
Expression Evaluation in Icon* 

Ralph E. Griswold 

TR 80-21 

August 1980 

Department of Computer Science 

The University of Arizona 

Tucson, Arizona 85721 

*This work was supported by the National Science Foundation under Grant MCS79-03890. 





Expression Evaluation in Icon 

1. Introduction 

Icon [1,2] is a high-level, general-purpose programming language that emphasizes string and structure 
processing. Icon bears a heritage from SNOBOL4 [3] and SL5 [4] and is partly the result of attempts to 
improve on these languages and to correct some of their notable defects. 

One of the most significant aspects of Icon is the goal-directed evaluation of expressions. This mode of 
evaluation is a general feature of Icon and is not limited to a specific part of the language, as it is to pattern 
matching in SNOBOL4 [5]. 

An important aspect in making goal-directed evaluation a useful tool in Icon is the concept of generators, 
expressions that are capable of generating a sequence of values if that is necessary to achieve successful 
evaluation of expressions in which they are contained. Unlike CLU [6] and Alphard [7], generators in Icon are 
a completely general feature of the language and are not limited to specific constructs or the processing of 
particular data structures. Unlike typical AI languages [8], goal-directed evaluation in Icon is used in general 
computation, not data base searching. 

Although Icon emphasizes string and structure processing and these features provided the original 
motivation for generators and goal-directed evaluation, the consequences of the expression evaluation 
mechanism in Icon are more far reaching. 

Early use of Icon emphasized string and structure processing, and it was some time before the potentials of 
its expression evaluation mechanism were appreciated, even by the designers and implementors of the 
language. If understanding has proved difficult, exploitation has been even more so. 

With the expression evaluation mechanism of Icon came unexpected problems in description and 
understanding. It is tempting to attribute these problems to flaws or inconsistencies in Icon. In fact, it now 
appears the expression evaluation of Icon is simply more general than that in most programming languages 
and that this greater generality leads new Icon programmers to assume erroneously that constructions with 
familiar appearances are limited in their behavior to what they do in other programming languages. For 
example 

if e1 then e2 else e3 

is as traditional a control structure as one could hope to have. Nonetheless, it has possibilities in Icon that are 
very different from those in other programming languages. Similarly, those familiar with SNOBOL4 assume 
that Icon expressions such as 

(e1 I e2) & e3 

are patterns in disguise and fail to appreciate their potential in more conventional programming contexts. 

In fact, newcomers to Icon commonly assume the conjunction operation, e1 & e2, has a special role in 
goal-directed evaluation and imbue it with an undeserved mystique (conjunction is, in fact, the simplest of all 
operations in Icon). Similarly, the handling of e1 in 

if e1 then e2 else e3 

is viewed as having some special status in goal-directed evaluation (it does not). 

One person new to Icon commented that learning most new programming languages is largely a matter of 
learning new syntax and discovering how to cast familiar operations in the new language; Icon, however, 
seems to involve more learning of new semantics [9]. 

This paper describes the evaluation of expressions in Icon and illustrates its generality. No attempt is made 
to describe other aspects of Icon, such as high-level string processing. The next section uses an informal 



approach, introducing terminology for new concepts, describing the steps by which expressions are evaluated, 
using a few illustrative examples. Section 3 uses a more formal approach in which expression evaluation is 
explicated by a program that provides interpretive semantics. 

The remainder of this paper assumes that the reader is familiar with traditional high-level programming 
languages, such as Algol 60 and has a cursory knowledge of Icon. A familiarity with SNOBOL4 will help in 
placing some matters in perspective. 

The semantics of expression evaluation described here correspond to Version 3 of Icon [2]. In many 
respects, these semantics are the same as those for Version 2 [10]; differences are noted at the places that they 
arise. 

2. An Informal Description of Expression Evaluation 

2.1 Basic Concepts and Terminology 

The concepts and terminology common to most programming languages are assumed here. The terms 
value and variable are assumed to be primitive and well understood. Values may be represented in a program 
by literals or they may be computed as the results of evaluation of expressions. Variables may be represented 
in program text as identifiers or they may be computed as the results of expressions. To simplify description of 
the evaluation process, both literals and identifiers are considered to be expressions, although actual 
implementations of Icon may treat them specially. 

In Icon, the term result is used to describe either a value or a variable. For example, the result of the 
addition of two numbers is a value, while the result of an assignment expression (in Icon) is a variable. 

Icon is an expression-based language; there are no statements as such. Expressions in Icon are divided into 
two classes: functions and control structures. Functions may have zero or more arguments. As a point of 
terminology, operator is taken to be synonymous with function, and operand with argument, since the 
differences are syntactic, not semantic. Similarly, expressions in control structures are also referred to as 
arguments. Functions may be built-in as part of the Icon language, or supplied as procedures in the program. 
The difference is inessential for the purposes of discussion, and procedures are not described here. 

The difference between functions and control structures is based on how their arguments are evaluated. 
For functions, arguments are always evaluated in the same way, in a strictly left-to-right order and prior to 
invocation of the function; the evaluation of arguments is independent of the computation performed by the 
function. For control structures, the evaluation of arguments depends on the specific control structure. For 
example, in 

if e1 then e2 else e3 

e1 is evaluated first and its outcome determines which arm, e2 or e3, is evaluated. 

In general, expressions produce results. This is true of control structures, such as if-then-else, as well as of 
ordinary computational expressions, such as addition. In some circumstances, the evaluation of an expression 
may fail to produce a result. The term outcome is used to describe the consequences of evaluating an 
expression, whether it be a result or the lack of one. 

In Icon, the failure of an expression to produce a result is significant and depends,.typically, on the 
computation that is performed and on the outcome of other expressions contained in it. The absence of a 
result is not a static property, as it is in some languages in which the result of a statement is meaningless. 

Traditionally, the terms success and failure, called signals, have been used in Icon and its predecessors, 
SNOBOL4 and SL5, to indicate, respectively, an outcome that produces a result or fails to do so. In Icon 
(unlike SL5), the concept of signal is redundant, since success occurs if and only if a result is produced. The 
concept of signal is not used here, although the terms succeeds and fails are used as abbreviations for 
"produces a result" and "fails to produce a result", respectively. Success and failure and other grammatical 
variants are used similarly. 

