Reference Manual for the
Icon Programming Language*
Version 3

(C Implementation for UNIXY)

Cary A. Coutant, Ralph E. Griswold,
and Stephen B. Wampler

TR 80-2

May 1980

Department of Computer Science
The University of Arizona

*This work was supported by the National Science Foundation under NSF Grant MCS79-03890.

+UNIX is a trademark of Bell Laboratories.

Copyright © 1980 by Ralph E. Griswold
All rights reserved.

No part of this work may be reproduced, transmitted, or stored in any form or by any means without the prior
written consent of the copyright owner.

CONTENTS

Chapter | — Introduction

[V VI N

BackgroUnd ... oot e e e e e e e !
Scope of the Manual i i i e e e 2
An Overview of 1COn i i i i i e 2
SYNIAX NOIBUOM . ottt ettt ettt ittt e et iaeie e ea e aaaa e 2
Organization of the Manual i3

Chapter 2 Basic Concepts

B T 0 PP b
B o8 o1 ¢ 213 o 1 T3 S
2.2.1 Variables and ASSIBIMENLttt ittt ittt 0l
2.2.2 KeYWOTAS Lottt e e e 6
B T SV 1 Vod T 1T 7
224 DDA OIS Lottt 7
2.3 Evalugtion of EXPressions N
2 L RESUIS oottt e e e e e ®
2.3.2 Success and Failure .. .o i e e X
2.4 Basic Control StrUCIUIES . .o\ et ettt ettt e e e e e e e it e e s e e e e 9
2.5 Compound EXpressiOns.ttt ittt i i 10
N S €T s T3 -1 e 3 £~ 10
2.7 Goal-Directed Evalualion i i e et 1
2.8 The Extent of Backtracking.t inann it et it e it 12
2.9 The Reversal of Effects i i e e e 12
2,10 Loop Control ..o e e e e 13
2 PIOCEAUIES . oottt et e e e e 13

Chapter 3 — Arithmetic

3.1

R
14

RN

T LT 15
ol Literal IMleerS o ittt it e e e e 15
312 Integer ArTHmMEtic oottt ittt et e e e e (s
313 Integer ComPATiSON .. ottt i ettt i et et et e e e 16
Real Numbers e e e 17
3.2.1 Literal Real Numbers i i i i i e e 17
3222 Real Arithmetic ..t e e e e 17
3.2.3 Comparison of Real Numbers it i e 18
Mixed-Mode Arithmetict it e e et e et e e e I8
Arthmetic Type Conversionottt ittt ettt ittt e e e rineens 19
Al Conversion L0 TNl eT oottt ettt ittt it eer e ae e e, 19
342 Conversion to Real Number i e 20
BT Ty o o I 21

Chapter 4 String Processing

O O £ 1T Y U . X
4.2, Literal StringS . .o ittt i e et et i 23
By S €T o7 Y 73O 25

L T O 1 T 1= Y L A 25

O 57 o T o ¥ O N T T P 26
44,1 EXpHCIt CONVEISION ..ottt ittt et et ae e e aa ey 26
4.4.2 ImphCit COnMVeISION L. ittt ettt et e et et ie ettt 26

T B T QT 1 1 €T T4 T U o 17Ot 27
451 CoONCUICRULION . Lttt ettt e e e 27
4.5.2 String Replication ..o e Ry
O T B S R 11 T Y U T Y U PP 2R
4.5.4 Character Positions and SUbBSUIINgS .o e 9
4.5.5 Other String-Valued Operationsttt il 30

4.6 SUring ComMParisON . .ottt ittt ittt ettt e e 3

4.7 SUIINE ANAlYSIS L e e e 32
4.7.1 ldentifying SubSIIINES . ..ottt e e 32
4.7.2 Lexical Analysis ...ttt e e e 33

4.8 SUINE SCaANMINE .ottt ittt ettt e it et iinensnaeennansneennin.... .35
4.8.1 Scanning Keywordsvoiriiit it iiiniineennreerentenneiinesa.. .35
4.8.2 Positional Analysis i i i e e e e 36
4.8.3 Scanning Operationsvuutteertiie e tiinrtieeennnoeeeeereneannieenen. .3
4.8.4 String Transformation.ttt i i i et i .. 38
4.8.5 Nested SCanmingttt ettt et e et 39

Chapter 5§ — Structures

O R 1 T O GO 4!
S b Creation of LSS L e e e e 41
.12 Accessing LISt Elements oo s 42
S L OPCN LSS L e e e 42
S The Empty LISt Lo i i i i i e e e 41

8.2 Tables Lo e e e e e e e e 43
5.2.1 Creation of Tables. i i i e e e 43
5.2.2 Accessing Table Elements i i i e e e 44
523 Closed Tables ..o e e e e e 44

5.3 SHACKS Lttt e e e e e e 45
S.3.1 Creation of StacKs. ..ot e e e 45
5.3.2 ACCESSINE SIACKS ottt ittt et e e e e 45

5.4 RECOTAS .. it e e e e e et e 46
5.4.1 Declaring Record Types .. .ovtnttri ittt ittt et ie et e e 46
5.4.2 Crealing ReCordsottt i i e e e e e e e 47
S5.4.3 ACCesSINE ReCOTdS . .ovu ittt i i i e i e e e s47

5.5 Assigning Values to Structure Elements ... ittt 47

5.6 SOTUINE SITUCIUTES .ttt ettt it e it it e et e e it ettt e te e ar e e nenennis 48

Chapter 6 — Input and Output

T T T[T 49

6.2 Writing Data 10 Files ... oo e 50
6.3 Reading Data from Files i e 50

Chapter 7 Miscelliincous Operations

7.1 Element Generaton oo, e e e e B K
7.2 Augmented Assignment Operators e e R e PP R
7.3 Comparison ol Objects oo, e e e e e e e e e S4
T3 Copying OBJUCIs Lottt i et it e e e et e AN
75 Random Number Generation, .ooooea... e e S B
76 Dateand lime....... e e e e eSS
7.7 1The Null Value. ..., et e e e ve. 58
78 Type Determination oot e e .
T9 SUINE IMages oot it i ittt i e I 1o}
700 Calling a Shell oo i i it i et it ittt e e ettt et S
7.11 System Inlormation, e N e s?
Chapter ¥ Procedures
8.1 Procedure Declarations e e e P |]
8.2 Scope of ldentifiers ..ol e e e e et e s 60
8.3 Procedure Activation........... e et P .60
B3l Procedure Invocation......veiiveiiennnirnnnnnn e e e e 0
8.3.2 Return from Procedures. e e e PN 60
8.3.3 Procedure Level oot PP 62
X34 Tracing Procedure ACHVIIY Lo i i i e e e 62
KA Lasting Identificr Values oo i e e e e R
XS Procedure Names and Values oot et e e 64
Chapter 9 Program Preparation
9.1 Program Structure ..o e O 65
9.2 Layout ol Program Text ..o e e e e e 65
9.3 Progrum Character Set s e e 66
9.4 Significance of blanks (o L e e e 66
95 Comments Lo i e BN e 66
Chapter 10 Programming Considerations
10.1 Fihcieney Considerations e e e e e e 67
10.2 Programming Pitfalls. e RN e e e e 6K
Chapter 11 Running Icon Programs
P Vranmslation et e, e S h e senseaietaatareeaeaees 71
.2 Tinking oo ienns, e et Ceneae e R
PEX Toading. ..., e e e e e i e el 7l
14 Program Fxecution oo, e e e e ceeeeenn 7l
LS Program Termination e e e R P etaeer e .72
Lo Yeror Yermination, e e e e e e W72
Chapter 12 Sample Programs

APPENdIX A — SYNTAX Lottt e e 85

Appendix B Built-In Operationsttt iiia e e eiiii e RY
Appendix € — Summary of Defaults ... 93
Appendix D Summary of Type CONVErSIONS ...ttt iiiiieie e iiineerananees 95
Appendix E Summary of Error Messages oo i i e 97
ACKNOWICAEMCNL ¢\t et et i it ittt it i 101
References.............. et e i e 101
Index e e s e e e 103

vi

CHAPTER 1

Introduction

1.1 Background

Icon is the most recent in a series of programming languages that started with SNOBOL [1].
SNOBOL was a very simple language with only one data type, the string. and a few pattern
matching statements expressed in a rigid syntax. The syntax of SNOBOL was primitive and its only
control structure was the goto, which could be conditional on the success of pattern matching and in
which the target label could be computed. One exotic feature of SNOBOL was its ability to
construct identifiers during program execution and reference their values indirectly.

SNOBOL2 [2]. which was in use for only a short period of time, was a minor refinement of
SNOBOL. SNOBOL3 [3] extended the original SNOBOL language with a repertoire of built-in
functions and a mechanism for programmer-defined procedures. The concept of success and failure
was generalized to include a variety of comparison and testing operations. SNOBOLJ retained the
single string data type. static pattern matching. and primitive control structures of the original
SNOBOL. SNOBOL3 s still in limited use.

SNOBOL4 {4] departed more radically from the carlier languages in the series. Hointroduced a
varicty of data types and the ability to construct and manipulate patterns as data objects
dynamicully during program cxecution. Along with this [acility, the pattern matching repertoire
was substantially increased. Arrays, tables, and defined types (records) in SNOBOL4 added the
ablity to produce and process struetures. Tables, at the same time, provided a facility for associative
reference ol a more disciplined type than the indirect reference facility ol SNOBOL, although the
latter was retained in SNOBOL4. An exotic feature, originally planned for SNOBOL, was realized
for the first time in SNOBOL4: runtime compilation allowed strings to be converted into executable
code in the course of program execution. Despite the advances in facility. SNOBOLA4 retained the
primitive control structures of the earlier languages. Because of new data types and operations.
SNOBOLA4 is best characterized as a general-purpose language with a strong emphasis on string
processing, whereas the earlier languages were special-purpose string processing languages.
SNOBOL4 is in wide use at the present time for a variety of appplications [5).

SLS (*'SNOBOL. Language 57)[6] was an even more radical departure from the earlier languages.
SLS has a traditional. Algol-like syntax with a large repertoire of control structures. The
success failure signaling mechanism of the earlier SNOBOL languages was extended to drive
control structures in place of the more conventional use of Boolean values. A notable characteristic
of SLS is its generalized procedure mechanism [7]. which provides coroutines as a natural
consequence. Patterns and pattern matching of the earlier languages were replaced by the concept
of string scanning in which coroutine environments operate in a goal-directed control regime [8].
For the first time there was a mechanism for programmer-defined string scanning. SLS5 also has a
repertoire of elementary string processing operations that arc curiously lacking in the earlier
languages. The distribution of SLS was limited and its use at thc present time is minimal.

Icon represents both a synthesis of earlier ideas and a departure from trends in the carlier
languages. (The name lcon. incidentally, is not an acronym and has no special significance
although one can imagine relevant connotations.)

The development of Icon as a language distinct from SLS was sparked by the design of 4 general
goal-directed evaluation mechanism that allows the traditionally goal-oriented pattern matching
and string scanning activities to be integrated with more conventional computational activities. This
itegration has the effect of unifving formerly disparate features. At the same time, elementary
string processing operations as introduced in SL5 have been unified with higher-level string
processing operiations.

o

1.2 Scope of the Manual

The concept of success or failure of an operation as in the earlier languages is retained in Icon.
although with a slightly different interpretation. Instead of operations returning a signal. operations
in Icon either produce a result (*succeed’) or they do not produce a result (‘fail’). (The conceptof a
signal still appears in early lcon documentation.) Some operations may generate sequences of
alternative results. A goal-directed evaluation mechanism seeks alternatives from such components
of an expression if other alternatives fail to produce results. In this way ‘trees’ of alternative results
in complex expressions are ‘searched” in the attempt to produce an overall result (“success’).

Like SNOBOL4 and SLS. Icon has a variety of data types and has facilities for creating and
processing structures. In many cases, these facilities have been strengthened and sharpened above
those of earlier languages. lcon does not have a runtime compilation facility, however.

A forewarning: Icon contains some surprises. Its goal-directed evaluation mechanism allows
programming styles and techniques that other languages do not. As a consequence, learning to
program in Icon is not just a matter of learning a new syntax and mastering the details of new
operations - lcon allows new ways of formulating computations. The natural tendency to translate
programming techniques from familiar languages to Icon may, in fact, lead to frustration.
SNOBOL4 programmers, in particular, are cautioned not to blindly imitate patterns by lcon
expressions of similar appearance.

1.2 Scope of the Manual

This manual describes Version 3 of the Icon programming language. In particular, it refer-s to the
language as implemented in the C programming language [9] and designed to run under Version 7 of
UNIX* [10] on PDP-11 computers.

The reader is assumed to have experience with other programming languages, a familiarity with
current programming language concepts, and a working knowledge of UNIX.

This first chapter gives an overview of [con and describes the technigues for presenting features of
the language in this manual. Subsequent chapters describe the language in detail. There are o
number of appendices at the end of this manual that provide guick reference to frequently needed
information.

1.3 An Overview of lcon

Icon is 4 general-purpose programming language with an emphasis on string processing. lcon
supports a variety of data types and has facilities for creating and manipulating the commonly used
kinds of structures. Storage management is automatic; there are no explicit allocation and
deallocation directives. The sizes of objects are limited only by the architecture and physical
limitations of the computer.

Variables are ‘untyped® as in SNOBOL4 and SL5. Thus a variable may have values of any type.
Runtime type checking and coercion to expected types according to context are performed
automatically.

One of the unusual characteristics of Icon is goal-directed expression evaluation, which provides
automatic scarching for alternatives and a controlled form of backtracking. This method of
evaluation allows concise. natural formulation of many algorithms while avoiding the inefficiency of
uncontrolled backtracking.

Syntactically. Icon is a language in the stvle of Algol 60. It has an expression-based structure and
uses reserved words for many constructs.

1.4 Syntax Notation

In this manual, the syntax of Icon is described in a semiformal manner with emphasis on clarity

rather than rigor. For simple cases. English prose is generally used. Where the syntax is more
complicated. a formal metalanguage is used.

*UNIX is a trademark of Bell Laboratories.

1.5 Organization of the Manual 3

In this metalanguage, syntactic classes are denoted by italics. For example. expr denotes the class
of expressions. The names of the syntactic types are chosen to be mnemonic, but have no formal
significance. Program text is given in a sans-serif type face (e.g.. size) with reserved words given in
boldface (e.g., procedure). There is, of course, no distinction between reserved words and other
program text as it is prepared for actual programs, except for the significance of the reserved word
names.

Alternatives are separated by bars (|). Brackets (|]) enclose optional items. Fllipses (..)
indicate indefinite repetition of items. The metalinguistic and hiteral uses of bars, brackets, and
periods arc not mixed in any one usage. and the meaning should be clear in context. Where
necessary. ambiguity is resolved by using predefined syntactic types. For example, har denotes the
symbol | and the symbol [is denoted by lefi-bracker.

1.5 Organization of the Manual

This manual is organized around chapters describing the major features of the language. For
example. all the string-processing operations are described in one chapter. Each operation and
function is described separately or is grouped with others of a similar nature. Following the
description, examples of usage are given.

The examples are not intended to motivate uses of language features, but rather to provide
concrete instances, to show special cases that may not be clear otherwise, and to illustrate
possibilities that may not be obvious. For these reasons, some of the examples are contrived and are
not typical of ordinary usage.

Where appropriate, there are remarks that are subsidiary to the main description. These remarks
are divided into notes. warnings. defaulis. failure conditions, and error conditions. The notes
describe special cases, details. and such. The warningy are designed to alert the programmer to
programming pitfalls and hazards that might otherwise be overlooked. The defuults describe
interpretations that are made in the absence of optional parts of expressions. The failure conditions
specify situations in which an operation may fail to produce a value. The error conditions specily
situations that are erroneous and cause program termination. The defaults and error conditions are
summarized in Appendices C and E.

It is not always possible to describe language features in a linear fashion: some circularity is
unavoidable. This manual contains numerous cross references between sections. In the case of
forward references. an attempt has been made to make the referenced items clear in context even if
they cannot be completely described there. For a full set of references. see the index.

N

CHAPTER 2

Basic Concepts

2.1 Types
Icon supports several kinds of data, called rypes:
integer procedure
real list
string table
cset stack
file null

Integers and real numbers (floating-point numbers) serve their conventional purposes. Strings
are sequences of characters as in SNOBOLA4, for example. Csets are sets of characters in which
membership is significant, but order is not. Files identify external data storage. Procedures serve
their conventional purpose, but it is notable that they are data objects. Lists, tables, and stacks are
data structures with different organizations and access methods. The null value, which i
represented by the symbol @ in this manual, serves a special purpose as the identity abject for several
operations and it is convertible to other types. For example, the integer equivalent of @ iy 0, while
the string equivalent of @ is the empty string containing no characters. In addition to the types listed
above, there is a facility for defining record types.

Types arc indicated in examples by letters related to conventional usage or the type name. In
particular. i, j. and k are used to indicate integers. s1, s2. and s3 are used to indicate strings. and x
and y arc used to indicate objects of unspecified or undetermined type.

Integers. real numbers. and strings can be specificd literally in the program text. Integers and real
numbers arc represented as constants in the conventional manner. For example. 300 is an integer.
while 1.0 is a real number. Strings are enclosed in quotation marks. as in “summary”. Sce
Sections 3.1.1. 3.2.1, and 4.2.1 for further descriptions of the methods availuble for representing
literals. Values of types other than these can be constructed and computed in a variety of wayvs. but
thev do not have literal representations.

