier 0 length

address of string
N\

Short Integer I]OI Slags] npe=
16-hit integer

Value 1{0 l Sflags l 1npe=2
address of daia block
Variable Trl m offset

address of descriptor

Trapped Variable 100 Sflags | trpe
address of daia block

Data Block Formats

The data blocks used by the lcon system are pictured below. The data type code, shown as both a
mnemonic and an integer, is always the first word of the block and has the same value as the type code in the
value or trapped variable descriptor that refers to it. All name fields in the data blocks are siring qualifier
descriptors, and all pointers in the data blocks are variable descriptors.

Variable-length blocks and especially long blocks are shown with a break in the side border.

Long Integer T_LONGINT =2

— 32-bit integer — -

-29-

Real

Cset

File

Procedure

T_REAL=3

double-precision real

T_CSET=4

256-bit characier set

T_FILE =35

UNIX file descriptor

file status

file name

T_PROCEDURE =6

size of this data block

entry point address

number of arguments

number of dvnamic locals

number of static locals

index of first siatic local

procedure name

name of first local

name of last local

List

List Block

Stack

Srack Block

T_LIST =7

open flag
upper bound

lower bound

— pointer 1o first list block —

— initial value —

T_LISTB=12
size of this data block
upper bound in this list block

— pointer to next list block —

— first element —
— last element —
T_STACK =8

current srack size

maximum stack size
offset to top element

— pointer to first (1op) stack block —

T_STACKB =13

— pointer 1o next stack hlock —

— first element (1owards top) =

— last element (1owards botrom) —

=31 -

Table

Tahle Element

Record

Subsiring Trapped Variahle

Subject Trapped Variable

T_TABLE =9

current table size

maximum table size

default value

Jirst hash bucket

last hash bucket

T_TELMT =11

—pointer o next element in bucket—

table element reference

table elemenit value

T_RECORD =10

size of this data block

pointer to record constructor

first field of record

last field of record

T_TVSUBS = 14

lengih of substring

relative position of substring

b—

variable coniaining subsiring

pa—

T_TVSUBJ =15

length of substring

relative position of substring

-32-

Table Element Trapped Variable

List Element Trapped Variable

T_TVTBL =16

pointer to table

table element reference

T_TVLIST =17

list element subscript

pointer to list

-33-

Appendix E

Stack Frame Formats

The four kinds of stack frames are described below. For each kind of frame. a frame pointer points to the
most recent frame marker, which marks one end of the frame. Each frame marker contains a pointer to the
next most recent marker of the same kind.

On the PDP-11, the frame pointers are contained in registers r2-rS whenever an Icon procedure is active.
The procedure frame pointer is in rS, the expression frame pointer is in r4, the generator frame pointer is in r3,
and the loop frame pointer is in r2. When a C procedure is active, only the procedure frame pointer is kept in a
register; registers r2-r4 are used for local variables by C procedures.

Procedure Frames

A procedure frame contains a procedure’s arguments, local variables, and temporary storage for incom-
plete computations. When an active procedure invokes another procedure, a new procedure frame is created
for the new procedure, which then becomes active. As such, the new procedure represents an incomplete com-
putation in the calling procedure, so the new procedure frame is “nested” within the old one. The procedure
marker is placed on the stack between the arguments and local variables. The format of the procedure marker
is shown in the following table; the locations are shown relative to the contents of 75, the procedure frame
pointer.

-8(r5) previous source program line number
-6(r5) previous contents of r2 (loop frame pointer)
—4(r5) previous contents of r3 (generator frame pointer)
-2(r5) previous contents of r4 (expression frame pointer)
0(r5) previous conients of rS (procedure frame pointer)
2(rS) return address
4(rS) number of arguments

Expression, generator, and loop frames are always contained wholly within a procedure frame, and their
respective frame pointers are cleared to zero after being saved in the procedure marker.

The first argument to a procedure is located at 6(r5), the second at 10(rS), and so on. The first local vari-
able is located at -12(r5), the second at -16(r5), and so on.

Procedure markers created for functions and operators do not contain the source program line number,
since functions and operators do not change it. Because they are C procedures, their local variables are not
descriptors and are subject to C language conventions, but everything above the marker (higher addresses) is
subject to Icon language conventions. The location of the procedure marker for functions and operators is
considered the boundary, mentioned in Section 3.2,

Expression Frames

An expression frame limits the scope of backtracking. No dormant generator outside the current expres-
sion frame may be reactivated until evaluation of the current expression is complete. The format of an expres-
sion marker is shown in the following table; locations are shown relative to r4, the expression frame pointer.

-2Ard) previous conients of r3 (generator frame pointer)
0(rd4) previous contents of r4 (expression frame pointer)

When an expression frame is created, the generator frame pointer is cleared after being saved in the expression
marker, to indicate that there are no dormant generators that may be reactivated while the new expression
frame is current. An expression frame extends from its expression marker to the top of the stack. Expression
frames are not disjoint; new frames are always nested within older ones.

-35-

Generator Frames

A generator frame preserves the state of execution of a dormant generator. When a suspending procedure
calls save, a generator marker is placed on the stack to mark the point of suspension, then the most recent
expression frame owtside the suspending procedure frame (the expression frame that was current just prior to
invocation of the suspending procedure) is then duplicated and pushed onto the stack. The suspending pro-
cedure then returns, so that the expression frame that was duplicated is current. Thus, the generator frame is
containcd within the expression frame, and “hides™ the dormant generator. The format of the generator
marker is shown in the following table; locations are shown relative to r3, the generator frame pointer,

-2r3) previous value of &level
O0(r3) previous boundary address
2(r3) previous contents of r2 (loop frame pointer)
4(r3) previous contents of r3 (generator frame pointer)
6(r3) previous contents of r4 (expression frame pointer)
8(r3) previous contents of rS (procedure frame pointer)
10(r3) reactivation address

The last five words of the generator marker are actually part of a procedure marker, created by the call to save.
Thus, the reactivation address is just the return address for save.

When a function or operator suspends, there is a boundary that becomes hidden. This boundary address
needs to be restored upon reactivation. It is also important to the garbage collector, since the portion of a gen-
erator frame between the hidden boundary and the generator marker does not have the well-defined structure
required.

Loop Frames

A loop frame is created for loops that can be affected by break or next. A loop marker is pushed onto the
stack when a loop is entered: it records the expression, generator, and loop frame pointers at the time the loop
was entered. For every-do loops, two copies of the expression and generator frame pointers are saved. The
format of the loop marker is shown in the following table; locations are shown relative to r2, the loop frame
pointer.

—4(r2) previous contenis of r3 (generator frame pointer)
-2(r2) previous contenis of r4 (expression frame poinier)
0(r2) previous contenis of r2 (loop frame pointer)
2(r2) previous contenis of r3 (generator frame pointer)
4(r2) previous conients of r4 (expression frame pointer)

The first two words are present only for every-do loops, and are actually just an expression marker. These
copies of the expression and generator frame pointers are updated each time the do clause begins, and are used
to restore the state of the control expression upon execution of a next.

-36-