The term conditional is used to describe an expression that may fail to produce a result. In Icon, unlike 
Algol, for example, control structures are "driven" by the success or failure of expressions in their control 
clauses, rather than by the Boolean values true and false. In the control structure 



if e1 then e2 else e3 

the success or failure of the control claused determines which of the arms is evaluated. For example 

if x > y then z := x else z := y 

appears to be the same in Icon and Algol, but the mechanism by which one of the two arms of the control 
structure is selected differs in this subtle manner. 

If a conditional in Icon succeeds, it produces a result (by definition). For arithmetic comparison 
operators, the result is the value of the right operand. This allows, for example, constructions such as: 

if x > y > z then z := x else z := y 

It is important to note that the result produced by a conditional may be useful and that it is not restricted to a 
Boolean value. Neither do conditionals produce more than one type (such as numeric and Boolean). 

In functions, failure is an "inherited" property. In simple cases, failure in the evaluation of an argument to 
a function causes the function expression itself to fail. More precisely, unless all arguments of a function 
produce results, the function is not invoked and the expression fails. For example, the expression 

x := (y > z) 

fails if the conditional fails. While it is convenient to say "the assignment fails", the assignment operation is 
never invoked and (hence) no assignment is made; the value of x is unchanged. The inheritance of failure in 
Icon allows a greater generality and richness of expression in control clauses than is available in languages in 
which only conditional expressions may appear in control clauses. An example is 

if x := (y > z) then y := z else y := 0 

Inheritance of failure is a general property of functions; only control structures "intercept" failure. 
Expressions that only contain functions are called functional expressions. 

2.2 Generators 

Most functions are not conditional and always produce a single result. Examples are arithmetic 
computations and assignment. 

The evaluation of expressions in Icon is enriched (and complicated) by generators, expressions that may 
produce more than one value. 

The logical possibility of producing more than one value is afforded by operations such as the following. 
Consider two strings s1 and s2 (e.g., "sum" and "(sum*delta-sum)"). In general s1 may occur as a 
substring of s2 (or it may not). Furthermore, as in the example above, s1 may occur more than once as a 
substring of s2 (twice in the example above). In Icon, the function find(s1 ,s2) returns the smallest (integer) 
position at which s2 occurs as a substring in s2, failing if s1 does not occur as a substring of s2. For the 
example above, the value of find(s1,s2) is 2, i.e. at the second character of s2. Note that, in general, find is a 
conditional as defined earlier. The function find is also a generator with the capability of producing more than 
one result (2 and 12 in the example above). The potential results of a generator constitute a sequence. The 
order of this sequence depends on the particular generator and its arguments. In the case of find, the sequence 
is in increasing numerical order. The sequence produced in the example above is 2, 12. 

In ordinary computation, find produces the smallest result, so that, for the example above 

x := find(s1,s2) 

assigns the value 2 to x. 

If a generator is an argument of a function and the function fails, the generator is "reactivated" to produce 
another result. If there is one, the function is called again. Consider 

x := (y <find(s1,s2)) 

Suppose s1 and s2 are as given earlier and the value of y is 5. The first result produced by find is 2 and the 
comparison fails. The function find generates its second value, 12; the comparison succeeds and the value 12 is 
assigned to x. 



If, however, the value of y is 20, the comparison fails for the values 2 and 12. At this point find fails to 
produce a result when reactivated the second time, this failure is inherited by the comparison and assignment 
operators, and the entire expression fails. (The value of x is unchanged, since the assignment operation is never 
invoked.) 

As indicated, functions may be activated more than once. The term invoked is used to describe the initial 
activation of a function. The term reactivated is used to describe subsequent activations of a function, which 
may produce subsequent results. 

In more complex expressions, in which there may be many generators, the order in which generators 
produce results becomes an important issue. 

2.3 The Evaluation of Arguments of Functions 

While arguments of functions are evaluated in strictly left-to-right order, the reactivation of generators 
depends on outcome of intermediate evaluations. In fact, any failure that occurs in the evaluation of a 
functional expression causes control backtracking to the most recently evaluated generator in "search o f 
another result. This mode of evaluation is called goal-directed in the sense that success of the evaluation of 
functional expressions is a goal and that the strategy used ensures that all results of all generators are 
produced, if that is necessary to achieve this goal. 

Consider again the previous example, assuming y has the value 5: 

x := (y < find(s1,s2» 

Technically, the operators are syntactic representations of functions and this expression can be cast in function 
prefix form as 

:=(x,<(y,find(s1,s2))) 

The left-to-right order of evaluation for the arguments of := is x and <(y,find(s1 ,s2)). This leads to the 
evaluation of the arguments of <, y and f ind(s1 ,s2). This in turn leads to the evaluation of the arguments of 
find, s1 and s2. The function find is then called with the values of s1 and s2. and the value 2 is returned. The 
function < is then invoked with y and 2. Since the value of y is 5, the comparison fails, < fails to produce a 
result. What happens next is crucial to goal-directed evaluation: find is reactivated (it is not invoked again 
with the same arguments; rather its former invocation is reactived at the point it produced its previous result, 
2). The function find now returns the value 12, and the function < is invoked (afresh) with the arguments y and 
12. This comparison succeeds and produces the result 12, the function := is invoked with the arguments x and 
12. and the assignment is made. 

If, on the other hand, the value of y is 20, the second invocation of < fails, and find is reactivated. Since s1 
does not occur as a substring of s2 at any other position, find fails. Technically, the identifier s2 is reactivated 
at this point. (Although it is obvious that identifiers are not generators, it makes the description of goal-
directed evaluation more uniform to assume that the "property of generation" is not known to the evaluation 
mechanism.) The identifiers s2 and s1 both fail to produce another value, control backtracking to the 
previous identifiers y and x occurs with the same outcome. There is no further point to which to backtrack 
(assuming that this example occurs in isolation), the function := is not invoked, and the entire function 
expressional fails to produce a result. 

This informal description of goal-directed evaluation is hardly precise or rigorous. Furthermore, it does 
not illuminate the potential for the use of generators to provide concise representations for complex 
combinatorial computations. A more precise description is undertaken in Section 3. There are some points 
about functional expressions worth summarizing here, however: 

(1) Evaluation of arguments is strictly left-to-right. 

(2) In the absence of failure, there is no control backtracking, no expressions are reactivated, and there are 
no manifestations of control backtracking. 

Data backtracking, the restoration of data to prior states, such as "undoing" assignments, is not a general feature of 
Icon and applies only to some specific operations such as reversible assignment and certain string scanning functions. 