2.2 Expressions

Icon is an expression-based language. The most primitive expressions are identifiers and literals.
More complex expressions can be composed from functions, operators, control structures. and
groupings. The tollowing sections describe various kinds of expressions.

2.2.1 Variables and Assignment

A variable is an entity that can have a value. Variables provide a way of storing and referencing
values that are computed during program execution.

The simplest kind of variable is an idenvifier. Syntactically, an identifier must begin with a letter

or underscore, which may be followed by any number of other letters. underscores. and digits.
Reserved words may not be used as identifiers.

6 2.2.2 Kevwords

svmactically correct identifiers

X
X

k00001
summary
report1
node_link
~link

svatactically erroneous identifiers

23K
report$
xO0@s

There are various forms of variables other than identifiers. Some variables, such as the elements
of a structure, are computed during program execution and have various syntactic representations.
See Sections 4.54, 5.1.2, §.2.2, 53.2, 54.3, and 8.3.2.

One of the most fundamental operations is the assignment of a value to a variable. This
operation is performed by the := infix operator. For example, x := 3 assigns the integer value 3 to the
identifier x.

Note: The assignment operator associates to the right and returns its left operand as a
variable. Thus multiple assignments can be made. Forexample. x :=y:= 3 assigns 3 to both x
and vy.

Any expression that yields a variable may appear on the left side of an assignment operation and
any expression may appear on the right. For example, x := z assigns the value of the identifier z to
the identifier x.

Error Condition: 1f the expression on the left side of the assignment operation is not a
variable, Error 121 occurs.

The infix operator :=: exchanges the values of its operands. For example, x :=: y exchanges the
values of x and vy.

Note: The exchange operator associates to the right and returns its left operand as a variable.

Error Condition: If the expression on either side of the exchange operation is not a variable.
Error 121 occurs.

2.2.2 Keywords

Keywords provide an interface between the executing program and the environment in which it
operates. Some keywords have important constants as values, others change the status of global
conditions. while others provide the values of environmental variables.

A keyword is composed of an ampersand (&) followed by onc of a4 number of identiliers that
have special meanings. Typical keywords are &date. whose value is the current date, and &null.
whose value is @,

Some keywords are variables. and values can be assigned to them to set the status of conditions.
An example is &trace, which controls the tracing of procedure calls (see Section 8.3.4). If &trace is
assigned a nonzero value, tracing is enabled, while a zero value disables tracing.

Some keywords are not variables and cannot be assigned values. An example is &date.

Error Condition: 1f an attempt is made to assign a value to a keyword that is not a variable,
Error 121 occurs.

Keywords are described throughout this manual in the sections that relate to their use.

2.2.4 Opcrators 7

2.2.3 Functions

Functions (built-in procedures) provide much of the computational repertoire of Icon. Function
calls have a conventional syntax in which the function name is followed by arguments in an
expression list that is enclosed in parentheses:

name ([expr [, expr] ...]) .

For example, size(x) produces the size of object x. map(s1,s2,83) produces i chavacter nuipping
on s1. and write(s) writes the value of s.

As indicated, arguments may be expressions of arbitrary complexity.

Different functions expect arguments of different types, as indicated above. Automatic
conversion (coercion) is performed to convert arguments to the required types.

Error Condition: |f an argument cannot be convertcd to a required type. an error with a
number of the form 10n occurs. where n is a digit that identifies the expected type. See
Appendix E.

Defauli: Omiued arguments default 10 ® and are converted to the required type unless
otherwise noted. In some cases, omitted arguments have special defaults. These cases are
noted throughout the manual and are summarized in Appendix C. If trailing arguments are
omitted. the trailing commas may be omitted also.

Note: |f more arguments are provided than are required by the function, the extra arguments
are evaluated, but their values are ignored.

2.2.4 Operators

Operators provide a convenient abbreviated notation for functions. There are two kinds of
operators: prefin and infix. An example ol a prelix operator is =i, which produces the negative of'i.
Examples of inlin operators arc i + jand i * j. which produce the sum and product of i and |
respectively.

While all prefix operators are single symbols, some infix operators are composed of more than
one symbol. Examples are x := y, s1 || 82 (which produces the concatenation of the strings s1 and
s2). and s1 == s2 (which compares strings s1 and s2 for cquality).

Blanks or parcntheses may be used to avoid potential ambiguities when infix operators are
followed by prefix operators. In the absence of blanks or parentheses, rules are used to interpret
potentially ambiguous expressions. In addition, rules of precedence and associativity are used to
determine which operands are associated with which operators in complex expressions. See
Appendix A.

As a class. prefix operators have the highest precedence (bind most tightly to their operands). For
example. -i*j is equivalent to (-i)*j. Different infix operators have different precedences. For
arithmetic operators. the conventional precedences apply. Thus i+j*k is equivalent to i+(j*k). A
complete list of operator precedences is given in Appendix A.

Infix operators also have associativity, which determines for two consecutive operators of the
same precedence. which one applies to which operand. Most operators associate to the left. For
example. i-j-k is equivalent to (i-j)-k. Assignment, however, associates to the right. Thus i:zj:=k is
cquivalent to izz(y:zk). A complete list of infix operator associativities is given in Appendix A.

8 2.3 Evaluation of Expressions
2.3 Evaluation of Expressions

2.3.1 Results

Some expressions produce variables. The simplest example is an identificr. such as delta. Other
expressions, such as the literal 13, produce values. The term ‘result’ is used to refer to cither a
v.uriable or a value. Values may be assigned to variables, and some operations, such as assignment,
require operands that produce variables.

Conversely, many operations require values. Thus in
s1 == s2
the values of the variables s1 and s2 are compared.

The process of obtaining the value of a variable is called dereferencing. 1n lcon. CXpressions are
cvaluated in a strictly left-to-right manner. However. dereferencing is not performed by functions
and operators until all arguments and operands have been evaluated. Normally this does not affect
the results of computation, but in cases where expressions have side effects. it may. Consider. for
example. the expression

f(x,x := size(x))

Here the second argument of f is an expression that changes the value of x. The effect is as if
f(size(x),size(x)) had been called. regardless of the original value of x, since the first argument of f is
not dereferenced until the second argument has been evaluated.

Explicit dereferencing may be obtained by the prefix . operator. Thus
f(.x,x := size(x))

dereferences the first argument so that evaluation of the second argument does not alfect it.

2.3.2 Success and Failure

The evaluation of an expression may either produce a result (a variable or a value). or it may fail
to produce a result. Failure to produce a result may occur for a variety of reasons, but it generally
indicates that some condition necessary for the production of a result does not hold. For example.
the comparison operation i = j fails to produce a resuit if i is not numerically equal to j. Note that
this is different from comparison in most programming languages. where the result of comparison is
a Boolean value, either rrue or false, depending on whether or not the condition is satisified.

In Icon, on the other hand. the course of program execution is determined by whether or not
expressions produce results. For example, in the familiar control structure

if exprl then expr? else expr3

expr2 is evaluated if expr] produces a result, while expr3 is evaluated if expr/ does not produce
result. Note that the effect of this method of control is the same as the use of Boolean values. The
Icon mechanism provides more generality, however, since it allows operations to be conditional and
at the same time to produce meaningful results. For example, find(s1,s2) returns the position at
which s1 is a substring of s2, provided there is such a substring, but fails to produce a result if there
is not such a substring.

In this manual, the term ‘succeeds’ is used as an abbreviation for *produces a result’, while *fails" is
used as an abbreviation for *fails to produce a result”. The term *outcome’ is used to refer to the
consequences of evaluating an expression. whether it be a result or failure.

Failure of expression evaluation is a normal occurrence during the course of program execution.
Failure is not a programming error, per se, but simply a way of selecting alternative paths of
computation.

2.4 Basic Control Structures

2.4 Basic Control Structures
Icon provides a number of traditional control structures, as well as some that are specifically
designed to utilize the failure of an expression to produce a result:
. The control structure
if cxprl then cxpr2 | else exvpri]

evaluates expri. If exprl succeeds. expr? is evaluated: otherwise exprd is evaluated. |he outcome
of if-then-else is the outcome of expr2 or expr3, whichever is evaluated. If the else clause s
omitted and expr/ fails, the outcome of if-then-eise is ©®.

2. The control structure
while expr! [do expr2]

evaluates expr/ repeatedly until it fails. Each time expr/ succeeds. expr2 is evaluated. The outcome
of while-do is ®.

3. The control structure
until exprl [do expr2]

evaluates exprl/ repeatedly until it succeeds. Each time expr/ fails, expr2 is evaluated. The outcome
of until-do is @.

4. The case control structure permits the selection of one of a number of expressions according to
the value of a control expression. The form of the case control structure is

case expr of | [case-clause [; case-clause] ...] |
where expr is the control expression. A case clause has the form
exprl . expr2

where expr/ is a selector expression and expr2 is an expression that is evaluated if expr/ is selected.
There is also a default case clause, which has the form default: expr2. When the case expression is
evaluated. the control expression is evaluated first and its value is compared to the values of the
selector expressions. in order. as given in the case clauses. If a comparison is successful. the
expression in the case clause 1s evaluated and evaluation of the case control structure is terminated.
If no comparison succeeds. the expression in the default case clause, if present. is evaluated. The
outcome of case is the outcome of the selected expr2.

Notes: The default clause may appear in any position with respect to the other case clauses,
although it is customary for it to appear either first or lust. Only onc default clause is allowed
in a case cxpression. [t is evaluated as if it appcared last. The semicolons between case
clauses may be omitted if the clauses are placed on separate lines.

Failure Conditions: case fails if the control expression fails or if no case clause if selected.

An cxample of a case expression is

case size(sl) of |
1: m:=0
size(s2) m :
default: m :

!

which assigns 0 to m if the size of s1is 1. 1 to m if the size of s1 is the same as the size of s2 (but not
). and 2 to m otherwisc.

"
-—

2

10 2.5 Compound Expressions

5. The control structure
repeat cxpr
evaluates expr repeatedly until it fails. The outcome of repeat is @.
6. 'The control structure
expr fails
produces @ il expr lails and fails il expr succeeds. For example,
if cxprl fails then expr2 else expr3
1s cquivitlent to

if exprl then expr3 else expr2

2.5 Compound Expressions

Expressions may be compounded to allow a sequence of expressions to appear in a control
structure that requires a single expression. The outcome of a compound expression is the outcome
of the last expression in the sequence. A compound expression has the form

{{expr[.expr)..]}
For example

if z=0 then {x := O: y := 1|
sets x to 0 and y to il z iy 0,

If the expressions ina compound expression are placed on separate lines, the semicolons are not
necessary. For example,
if z = 0 then |
= 0
=1

—_—g X N

is equivalent to the compound expression above. See also Section 9.2.

2.6 Generators

One of the unusual aspects of Icon is the concept of generators. Some expressions are capable of
producing a sequence of results if the expression in which they are contained would otherwise fail to
produce a result.

The most fundamental generator is alternation
exprl | expr2

This exression first evaluates exprl. If exprl succeeds, its result becomes the result of the
alternation expression. If exprl fails, however, the outcome of the alternation expression is the
outcome of evaluating expr2. For example,

(=01 6=k

succeeds if i is equal to j or if j is equal to k.

2.7 Goal-Directed Evaluation

Alternation has an important additional property. If expr/ succeeds. but the expression in which
the alternation occurs would fail, the alternation operator then evaluates expr2. For example

x = (1]3)

succeeds if x is equal to | or 3.

Another generator is
exprl to expr2 [by expr3]

which generates the integers from exprl to expr2 inclusive, using expr3 as an increment. For
example

x = (O to 10 by 2)
succeeds if x is equal to any of the even integers between 0 and 10, inclusive.

Error Condition: |f the value produced by expr3 is 0. Error 231 occurs.

Noies: exprl, expr2. and expr3 are evaluated only once. Generation stops when expr2 is
exceeded. expr3 may be negative, in which case successively smaller values are generated
until expr2 is reached or passed.

Defauli: If the by clause is omitted. the increment defaults to 1.

The control structure

every exprl [do expr2]
produces all alternatives of exprl. For each alternative that is generated, expr2 is evaluated. For
example.

every i := (1 | 4 | 6) do f(i)
calls f(1), f{4), and f(6). Similarly,

every i := 1 to 10 do f(i)

calls f(1). f(2). f{10).
The outcome of every-do is @.

Note: every i := j to k do expr is similar to the for control structure found in many
programming languages.

2.7 Goal-Directed Evaluation

Goal-directed evaluation, in which generators produce alternative values in order to obtain a
result for an expression, is implicit in the examples given in the preceding section. The term
*backtracking’ is used to describe the situation in which evaluation of an expression that has
previously produced a result is resumed to obtain an alternative result.

Backtracking occurs in the evaluation of operands of operators and in the evalution of arguments
of functions. For example. in

exprl + expr2

exprl is evaluated first. If it fails. the addition operation fails. 1f it succeeds, expr2 is evaluated. If
expr2 tails. however. the addition operation does not necessarily fail. Instead, backtracking occurs
and an alternative value of expr/ is sought. If such an alternative exists, expr2 is evaluated again.
Since the evaluation of expr/ may affect expr2 (by means of side effects), expr2 may now succeed. If
so. the addition is performed. An example of such a situation is

(x ;= nto m)+ find("1",x)

12 2.8 The Extent of Backtracking

In the case of a function call such as flexprl,expr2), if expr2 fails, alternatives are sought for
exprl. In fact, if exprl and expr2 both succeed, but the function itself fails, alternatives are sought
for the arguments (first expr2 and, failing that, expr/). If any argument has an alternative, the
function is called again. If the function continues to fail, it is called for all alternative values of the
arguments. The overall expression fails only if the function fails for all alternative values of the
arguments. This method of evaluation applies regardless of the number of arguments in the
function call.

In some cases, backtracking to achicve mutual results from two expressions may be desired, even
though no computation is to be performed on the results.

The infix operator & (‘conjunction®) behaves like any other infix operator with respect to
backtracking, except that, if exprl succeeds. the outcome of expr/ & expr2 is simply the outcome of
expr2.

2.8 The Extent of Backtracking

Backtracking is strictly limited in its extent by syntactic constructions in the program. The extent
of backtracking therefore may be determined by examination of the text of the program (that is. the
extent of backtracking is not determined by the history of computation in the program).

Several constructions specifically limit the extent of backtracking. The semicolons that separate
expressions in a sequence, for example, prevent backtracking from occurring between the
expressions. For example, in the sequence

exprl; expr2

failure of expr2 does not cause backtracking into expr/.

The braces surrounding a sequence of expressions also provide a barrier to backtracking. While
failure of expr2 in

exprl & expr2
results in backtracking into expr/. no such backtracking occurs in
fexprl} & expr?
With the exception of expr/ in
every exprl do expr2

once an expression in any control structure has produced a result, its evaluation is complete and no
backtracking may occur into it. For example, in

if exprl then expr2 else expr3

once exprl has either succeeded or failed, no condition (such as the failure of expr2 or expr3) can
cause backtracking into expr/.

2.9 The Reversal of Effects

As described above, backtracking to an earlier point in a computation may take place in order to
obtain alternatives of previously evaluated expressions. There is. however, no implicit reversal of
effects such as assignments. For example, in the expression

(x =1 to 10) & (x > vy)

if the value of y is 20. the value of x after the failure of the conjunction is 10, regardless of what the
value of x was before evaluation of the conjunction.

2.11 Procedures

There are two assignment operators that do reverse their effects if fuilure occurs.

I. The infix operator x <- y assigns the value of y to x. but restores the previous value of x if
backtracking causes failure in the expression in which the reversible assignment occurred. For
example. in

x =0, (x -1 10 10) & (x > y)

il the value of y iy 20, the value of x is restored to O when the conjunction fils,

Naote: The reversible assignment operator associates to the right and returas ity felt operand
as @ variable

Error Condition: 1f the expression on the left side of the reversible assignment operation is
not a variable, Error 121 occurs.

2. The infix operator x <-> y exchanges the values of x and y. but restores the former values if
backtracking causes failure in the expression in which the reversible exchange occurred.

Note: The reversible exchange operator associates to the right and returns its left operand as
a variable.

Error Condition: 1f the expression on either side of the reversible exchange operation is not a
variable. Error 121 occurs.

2.10 Loop Control

There are two control structures for bypassing the normal completion of expressions in loops.
These control structures may be used in repeat and in the do cliauses of every. until. and while.

I. The control structure next causes immediate transfer to the beginning of the loop withowt
completion of the expression in which the next appears.

2. The control structurc break causes immediate termination of the loop without the completion
ol the expression in which the break appears.
2.11 Procedures

A program is composed of a sequence of procedures. Procedures have the form

procedure name { | argument-list])
procedure-body
end

The procedure name identifies the procedure in the same way that functions are named. The
argument list consists of the identifiers through which values are passed to the procedure. The
procedure body consists of a sequence of expressions that are evaluated when the procedure is
invoked. A return expression terminates an invocation of the procedure and returns a value.

An example of a procedure is

procedure max(i,j)
if i >) then return i else return j
end

A procedure is invoked in the same fashion that a function is called. For example
m = max(size(s1),size(s2))
assigns to m the maximum of the sizes of s1 and s2.

Program execution begins with an invocation of the procedure named main. All programs must
have a procedure with this name.

For a more detailed description of procedures. see Chapter 8.

CHAPTER 3

Arithmetic

lcon provides integer. real. and mixed-mode arithmetic with the standard operations and

COMPUrisons.

3.1 Integers

Integers in lcon arc treated as they are in most programming languages.

Note: The allowable range of integer values is -2% 10 2%-1,

3.1.1 Literal Integers

Integers may be specified literally in a program in the conventional fashion.

Notes: Leading 7eroes are allowed but are ignored. Negative integers cannot be expressed
literally. but they may be computed as the results of arithmetic operations.

Examples:

expression

0

000
10
010
27524

value

0

0

10

10
27524

Intcger literals such as those given above are in the base 10. Other radices may be speeificd by
beginning the integer literal with nr, where a2 is a number (base 10) between 2 and 36 that specifics
the radix for the digits that follow. For digits with a decimal value greater than 9, the letters a. b. c.

. are used.

Note: The digits used in the literal must be less than the radix.

Examples:

expression

2r11
8r10
10M10
16rff
36rcat

value

3

8

10

255
15,941

3.1.2 Integer Arithmetic

I'he following infix arithmetic operations are provided.

expression

-

[

{ oo

. b S e

operation
addition
subtraction
multiplication
division
remaindering
exponentiation

relative
precedence

I
!
2
2
2
3

associativity

left
left
left
left
left
right

e Y13 Integer Comparison

Nores: The remainder of integer division is discarded: that is, the result is truncated. i % j
produces the remainder of i divided by j. The sign of the result is the sign of i.

Error Conditions: If an attempt is made to divide by 0. Error 201 occurs. If the second
operand of remaindering is sero. Error 202 occurs. H the result of an arithmetic operation
exceeds the range of allowable integer values, Error 203 occurs.

Examples:

expression value
1+ 2 3
1 -2 -1
1*2 2
172 0
271 2
2° 3 8
2° 0 !
2° 0
1-1-1 -1
1272 |
1/72°*2 0
2/ 2 -1 0
271 -2) -2
4 ~3 "2 262,144
4 % 3 I
1400 % 1000 400
4 % 4 0
-4 % 3 -1
4 % -3 !
-4 % -3 -1

There arc three arithmetic prefix operators: +, -, and |. +i and -i are equivalentto 0 + i and

0 - i. respectively. That is, =i is the negative of i. |i produces the absolute value of i.

Examples:

expression value
+100 100
-100 -100
+0 0
-0 0
—4 - 700) 696
(1 |
[-1 I

3.1.3 Integer Comparison

There are six operations for comparing the magnitude of integers.

1= equal to

R not equal to

1> greater than

> greater than or equal to
I~] less than

i

RN less than or equal to

3.2.2 Real Arithmetic 17

All the comparison operators associate to the left and have lower precedence than any of the
arithmetic computation operations. The operations return the value of their right operand it the
specificd relation between the operands holds and fail otherwise.

Examples:

expression value
100 = 100 100
1 "= 1 none
1 >1 none
2 >1 I
1 <2 2
2 > 1 i
2 <=2 2
2 <3 <400 400
2<3:=4 none

3.2 Real Numbers
Real numbers are represented in floating-point format.

Note: Floating-point numbers are double precision.

3.2.1 Literal Real Numbers

Real numbers may be specified literally in a program in the conventional fashions using cither
decimal or exponent notation.

Note: For magnitudes less than 1. a leading zcro is required. Additional leading 7eroes are
allowed but are ignored.

Examples:

expression value

3 14159 3.14159
00 0.0

000. 0.0
27e2 2.700.0
27e-6 0.000027
27e5 2.700.000.0
27€5 2.700.000.0

3.2.2 Real Arithmetic

The arithmetic operations available for real numbers are the same as those available for integers.
Sce Section 3.1.2,

Error Conditions: In the case of real overflow, real underflow. or division by zero. Error 204
oceurs. I an attempt s made 1o raise a negative real number to a real power, Error 206
OCCurs.

Examples:
expression
1.0+ 20
1.0-20
10°* 20
10720
20710
1.0-10 -1
10°* 207/ 2
10720 * 2
4.7 % 2.0
25 %10
+1.0

-1.0

[-1.0

3.2.3 Comparison of Real Numbers

value

3.0
-1.0
2.0
0.5
2.0
-1.0
1.0
1.0
0.7
0.5
1.0
-1.0
1.0

3.2.3 Comparison of Real Numbers

The comparison operations available for real numbers are the same as those available for

integers. See Section 3.1.3.

Note: Because of the imprecision of the [loating-point representation and computation,
comparison for cquality of real numbers may not always produce the result that would be

obtained if true real arithmetic were possible.

Examples:
expression

10:=10
10 =10
1.0>10
20>10
1.0<20
20<=10
20<=20
20<30<«<40
20<30<=4.0
20<30:40

3.3 Mixed-Mode Arithmetic

value

1.0
none
none

1.0

2.0
none

2.0

4.0

4.0
none

Except for exponentiation. if either operand of an infix operation is a rcal number, the other
operand is converted to real number and real arithmetic is performed. In the case of exponentiation.

a negative real number may be raised to an integer power.

34.] Conversion to Integer 19

Examples:

expression value
1.0+ 2 3.0
1+20 3.0
1-20 -1.0
102 2.0
1072 0.5
2/10 20
1-1-10 -1.0
120/ 2 1.0
17202 1.0
1072 °2 1.0
20 "2 4.0
20 - -1 0.5

3.4 Arithmetic Type Conversion

3.4.1 Conversion to Integer

The value of integer(x) is an integer corresponding to x, where x may be an integer, real number,
cset, or @,

I. Integers are returned unmodified by integer(x).
2. Real numbers are converted to integer by truncation.
Fuailure Condition: Conversion of a real number to an integer fails if the value of the real

number is out of the allowable range of integers.

Examples:

expression value
integer(2.0) 2
integer(2.5) 2
integer(-2.5) -2
integer(2e35) none

3. Strings are converted to integers in the same way that an integer literal is treated in program
text, except that

(a) Lleading and trailing blanks are allowed. but are ignored.
(b) A leading sign may be included.

If the string corresponds to a real literal. real-to-integer conversion is performed. See Section
1.4.2. The empty string is converted to the integer 0. See Section 4.2.2.

Failure Condition: integer(s) fails if s is not a proper representation of an integer or real
number.

20 3.4.2 Conversion to Real Number

Examples:

expression value
integer(”10") 0
integer(“8r10") 8
integer(“-10") -10
integer(” 3") k!
integer(” 0003") Kl
integer(“3.5") 3
integer(“3.x") none
integer(”3r4") none

4. Cscts are converted to strings and then to integers. Sce Section 4.4,
5. The integer equivalent of @ is 0.
Failure Condition: integer(x) fails if the type of x is not one of those listed above.

For operations that require integers. implicit conversions are automatically performed for real
numbers, strings, csets, and @.

Error Condition: 1f the conversion fails. Error 101 occurs.

Examples:

expression value
1+ "10" I
2" 40 16.0
1 > &null 0

3.4.2 Conversion to Real Number

The value of real(x) is a real number corresponding to x. where x may be a real number. integer.
string. cset, or @,

. Real numbers are returned unmodified by real(x).

2. Integers are converted to the corresponding real values.

FExamples:

expression value
real(10) 10.0
real(-10) -10.0
real(8r10) 8.0 '
real(27000) 27.000.0

I, Strings are converted to real numbers in the same way that real literals are treated in program
text, except that

() Leading and trailing blanks are allowed. but they are ignored.
(b) A leading sign may be included.

(¢} A leading sero is not required before the decimal point for values whose magnitudes are less
than 1.

1.5 Numeric Test

Notes: If the string corresponds to an integer literal. integer-to-real conversion is performed.
Failure Condition: real{s) fails il s is not a proper representation ol a real number or integer.

FExamples:

expression value
real(”10.0") 10.0
real(”-10.0") -10.0
real{”"27000") 27.000.0
real(” 3.0") 30
real(” 0003.0") 3.0
real("8r10") 8.0
real(”3.x"} none
real(”3r4") none

4. Csets are first converted to strings and then to real numbers. Sec Section 4.4.
5. The real number equivalent to @ is 0.0.
Failure Condition: real(x) fails if the type of x is not onc of those listed above.

For operations that require real numbers. implicit conversions are automatically performed for
integers, strings, csets, and @,

Error Condition: 1l conversion fails. Error 102 occurs.

Examples:

expression value
1.0 + "10.0" 11.0
"2.0" 3 8.0
1.0 > &null 0.0

3.5 Numeric Test

The function numeric(x) returns the integer or real number corresponding to x if x 1s an integer.
real number, or if it is convertible to one of these types. See Section 3.4. The function fails
otherwise.

Examples:

expression value
numernic(100) 100
numeric{0.0) 0.0
numeric(”0") 0
numeric(“0.0") 0.0
numeric{”a”) none
numeric{”36rcat”) 15941
numeric{”3r4"} none
numeric(”") 0

numeric(&null) 0

CHAPTER 4

String Processing

4.1 Characters

Although characters are not themselves data objects in con, strings of characters and sets ol
characters are. Strings form the heart of Icon’s processing capabilities,

The character set used by lcon is based on ASCII [11]. There are. however. 256 diffcrent
characters available for use in Icon programs.

Note: The thirty-third character (octal code 40) is the blank (space). Since it has no visible
representation, the symbol O is used to represent the blank in contexts that otherwise might
be confusing.

While it is customary to think of characters in terms of their graphic representations and control
functions. characters are basically just integers. Internally the integers corresponding to ASClI are
represented by octal codes from 000 through 177 (hexadecimal codes 00 through 7F). The order of
characters is determined by these codes and specifies the *collating sequence’ of the ASClI character
set. For example. Z comes before z in the collating sequence. This order is the basis for comparing
strings (see Section 4.6) and for sorting (see Section 5.6). The full set of 256 characters similarly are
represented by octal codes 000 through 377 (hexadecimal codes 00 through FF).

4.2 Strings

A string is a sequence of zero or more characters. Any character may appear ina string. here
are many ways ol constructing strings during program execution. Sce Scection 4.5,

4.2.1 Literal Strings

Strings may be specified literally in a program by delimiting (enclosing) the sequence of
characters by double quotes (") or single quotes (). The same type of quote must be used at the
beginning and end of each string literal, and a quote of one type cannot appear directly in a literal
delimited by that type (see below).

Examples:

expression value

t'x ” x

X! X

l‘Dll D

"abcd” abcd
“lsn'tQit0great?” Isn’tOitOgreat?
‘“whoopee”.’ "whoopee”.

Note: In this manual. string values are given in the body of the text without the delimiting
quotation marks provided that the meaning is clear.

24 4.2.1 Literal Strings

Some characters cannot be entered directly in program text because of their control functions or
because of the limitations of input devices. To allow specification of all characters in literal strings.
an escape convention is used in which the backslash (\) causes subsequent characters to have a
special meaning as follows:

character code
backspace \b
delete \d
escape \e
formfeed \f
linefeed \I
newline \n
carriage return \r
horizontal tab \t
vertical tab \v
double quote \"
single guote \'
backslash \\
left brace ({) \<
right brace (}) \>
left bracket ([) \(
right bracket (]) \)
octal code \ddd
hexadecimal code \xdd

The specification \ddd represents the character with octal code ddd. The specification \xd/
represents a character with hexadecimal code dd. Only enough digits need to be given to specify the
octal or hexadecimal code. For example, \O specifies the null character and \xa is equivalent to
\xOa. If the character following a backslash is not one of those listed above, the backslash is
ignored.

Notes: The convention used here for representing characters in literals is adapted from that
used by the C programming language [9]. The linefeed and newline characters are the same.

Examples:

expression value
"\"oops\" " "oops”
NG "o
\Q’ O
"\a\z" az
“\132" Z
“\134\134" \\
"“\77a" ?a
"\1234" sS4
“\x64" d

S\ \

4.3 Character Sets 25

4.2.2 String Size

The size of a string is the number of characters it contains and is computed by size(s). [he empty
string is the string consisting ol no characters and has size zero. Tt may be represented hierally by
two adjucent quotes, enclosing no charuacters.

Notes: The maximum size of aostring is 20- 10 Lhe practical masimuny is asually dictated by
the smount of memory snvculable. Sinee the empty strig contains no characters, it has no

visible representation. In this manual. the symbol 8 iy used to represent the empty string i
contexts that otherwise might be conlusing. Thus " and B both indicate an empty string.

Examples:

expression value
size(”abed”) 4
size("0O")]
SiZ e(v ll) 0

4.3 Character Sets

Whereas astring is an ordered sequence of characters in which the same character may appear
more than once. a character set (eset) is an unordered collection of characters. The value of the
keyword &cset is the set of all 256 characters. Other character sets are subsets of &cset and are
usctul for operations where specific characters are of interest, regardless of the order in which they
appear. Sce Scctions 4.7.2 and 4.8.3. Other built-in character sets are &ascii. the first 128
characters of &cset, &lcase. the lower-case letters, and &ucase. the upper-case letters.

Lrror Condition: The keywords &cset. &ascii. &Icase. and &ucase ire not virriables. Han
attempt s made to assign a value to one of them. Frror 121 occurs.

The value of cset(s) is a character set consisting of the characters in string s. Duplicate
characters in s are ignored, and the order of characters in s is irrelevant.

Examples:

expression value
cset{"abcd”) abcd
cset("badc”) abecd
cset{"energy”) egnry

There are four operations on character sets:
I. The value of “c is the complement of ¢ with respect to &cset.

2. The value of ¢c1 ++ ¢2 is the union of ¢1 and c2.
3. The value of ¢1 ** ¢2 is the intersection of ¢1 and c2.
4. The value of c1 -- c2 is the difference of ¢c1 and c2; that is. all of the characters inc1 that are
not in c2.

Examples:

expression value

cl := cset{"drama"”) admr

c2 = cset{"append”) adenp

cl ++ ¢c2 ademnpr

cl ** ¢c2 ad

cl -- ¢c2 mr

cl -- “¢2 ad

26 4.4 Type Conversion

Nore: A character set may be empty. i.e. containing no characters. Such a character set may
be obtained by cset{” ") or ~&cset.

4.4 Type Conversion

4.4.1 Explicit Conversion

The value of string(x) is o string corresponding to x, where x may be an integer, real number,
string. cset, or @,

[. Strings are returned unmodified by string(x).

2. For integers and real numbers, the resulting string is a representation of the numerical value
corresponding to the literal representation that the numeric object would have in the source

program.

Examples:

expression value
string(10) 10
string(00010) 10
string{(8r10) 8
string(2.7) 2.7
string(02.70) 2.7
string(27e-1) 2.7
string(2700000.) 2.7eb6
string(0.0000027) 2.7e-6

3. For esets, the resultis a string of characters in the eset, arranged in order of collating sequence
(sce Section 4.6).
Note: Conversion of a string to a eset and back to a string. as in
s .= string{cset(s))

chiminates duplicate characters and sorts the characters of the string.

Examples:

expression value
string{cset("ab"}) ab
string(cset{"ba”)) ab
string(cset(”"mam”)) am
string{cset("adb")) Oab

4. For @, the result is @,
Failure Condition: string(x) fails if x is not one of types listed above.

The value of cset(x) is a character set corresponding to x, where x may be an integer. real number.
string. cset. or ®. If x is not a string. it is first converted to a string as described above.

Failure Condirion: cset(x) fails if the tvpe of x is not one of those listed above.

Examples:
expression value

cset(1088) 018
cset(3.14) . 134

4.5.2 String Replication 27

4.4.2 Implicit Conversion

In contexts that require strings. implicit conversion is automatically performed for intcgers, real
numbers. csets, and @,

Error Condition: 1f an object of any other type is encountered in i context that reguires
implicit conversion to a string, Error 104 occurs,

Examples:

expression value
size(010) 2
size(10) 2
size(&null) 0

For operations that require csets. implicit conversion is performed automatically for integers.
reals, strings, and @®. The conversion is performed by first converting to a string, if necessary. und
then to a cset.

Error Condition: 1f an object of anv other type is encountered in a context that requires
implicit conversion to a cset. Error 105 occurs.
4.5 Constructing Strings
There are @ number of operations for constructing strings. Most of these operations are
described in the following sections. Sce also Scections 4.8.2 and 4.8.3.
4.5.1 Concatenation

Since a string is a sequence of characters, one of the most natural string construction operations
is concatenation appending one string to another. The value of s1 || s2 is a string consisting of
s1 followed by s2.

Note: The empty string is the identity with respect to concatenation. That is. the result of
concatenating the empty string with any string s is simply s.

Examples:

expression value
uall || ”Z“ aZ
u[u || uabcdn ” n]n [ade]
“abcd” || &null abcd
“wn ” " .

4.5.2 String Replication
The value of repl(s,i) is the result of concatenating i copies of s.
Error Condition: 1f i is negative or greater than 2'5-1, Error 205 occurs.

Note: The value of repl{s,0) is B.

Examples:

expression value
repl{"a”,2) aa
l'ep|("'.",3) .'i‘i'

repl(&lcase) [|

2 4.5.3 Positioning Strings

4.5.3 Positioning Strings

Positioning data in strings of a specified size is frequently useful, especially when printing output
in columns. There are three functions for doing this.
I. The value of left(s1,i,s2) is s1 positioned at the left of a string of siz¢i. 82 is used to fill out the
remaining portion to the right of s1, and is replicated as necessary, starting from the right. The last
copy of s2 is truncated at the left if necessary to obtain the proper size. I the size of 81 is greater
than i, it is truncated at the right end.
Defauli: An omitted value ol s2 defaults to O.