(3) Control backtracking on failure always reactivates the most recently invoked function. 

2.4 Control Structures 

The evaluation of control structures, unlike functional expressions, is idiosyncratic; each control structure 
has its own mode of evaluation. The if-then-else control structure described earlier is familiar and requires 
no special interpretation for Icon, although there are issues about its outcome that are discussed later. 
Similarly, 

while e1 do e2 

evaluates e1 repeatedly as long as e1 produces a result, and it evaluates e2 each time e1 produces a result. 
(The outcome of evaluating e2 does not affect the evaluation of while-do.) The outcome of while-do, when 
e1 fails to produce a result, is the null value. 

Other control structures are more interesting. Alternation, perhaps the most basic generator, has the form 

e1 I e2 

Alternation first generates the sequence of results produced by e1 and then the sequence of results produced 
bye2. 

Consider first the case in which e1 and e2 are simple functional expressions, such as in 

(x I y) > 3 

Conceptually, this expression succeeds (and produces the value 3), if the value of either x or y is greater than 3. 

Suppose the value of x is 5 and the value of y is 4. Recasting the syntax as was done in the preceding 
section, this expression becomes 

>(x I y,3) 

Note that alternation is not recast in prefix form, since it is a control structure. Although alternation looks 
like an operator, it is not, since it does not obey the evaluation rules for functions. 

The first argument of >, x I y is evaluated first. The result is the variable x, which has the value 5. The 
second argument is 3, > is invoked with the values 5 and 3, and it returns the value 3. 

If, however, the value of x is 1, and the value of y is 4, > is invoked with x and 3 and it fails to produce a 
result.. At this point the literal 3 (which, like an identifier, can be considered to be a simple expression) is 
reactivated. It has no other value and fails to produce a result. Backtracking then reactivates alternation, 
which produces y. The invocation of > with y and 3 produces the result 3. Note that > is invoked twice in this 
case. 

Finally, if the value of x is 2 and the value of y is 2, the second invocation of > fails, the reactivation of 3 
produces no result, the subsequent reactivation of the alternation produces no result, and the entire expression 
fails. Note that > is also invoked twice in this case. 

One very useful control structure in Icon simply reactivates generators repeatedly to produce all results. 

every e1 do e2 

every-do effectively "searches" e1 for all results and evaluates e2 for each one. As with while-do, the 
outcome of evaluating e2 does not affect the evaluation of every-do. The outcome of every-do itself if the 
null value. 

2.5 Expression Sequencing and Barriers to Backtracking 

A sequence of expressions is separated by semicolons (either explicitly or implicitly — the Icon translator 
supplies semicolons where they are appropriate at the ends of program lines). In an expression sequence, 
expressions are evaluated from left to right. For example, in 

e1; e2; e3 

The order of evaluation is e1 , e2, and e3 . 

- 5 -



Each expression in an expression sequence is isolated with respect to goal-directed evaluation; the 
semicolons can be considered as barriers to backtracking. Thus regardless of the outcome of evaluating e1 , e2 
is evaluated next. Furthermore, if evaluation of e2 fails, e1 is not reactivated. 

Braces are used to enclose expression sequences and to allow sequences to be used where a single 
expression is expected. Braces also serve as barriers to goal-directed evaluation; an expression surrounded by 
braces is not reactivated even if it occurs in a context where another result is needed for a larger, enclosing 
expression to succeed. For example 

{x I y} > 3 

succeeds only if x is greater than 3. The braces serve as a barrier to reactivation of alternation. 

While the example above is contrived to illustrate the effect of braces, there are circumstances where such 
an explicit barrier is useful to prevent undesired control backtracking. 

3. Interpretive Semantics of Expression Evaluation 

The preceding sections describe expression evaluation in Icon in terms of familiar concepts in other 
programming languages and rely on examples to provide an intuitive basis for understanding the mechanism. 
In this section, a more precise description of expression evaluation is given in the form of a program that 
constitutes "interpretive semantics" for this aspect of Icon. 

This program, called expevl, is written in Icon itself. It may appear that an Icon program to explicate 
expression evaluation in Icon involves a hopeless circularity. Circularity is avoided in two ways— (1) expevl 
only attempts to describe a limited portion of the semantics of Icon, and (2) expevl itself uses none of the 
features it undertakes to describe. 

The use of Icon to describe Icon constitutes a kind of semantic bootstrap. It builds on an understanding of 
the conventional features of Icon to provide an understanding of some of its more unconventional features. 
There are several advantages of using a high-level language in general and Icon in particular for describing 
semantics. The high-level programming language, while not providing the rigor of formal semantics systems, 
is nonetheless easier to understand, which is the aim here. The use of Icon, rather than another high-level 
language, has the advantage of establishing a single vehicle for discourse, avoiding the confusion of switching 
back and forth between two languages. 

3.1 The Scope of expevl 

expevl is a program that interprets Icon expressions and is primarily concerned with the order of 
evaluation of expressions. Only a few, representative kinds of expressions are included; expevl makes no 
attempt at completeness. Since expression evaluation is the issue, complicating aspects of Icon are omitted; in 
fact the only type of Icon data handled by expevl is the integer. This avoids issues of automatic type checking 
and coercion, which have nothing to do with expression evaluation,per se. 

The following functional expressions are supported by expevl: 

-e1 
e1 
e1 
e1 
e1 
e1 
e1 

+ e2 
> e 2 
:=e2 
< - e 2 
& e2 
to e2 

Note that e1 to e2 is a functional expression, not a control expression; this matter is discussed later. The by 
clause is omitted for simplicity only. 

expevl supports the following control expressions: 



e1 I e2 
if e1 then e2 else e3 
whi le e1 do e2 
e1 fails 
e1 ; e2 
{e1} 

Semicolons and braces are treated separately to illustrate that both serve as barriers to goal-directed 
evaluation. 

3.2 The Representation of Icon Expressions in expevi 

Icon expressions are represented by records in expevi. Functional expressions are divided into unary and 
binary categories for technical reasons that are described later: 

record unary(func,e1) 
record binary(func,e1 ,e2) 

Here func is the name of the function (represented by an Icon string, such as "-") and e1 and e2 are records 
representing the argument expressions. 