Error Condition: If i is negative or greater than 2'*-1, Error 205 occurs.

Examples:

expression value
left{"abcd”.6,”.0") abcd.O
left(”abcd”,7,”.0") abcdD.D
left("abcde”.7,”.0") abcde.0
left{"abcd”,6) abcdDO
left(&Icase,10) abcdefghij

2. The value of right(s1,i,s2) is similar to left(s1,i,s2), except that s1 is placed at the right, s2 is
T€p|lCdl€d smrlmb at the left, with the truncation of the last copy of s2 at the right if necessary. If
the size of s1 is greater than i, it is truncated at the left end.

Defauli: An omitted value of s2 defaults 1o O.

Error Condition: I i is negative or greater than 2'5-1, Error 205 occurs.

Fxamples:

expression value
right(“abcd”.6,”.0") .Oabcd
right{"abcd”,7,”.0") .0.abcd
right{"”abcde”,7,”.00") .Oabcde
right{“abcd"”,6) OO0abcd
right(&Icase, 10) qrstuvwxyz

3. The value of center(s1,i,s2) is s1 centered in a string of size i. s2 is used for filling on the left
and right as for the functions above. If the size of s1 is greater than i, it is truncated at the left and at
the right to produce its center section. If s1 cannot be centered exactly. it is positioned one character
to the left of center.

Defauli: An omitted value of s2 defaults to O.

Error Condition: If i is negative or greater than 2'5-1. Error 205 occurs.

Examples:

expression value
center("”abcd”,8,”.0") .Oabed.O
center(“abcd”,9,”.0") .OabcdO.00
center{"”abcde”,9,”.0") .Oabcde.O
center{"abcd”,6) DabecdD
center(&icase,10) ijklmnopqr

center(&lcase,11) ijklmnopqrs

4.5.4 Character Positions and Substrings

4.5.4 Character Positions and Substrings

The positions of characters in a string are numbered from the left starting at 1. The numbering
identifies positions between characters. For example. the positions in the string CAPITAL arc

CAPI TAL
LA A S A |
12 3 4 5 6 78

Note that the position after the last character may be specified.

Positions may also be specified with respect to the right end of a string. using nonpositive
numbers starting at 0 and continuing with negative values toward the left:

CAPI TAL
trtr ot
A T . I 2 I |

For this string. positions 8 and 0 are equivalent, positions 7 and -1 are equivalent. and so on

The positions that can be specified for a string s are in the range -size(s) to size(s)+1. inclusive.
Values out of this range are not allowable position specifications. In general, the positive
specification i is equivalent 1o the nonpositive specification i~{size(s)+1).

Note: “The only allowable positions (or the empty string are | and 0. which are equivalent.

A substring is a sequence of characters within a string. An initial substring of s is one that begins
at the first character of s. A rerminal substring of s is onc that ends at the last character of s.
Substrings are determined by beginning und ending positions. using a range specification. There are
four forms of range specification:

i the single character following position |
i) characters between positions i and
1+:k k characters tollowing position i

i--k k characters preceding position i

In all cases. i and j may be given by positive or nonpositive specifications and k may be positive,
negative, or /ero.
Note: The range specitications i) and ji are equivalent.
A substring i1s obtained by a subscripting expression of the form
string left-bracker range-specification right-bracket
The resulting substring consists of the characters given by the range specification.

Failure Condition: A subscripting cxpression fails if either of the positions of the runge
specification do not correspond to allowable positions in the string being subscripted. In this
case, the specification is said to be owr of range.

Warning: The internal representation of characters starts at 0, not |. while the positions in a
string start at 1. Conscquently. there is a difference of | between the position of 4 character in
&ascii and its (decimal) code value. Thus &ascii[1] is the null character. This difterence
iy bean annoyance and atlso oo source of error. 1tis the consequence ol the technigue used
tor specifyving positions trom either end ol the string by unigue integers.

30 4.5.5 Other String-Valued Operations

Examples:

expression value
&icase{1] a
&ucase[26] Zz
&lcase[1:2] a
&icase(2:1) a
&Iicase{1:1)]
&ucase[27] none
&icase[27:28] none
&Icase[-1:-2] y
“abcd”[2:0) bed
"abcd”[2:-7]) none
“abcd”[1:0] abcd
"abcd”[2+:2] be
"abcd”[3-:2] ab

If the string specified in a substring operation is a variable, assignment can be performed to
replace the specified substring and hence change the value of the variable.

Notes: All forms of assignment can be used to replace substrings.

Error Condition: I an attempt is made 1o assign to a subscripting expression in which the
string is not a variable. Error 121 occurs.

Examples:

expression value of s
s = "abed” abcd
s{1:2] .= "xx" xxbcd
s{-1:0] = " xxbc

s{1] .= "abc” abexbe
s[1+:2] = "y" ycxbe
s[2] :=: s[3]) yxcbce

4.5.5 Other String-Valued Operations

. The value of reverse(s) is a string consisting of the characters of s in reversed order.

Examples:

expression value

reverse(“abcd"”) dcba

reverse(&lcase) zyxwvutsrqponmlikjihgfedcba
reverse(” ")]

2. The value of trim(s,c) is a string consisting of the initial substring of s with the omission of the
trailing substring of s which consists solely of characters contained in c.

Defauult: An omitted value of ¢ defaults to cset(”0").

4.6 String Comparison 3

Examples:

expression value
trim(”"abcd000O"”,”0") abcd
trim({”abcd00O0O") abcd
trim(”abcdO 00O, ”0Od") abc
trim(“abcd0O0”,"d") abcdO0O0O
trim(”abcd 00", &ascii) []

3. The value of map(s1,52,s3) is a string resulting from a character mapping on s1., where cach
character of s1 that is contained in s2 is replaced by the character in the corresponding position in
s3. Characters of s1 that do not appear in s2 are left unchanged. If the same character appears
more than once in s2. the rightmost correspondence with 83 applies.

Error Condition: 1 the sizes of 82 and s3 arc not the same. Error 215 occurs.

Defaults: An omitted value of s2 defaults to &ucase and an omitted vatue of s3 defaults to
&Icase.

ANote: Il s1is a transposition (rearrangement) of the characters of s2. then map(s1,52,s3)
produces the corresponding transposition of s3.

Examples:

expression value

map("abcda","a","'") .bcd’
map("abcda"’”ad“,"..") .bCOQ
map(llabcdall'lladll"lQ:ll) ’bc:’

map(nabcdau'uaxu'uo:U) chdo
map(“abcda”, "yx","*:") abeda

map("“abcda”,"bcad”,”1234") 31243
map(“abcda”,"abac”,”1234") 324d3

” e

map(“wxyz"”,"zyxw","abcd”) dcba

4.6 String Comparison

Strings. like numbers, can be compared. but the basis for comparison is lexical (alphabetical)
order rather than numerical value. Lexical order includes all characters and is based on the collating
sequence. ! a character ¢1 appears before €2 in collating sequence. ¢1 is lexically less than ¢2. The
lexical order for single-character strings is based on this ordering. Thus X is less than x. but z is
greater than x. For longer strings, lexical order is determined by the lexical order of characters in
corresponding positions, starting at the left. Two strings are lexically equal if and only if they are
tdentical, character by character. If one string is an initial substring of another. then the shorter
string is lexically less than the longer one.

Note: The empty string is lexically less than any other string,

The function Ilt(s1,s2) succeeds if s1 is lexically less than s2 and fails otherwise. The valuc
returned on success is s2.

Examples:

expression value
P X", " x") X
He(“"x"," X"} none
(" x","x") none
He(” XX, x") X
(" xx", " xX") none
Ht{"xx","xxx") XXX
" xx," " xxX") xxX
He(” ", ""x") X

”t(n ") none

4.7 String Analysis

In all. there are four lexical comparison predicates and two lexical comparison operators:

t(s1,s2) lexically less than

lle{s1,s2) lexically less than or equal
igt(s1,s2) lexically greater than
Ige(s1,s2) lexically greater than or equal
s1 - s2 fexically equal

sl == 82 fexically not eyqual

4.7 String Analysis

Most programming operations on strings involve analysis rather than synthesis, and the
repertoire of analytic operations is correspondingly large.

4.7.1 ldentifying Substrings

There are two functions for identifying specific substrings.

I. If s1 is an initial substring of s2[i:j]. the function match(s1,s2,i.j) returns the position of the

end of

-

s2(i:j].

the substring, that is, i+size(s1).
Failure Condition: match{s1,s2.i,j) fails if s1 is not an initial substring of s2[i:j).

Defaults: An omitted value of i defaults to | and an omitted value of j defaults to 0.

Fxamples:

expression value
match({"a"."abc".1) 2
match(”a”,”abc") 2
match{"a",”abc",2) none
match(”ab","abc”,1,2) none
match(”bc”.”abc”,1) none
match({"bc”,”abc",2) 4
match{”bcd”,"abc"”,2) none
match{"","abed”,1) 1
match{"","abcd",5) 5

2. The value of find(s1,s2,i,j) is the leftmost position in s2 where s1 occurs as a substring in

Failure Condition: find(s1,s2,i,j) fails if st is not a substring of s2[i:j).

Defaulis: An omitted value of i defaults to 1 and an omitted value of j defaults to 0.

Examples:

expression value
find("a","abcd",1) I
find("a"”,"abcd") i
find(”bc”,"abcd”, 1) 2
find("a","abcd",2) none
find({”ab”," abecd”, 1,2} none
find("”de"”.”abcd”. 1} none

find("",”abcd"”,3) 3

[2
47.2 Lexical Analysis Rk

The function find is a generator that produces the sequence of the positions. from left to right, at
which s1 is a substring of s2[i:j].

Fxamples:
expression values in sequence

L 4s

00

every find("a”,”abaaa”) !
every find(”abcd”,”abcdeabc”) !
every find{"bc"”,”abcdeabc") 2.7
every find("bc”,”abcdeabc”,3) 7

4.7.2 Lexical Analysis

Lexical analysis involves sets of characters rather than substrings. There are four lexical analysis
functions.

I. If the first character of s[i:j] is contained in the character set ¢, the value of any(c,s,i,j) is i+1.

Failure Condition: any(c,s,i.j) fails if the first character of s[i:j] is not contained in the
character set c.

Defaults: An omitted value of i defaults to | and an omitted value of j defaults to 0.

Fxamples:

expression value
any(”abc”,"abcd”, 1) 2
any(“abc”,”abcd”) 2
any{"abc”,”dcba") none
any(~"abc"”,”dcba”) 2
any{”abc”,”dcba",2) 3

any(”abcd”,”abcd”,1,1) none

2. The value of upto(c,s,i.j) is the leftmost position in s of the first instance of a character of ¢ in
s[i:j].
Failure Condition: upto(c,s,i,j) fails if no character in s[i:j] is contained in c.

Defaults: An omitted value of i defaults to | and an omitted value of j defaults to 0.

Examples:

expression value

e o0 21

upto{”a”,"abcd”, 1)
upto(”a”,”abcd")
upto(”abc”,”abcd”)
upto(~"abc"”,”abcd”)
upto(”d”,”abcd”,2)
upto(“d”,”abcd”,2,3) none
upto(”a”,”abcd”,2) none

S bHh - = -

RE) 4.7.2 Lexical Analysis

The function upto is a generator that produces the sequence of the positions. from left to right. at
which a character of ¢ occurs in s[ij].

FExamples:

expression values in sequence
every upto(”abcd”,”abcd”) 1.2, 3. 4

every upto(”a”,”abcd") |

every upto(”ab”.,”abcd”.2) 2

every upto(” "ab”,”abcd”) 1. 4

3. T'he value of many(c,s,i,j) is the position in s after the longest initial substring of s[izj] consisting
solely of characters contained in c.
Fuaiture Condition: many(c,s,i,j) fails if the first character of s[i:j] is not contained in c.

Defaults: An omitted value of i defaults to | and an omitted value of j defaults to 0.

Examples:

expression value
many(”ab“,”abcd”,“) 3
many(”ab”,"abcd") 3
many{“ab”,”abcd",2) 3
many(“ab”,”abcd"”,2,3) none
many{“”ab”,"abcd"”,3) none

4. The value of bal{c1,¢2,¢3.s,i,j) is the position in s after an initial substring of s[i:j]) that is
balanced with respect to characters in ¢2 and ¢3. respectively. and which is followed by a character
in cl.

I'n determining balance, a count s kept. starting at 0. Characters in s[i;j] are processed from left
to right. I the character being processed is contained in ¢1 and the count is zero, the process is
complete at that point. Otherwise, a character in €2 causes the count to be incremented by |, while a
character in €3 causes the count to be decremented by |. All other characters leave the count
unchanged.

Failure Conditions: 1{ the count ever becomes negative or if the substring being examined is
exhausted with a positive count, bal fails.

Note: Characters in c2 are examined before characters in ¢3. so that if 4 character occurs in
both €2 and 3, it is treated as if it occurred only in c2.

Defaults: An omitted value of i defaults to | and an omitted value of j defaults 10 0. An
omitted value of c1 defaults to &cset. an omitted value of c2 defaults to cset{”(”). and un
omitted value of c3 defaults 1o cset(”)").

Examples:

expression value
bal(”+","(".")"."(a)+(b)") 4
bal("+",.."(a}+(b)".1) 4
bal("+",.."(a)+(b)") 4
bal("+",,,"(a)+(b)".2) none
bal(”-",,.,”(a)*(b)") none
bal(.,.,”(a)+(b)") |

bal(.”™(["."])"."(a)+(b)") !

481 Scanning Keywords KR

The function bal is a generator that produces the sequence of positions. from left to right. at
which successively longer balanced strings terminate.

Examples:

expression values in sequence
every bal(...”(a}+(b)+(c)") 1.4.5.%.9
every bal(“+”,,.”(a)+(b)+(c)") 4.8

every bal(,,,"”abcd”) I.2,3. 4

4.8 String Scanning

String scanning is a high-level facility for the analysis and synthesis of strings that permits the
string being operated on to be implicit, thus avoiding much of the notational detail that would
otherwise be required.

The control structure
scan exprl using expr2
evaluates expr/ and establishes its value as the string to be scanned. expr2 is then evaluated to
perform the scanning. The outcome of scan-using is the outcome of expr2.

Failure Condition: If exprl fails, expr? is not evaluated and scan-using fails.

4.8.1 Scanning Keywords

During string scanning, the string being scanned is the value of the kevword &subject. The
implicit position in &subject 15 the vualue of the keyword &pos. The value of &subject is
automatically sct to the value of expr/ and the value of &pos is set to |, corresponding to the
beginning of &subject. Subsequently, values may be explicitly assigned to &subject and &pos.
Assignment of a value to &subject automatically sets &pos to |, but assignment to a substring of
&subject sets &pos to the position at the end of the replaced substring.

Note: A nonpositive position specification may be used in assignment to &pos, but the
corresponding positive value is actually assigned.

Failure Condition: An attempt to set &pos to a value that is out of the range of &subject
fails.

The function pos(i) returns the positive equivalent of the position i in &subject. provided &pos is
at this position.

Failure Condition: pos(i} fails if &pos is not at position i.

Examples:

expression value value of &pos
&subject = "abcd” abcd]
pos(1) I |
pos(-4) | 1
pos(3) none]

&pos = -1 4 4
pos(-1) 4 4
&subject[2:4] := “x” x 3
&subject ;= "ab” ab i

16 4.8.2 Positional Analysis

4.8.2 Positional Analysis

There are two functions that change &pos automatically and return the substring between the
previous and new values of &pos. This substring is called a scanned substring.

I. The result of move(i) is the substring between &pos and & pos+i, and &pos is incremented by i,

Failure Condition: 11 &pos+i is out ol range, move(i) fails and &pos is not changed.

Examples:

expression value value of &pos
&subject := "abcd” abcd !
move(2) ab 3
move(3) none 3
move(-1) b 2
move(-2) none 2
move(0) " 2
&pos = 0 5 5
move(-1) d 4

The assignment made to &pos by movel(i) is a reversible effect. |f move(i) succeeds. but the
expression in which it appears fails, &pos is restored to its original value.

Examples:

expression value value of &pos
&subject := "“abcd” abcd !
move(2) & move(3) none I
move(2) ab 3
move(-1) & pos(3) none 3

2. The value of tab{i) is the substring between &pos and i. and &pos is set to i.

Failure Condition: If i is out of range. tab(i) fails and &pos is not changed.

Examples:

expression value value of &pos
&subject := “abcd” abcd I

tab(2) a 2
tab(0O) bed S
tab(1) abcd !
tab(-5) none]

The assignment made to &pos by tab(i) is a reversible effect.

Examples:

expression value value of &pos
&subject ;= "abcd” abcd I
tab(0) & move(1) none |

tab(0) & move(-1) d 4

4.8.3 Scanning Operations ”

4.8.3 Scanning Operations

Several functions have defaults that provide implicit arguments for string scanning:

Jorm interpretation

any(c) any{c,&subject,&pos,0)
bal(c1,¢2,c3) bal{c1,c2.c3.&subject,&pos,0)
find(s) find(s,&subject,&pos,0)
manyl(c) many(c,&subject,&pos,0)
match(s) match(s,&subject,&pos,0)
upto(c) upto({c,&subject,&pos,0)

Thus in each casc the default interpretation applies to &subject starting at &pos and continuing to
the end of &subject. The values returned by these functions are integers representing positions in
&subject. but &pos is not changed.

Note: These default interpretations apply only if all three of the trailing arguments are

omitted.

Examples:

expression value value of &pos
&subject := “abcd” abcd I
upto{“c") K I
upto(”a”) 1 |
many(”abc”) 4]
any(”d”) none]

These functions may be used as arguments to tab to change the value of &pos and to obtain a
substring between the new and old values of &pos.

Examples:

expression value value of &pos
&subject := "abcd” abcd 1
tab{upto(”c”)) ab 3
tab({upto(”a”)) none R]
tab(many(“c”)) c 4
tab(any(”d"})) d 5

In addition, =s is provided as a synonym for tab(match(s)).

Examples:

expression value value of &pos
&subject ;= "abcd” abcd]

" ab" ab 3

="ab" none 3

:Ilcll c 4

g d 5

:ll " . 5

="d” none 5

3K 4.8.4 String Transformation

4.8.4 String Transformation

The control structure

transform cxpr/ using expr2

is similar to the scan-using expression, except that the result of evaluating expr/ must be a variable
and the value ol &subject upon completion of the evaluation of expr2 is assigned to exprl. |he
outcome ol transform-using is the outcome of expr2.

Failure Condition: 1t exprl lails, expr2 is not cvaluated and transform-using fails.
Error Condition: If the evaluation of exprl does not produce a variable, Error 121 occurs.

Since the value assigned to exprl is the value of &subject when evaluation of expr2 is complete,
expr2 can be used to change &subject to produce a desired transformation.

One way to change &subject is simply to assign a value to it in expr2. For example,

transform s using &subject := tab{upto(”:"))

deletes the trailing portion of s starting at the first colon.

Assignment can also be made to tab(i) and move(i) to replace their scanned substrings in
&subject. When an assignment to a scanned substring is made, &pos is set to the end of the

replaced substring. For example,

transform s using
while tab{upto("0O")) do
tab(many(“0") := "0Q"
replaces all occurrences ol multiple blanks in s by single blanks.

Assignment to scanned substrings is a reversible effect. If such an assignment is made, but the
expression in which it occurs fails. &subject and &pos are restored to their former values.

Warning: Assignment to a scanned substring may change the length of &subject and the
value of &pos.

Notes: Any form ol assignment may be made to a scanned substring: reversible assignment.
exchange. and revernsible exchange. Assignment may also be made to =s. Since assignment
to a scanncd substring is a reversible effect. := and := are cquivalent to <- and <->.
respectively. in such contexts.

Inscrtion into &subject is frequently useful. The function insert(s,i) inserts s into &subject
following position i. The value returned by insert(s,i) is § as a scanncd substring.

Fuilure Condition: insert Lails il i is out ol range.
Defaulr: An omitted value ol i defaults to &pos.

Note: insert(s,i) changes the value of &pos to i+size(s).

Examples:

expression value value of &subject value ol &pos
&subject ;= "abcd” abed abcd !
insert(”x") X xabcd 2
tab(O) abcd xabcd 6
insert(”yy”.3) vy xayybcd 5

4.%.5 Nested Scanning R

4.8.5 Nested Scanning

The values of &subject and &pos are saved on entry to scan-using and transform-using and
restored upon exit. Consequently. nested scanning is possible. For example. if words contains a
sequence of words followed by blanks. the tollowing cxpressions

twords = "
scan words using
while scan tab(upto(”O")) using
if upto(”t”) then twords := twords || &subject || "O"

do move(l)

assign a similar string to twords, but with only those words containing the letter t.

Similarly. the transform-using expression may be used to transform scanned substrings. For
example

transform s using
while tab{upto(&icase)) do
transform tab{many(&Icase)) using
&subject ;= reverse(&subject)

reverses all strings of lower-case letters in s.

Note: The values of &subject and &pos arc not restored if the using clause is exited by a
break. next. or a procedure return.

41

CHAPTER 5

Structures

Structures are aggregates ol variables, Different kinds of structures have different organizations
and different methods for accessing these variables. Structures are data objects and may be assigned
to variables like other data objects. Structures are not copied when they are assigned to variables.

Note: There are specific limits to the sizes of structures as noted in subsequent sections. In
practice, maximum sizes are usually himited by the amount of available memory.
S.1 Lists
Lists are sequences of variables that are referenced by position. Lists are equivalent to vectors
and one-dimensional arrays.
S.1.1 Creation of Lists

Lists are created during program execution by the function list(i,j). where i is the lower bound
and j is the upper bound. The initial value of all elements of the list is @,

Defaults: I jis omitied, the lower hound deliults to | and i specifies the upper bound.

Error Conditions: 11 a bound specilication is less than =2'* or greater than 21-1, Error 205
oceurs. [the upper bound is Jess than the lower hound. Error 216 occurs.

=
o

functions Ibound(x) and ubound(x) return the lower and upper bounds, respectively. of the
list x. The function size(x) gives the number of elements in x.

Examples:

expression value
dec = list(1,10) list
Ilbound(dec)]
uboundidec) 10
ndec := list(10) list
ibound(ndec) 1
ubound(ndec) 10
sector := list(-5,2) list
Ibound(sector) -5
ubound(sector)

oo N

size{sector)
A list also may be created by an expression of the form
lefi-bracket expr [, expr] ... right-bracket

where the values of the expressions are the initial values of the list elements. In this case. the lower
bound is | and the upper bound is the number of expressions in the list.

Note: The expressions in the list may be empty. The number of elements is the number of
commas plus one.

42

5.1.2 Accessing List Elements

Examples:

expression value
triple := [0,0,0] list
Ibound(tripie} |
ubound(triple) R
line :- |,..] list
size(line) 4
octave := [1,2,3,4,5,6.7,8) list
size(octave) 8
unit := [] list
size(unit)]

5.1.2 Accessing List Elements

An element of a list is accessed by specifying the position of the element in a referencing

expression of the form

list lefi-bracket expr right-bracket

where the value of expr is the position of the element in /isz. Element positions are also called
subscripts. Assignment may be made to an element of a list to change its value,

Fuilure Condition: A relerencing expression fails il the subscript is not between the lower
and upper bounds, inclusive. In this case the subsceript is said (o be owt of range.

Examples (lor the lists given in the preceding examples);

expression value
dec[3] = 1 i
dec(5] := dec[3] * 5 5
dec[0] none
octave[4) 4
unit(1] ®

5.1.3 Open Lists

Lists ordinarily arc fixed in size. Lists may be opened for expansion so that they can he

subscripted beyond the original upper bound. A list is opened by the expression open(x).
Subsequently. x expands automatically when assignment is madce 1o an subscript that is one heyvond
its current upper bound.

Notes: Lists are closed when they are created. Expansion of an open list occurs anly when
the subscript is one beyond the current upper bound. Recferences to larger subscripts luil,
Expansion occurs only when an assignment is actually made. A reference to the value at a
position one beyond the current end of an open list produces ®. See also Section 5.5. open(x)
modifies x and also returns the modified value.

The function close(x) closes x and prevents x from being expanded by out-of-range references.

Nore: close{x) modifies x and also returns the modified value.

5.2.1 Creation ol Tables 41

Examples:

expression value
laundry := list(10) list
size(laundry) 10
laundry(1] []
laundry[11] := “shirts” none
open(laundry) list
laundry[12] := "shirts” none
laundry[11] := "shirts” shirts
size{laundry) I
laundry[12] := "socks” socks
size(laundry) 12
close(laundry) list
size(laundry) 12
laundry[12] socks
laundry[13] none

5.1.4 The Empty List

The value of list(O) is an empty list containing no elements. Unlike other lists, the empty list is
open when it is created.

Examples:
expression value
seq := list(O) list
size(seq) 0
seq(1) := 1 I
seq{3] none
seq[2] = 4 4
size(seq) 2
5.2 Tables

A table is an aggregate of elements that resembles a list. A table, however, can be refercnced
(subscripted) by an object of any type. The elements of a table are not ordered by position. Thus a
table can be thought of as an associative list.

5.2.1 Creation of Tables

Tables are created during program execution by the function table(i). When a table is created. it
is empty and has no elements. Elements may be added at will and tables grow automatically. The
size of the table is limited to the value of i. A size of 0 specifies a table that is not limited in size.
except by the amount of storage that is available. '

Defauli: An omitted value of i defaults 1o 0.

Error Condition: 11 i is less than 0 or greater than 2%-1. Error 205 occurs.

44 5.2.2 Accessing Table Elements

5.2.2 Accessing Table Elements
An clement of a table is accessed by specifying a referencing value in an expression of the form
tahle left-bracket expr righi-bracket

where the value of expr references rable. The referencing value may be of any type. For example.
t[“n"]) references the table t with the string n.

Note: No type conversion is performed on the value used to refcrence the table. For
example, t{1] and t["1"] reference different elements. See also Section 7.3.

A value may be assigned to a table element in a manner similar to that for lists. For example
t{"n"] := 3
assigns the integer 3 to the clement referenced by the string n.

A table grows automatically as assignments are made to referenced elements that are not already
in the table. The function size(t) gives the size of the table t.

The value of a table clement that is not in the table is ®. Tablc clements are only created.
however. when values are assigned to them. See also Sections 5.2.3 and 5.5.

Error Condition: If an attempt is made to exceed the specificd maximum size of a table,
Error 301 occurs.

Examples:

expression value
op ‘= tablel() table
size(op) 0
op(“add”] := "¢c273" c273
size(op) i
op[”sub”] ®
op[“sub”] := “c274" c274
size(op) 2

ct = table() table
ct{"four”] := “four” four
ct[”score”] = "twenty” twenty
size(ct) 2

5.2.3 Closed Tables

As discussed above. tables ordinarily grow as values are assigned to newly referenced clements.
Tables may be closed to prevent growth. A table is closed by close(t) where t is o tuble. When o
table is closed, new elements cannot be added. but existing elements can be accessed or assigned new
values.

Nore: close(t) modifies t and also returns the modified value.
Failure Condirion: When a table is closed. a reference to a non-existent element fails.

T'he Tunction open(t) opens t for further expansion.

5.3.2 Accessing Stacks 45

Fxamples:

expression value
digram := table(50) table
digram[“th"]) := 73 73
digram{“en”] := 81 ¥l
digram["i0"”] = 41 41
close(digram) table
digram["th”] := 74 74
digram[”st"] none
open(digram) table
digram{”st"])
§.3 Stacks

A stack is an aggregate of variables that resembles a list. A stack. however, grows and shrinks
automatically as elements are added (pushed) and deleted (popped). Stacks usually are accessed
onlv at the most recently added (top) element.

5£.3.1 Creation of Stacks

Stacks are created during program exceution by the tunction stack(i). | he maximum number ot
clements the stack may have is imited by i. A size ol O specilies o stack ol unlimited size

Defaudt: An omitted value of i delaults 1o 0.

Error Condition: 110 is less than 0 or greater than 2%, Error 205 occurs.

§.3.2 Accessing Stacks

When a stack is created. it is empty and contains no clements. An element is added to a stack by
the function push(k,x). where k is a stack and x is a value to be added to the top of the slack The
value of push{k,x) is x. The value of size(k) is the current size of the stack k.

Error Condition: If an attempt is made to exceed the specified maximum size of a stack.
Error 302 occurs.

An element is removed from a stack by the function pop(k). The value of pop(k) is the value that
is rcmoved.

The top element of a stack is referenced by top(k). which returns the top element of k.
Assignment may be made to top(k) to change the value of the top element of the stack.

Stacks also can be referenced by position like lists. k[1] references the top element of the stack k.
k[2] references the next element below the top, and so on.

Failure Conditions: pop(k) and top(k) fail if k is empty. K[i] fails if i is less than 0 or greater
than the size of k.

46 54 Records

Examples:
expression value

pstack := stack(50) stack
size(pstack)

"o

0
push(pstack,”x") X
push{pstack,”y") Y
pstack[1]} Yy
pstack[2] X
pstack[3] n
push(pstack,”"") *
size(pstack) 3
top(pstack) *
size{pstack)
pop(pstack)
size(pstack)
top(pstack) = “2"
size{pstack)
pop(pstack)
pop(pstack)
size{pstack)
pop(pstack) none
top{pstack) none

* '

O X N NN

5.4 Records

Records are aggregates of vaniables that resemble lists. but the clements are accessed by name
rather than by position.

5.4.1 Declaring Record Types
A record type iy declared in the form
record name ([identifier [, identifier] ... 1)

The name specifies a new type. which is added to the repertoire of types. See Section 7.8. The
identifiers provide names by which the fields of the record may be referenced.

Notes: A record declaration cannot appear within a procedure declaration or within another
record declaration. The same field name may be used in more than one record declaration
and the positions need not be the same. Field numes do not conflict with identifier names.

An example of a record declaration is
record complex(r,i)
which declares complex 1o be a record type with two fields. r and .
5.4.2 Creating Records
A record is created during program execution by an expression of the form
npe {expr{ , expr) ...)
where the type is one declared by record and the values of the expressions are assigned to the fields
of the record in the order corresponding to the field names. The values may be of any type. For
example.
z ;= complex(1.0,2.5)

. . | . .
assiens 1o 2 :a ceomplev record with a value of 1.0 for the r field and a valie af 2 8 far the i fialAd

5.5 Assigning Values to Structure Elements

Defanli: Omitted trailing arguments in a record creation expression detault to @,

The value of size(z) i the number of ficlds declared for the type ol record z.

8.4.3 Accessing Records

A record is accessed by ficld name, using the infix . operator. Continuing the example above, the
value of z.r is 1.0. The infix dot operator binds more tightly than any other infix or prelin operator
For example, a.b.c.d and ((a.b).c).d arc cquivalent.

and associates to the left.

Records can also be accessed by position like lists.

For example, z[1] is equivalent to z.r.

Failure Condition: z[i] fuils if i is less than 0 or greater than the number of fields in z.

Examples:

expression value

21 = complex(0,0) complex
22 = complex(3.14,2.0) complex
21 0

215 » 22.i 20

2lr = 22r 314
22(2] 2.0
22(3] none

5.5 Assigning Values to Structure Elements

The infix operator ::= assigns a value to all elements of a structure, For example, if x is a list.
x = O assigns 0 to all elements of x. For lists and tables, the ::= operator also establishes a default
value for newly created elements. This default value is the value of an element of an open list one
position bevond its current size and the value produced when an element not already in a table is

referenced.

Note: The structure assignment operator associates 1o the right and returns its left operand

as a v

ariable.

Error Condition: If the expression on the left side of the structure assignment operator is not
a list. table. stack. or record object. Error 114 occurs.

Examples:

expression

line :=

line[1]

line

w= 3

line[1]
open(line)
line{11]

syns

:= table(O)

syns["”loc")

syns
syns[”

o= 0

loc”]

list{10) = 1

value

list
|
list
3
list

3
table
®

list

0

4% 5.6 Sorting Structures

5.6 Sorting Structures
The function sort(x) produces a copy of the list x with the clements in sorted order.

In sorting, strings are sorted in non-decreasing lexical order (see Section 4.6), while integers and
real numbers are sorted in non-deereasing numerical order (see Sections 313 and 3.2.3). | he
ordering of values of other types is unspecificd.

In heterogencous lists containing values of different types, values are lirst sorted by type and then
among the values of the same type. The order of types in sorting is
L
integers
recal numbers
strings
csets
files
procedures
lists
tables
stacks
record types

A tuble is converted to a sorted list by sort(t,i). If the size of tis j. the result is a list of j elements.
Fach clement of this list is itself o list of two clements, the Tirst ol which is the reference of o table
clement and the second of which is the corresponding value. 11 iis 1. these two-clement lists are in
the sorted order of the references of the table s 20 these two-clement lists are in the sorted order
ol the values of the table.

Note: 1Lt iy empty, sort(t,i) returns an empty (open) list.
Defaulr: An omitted value of i delaults to 1.

Error Conditions: In sort(x), il x is not a list or a table. Error 219 occurs. In sort(t,i). il' i is
not | or 2, Error 220 occurs.

49

CHAPTER 6

Input and OQutput

6.1 Files

The values of &input. &output. and &errout are the standard input, standard output. and
standard error output files, respectively.

Error Condition: These keywords are not variables. If an attempt is made to assign a value
to one of them. Error 121 occurs.

A file must be opened to be written or read. In addition. the status of the file must be established:
some files are designated for input and others are designated for output. All files are automatically
closed when program execution is terminated.

Note: &input. &output. und &errout are automatically opened when program exceution
begins.

The function open(s1,s2) opens the file with nime s1 according to the options specified by s2.
The possible options are represented by characters as follows:

open for reading

open for writing

apen for reading and writing (bidirectional)

open for writing in append mode

create and open for writing

pipe to from a command (sl is given to a shell to execute)

nomc’g"

~ . . . i -

In the case of the w option. writing starts at the beginning of the file. causing any data previously
contained in the file to be lost. The a option allows data to be written at the end of an existing file.
The b option usually applies to interactive input and output at a computer terminal where the
terminal behaves like a file that is both written and read.

Warning: File names are interpreted by UNIX. Strange file names may produce strange
results.

Default: An omitted value of s2 defaults to r.