There is a record type for each kind of control expression: 

record alter(e1 ,e2) 
record if_then(e1 ,e2,e3) 
record while_do(e1,e2) 
record fails_(e1) 
record compound(e1 ,e2) 
record Iimit(e1) 

Icon values and variables are also represented by records in expevi: 

record value(constant) 
record variable(name) 

Thus Icon values and variables are encapsulated as data objects in expevi and isolated from other data types 
used by expevi. For example, the Icon expression 

x := x + 1 

is represented in expevi by 

binary (":=",variable("x"), binary ("+",variable("x"),value(1))) 

(expevi contains a "compiler" that translates a more natural form of input into records such as these.) 

expevi also treats the lack of a result ("failure") in Icon as a separate record type 

record noresult() 

and the unique value 

phi := noresult() 

Treating the lack of a result in Icon by a specific data object phi in expevi permits expevi to be written without 
itself using failure of expression evaluation (hence avoiding a potential circularity as discussed above). 

One further complication arises because while-do returns the null value, which is not an integer. Since 
type checking and coercion, even between the null value and integers, is a complicated process that would 
obscure the essential aspects of expression evaluation, a record of type value with the integer valueO is used to 
represent the null value in expevi: 

nullvalue := value(O) 

Since the integer equivalent of the null value is 0, this device assures that expevi produces computationally 
correct results in the event that an uninitialized identifier or, less likely, a control structure such as while-do is 



used an arithmetic operation. 

3.3 Coding Conventions in expevi 

In order for expevi to serve as a valid semantic bootstrap, it must avoid circularity, as mentioned above. 
That is, it must not use any of the features of Icon that it is designed to explicate. There are two ways that this 
is accomplished. 

(1) By using features of Icon that have direct counterparts in other, traditional programming languages. In 
this sense, expevi could be written in a variety of other programming languages and hence avoid problems of 
circularity. An example is given by 

if e1 then e2 else e3 

While in Icon this control expression is "driven" by the success or failure of e1 , it is used in expevi only in 
ways that are consistent with usages in languages such as Algol 60, where e1 would be an expression that 
produces Boolean values true and false. This constraint amounts to restricting e1 to being a conditional 
expression (as opposed, say, to an assignment expression that "inherits" failure from one of its operand 
expressions). 

(2) By excluding the use of features essential to expression evaluation. For example, expevi does not use 
built-in generators, since it is designed to explicate the effect of generators on expression evaluation. 

These two kinds of constraints on expevi can be summarized in coding protocols: 

(1) Arguments of procedures are variables; there are no expressions in argument lists. Hence no side 
effects are possible and the order of evaluation of arguments to procedures does not affect the behavior of 
expevi. More importantly, arguments can neither fail nor generate more than one value. 

(2) All expressions in the control clauses of control expressions are simple conditionals. Furthermore, 
conditionals are only used in the control clauses of control expressions. 

(3) No built-in generators are used anywhere in expevi. 

(4) All arguments in functional expressions and control expressions (except control clauses) are simple — 
usually calls of procedures or built-in functions or operators. This protocol is not essential to the "correctness" 
of expevi, but is intended to make it easy to see that there are no "hidden tricks". In a few cases, expressions 
are nested one level deep for readability; they can be unnested easily. 

(5) Control expressions are used only in contexts where they could be "statements"; that is, no use is made 
of the results produced by Icon control expressions. 

(6) No computation is performed using phi; only its identity is tested. 

There are several features of high-level languages that are used in expevi; all of these features can be found 
in other well-known high-level programming languages: 

(1) records (as mentioned above), with reference to the values of their fields (but not assignment to fields). 

(2) programmer-defined procedures with arguments passed by value. 

(3) ordinary expression sequencing using traditional control structures. 

(4) case expressions with literal selectors (these could be replaced by if-then-else expressions). 

(5) Typical built-in operations and functions, such as arithmetic, assignment, conditionals, and type(x). 

(6) repeat loops exited only by means of break (never as a result of expression failure). 

(7) The string and object comparison conditionals such as x == y and x === y (the latter can be 
replaced by the former and the use of type(x)). 

There are two "non-standard" constructs used in expevi, which are its "weak links" and deserve more 
discussion: 

(1) Suspension of procedure invocation with the return of a result and the possibility of subsequent 
reactivation. 

(2) Use of every-do to repeatedly activate procedures. 



Procedures are used in expevi to model expressions in Icon. In general, arguments of such procedures are 
records, corresponding to the arguments of the equivalent Icon expressions. Such procedures always return 
results (a expevi value or variable) using suspend. Such procedures are the only generators in expevi. This 
is essentially the expevi model for built-in expressions in Icon and constitutes, as well, a model for the way 
expressions actually might be implemented in Icon. Procedure suspension cannot be claimed as a feature of 
other well-known, high-level programming languages. However, it is borderline in this respect, since the 
coroutine is not a rara avis, although coroutine mechanisms vary widely. To accept suspend, all that is 
needed is the acceptance by the reader that procedures may be implemented in a fashion that allows their 
activity to be suspended (and a result returned) without destruction of the procedure environment and with 
subsequent reactivation of the procedure at the point following the suspension. In any event expevi does not 
attempt to explicate either Icon procedures or suspend, so in this sense their use involves no circularity per se 
(although it does introduce a component that cannot be passed off to lower-level languages). 

The use of every-do is at once more serious and less serious than the use of suspend. While appeal can be 
made to the concept of coroutines in the case of suspend, it is harder to find a familiar concept similar to 
every-do. The problem is made simpler in expevi by the fact that every-do is used in only one paradigm: 

every x := f(y) do e2 

where f(y) is the call of a procedure. That is, every-do is only used to repeatedly activate a procedure to obtain 
its successive values (recall that no built-in generators are used in expevi). Furthermore, this is the only 
context in which a procedure can be activated more than once in expevi. 

The every-do construct of Icon as used in expevi can be modeled by coroutines and loops in other 
languages. For example, the Icon expression above has the following equivalent in SL5 [11 ]: 

z := create f with y 
while x := resume z do e2 

One additional aspect of the use of every-do in conjunction with procedures that suspend is that such 
procedures never fail (or, for that matter, terminate with return). All every-do loops are terminated by 
breaks, never as a result of a procedure failing to return a result. Furthermore, the argument of suspend is 
always a variable (never an expression that might generate a value), (expevi could be made more compact by 
using alternatives in suspends, but this would violate the coding protocol.) 

In summary, there are two ways in which suspend and every-do might cast doubts on expevi: (1) they fail 
outside of the "bootstrap" concept, since they cannot be taken from well-known features of lower-level 
languages; and (2) their semantics, possibly being in question, may cast doubts on the correctness of expevi. 
On the other hand, suspend does not introduce circularity, since expevi does not attempt to explicate it or 
programmer-defined generators. 

4. The expevi Program 

expevi consists of two major components, an "interpreter", and a collection of procedures that correspond 
to functions and control expressions in Icon. There are also a number of support routines. The following 
sections describe the expevi program. A listing of expevi is given in Appendix A. 

4.1 Typical Functions 

The general format of procedures that correspond to functions is given by minus, which performs the 
function -e1: 

9 -



procedure minus(x l ) 
local r 
x1 := deref(x l) 
r := value(-x1 .constant) 
suspend r 
suspend phi 
error(11) 

end 

x1 is the result of evaluating the expression that is the argument of e1 (which may be complex, as in-(y+2). In 
general, the value of x1 is either a value or a variable. Dereferencing, done by deref, is done in Version 3 
after functions are invoked, as shown here. In Version 2, variables are dereferenced before functions are 
called. The details of dereferencing are discussed below. 

Once the argument is dereferenced, the negative is formed. Note that the argument passed to minus is not 
changed by dereferencing, since arguments are passed by value in Icon. A new value is produced, so that the 
Icon value being modeled is not changed. 

Note that the use of the Icon minus operator to compute the negative involves no circularity, since expevl 
is not concerned with the semantics of computation. 

The important part of this procedure resides in the last three lines. The suspend r corresponds to 
returning the value of - e1 . Should -e1 be reactivated for another result, control is returned to minus at the 
next line, suspend phi corresponds to returning no result — "failure". That is, -e1 has only a single result, 
the negative of e1 ; it is not a generator. 

If expevl is coded correctly, minus (or any other function), should never be reactivated after suspending 
with phi. For internal error checking purposes, a call to the procedure error is inserted at all places that 
should never be reached in expevl. Should it be called, it prints a diagnostic message and terminates 
execution: 

procedure error(n) 
stop("internal inconsistency at site ",n) 

end 

A typical binary function is illustrated by sum, which performs the operation e1 + e2: 

procedure sum(x1,x2) 
local r 
x1 := deref(x1) 
x2 := deref(x2) 
r := value(x1 .constant + x2.constant) 
suspend r 
suspend phi 
error(14) 

end 

4.2 Variables and Assignment 

The values associated with variables in expevl are maintained using a table: 

sym := table() ::= nullvalue 

The initial value nullvalue corresponds to the initial null value of variables in Icon. 

The assignment operation, e1 := e2, implemented by assign, illustrates how values are inserted in this 
table: 
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procedure assign(x1,x2) 
if type(x1) ~ = = "variable" then runtime(121) 
sym[x1.name] := deref(x2) 
suspend x1 
suspend phi 
error(15) 

end 

Again, e1 and e2, which may be expressions, are reduced to variables or values by the argument evaluation 
mechanism before assign is called. The first line of assign is a check to assure the first argument is a variable. 
The procedure runtime handles error termination in Icon: 

procedure runtime(n) 
stop("runt ime error ",n) 

end 

assign first inserts the value of the second argument, obtained by dereferencing x2 into sym according to 
the name of the variable. It then returns its first argument (as a variable). If reactivated, it returns no result, 
using the same model as minus. 

Reversible assignment illustrates how data backtracking is done. 

procedure revasg(x1,x2) 
local temp 
if type(x1) ~ = = "variable" then runtime(121) 
temp := sym[x1.name] 
sym[x1.name] := deref(x2) 
suspend x1 
sym[x1.name] : = temp 
suspend phi 
error(16) 

end 

Dereferencing involves obtaining the value of a variable from sym. If the argument of deref is a variable, its 
value is looked up in sym. If the argument of deref is a value, it is returned unchanged. 

procedure deref(x) 
case type(x) of { 

"variable": return sym[x.name] 
"value": return x 
default: error(18) 

} 
end 

4.3 A Typical Conditional 

Conditionals follow the same model as ordinary computational functions, the only difference being that 
they may fail to produce a result. An example is greater, which corresponds to e1 > e2: 

procedure greater(x1 ,x2) 
x1 := deref(x1) 
x2 := deref(x2) 
if x1 .constant > x2.constant then suspend x2 
suspend phi 
error(13) 

end 

Note that greater returns the value of its second argument if the comparison succeeds. 



4.4 A Typical Generator 

Generators also follow the models given earlier, except more than one result may be produced. An 
example is given by to_ which corresponds to e1 to e2. The by clause is omitted here to avoid coding details 
concerning negative indexing and so forth that have nothing to do with the evaluation of expressions. 

procedure to_(x1,x2) 
local r 
x1 := deref(x1).constant 
x2 := deref(x2).constant 
while x1 <= x2 do { 

r := value(xl) 
suspend r 
x1 := x1 + 1 
} 

suspend phi 
error(17) 

end 

Note that e1 to e2 is a function, not a control structure. Its arguments are evaluated before it is called, just 
like any other function. This is not true of control structures. 

4.5 The Interpreter 

The term interpreter is used here for the portion of expevl that evaluates arguments, implements control 
structures, and calls procedures that correspond to functions (such as minus). The procedure that implements 
these operations is lengthy and begins as follows: 

procedure interp(node) 
local x1, x2, r 
case type(node) of { 

"value": { 
suspend node 
suspend phi 
error(1) 
} 

"variable": { 
suspend node 
suspend phi 
error(2) 

The argument, node, may be any of the record types that correspond to expressions in Icon. The case 
expression selects processing according to type. The two simplest cases are value and variable, which simply 
return node and then indicate no result if reactivated. Although their code sections are the same, they are not 
combined to avoid the introduction of alternation in a case selector, which would be a violation of the coding 
protocol for expevl. In this and many other respects, expevl can be made more compact by allowing use of 
more features of Icon, once the semantic bootstrap has been effected. 

4.6 A Traditional Control Structure 

if-then-else is as familiar a control structure as there is and, in one form or another, populates hundreds of 
programming languages. In Icon, however, even this simple control structure raises a number of issues. The 
code for if-then-else is one portion of the case clause of interp: 



" i f_then": { 
r := interp(node.e1) 
if r === phi 

then { 
r := interp(node.e3) 
if r ~=== phi then suspend r 

} 
else { 

r := interp(node.e2) 
if r ~ = = = phi then suspend r 

} 
suspend phi 
error(6) 
} 

Note that the first argument is invoked by a simple call. Thus, even if the first argument is a generator, only its 
first result (if there is one) is used. There is no way that the first argument can be "backed into"(in case, for 
example, the selected arm fails to produce a result). 