Notes: If a file is opened for writing but not reading, create is implied. Create and append
hive no effect on pipes. Pipes may not be opened simultancously for reading and writing.

Failure Condition: open{s1,s2) fails if the file with nume st cunnot be opened with the
options specified by s2.

Error Condition: If the option specification is invalid. Error 221 occurs.

The function close(f) closes f. This has the effect of physically completing output (emptying
internal bufters used for intermediate storage of data). Once a file has been closed. it must he
rcopened to be used again. In this case. the file is positioned at the beginning (rewound).

Error Condition: If a file cannot be closed. Error 401 occurs.

S0 6.2 Writing Data 1o Files

6.2 Writing Data to Files

The function write(f,s1,...,sn) writes the strings s1,s2, snto the file f. The strings are written
one after another as a single line. not as separate lines (i.e.. they arc not separated by line
terminators). The effect is as if s1, 52, ..., sn had been concatenated and written as a single line on
the file f.

Notes: A line terminator is added alter sn. No actual concatenation is pertarmed by the
write tunction, Since strings output to o file frequently are composed ol several parts, the
write function may be used to avoid concatenation that otherwise might be necessary. A
significant amount of processing time may be saved in this way.

writes(f,s1,s2,...,sn) writes s1, s2. ..., sn to file f in the manner ol write(f,s1,s2,....sn). but no
line terminator is appended at the end. Thus several strings can be pluced on the same line of a file
with successive calls of the writes function. One use of this function is to provide prompting at i
terminal in interactive modc. allowing the user to respond on the same (visual) line that the inquin
IS Written,

Defauli: 11 the first argument to write or writes is not of a file, the arguments are written to
&output. That is, write(s1,s2....,sn) writes s1. s2, sn to &output.

Error Condition: 1{ an attempt is made to write on a file that is not open for writing. Error
403 occurs.

During writing, integers, real numbers, csets, and ® are automatically converted to strings as
described in Section 4.4. Arguments of other types are converted to strings by use of the image
function (see Section 7.9). Thus arguments of any type can be specified in the write and writes
functions.

Examples:

expression value written file writien
out := open(’data.txt”,”"w") none none

flag = "°" none none

sep = " none none
write{out) a data.txt
‘write{out,flag,”a",sep,”b") *ab data.txt
write(flag,”a"”,sep.”b") *ab &output
write(out,”x”,sep,”y",sep."z",flag) xy:z* data.txt
write(1.sep.2.0,sep,”2") 1:2.0:2 &output

6.3 Reading Data from Files
The function read(f) reads the next line from the file f.

Failure Condition: When the end of a file is reached (that is. when there are no more lines in
the file). read(f) fails.

Defauli: An omitted value of f defaults to &input.
Note: The maximum input line length is 256.

Error Conditions: 11 the argument to read is not a file. Error 106 occurs. If an input line
exceeds the maximum length, Error 411 occurs. If an attempt is made to read from a file
which is not opened for reading. Error 402 occurs.

6.2 Writing Data to Files 51

The function reads(f,i) reads the next i characters from the file f. Line terminators are included in
the result. 1f fewer than i characters remain on the file f, the remaining characters are read and the
result is shorter than i.

Failure Condition: reads fails if no characters remain to be read.
Defauli: An omitted vilue of § defaults to &output.
Note: There is no limit to i exeept the amount of memory available to store the string.

Error Conditions: 11 the argument to reads is not a file. Error 106 occurs. 117 s less than |,
Error 205 occurs. 11 an attempt is made to read [rom a file which is not opened for reading.
Error 402 occurs.

CHAPTER 7

Miscellaneous Operations

7.1 Element Generation

The expression !x generates successive elements of x as required. x may be a string. structure. or
file.

For strings. successive characters are generated. Assignment to !s may be performed in the same
manner as to s[i].

Examples:

expression values in sequence
every !“abcde” a. b.cde
every !&Icase[10:15] kel mon

For lists. the order of generation is from the lower bound to the upper bound. Forexample.if xis
list

every write(!x)

writes the clements of x in order from the first to the last

For tables. the order of generation is unpredictable, but all elements are generated. For stacks.
the order of generation is from the top of the stack to the bottom of the stack. For records. the order
of generation is the same as for lists. For all structure types, assignment to !x may be used to change
the value of an element.

For files. successive lines of input are generated. For example.
every write(!&input)

copics all the lines in the standard input file to the standard output file.

7.2 Augmented Assignment Operators

One of the commonest operations is the modification of the value of a variable by performing
some computation on its previous value. For example

iz i+ 1
increments the value of i.

To simplify such computations, augmented assignment operators are provided in which the
computation and assignment operators are combined in a single operator. For example, the value
of i is incremented by

Note: exprl +:= exprl has the same meaning as expr]/ := exprl + expr2 except that exprl
Is ¢valuated only once.

54 7.3 Comparison of Objects

The other augmented assignment operators are:

Lrror Condition: 11 the expression on the lelt side of anaugmented assignment operator is
not o vanable, Frvor 121 oceurs.

7.3 Comparison of Objects

Most comparison operations such as i = j and s1 == s2 are concerned with comparison of values.
In these cases, implicit type conversion occurs prior to the comparison.

The two operations x === y and x “=== y arc concerned with the cquivalence of objects. x ==z y
succeeds if x and y are of the same type and are equivalent. Similarly, x “=== y succeeds if x and y are
of different types or if they are not equivalent. In both cases, the value of the right operand is
returned in the case of successful comparison.

The meaning of the term *equivalent’ as used here depends on the type. Integers, real numbers.
strings. and csets are considered to be equivalent if they have the same values. regardless of how they
are computed. For procedures, files, lists, tables, stacks, and record objects, object comparison fails
regardless of value, unless x and y are the same object.

Note: The kind of comparison used in x === y is also used to determine whether two table
relerences are the same. See also Scection 5.2.2.

Examples:

expression value
("abc” || "def”) === “abcdef” abcdef
7 == (6 + 1) 7

7 === "7" none
cset{"amy”) === cset{”"may"”) amy
" ozz= &null none
{10.10} === [10.,10] none
{x =y = list{10); x === y| list

7.4 Copying Objects
Assignment does not copy objects, but rather assigns the same object to another variable. For
example,

X list(10)
y =X

assign the same list to x and y. Subsequently, x[3] and y[3] reference the same element of the same
list.

7.7 The Null Value 33

An object may be copied by the function copy(x). For example. if x 1s a list
Z = copyix)

assigns a copy of x to z. This copy has the same structure as x and the values of all the clements are
the same. but x and z arc distinct objects. Subscquently, x[3] und 2[3] relerence elements i the
corresponding positions of different objects.

Note: Any type of object may be copied. In the case of integers. real numbers, strings, ﬁlc§.
procedures, csets, and @, the result is not a physically distinct object. but this differcnce s
undctectable. See Section 7.3.

7.5 Random Number Generation

The value of random(i) is an integer from a pscudo-random sequence with the range | to o,
inclusive.

The pseudo-random sequence is generated by a linear congruence relation starting with an initial
seed value of 0. This sequence is the same from one program execution to another. allowing
program testing in a reproducible environment. The seed may be changed by an assignment to
&random. For example,

&random := O

resets the seed to its initial value.
Error Conditions: If the value of i in randomy(i) is less than one or greater than 251, Frror
205 occurs. If the value assigned 1o &random is less than sero or greater than 2V-1, Frror
205 occurs.

7.6 Date and Time

The value of the keyword &date is the current date in the form yyyy/mm/dd. For example. the
value of &date for April |, 1980 is 1980/04/01.

The value ol the keyword &clock is the current time of day in the form hh:mm:ss. For example.
the value of &clock for 8:00 p.m. is 20:00:00. ‘

The value of the kevword &dateline is the date and time of dav in a readable format. An
example 1s Sunday, April 13, 1980 5:16 am .

The value of the keyword &time is the elapsed cpu time in milliseconds starting at the beginning
of program execution.

Notre: The value of &time includes only user time, not system time.
Error Condition: &date. &clock. &dateline, and &time are not variables. If an attempt is

made to assign a value to one of them. Error 121 occurs.

7.7 The Null Value

The null value. @, is an identity in the concatenation of strings and in the addition of numeric
objects. 1t is also useful to indicate the end of a chain of pointers composed of structure objects.

Note: There 1s only one null value.

The function null(x) converts x to ®. The values convertible to ® are the empty string. the integer
0. the real number 0.0. the empty character set. and @ itself.

Failure Condition: null{x) fails if x i1s not one of these values.

56 7.8 Type Determination

Examples:

expression value
null(””) ®
null(”0") none
null(0) ®
nuil(”0™) none
nuli(0.0) J
nuli(&null) ®

7.8 Type Determination

T'he function type(x) returns a string that is the name of type of x.

Examples:

expression value
type(1) integer
type(2.0) real
type(” ") string
type(&null) null

7.9 String Images

T'he function image(x) produces a string that represents the value of x. For strings, this includes
cnclosing double quotes and escapes as necessary. File names are enclosed in single quotes to avoid
ambiguitics with the images of strings. The images of lists include the upper and lower bounds. For
other structures, their current size s given,

Fxamples:
expression

image(1)

image(2.0)
image('abc’)

image(” ")
image(&null)
image(cset(“drama”))
image(&input)
image(open(“data”))
image([1,0,11))
image(list(-3,2))
image(trim)
image({complex(3.1,1.0}}

value

1
20

“abc”

&null
cset{”admr")
&input

‘data’

list(3)

list(-3,2)

function trim
record complex(2)

7.11 System Information 57

7.10 Calling a Shell
The function system(s) calls a shell to execute the string s, For example. system(”1s”) lists the
current directory. T he value returned by system(s) is the exit status returned by the shell,

Error Condition: 11 the size ol s is greater than 256, Frror 222 occurs,

7.11 System Information

The value of the keyword &host is the host location, operating system, and computer on which
Icon is running. An example is University of Arizona, Unix Version 7, PDP-11/70 .

The value of the keyword &version is the name and version number of the Icon implementation.
An example is Icon, Version 3, March 28, 1980 .

Error Condition: &host and &version are not variables. If an attempt is made to assign a
value to one of them, Error 121 occurs.

CHAPTER 8

Procedures

8.1 Procedure Declarations

A procedure has the torm

procedure identifier (| identifier [, identifier') ... 1)
[local-declaration ;) ...
[initial-clause ;)
[procedure-body ; |

end

Note: The semicolons in a procedure declaration may be omitted if the components are
placed on separate lines. See also Section 9.2.
The identifier following procedure gives the name of the procedure. A local declaration has the
form

local-specification identifier | |, identifier] ...
A local specification may be local. dynamic. or static.

Note: local and dynamic are cquivadent,
Fxamples:

local x, y
dynamic count
static state, basis

Dynamic identifiers exist only during each invocation of the procedure. Static identifiers come
into existence at the first call of the procedure in which they are declared and remain in existence
after return from the procedure so that their values are retained between calls of the procedure.

Note: ldentifiers in the argument list are dynamic.

The initial clause has the form
initial expr

The expression in the initial clause is evaluated once when the procedure is called the first time. The
initial clause is useful for assigning values to static identifiers,

The procedure body consists of a sequence of expressions that are executed when the procedure is
called.

Two examples of procedure declarations follow.

procedure max(i,j)
if i > j then return i else return |
end

procedure accum(s)
local static t
initial t := "
t 4_:: S “ u'n
return t

end

60 8.2 Scope of ldentifiers

8.2 Scope of Identifiers

As indicated in the preceding section, identifiers declared in a procedure are accessible only to
that procedure. If an identifier in a procedure is not declared. its scope is determined by global
declarations that apply to the entire program.

global identifier [, identifier] ...

specifies that the listed identifiers are to be interpreted as global in those procedures in which they
arc not explicitly declared to be local. The values of such variables are accessible to all such
procedures.

Notes: A local declaration for an identifier in a procedure overrides a global declaration for
that identifier. Global declarations cannot occur inside other declarations but they otherwise
may occur anywhere in the program. Record names have global scope, but this scope can be
overridden by local declarations.

The scope of an identifier for which there is neither a local nor a global declaration is local.

8.3 Procedure Activation

8.3.1 Procedure Invocation

Procedures are invoked in the same form that functions are called:

expr ([expr[,expr] .. 1)

where the expression before the parenthesized list has a procedure value. This expression usually is
an identifier. For example, the procedure max given in the example above might be used as follows:

m = max(size(x),size(y))

Argument transmission is by value. When a procedure is called. the expressions given in the call are
evaluated from the left to the right.

The values of the expressions in the call are assigned to the corresponding identifiers in the
argument list of the procedure. Control is then transferred to the first expression in the procedure
body.

Note: If more expressions are given in the call than are specified in the procedure
declaration, the excess expressions are evaluated, but their values are discarded. If fewer
expressions are given in the call than are specified in the procedure declaratjon, ® is provided
for the remaining arguments.

8.3.2 Return from Procedures
When a procedure is called, the expressions in the procedure body are executed until a return
expression is encountered. There are three forms of return expression:

return [expr]
fail
suspend [expr]

Defaulis: An omitted exprin u return expression defaults to @. If control flows off the end of
a procedure body without an explicit return, the outcome of the procedure call is the outcome
of the last expression in the procedure body.

Failure Condition: A procedure call fails if the last expression in the procedure body fails.

Warning: Failure to provide an explicit return from a procedure body may lead to
unexpected and erroneous results.

K.2 Scope of Hdentitiers 6l

The expression return expr terminates the call of a procedure and returns the result of evaluating
expr. If expr fails, the procedure call fails. Otherwise the value of expr becomes the value of the
calling expression. For example

j = max(size(x),size(y))
assigns to | the size of the larger of the two objects x and v.

The expression fail terminates the call of a procedure without returning a result. causing the
calling expression to fail. Consider the following procedure.

procedure typeqix.y)
if type(x) == type(y) then return else fail
end

This procedure compares the types of x and y. returning @ if they are the same and failing otherwise.
On the other hand,

return type(x) == type(y)

also fails if the types are not the same, but returns the type instead of ® if the types arc the sume.

The expression suspend expr is similar to return expr. except that the procedure call is left in
suspension so that it may be resumed for additional computation. Execution of the procedure body
is resumed if the context in which the procedure call occurs requires another alternative. Thus
suspended procedures are generators. Consider the following procedure.

procedure timer(t)
while &time - t do suspend
fail

end

Ihis procedure suspends evaluation until the time exceeds a specilied limit, in which case it Luls.
Theretore

every timer(&time + 1000) do expr

evaluates expr repeatedly during an interval of approximately 1000 milliseconds.
l.ike every. suspend produces all alternatives of expr as required. For example
suspend (1] 2| 3)

suspends with the values |, 2, and 3 on successive activations of the procedure in which it appeurs. 1f
the procedure is activated again. evaluation continues with the expression following the suspend.

Noie: The outcome of suspend itself. once all alternatives of expr have been produced. is ®.

If the expression in return is a global identifier or a computed variable (such as a list element).
the variable is not dercferenced. l.ocal identifiers are dereferenced. however, and only their value is
returned. An assignment can be made to the result of a procedure call that returns a variable.
Constder the following procedure:

procedure maxel(x,1,)
if x[i] ~ x[j] then return x|[i]
else return x{j]
end

62 8.3.3 Procedure Loevel

An assignment to a call of this procedure. such as
maxel{roster,k,m} := n

changes the value of the maximum of the clements k and m in roster.

Unlike return, suspend doces no dereference local identifiers, since they remain in existenee
while the procedure is suspendced.

8.3.3 Procedure l.evel

Since procedures can invoke other procedures before they return. several procedures may be
invoked at any one time. The value of the &level is the number of procedures that are currently
invoked.

Error Conditions: There is no specific limit to the number of procedures that may be invoked
at any one time, but storage is required for procedure invocations that have not returned. If
available storage is exhausted, Error 504 occurs. &level is not a variable. 1f an attempt s
made to assign a valuc to it. Error 121 occurs.

8.3.4 Tracing Procedure Activity

Tracing of procedure invocation is controlled by the keyword &trace. If the value of &trace is
nonsero, a diagnostic message is written to &errout each time a procedure is called and cach time a
procedure returns or suspends. The value of &trace is decremented for each trace message.

Default: The initial, default value of &trace is 0.

Notes: Tracing stops automatically when &trace is decremented to 0. 1 a negative value is
assigned to &trace, trucing continues indefinitely.

In the case of a procedure call, the trace message includes the name of the procedure and string
images of the values of its arguments. The message is indented with a number of dots equal to the
level from which the call is made (&level). In the case of procedure return, the trace message
includes the function name. the type of return, and the value returned. except in the case of failure.
The indentation corresponds to the level to which the return is made. All trace messages include the
name of the file containing the procedure that is traced.

An cxample is given by the following program:

procedure acker(m,n)
if (m | n) <O then fail
if m = O then return n + 1
if n = O then return acker(m - 1,1)
return acker(m - 1,acker(m,n - 1))
end

procedure main()
&trace = -1
acker(1,3)

end

8.4 Listing ldentifier Values

The trace output produced by this program is

.acker(1,3) called from line 10 in acker.icn
..acker(1,2) called from line 5 in acker.icn
...acker{1,1) called from line 5 in acker.icn
....acker(1,0) called from line 5 in acker.icn
..... acker(0,1) called from line 4 in acker.icn
..... acker returned 2 at line 3 in acker.icn
....acker returned 2 at line 4 in acker.icn
....acker(0,2) called from line 5 in acker.icn
....acker returned 3 at line 3 in acker.icn
...acker returned 3 at line 5 in acker.icn
...acker(0,3) called from line 5 in acker.icn
...acker returned 4 at line 3 in acker.icn
..acker returned 4 at line 5 in acker.icn
..acker(0,4) called from line 5 in acker.icn
..acker returned 5 at line 3 in acker.icn
.acker returned 5 at line 5 in acker.icn
main returned 5 at line 10 in acker.icn

8.4 Listing Identifier Values

63

The function display(i,f) prints a list of all identifiers and their values in the i levels of procedure

invocation starting at the current procedure invocation. The output is written to f.