The selection of the arm to be evaluated depends on whether or not the first argument produces a result or 
not. The treatment of the two arms is identical. Again, the selected argument is invoked by a simple call, so 
that it may produce at most one result, which becomes the result of if-then (illustrating that it is, indeed an 
expression). 

The fact that the selected arm of if-then-else can only return a single result, even if it is a generator, raises 
a number of interesting questions. The semantics, as given, are the actual semantics of Versions 2 and 3 of 
Icon. Since there is a (natural) tendency to use if-then-else as if it were a statement, the fact that its arms do 
not act as generators is not ordinarily noticed. However, there is no essential reason why its arms could not act 
as generators. Consider for example, an expression such as 

every i := (if x > y then 1 to x else 1 to y) do f(i) 

In Versions 2 and 3, only f (1) is called, regardless of whether or not x is greater than y; there are no subsequent 
calls, since the arms are not reactivated. 

This issue initially produced considerable controversy in the Icon design group. The eventual result of 
discussion was to change the behavior of if-then-else (and other control structures) in future versions to allow 
their arguments to be generators, except in control clauses (such as the first argument of if-then-else). The 
arms of if-then-else can be allowed to be generators as follows: 

" i f_then": { 
r := interp(node.e1) 
if r === phi 

then { 
every r := interp(node.e3) do 

if r === phi then break 
else suspend r 

} 
else { 

every r := interp(node.e2) do 
if r === phi then break 
else suspend r 

} 
suspend phi 
return error(6) 
} 

Determining why control clauses should not be allowed to act as generators provides a good test of the 
understanding of expression evaluation in Icon. There are other situations in which expressions are not used 
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as generators. One occurs in e1 fails: 

"fai ls_": { 
r := interp(node.e1) 
if r === phi then suspend nullvalue 
suspend phi 
error(19) 

If interp(node.el) were repeatedly activated, the result would eventually be phi and fails would always 
succeed. 

4.7 Alternation 

Alternation provides an interesting example of a control structure that is also a generator: 

"alter": { 
every r := interp(node.e1) do 

if r === phi then break 
else suspend r 

every r := interp(node.e2) do 
if r === phi then break 
else suspend r 

suspend phi 
error(5) 
} 

As indicated, alternation first calls interp recursively with its first argument (which represents an Icon 
expression) and returns each result that is returned, as produced by every. For example, if the first argument 
corresponds to e1 to e2, to_is repeatedly activated and its results returned. 

Activation of the first argument is terminated when phi is encountered, never by failure of interp to 
produce a result, expevi is written so that all procedures that correspond to Icon functions and control 
structures produce phi and then terminate program execution via error, should a coding mistake in expevi 
cause the phi to go undetected. 

Once all the results from the first argument are produced, the second argument is treated in the same way. 
Note that alternation is not a function — its arguments are not evaluated prior to its invocation (and cannot 
be). Conversely, no function repeatedly activates its arguments; the arguments of a function are evaluated 
prior to the invocation of the function. 

4.8 Repeated Activation of Generators 

By way of interest, every-do can also be included in expevi. This is clearly a circularity, but it may add a 
little to the understanding of repeated evaluation of generators. In any event, it is a separable issue. 

"every_do": { 
every r := interp(node.e1) do 

if r === phi then break 
else interp(node.e2) 

suspend nullvalue 
suspend phi 
error(8) 
} 

Note that the outcome of interp(node.e2) is irrelevant to the operation of every-do. 
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4.9 Evaluation of the Arguments of Functions 

One of the functions of interp is to evaluate the arguments of functions. Whereas this is a comparatively 
simple operation in most programming languages, it involves subtleties in Icon, as is illustrated by the section 
of interp that evaluates the arguments of unary functions. 

"unary": { 
every x1 := interp(node.e1) do 

if x1 === phi then break 
else 

every r := dounary(node.func,x1) do 
if r === phi then break 
else suspend r 

suspend phi 
error(3) 
} 

In the first place, an argument expression may be arbitrarily complex. Note that interp is called recursively 
and activated repeatedly to produce all possible results for each result of the argument evaluation, the specific 
unary function is called, using a common procedure, dounary. All unary functions are contained in dounary; 
the example minus above actually is not a separate procedure in expevi but is selected in a case clause from 
the value of node.func: 

procedure dounary(func,x1) 
local r 
case func of { 

" - " : { 
x1 := deref (x1) 
r := value(-x1 .constant) 
suspend r 
suspend phi 
error(11) 

Since the unary function may itself be a generator, dounary is also repeatedly activated until phi is 
produced. Each result produced (prior to phi) is returned by interp. Once dounary produces phi. the inner 
every loop is broken and the next result from the argument expression is produced, until it, too, produces phi. 

This is the heart of goal-directed evaluation. It assures, for example, that 

(x I y) > 1 

compares y to l if x is not greater than l. It also assures that in 

f(x I y) 

f(y) is called if f(x) fails. While these two cases are equivalent, except for syntax, the behavior of the latter 
expression is often overlooked, since it does not have the intuitive content that the former one does. It does 
illustrate one of the ways that generators can be used to provide concise representations of complex 
combinatorial computations. 

The nested every loops in the evaluation of arguments of unary functions explicate the order in which 
expressions are evaluated, and are worth study. The extension the evaluation of arguments of binary functions 
is natural and straightforward: 
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"binary": { 
every x1 := interp(node.e1) do 

if x1 = = phi then break 
else 

every x2 := interp(node.e2) do 
if x2 === phi then break 
else 

every r := dobinary(node.oper,x1 ,x2) do 
if r = = phi then break 
else suspend r 

suspend phi 
error(4) 
} 

Like the case for unary functions, all binary functions are encapsulated in the procedure dobinary. The binary 
functions given above are not actually coded as separate procedures, but rather within a case expression. See 
Appendix A for the actual form. 