Defaudis: An omitted value of i defaults to | (only the identifiers in the currently invoked
procedure are displaved). An omitted value ol f delaults to &errout.

Error Condition: 11 the second argument to display is not a file. Error 106 occurs.

Note: display(&level) displays the identifiers in all procedure invocations leading to the

current invocation.

As an example of the display of identifiers. consider the following program:

global hexd

procedure hex(x)
display(&level)

return &ascii[16 * find(x[1], hexd) + find(x{2], hexd) - 16]

end

procedure main()
local label
hexd := "0123456783ABCDEF”
label := "hex{61)="
write(label,hex("61"}))

end

64 8.5 Procedure Names and Values

The output of display(&Ilevel) is

hex local variables:
x = "61"

main local variables:
label = “hex{61)="

global variables:
main = procedure main
hexd = “0123456789ABCDEF”
hex = procedure hex
display - function display
find function find
write function write

Global identifiers are histed at the end of every display output, regardless ol whether or not the
global identifers are referenced by the displayed procedures.

8.5 Procedure Names and Values

A procedure declaration establishes an object of type procedure as the initial value of the global
identifier that is the procedure name. This object can be assigned to another variable and the
procedure can be called using the new variable. For example imax := max assigns to imax the
procedure for max as given earher. Subsequently, imax(i,j) can be used to compute the maximum
of i and |.

Any expression that produces a value of type procedure may be used in a call. For example. if
procs is a list whose clements are procedures. such as

procs{1] := max
then
procs[1](i.j)
computes the maximum of i and j.
The names of functions are global identifiers with predefined values. The declaration of «
procedure or record with the same name as o function overrides the predefined value. A local

declaration for a function name has the same cffect within the procedure in which the declaration
occurs.

CHAPTER 9

Program Preparation

Ny

9.1 Program Structure

A program is a sequence of declarations. The declarations may appear in any order. The
executable components of a program are contained in procedure declarations. Every program must
contain a procedure named main.

A program may be divided into a number of files, but evey declaration must be completely
contained in a single file. When a multi-file program is processed, the scope of identifiers is the same
as if the program had been contained in a single file.

Warning: A global declaration in one file of 4 program may affect the interpretation of an
undeclared identifier in another file.

Note: Record and procedure declarations implicitly declare their record and procedure
names, respectively. 1o be global.
9.2 l.ayout of Program Text

Since a file is a sequence of lines. it is usually convenient and natural to parallel the logical
structure of a sequence of expressions by the physical structure of a sequence of lines in the file.

Semicolons are used in the lcon syntuax in a number of places to separate expressions. Sec
Appendix A, If a semicolon falls at the end of a line, it may be omitted. provided that the svntactic
token at the end of the line can legitimately end an expression and the token at the beginning ol the
next line can legitimately begin an expression. Thus most semicolons can be omitted at the ends of
lines, und long expressions can be written on several lines without difficulty.

Note: I 4 semicolon can be legitimately inserted in the place of o newline character in
program text, this is done automatically by the Icon translator.

For example.

x =1,y =2, 2:=0
can also be written as

x = 1
y = 2
z:=0
Warning: Care should be taken not to split expressions at places where components are
optional. For example

return e
and

return
e

arc quite different.

66 9.3 Program Churacter Set

Identifiers may be arbitrarily long. but procedure names must be unique in their first seven
characters.

A string literal may be continued from onc line to the next by entering an underscore (—) as the
Liast character of the current line. When i line is continued in this way, the underscore as well as any
hlianks or tab characters at the beginning ol the next line are ignored to allow normal indentiation
and visual Liyvout conventions o he used.

Nore: The total fength of o string hiteral s homted anly by the memory avaddable to the
tramslitor. There s no practical limat.
9.3 Program Character Set

Icon uses the ASCII character set [I1]. In program text, the following characters are
syntactically equivalent:

lower-case letters and corresponding upper-case letters
blank and tab
Note: In literal strings. all charuacters are distinct and the equivalences above do not apply.
Sce Scction 4.2.1.
9.4 Significance of blanks

Blanks (and tabs) in program text, except in string literals, serve to separate tokens that otherwise
would appear 1o be a single token. Blanks are optional between tokens and may be used ftor
indentation and to produced desired visual elfects in program text. Blanks are necessary to separate
reserved words, identifiers, and where an infix operator that is followed by a prefix operator would
be ambiguous. For example,

x--y
is interpreted as the character set difference of x and y. while
x- -y

is interpreted as x minus the negative of y.

9.8 Comments

A comment is text in the line of a program that is not part of the program itself, but is included to
describe the program or to provide other auxiliary information. The character # causes the rest of
the line on which it appears to be treated as a comment. The following program segment shows the
use¢ of comments.

These procedures print all the intersections of two words.
xcross uses nested every constructs to find all intersections and
& calls xprint to print each intersection.

procedure cross(wordl, word2)

local .k
every | = upto(word2,wordl) do # location in wordl of
every character in word2
every k := upto{wordl[j],word2) do # and for each, all
positions in word2
xprint{word1,word2, j, k) # print the result
end

procedure xprintiword?,word2, |, k)
every write(right{word2[1 to k - 1],j)) # up to position in word1
write(wordt) # then wordl
every write(right(word2[k + 1 to size(word2)],})

then rest of word2
end

67

CHAPTER 10

Programming Considerations

10.1 Efficiency Considerations

Many of the considerations in writing efficient lcon programs arc the same as for other
languages: use of good algorithms, good program structure, appropriate data representations. and
so on. There are. however, idiosyncrasies of the Icon language and its implementation that warrant
specific attention:

|. Any operation that causes the allocation of a significant amount of storage may adversely affect
running speed. since that storage must eventually be reclaimed by garbage collection, a relatively
expensive process. While a detailed understanding of storage allocation and garbage collection
requires extensive knowledge of the implementation of lcon, common sense provides a good guide
to programming practices. Some specific aspects of storage allocation are mentioned below.

2. Long strings are expensive 1o manipulate. Operations that construct strings require storage
allocation and the movement of data. Appending to the end of the last string constructed is &
comparatively inexpensive process. however.

3. Creation of a substring does not require a significant amount of storage and imvohves no
movement of data. Assignment to a substring, however, is a form of string creation,

4. Secveral strings can be appended in output without concitenation by using write and writes.
This technique frequently can be used to avoid considerable amounts of storage allocation, Note
that multi-line output can be produced in a single output expression by using “\n” to generate
newlines.

S. lcon stores integers in the range of -2'* to 2'5-1 in one word. One-word integers do not require
the allocation of storage. For integers beyond this range. two words are used. Two-word integers
do require the allocation of storage.

6. lcon provides automatic type conversion (coercion) where possible. Such type conversiions.
although not directly evident, may be the cause of significant inefficiencies. The worst potential
problems are in cset-to-string and string-to-cset conversion. For example. evaluation of
upto(”aeiou”) causes the string aeiou to be converted to a cset evey time the expression i
evaluated. If such an expression occurs in a frequently executed inner loop. overall program
performance may be significantly affected. It is good programming practice to perform an cexplicit
comversion out of line in such cases.

7. Augmented assignment operations, such as i +:= 1, should be used wherever possible to avoid
two cvaluations of the variable to which the assignment is made. This is particularly important in
the case of table references (for example. t["n”] +:= 1), since table references require a
comparatively slow lookup process.

8. Cuse sclector expressions are evaluated in the order in which they appear (except for default).
Conscquently. selector expressions should be ordered according to likelihood of selection,

68 10.2 Programming Pitfalls

9. Compound comparisons should be ordered so that unnecessary comparisons are avoided if the
final outcome is failure. For example

0 = f(x) = glx)
is generally more etficient than
fix) glx) - O

since f(x) and g{x) may producc thc same, but nonscro, value. This consideration is particularly
important when expressions in the comparison may have many alternatives (see the eight-queens
program in Chapter 12).

10.2 Programming Pitfalls

Since Icon has several unusual features, the novice Icon programmer is likely to run into a
number of problems that would not come up in other programming languages. Some of the
problems that may be encountered are described below.

I. Generators arc reactivated for successive alternatives in a last-in first-out manner. As a result,
all possible alternatives are attempted in the goal-directed mode of evaluation used by Icon.
However. the order of evaluation that results from last-in, first-out reactivation of generators is
different from that in conventional left-to-right, precedence-determined evaluation of expressions.
In particular, if a generator is reactivated for an alternative, only those components of the
expression that follow the reactivated generator are re-evaluated. I generators are used in
complicated combinations, unexpected results may occur for these reasons, In particular, itis bad
programming practice to use generators to produce side cflects in an every clause.

2. The reterencing expression x[y] is polymorphous, allowing x to be a string. list, table, stack. or
record object. If x 18 not of the type that is expected, unusual results may occur. In particular, itis a
common programming practice for x to be a list and for an expression of the form x := x[i] to be
uscd to link through a structure. If x[i] is a string instead of a list (perhaps as a result of an error in
building the structure). an endless loop may result.

3. Assignment does not copy structures. Thus, if x is a list, y := x assigns the same list toy. Thus
assignment to an element of x changes that element of y. Similarly, the effect of

x := list(3) ::= lisy(5)
is 1o assign the same list of five elements to each of the three elements of x.

4. Exit from within a using clause, whether by next, break. or a procedure return, does not
restore the previous values of &subject and &pos. Unless this effect is specifically desired or known
to be safe. it is not good practice to exit from within a using clause.

5. The outcome of suspend, once it has produced all its alternatives, is ®. At the same time. in the
ahsence of a specific return at the end of a procedure body. the outcome of a call of that procedure is
the outcome of the last expression in the procedure body. If this last expression is a suspend. the
outcome of the call is @. If the procedure is intended to serve as a generator, this final ® may be
spurious. This problem can be avoided by placing a fail after the suspend. See, for example, the
sentence recognizer in Chapter 12,

10.2 Programming Pitfalls 69

6. Since dereferencing is not performed until all arguments of a function or operation are
evaluated. unexpected results may occur if side effects change the values of variables during
argument evaluation. For example

write(s,s = “a")
writes @a regardless of the vitlue ol s prior to the evaluation ol the write function. | he explict
dereferencing operator . may be used to avoid this problem.

7. The names of functions are global identifiers with predetined values. 1 such a name is declared
to be localin a procedure. it may be used as an identifier like any other name. but the corresponding
function is inaccessible within that procedure. I such o declaration is made unintentionally, the
results may be mysterious.

8. Since upper- and lower-case letters are equivalent. except in string literals, identifiers such s
VALUE and value arc the sume. although they may appear to be different. This equivalence may
lead to unexpected collisions of identifiers.

9. SNOBOL4 programmers are prone to omit the || operator that is required for concatenation in
Icon. The result is usually a syntax error. A more subtle error is the use of = in place of := for
assignment. This error may produce undetected program malfunction or a runtime tvpe error.

71

CHAPTER 11
Running Icon Programs

There are four phases in processing an leon program: translation, linking, loading. and
cxecution.

11.1 Translation

An lcon program is first translated into an intermediate form. The translator may detect o
variety of errors. Most of the crrors that the translator can detect are syntactic ones - illegal
grammatical constructions. The translator can also detect a few semantic errors, such as multiply
declared identifiers. See Appendix E for a list of translator error messages.

Notes: Some grammatical errors ure not detected until after the location of the actual cause
of the error. For example, if an extra left brace appears in an expression. the error is not
detected until some construction occurs that requires the matching. but missing right brace.
As a result of this phenomenon, the translator message may not properly indicate the cause
or location of the error. Similarly, some kinds of errors may cause the translator to
mistakenly interpret subsequent constructions as erroneous when, in fact. they are correct.
Several diagnostic messages referring to locations in proximity should be suspect.

If the translator detects a syntactic error. the translation process is continued. but the program is
not executed. There are also overflow conditions that cause termination of translation at the point
of overflow. Sec Appendix E.

11.2 Linking

Once an lcon program has been translated into its intermediate form. there is a linking phase in
which the scope of identifiers is resolved and in which a form suitable for execution is produced.

Separately translated program segments may be linked together to form a complete program.
Thus usctul utility procedures can be kept in a library and linked when needed.
11.3 Loading

Once an Icon program is linked. it is loaded (“link edited™) by the UNIX program /d [10].

The error message text overflow from /dindicates that there is not enough memory available to
run the Icon program. This problem may be due to the program itself being too large or to its use of
too many different operators and functions.

Note: Each different operator and function referenced in a program requires i corresponding
runtime module to be loaded.
11.4 Program Execution
Program execution is initiated by invoking the procedure main.

I therc are any arguments on the UNIX command line used to intitiate program execution, main
is invoked with one argument. which consists of a list of strings. Each string corresponds to one
argument on the command line (not including the “zeroth™ argument).

72 11.5 Program Termination

11.5 Program Termination

Program exccution terminates automatically on return from the initial call of the procedure
main.

Nore: The exit stitus on return {rom main is 0,

Program termination may also caused by stop(f,s1,52....,sn). T he function stop writes s1, 82,
.sn oo fan the fashion ol the write function (see Section 6.2) and then cises tenmination,

Noges: The stop lunction can be used to terminate program exceution at an arbitrary place
and is a convenient way of handling errors or abnormal conditions that are deteeted during
program exccution, stop produces an exit status of 1.

Defaudr: 11 the first argument to stop is not o file, output is written (o &errout.

The function exit(i) terminates program exccution with an exit status of i,

11.6 Error Termination

Errors during program execution may result from logical mistakes. invalid data. and so forth. If
one of these errors occurs, an error number and an explanatory message are printed and program
cxecution is terminated with an exit status of 2. See Appendix E.

73

CHAPTER 12

Sample Programs

This chapter contains & number of sample programs. These programs illustrate various ispects
of programming in lcon. No claim is made that the programming techniques or the algorithms used
here are the best, but they are all running programs and they were written by programmers who have
used Icon for some time.

The programs are preceded by problem statements and discussions of the methods used for the
solutions. Discussions follow the programs. Icon idioms and points of special interest are noted.
Exercises include suggested extensions, improvements, and related problems.

The programs themselves have been stripped of internal comments for better typographic
presentation. In most cases, error checking and embellishments have been omitted also. These
amenities can be provided by the interested reader.

All the programs in this chapter are included in the lcon distribution system for UNIX.

Problem 1: Roman Numerals

Description: This problem is a simple one: write a program to convert Arabic numerals to
corresponding Roman numerals.

Solution: The method of solution s due to Gimpel [12]. Each digit of the Arabic number is mapped
into its Roman cquivalent. The multiplication by [0 represented by successive positions in the
Arabic number is reflected in the corresponding Roman numeral by shifting to the next "octinge’
using character replacement. The occurrence ol an asterisk in the result indicates & number that is
too large to be represented by @ Roman numeral.

procedure roman(n)
local arabic, result
static equiv
initial equiv = [0, "0 0P, IV VT VE OVIEY, VI X
every arabic := In do
result ;= map(result,”IVXLCDM",”"XLCDM**") || equiv[arabic+1]
if find("“*",result) then fail else return result
end

Exercises:

I. Add a check to assure that n is a valid argument.

2. Rewrite the every loop to eliminate the local identifier arabic.

3. Modify equiv so that the addition of 1 is not necessary when it is referenced.
4. Consider alternative data representations for equiv. including strings and tables.
5. Write a procedure to convert Roman numerals to Arabic numerals.

Problem 2: Meandering Strings

Description: A string over an alphabet of & characters is said to be an n-meander if it contains every
possible substring of length n from the alphabet [13]. For example, 0001111011001010000 is a
4-meander for the alphabet O1.

The problem here is to write a procedure to compute meandering strings of minimal length (the
example given above is minimal).

74 Sample Programs

. .o n
Solurion: In Reference 13. it is shown that the length of the minimal meandering string is & +n |
and an algorithm is given to generate such a string. The algorithm is basically an enumerative onc.
systematically constructing substrings, but discarding ones that already occur in the result.

procedure meander(alpha,n)
local result, t, i, ¢, k
i 2= k := size{alpha)
t: n-1
result : repl{alpha[1],t)
while ¢ := alphali] do |
if find(result[-t:0] || c,result)

then i -:= 1
else {result ||:= ¢; i := k}
}
return result
end
Exercises:

1. Try to improve the algorithm used in the solution above.

2. Apply the concept of meandering strings to produce space-efficient techniques for telegraphic
codes.

Problem 3: Word Intersections
Description: Given two strings, display their intersections in common characters.