The code segments to evaluate arguments of unary and binary functions are instances of a more general 
model for evaluating an arbitrary number of arguments (note the "last-in-first-out" order embodied in the 
nesting of evaluation of the second argument of a binary function under the first). Unfortunately Icon lacks 
the facility for casting argument evaluation as a single code segment that is parameterized by the number of 
arguments to be evaluated. A language, such as SL5, that allows procedure environments to be treated as data 
objects and activated at will allows coding of such an argument-evaluation paradigm. See Appendix B for the 
actual SL5 code. Unfortunately, the coding in SL5 is somewhat contorted due to its lack of certain control 
structures. A thorough examination of equivalent Icon and SL5 code for argument evaluation is an 
illuminating exercise in the comparison of programming languages. 

4.10 Conjunction 

As mentioned in Section I, conjunction is often viewed as mysterious or as having some special role in 
goal-directed evaluation. In fact, it is simply a binary function that returns its second argument: 

procedure conj(x1,x2) 
suspend x2 
suspend phi 
error(13) 

end 

This procedure clearly illustrates that goal-directed evaluation is a property of the expression evaluation 
mechanism, not a property of functions themselves. Note that the result that is returned is not dereferenced. 

4.11 Expression Sequencing and Barriers 

As described in Section 2, the semicolons separating expressions serve as barriers to backtracking. This is 
illustrated by the handling of e1 ; e2: 

"compound": { 
interp(node.e1) 
r := interp(node.e2) 
if r ~ = = = phi then suspend r 
suspend phi 
error(9) 
} 

Note that interp is simply called to evaluate node.el and node.e2; neither can be reactivated for additional 
results. Thus if the evaluation of e2 fails, e1 is not reactivated; the semicolon serves as a barrier to goal-
directed evaluation. Sequences consisting of more than two expressions can be composed by nesting. In Icon 
itself, of course, expression sequencing is handled in a more general manner. 
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The braces that enclose expression sequences also serve as barriers, as is illustrated by 

"limit": { 
r := interp(node.e1) 
if r ~=== phi then suspend r 
suspend phi 
error(10) 

} 

The use of braces to enclose expression sequences and also to serve as barriers to goal-directed evaluation has 
also been the subject of some discussion within the Icon design group. In future versions of Icon, braces will 
only serve to enclose expression sequences and there will be a separate control structure to limit goal-directed 
evaluation. 

5. Conclusions 

There is a long-standing joke that the real formal semantics of a programming language consist of its 
implementation. In that sense, the real "authority" on expression evaluation in Icon is the code that actually 
implements it. However, such "formal semantics" inevitably contain a very large amount of detail and 
extraneous material that is irrelevant to any particular issue. While the value of the study of an 
implementation to understanding a language should not be disparaged, it is nonetheless unsuitable for most 
purposes and most persons. Hence expevi is, in some sense, a toy implementation of a deliberately limited 
portion of Icon. 

The implementation of interpretive semantics by the program expevi has proved to have a number of 
advantages beyond its use in explicating the expression evaluation mechanism of Icon, expevi can actually be 
run. This provides a tangibility and authenticity that can never be provided by verbal descriptions or formal 
semantic systems. 

One aspect of being able to run expevi is that it can be tested on a variety of expressions and the results 
compared with those of executing these expressions in Icon. This aids the debugging of the semantics via 
debugging of expevi. Of course, Icon itself may display bugs, although none were found during the 
development of expevi. Some misunderstandings of expression evaluation on the author's part were 
discovered, however. 

Furthermore, expevi can be modified easily — certainly more easily than the actual implementation of 
Icon. The ease of modification allows experiments that otherwise would be impractical. In fact, expevi has 
been modified to determine the consequence of possible changes to Icon. Examples are the removal of 
constraints on the arms of if-then-else, moving dereferencing out of functions and into the argument 
evaluation mechanism, and the possibility that the operation of dereferencing itself might fail in certain 
situations. 

It is also easy to implement and test different control structures. For example, "normal" alternation in 
SUMMER [12] is simply 

"or": { 
r := interp(node.el) 
if r === phi then r := interp(node.e2) 
if r ~=== phi then suspend r 
suspend phi 
error(19) 
} 

Thus, expevi can also serve as a design tool. 
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Appendix A — The Program expevi 

A listing of expevi follows. The only parts that have been omitted are the procedures compile, test, and 
the procedures they in turn use. compile accepts Icon expressions in a reasonably natural format and converts 
them into the required data structures, test is a simple procedure that calls interp and prints out the results. 
The complete program is available from the author on request. 

global nullvalue, phi, sym 

record noresult() 
record value(constant) 
record variable(name) 
record unary(func,e1) 
record binary(func,e1 ,e2) 
record alter(e1,e2) 
record if_then(e1 ,e2,e3) 
record while_do(e1 ,e2) 
record every_do(e1,e2) 
record fails_(e1) 
record compound(e1 ,e2) 
record l im i t (e l ) 

# The procedure interp(node) is the heart of expevi. It contains the code 
# for the control structures and for the evaluation of the arguments of 
# unary and binary functions. 

procedure interp(node) 
local x 1 , x2, r 
case type(node) of { 

"value": { 
suspend node 
suspend phi 
error(1) 

} 
"variable": { 

suspend node 
suspend phi 
error(2) 

) 
"unary": j 

every x1 := interp(node.e1) do 
if x1 === phi then break 
else 

every r := dounary(node.func,x1) do 
if r === phi then break 
else suspend r 

suspend phi 
error(3) 

} 
"binary": { 

every x1 := interp(node.e1) do 
if x1 === phi then break 
else 

every x2 := interp(node.e2) do 
if x2 === phi then break 
else 

every r := dobinary(node.func,x1 ,x2) do 
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if r === phi then break 
else suspend r 

suspend phi 
error(4) 

'alter": { 
every r := interp(node.e1) do 

if r === phi then break 
else suspend r 

every r := interp(node.e2) do 
if r === phi then break 
else suspend r 

suspend phi 
error(5) 

} 
' i f_then": { 

r := interp(node.e1) 
if r === phi 

then { 

r := interp(node.e3) 
if r ~=== phi then suspend r 

} 
else j 

r := interp(node.e2) 
jf r ~=== phi then suspend r 

} 
suspend phi 
error(6) 

} 
'whi le_do": { 

repeat { 
r := interp(node.e1) 
if r === phi then break 
interp(node.e2) 

1 
suspend nullvalue 
suspend phi 
error(7) 

} 
"every_do": { 

every r := interp(node.el) do 
if r === phi then break 
else interp(node.e2) 

suspend nullvalue 
suspend phi 
error(8) 

' fai ls_": j 

r := interp(node.el) 
if r === phi then suspend nullvalue 
suspend phi 
error(19) 

"compound": { 
interp(node.el) 
r := interp(node.e2) 
if r ~=== phi then suspend r 
suspend phi 
error(9) 
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" l imi t " : { 
r := interp(node.e1) 
if r ~=== phi then suspend r 
suspend phi 
error (10) 

} 
default: runt ime(107) 

} 
end 

# The procedure dounary(func,x1) evaluates the unary funct ion func w i th the 
# argument x 1 . Al though only one unary funct ion is included here, the 
# procedure is organized so that others can be added. 

procedure dounary(func,x1) 
local r 
case func of { 

"-" : { 
x1 := deref(x1) 
r := value(-x1 .constant) 
suspend r 
suspend phi 
error(11) 

} 
default: runt ime(107) 

} 
end 

# The procedure dobinary(func,x1 ,x2) evaluates the binary funct ion func 
# w i th arguments x1 and x2. 

procedure dobinary(func,x1 ,x2) 
local temp, r 
case func of { 

"+" : { 

x1 := deref (x1) 
x2 := deref(x2) 
r := value(x1 .constant + x2.constant) 
suspend r 
suspend phi 
error(14) 

> 
x1 := deref (x l ) 
x2 := deref(x2) 
if x1 .constant > x2.constant then suspend x2 
suspend phi 
error(13) 

if type(x1) ~== "var iable" then runt ime(121) 
sym[x1 .name] := deref(x2) 
suspend x1 
suspend phi 
error(15) 

} 
"< - " : { 

if type(x1) ~== "var iable" then runt ime(121) 
temp := sym[x1.name] 



sym[x1.name] := deref(x2) 
suspend x1 
sym[x1 .name] := temp 
suspend phi 
error(16) 

} 
'*&": { 

suspend x2 
suspend phi 
error(12) 

} 
" to" : { 

x1 := deref(x1).constant 
x2 := deref(x2).constant 
wh i le x1 <= x2 do { 

r := va lue(x l ) 
suspend r 
x1 := x1 + 1 

i 
suspend phi 
error(17) 

} 
default: runt ime(107) 

end 

# The procedure deref(x) dereferences x. Note that x may be a value already, 
# in wh ich case it is returned unmodif ied. 

procedure deref(x) 
case type(x) of { 

"variable": return sym[x.name] 
"value": return x 
default: error(18) 

} 
end 

# The procedure error(n) terminates execution w i th an error message that 
# indicates the site in expevl that should be impossible to 
# reach (thus indicating an error in the coding of expevl). 

procedure error(n) 
stopC'internal inconsistency at site ",n) 

end 

# The procedure runt ime(n) terminates exection w i th an error message that 
# indicates a semantic error in the expression being evaluated. The error 
# number corresponds to the runt ime error number in Icon itself. 

procedure runtime(n) 
stop("runt ime error ",n) 

end 

# The procedure main() initializes values and provides a loop that interprets 
# Icon expressions. 

procedure main() 
phi := noresult() 
nullvalue := value(O) 
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sym := tabled '•'•= nullvalue 
while line := read(&input) do 

if x :- compile(line) then test(x) 
else write("erroneous input") 

end 
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Appendix B — An SL5 Interpreter for Icon 

The following section of code is a portion of an SL5 program that performs the same function as expevl. It 
is included here primarily to illustrate a general paradigm for evaluation of an arbitrary number of arguments 
to a function. 

Since SL5 does not have a record facility, lists are used to represent Icon expressions. The first element of 
the list is a string that identifies the type. In the case of functions, the second element of the list is an SL5 
procedure that interprets the corresponding Icon function. For example, the expression x = 1 is represented 
by 

[ " func",doeq,["var iable","x"] / [ "value",1]] 

where the value of doeq is an SL5 procedure that implements the Icon conditional for numeric comparison, 
doeq and doconj are included at the end of this program segment to illustrate how such procedures are coded. 

Because of the lack of some control structures in SL5, such as break, the coding is awkward in places. 
Note that break&O generates a failure signal to break repeat loops (the identifier break was chosen to suggest 
the desired operation). 

Note in particular the case selector for func, which contains the code that evaluates an arbitrary number of 
arguments. Here a list corresponding to the number of arguments is formed and an environment for each of 
the argument expressions is created. These environments are then resumed in left-to-right order to obtain the 
argument values. If any argument fails to produce a value, the evaluation process reactivates the previous 
argument. Similarly, if all arguments are evaluated successfully, but the function itself fails, the argument 
environments are reactived in reverse order. 

As in expevl, a compiler, which is not shown here, converts expressions to the required data structures. 

phi := [ "noresul t " ] ; 
nullvalue := ["value",0]; 

interp . - procedure:interp(node) 
private n, env, args, i, target, r, dir; 
case nodeN of 

"value": { 
return node; 
return phi; 
error(1); 

}; 
"variable": { 

return node; 
return phi; 
error(2); 

}; 
"al ter": { 

env := create interp w i th node!2; 
repeat { 

r := resume env; 
if compare(r,phi) then break&O 
else return r; 

}; 
env := create interp w i th node!3; 
repeat | 

r := resume env; 
if compare(r.phi) then break&O 
else return r; 

}; 
return phi; 
error(3); 
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" func" : { 
n := length(node) - 2; 
env := list(n); 
args := list(n); 
dir := 1; 

i := 1; 
repeat { 

if i <= n then { # evaluate arguments 
if dir = 1 then envli := create interp wi th node!(i + 2); 
argsli := resume envli ; 
if compare(args!i,phi) then { 

if i = 1 then { # argument evaluation fai lure 
return phi; 
error(4); 

} 
else { 

i := i - 1; # backup 
dir := 0; 

else { 
dir := 1; 
i := i + 1; # continue forward 

else { # invoke funct ion 
target := create node!2 w i th args; 
repeat { 

r := resume target; 
if compare(r,phi) then break&O 
else return r; 

}; 
dir := 0; 
i := n; 

default: error(5); 
end; 

end; 

doeq := procedure:doeq(args); 
argsM := deref(args!1); 
args!2 := deref(args!2); 
if args!1!2 = args!2!2 then return args!2; 
return phi; 
error(7); 

end; 

doconj := procedure:doconj(args); 
return args!2; 
return phi; 
error(6); 

end; 
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