Solution: 1 he approach is to consider one string as a set of characters and look for occurrences of
these characters in the other string.

procedure cross(s1,s2)
local |, k
every) := upto(s2,s1) do
every k := upto(s1[j],s2) do
xprint(s1,s2,j,k)
end

procedure xprint{s1,s2,j,k)

write()

every write(right(s2{1 to k-1].j))

write(s1)

every write(right(s2[k+1 to size(s2)],j))
end

Comments: The procedure cross(s1,s2) provides a good illustration of generators and particularly
how nested generators can be used to formulate a search over many alternatives. I'he procedure
xprint(s1,s2,j.k) prints s1 horizontally and s2 vertically, crossing at the point of intersection. For
example, the output of cross(”fish”,”school”) is

fish

— 0 0 O

Sample Programs

Exercises:
1. Extend the solution to handle the mutual intersections of several words.

2. Extend the solution to the generation of Kriss-Kross puzzles [14].

Problem 4: Ward Tabulation

Description: One of the simplest illustrations of the utility of string scanning, as opposed to more
primitive string analysis methods. is tabulation of the words contained in a text file. For the
purposes of this problem, a ‘word" is defined to be a sequence of letters. The output is a listing of
words in alphabetical order. together with a count of the number of times each word occurs in the
file.

Solution: String scanning tabs up to a letter. The subsequent sequence of letters references a table
and the count is incremented. When processing of the file is complete. the table is sorted and
printed. using a column width that is supplied as an argument to the procedure. The text to be
processed comes from standard input and the results are written to standard output.

procedure wordcount(n)

local t, line, x, y
static letters
initial letters :- &lcase ++ &ucase
t = table()
every line := &input do

scan line using

while tab{upto(letters)} do
t{tab(many(letters))] +:= 1

X = sort(t)
every vy := Ix do write{left(y[1].n).y[2])
end

Comments: Note the use of augmented assignment to update the count without having to reference
the table twice.

Exercises:
. Modify the solution so that a suitable column width is computed by the procedure.
2. Revise the solution so that the output is ordered by decreasing count.

3. Revise the solution so that the output is broken down into sections of words having the same
count and with the words listed alphabetically in each section.

76 Sample Programs

Problem S: Binary Trees
Description: Write a program to construct and traverse binary trees.

Solution: "The nodes in o binary tree can be represented by records, in which one licld is devoted to
the contents ol the node and two other fields point to the left and right subtrees. Forinpul output
purposes, trees are represented by strings in which parentheses and commas specify the sheleton ol
the tree and the contents ol the nodes are given between punctuation characters. bor example,
a(b,c) represents a tree with a root node containing a and two leaves containing b and c,
respectively.

record node(data,ltree,rtree)

procedure tform(s)
local value,left,right
if null(s) then return &null
scan s using
if value := tab{upto(”{”)) then {
move(1)
left := tab(bal{",”))
move(1)
right := tab(bal(")"))
return node(value,tform(left),tform(right))
}
else return node(s)
end

procedure walk(t)
if null(t) then fail
suspend walk(t.ltree | t.rtree)
return t.data

end

procedure leaves(t)
if nuli(t) then fail
if null{t.itree) & nuil(t.rtree) then return t.data
suspend leaves(t.ltree | t.rtree)
tail
end

Commenis: The procedure tform constructs the binary tree from a string representation of the type
described above. The procedures walk and leaves walk the tree and generate the leaves.
respectively. Note that these procedures are generators, allowing successive nodes to be obtained as
desired.

Exercises:

I. Modify the procedure tform to allow trailing commas to be omitted to indicate the absence of a
right subtree,

2. Modity the procedure walk to walk the tree in various different orders.
Add crror checking to the procedure tform to detect syntactically incorrect input.

KN
4. Write a procedure to convert a binary tree into its string representation.

Sample Programs 77

Problem 6: Displaying Scanning
Description: Provide a procedure to display the state of string scanning.

Solution: This problem lcaves much leeway for interpretation. Since such a procedure can be
useful diagnostic aid. it should present information in a concise but casily interpreted format. The
solution that foliows shows &subject together with position numbering bars. &pos is indicited by
a pointer to its position in &subject.

procedure disp()
local ¢, subject
static bars, nline
initial |
bars := repl(”| ",50) || "|"
nline := repl{”1 234567890 ",5)
}
every c = !&subject do subject ||:=
write(”\n",subject)
write(bars[1+:2*(&pos-1)],” """, ,bars[2+:2*(size(&subject)-&pos+1})])
write(nline[1+:2*size(&subject)+1])
end

[l

1| c

Comments: The display obtained by the use of this procedure is illustrated by an adaptation of the
example given in Section 4.8.5:

words = "“it is a test “
scan words using {

disp()
while scan tab(find(" “)) using |
disp()
if find("t”) then twords ||:= &subject || ”

}
do {move(1); disp()}

}

7% Sample Programs

The display output is

ot 1 s a t e st

S T T T (Y T O N A A
123456789012 34
1t

[

12 3

bt I S a t e s 1t

[A e e
123456789012 34
[

I

123

rot 1 s a t e s t

| T N B (I
123456789012 34
3

|

1 2

[¢ 1S a t e st

I e I e I
12345678901234
t e st

B I B

12345

ot [a t e st

I O e O e e

12345678901 2324

Exercises:

. The length of &subject that can be handled by this solution is quite limited. Remove the
limitation, allowing for multiple lines of output for very long subjects.

2. Improve the format of the output so that the numerical value of & pos can be determined more
easily.

3. The every loop used to intersperse blanks between the characters of &subject is time
consuming and wasteful of storage. Using positional transformation techniques [15.16]. replace this
loop by a single mapping expression.

Sample Programs 79

Problem 7: Eight Queens

Description: The classic example used to illustrate backtracking is the eight-queens problem
[17.18]. which is to determine the number of ways that eight queens can be placed on a chess board
such that nonc can attack another.

Solution: The solution involves trial placements of the cight queens with backtrucking from
attacking positions.

procedure main{)

every write(q(1),q(2),q(3).q(4).q(5).q(6).q(7).q(8))
end

procedure q(c)
suspend place(1 to 8,c)
fail

end

procedure place(r,c)
static up, down, rows
initial |{
up := list(-7,7) == 0
down := list{2,16) ::= O
rows := list(1,8) ::= O
|
if O = rows[r] = uplr-c] = down[r+c] then
every rows(r] <- up[r-c] <- down[r+c] <- 1 do
suspend r
fail
end

Comments: The three lists keep track of the free rows. the upward-facing diagonals. and the
downward-facing diagonals. Free squares are indicated by zero values. while occupied squares are
indicated by the value one. Note that goal-directed evaluation forces the function write to be called
for all combinations of arguments that have values (for which q(i) returns a value).

Exercises:
. Write an analogous procedure for four rooks.

2. Write a procedure to display the solutions in the format of a chess board.

80 Sample Programs

Problem 8: Infix-to-Prefix Conversion

Description: Write a program to convert arithmetic expressions from infix form to fully
parcnthesized prefix form. The desired conversions are illustrated by the following examples:

X X

x+1 +(x,1)

((x+1)) +x,1)

X-y-2 —-{x.y)2)
3*deita+1 +*(3,delta),1)
2°2°n "(2,7(2.n))
(x " n)/(z+1) /(7 (x.n),Hz.1))

Solution: Since the infix expressions may not be fully parenthesized, the precedence and
associativity of the infix operators must be considered. In addition. the infix expressions may
contain superfluous parcntheses that must be removed. Separate procedures are provided to
remove superfluous parentheses and for handling left- and right-associative operators according to
their conventional precedences. Once an expression has been decomposed into its operators and
operands. the corresponding prefix expression is easily obtained.

procedure prefix(s)

s := strip(s)
return lassoc(s,”+-") | lassoc(s,”*/") | rassoc(s,”"") | s
end

procedure strip(s)
local t
while scan s using ="(" & t := tab(bal(")”)) & pos(-1) do
s =t
return S
end

procedure lassoc(s.c)

local j

j=0

scan s using every j := bal{c)

if j = O then fail else return form(s,j)
end

procedure rassoc(s,c)
local |
scan s using j := bal(c) | fail
return form(s,j)

end

procedure form(s, k)
local al, a2, op
scan s using {

al := tab(k)
op := move(l)
a2 := tab(0O)

}
return op || “(” || prefix{al) || “.” || prefix(a2) || ")"
end

Sample Programs 81

Commenis: This solution illustrates a number of facets of string scanning and use of the function
ba! in particular. Note the use of conjunction in strip to assure that the bilianced string ends ata
terminal parenthesis.

lxercises:

. Modily the procedure prefix to avoid callimg 1a8soc and rassoc i case $ does not continm sy
operitors.

2. Write a procedure to convert from prefix form to infix form.

3. Extend the solution given above to handle prefix operators and functional forms.

P

Write a program to perform symbolic differentiation.

S. Write a program to perform general symbolic evaluation. Provide for simplification of the
results.

Problem 9: Recognition of Context-Free Languages

Description: Given a context-free grammar, write a program to recognize sentences from the
corresponding language.

Solution: In SNOBOL4 there is an isomorphism between the productions of a context-free
grammar and corresponding recognition patterns [19]. Provided there is no left recursion. there is a
similar isomorphism in Icon. in which recognition procedures take the place of patterns. This
isomorphism is illustrated by the following simple grammar.

a ~s.| <t

<SS~ P
d~s.dje

“t-

b|c
| f

Recognition procedures s and t corresponding to <s> and <t> arc

<s>::za<s>| <t>b| ¢

procedure s{)
suspend (="a" || s()) | (t) |] ="b") | ="¢”
fail

end

#o<t>:=d<s>d]| e|f

procedure t()
suspend (="d” [| s() || ="d") | ="e" | ="{"
fail

end

Thus terminal symbols are matched by expressions of the form =x, while nonterminal symbols are
matched by calls on the corresponding recognition procedures. For each successful match. a
recognition procedure suspends with the value matched.

A procedure to control the recognition process specifies the goal and applies it to the text in
yuestion:

procedure recogn(goal,text)
return scan text using
goal(} & pos({0)
end

The procedure recogn succeeds or fails, depending on whether or not text is a sentence in the goal
grammar.

82 Sample Progriams

Comments: Note that the goal procedure is an argument of recogn. This demonstrates the
uscfulness of procedures being data objects.

The use of conjunction and a test for a position at the end of &subject are necessary 1o prevent
spurious recognition of an initial substring.

Fxercives:

I, Write a main procedure that aceepts specilications for goals and text and calls recogn
accordingly.

2. Note that the recognition procedures return the substring that they match. Run the program
with tracing and various text, observing how the rccognition process proceeds.

3. Write a program to accept a grammar as input and generate corresponding recognition
procedures.

4. Procedures of the type used here are not limited to recognition. Adapt them to the generation of
parse trees.

Problem 10: Random Sentence Generation

Description: Write a program to accept a context-free grammar as input and generate randomly
selected sentences from the corresponding language.

Solution: The solution here is patterned after the one given in Reference 20, which should be
consulted for a more detailed description.

Grammatical specifications are read in and analyzed. A stack of alternatives is created for cach
definition. Each alternative, in turn, is represented by a stack of subsequents (terminal and
nonterminal symbols). The name of 4 nonterminal is associated with its structure through a table.
Terminals are represented by strings, while nonterminals are represented by records.

Generation specifications are represented by a nonterminal followed by a count. For example,
<s>10 specifies 10 sentences from the language defined by <s>.

The generation process consists of selecting an alternative for the nonterminal and stacking the
corresponding subsequents. The stack is then popped. If the popped value is a terminal, it
contributes to the evolving sentence. If the popped value is a nonterminal. an alternative is selected
for it, its subsequents are pushed. and so on.

global def
record nonterm(ntname)

procedure main()
def := table()
repeat |
writes(”*")
line := read() | break
enter(line) | generate(line) | write(”"*** syntax error”)
|

end

procedure enter(s)

local name

scan s using |
=< | fail
name := tab(find(">:=")) | fail
move(4)
def(name] ;= buildalt(tab(0))
}

end

Sample Programs

procedure buildalt(s)
local k
k := stack()
every push(k,buildsub(genalt(s)))
return k
end

procedure buildsub(s)
local k
k := stack()
every push(k,gensub(s))
return k

end

procedure genalt(s)
local t
scan s || ”|
repeat |
t := tab(find(”
suspend t
move(1)

}

”

using

")) | break

fail
end

procedure gensubl(s)
local t
scan s || "<" using
repeat |
if ="<” then |
t := nonterm(tab(find(">"))) | break
move(1)
!
else t := tab(find{"<"))
suspend t
J
fail
end

procedure generate(s)
local name, count
scan s using |
"< | fail
name := tab(find(">")) | fail
move(1)
count := integer(tab(0)) | fail
}
every 1 to count do write(synthesize(name))
end

83

84 Sample Programs

procedure synthesize(s)
local sentence, nexta, t, y, x
nexta := stack()
push{nexta, nonterm(s))
while t := pop(nexta) do
if type(t) :- "nonterm” then |
x - def[t.ntname]
if nuil(x) then |
write("*** <",t.ntname,” - undefined”)
fail
}
y := x[random(size(x))]
every push{nexta,ly)

else sentence ||:= t
return sentence
end

Comments: The analysis of the grammatical specifications illustrates moderately complicated string
scanning. In the scanning expressions, terminators are appended so that successive items can be
handled uniformly. Note that genalt and gensub generate values for buildalt and buildsub.
respectively. This organization of the analysis activities is not necessary, but it partitions logically
distinct activities and allows the program to be adapted to other uses by changing the definitions of
buildalt and buildsub. Sce the excrcises.

Open lists could be used in place of stacks for representing the structure of the nonterminals. but
this complicates the code somewhat.

Fxercises:
I, Provide a way for allowing the metalinguistic characters |, <. and > to be included in grammiars,
2. Using the preceding extension, write a grammar that generates random grammars.

3. Recursive grammars. such as those that describe arithmetic expressions. tend to lead to endless
growth of the stack during gencration. Provide a mechanism for biasing the selection of alternatives
to mitigate this problem.

4. Some kinds of context sensitivity are easily added to the program above. Explore such
possibilities.

5. Modify the program above to generate recognition procedures.

8S

APPENDIX A

Syntax

Formal Syntax

The following formal syntax for lcon describes only macroscopic features. Complete lists of
operators and keywords are included in Appendix B. See Section 2.2.1 for a description of
identifiers and Sections 3.1.1, 3.2.1, and 4.2.1 for a description of literals. Record types are context
sensitive; see Section 54. See Chapter 9 for equivalence of characters, situations in which

semicolons may be omitted, the continuation of string literals over line terminations, and the
treatment of blanks,

The syntactic types lefi-bracker, right-bracket, and period indicate occurrences of the characters [
,] .and ., which have metalinguistic uses in the syntax description language.

program :.= declaration ...
declaration ::= global-declaration | record-declaration | procedure-declaration
global-declaration ::= global identificr-list
identifier-list .= identifier [, identifier] ...
record ::= record identifier { [identifier-list 1)

procedure-declaration = procedure-header . [local-declaration ;] ... [initial-clause)
[procedure-body .] end

procedure-header ::= procedure identifier ([identifier-list 1)

local-declararion ::

local-specification identifier-list
local-specification ::= local | static | dynamic
initial-clause ::= initial expr
procedure-body ::= optexpr [; optexpr] ...
optexpr = [expr]

expr ::= literal | idenitifier | keyword | operation | call | reference |
substring | list | record-object | control-struct | return |
compound-expr | (expr)

literal ::

integer-literal | real-literal | string-literal

86

operation
call

expr-list
reference
subsiring
range

list
record-object

control-struct

if-then-else
while-do
until-do
everv-do
repeal

case

case-clause

scan-using .

transform-using ..

Sails
to-by
next
break
return

compound-expr

Syntay

= prefix-oper expr | expr infix-oper expr

= expr | expr-list)

iz optexpr [, optexpr] ...

::= expr lefi-bracket expr right-bracket | expr period identifier
iz expr lefi-bracket expr range expr right-bracket

SESN S

::= left-bracket optexpr right-bracket

::= record-type (expr-list)

::z if-then-else | while-do | until-do | everv-do | repeat | case |
scan-using | transform-using | fails | to-by | next | hreak

= if expr then expr [else expr]

= while expr [do expr]

2= until expr [do expr]

= every expr [do expr]

::= repeat expr

.:= case expr of | case-clause [; case-clause | ... }

::= expr . expr | default : expr

scan expr using expr

transform expr using expr

= expr fails

::= expr to expr [by expr]

= next

::= break

::= return optexpr | suspend oprexpr | fail

= { optexpr [; optexpr } ... }

Syntax &7

Precedence and Associativity
The relative precedence of control structures, operators, and expression-list delemiters arranged
in ascending order, follows. For infix operators, the associativity is listed also.
precedence 1ype associativity

if-then-else
while-do

I
I
until-do I
every-do |
repeat |
case l
scan-using |
return 1
suspend |
Jfail]
& 2 infix left
= 3 infix right
<- 3 infix right
= 3 infix right
<-> 3 infix right
+:= 3 infix right
= 3 infix right
*:= 3 infix right
Ji= 3 infix right
%: = 3 infix right
Ti= 3 infix right
++:z 3 infix right
= 3 infix right
Mt 3 infix right
|}:= 3 infix right
1o-by 4
| 5 infix left
: 6 infix left
z 6 infix left
< 6 infix left
<= 6 infix left
> 6 infix left
>z 6 infix left
== 6 infix left
EEE 6 infix left
== 6 infix left
=== 6 infix left
[l 7 infix left
+ 8 infix left
- 8 infix left

8% Svntax

precedence 1ype associativity

++ 8 infix left

8 infix left
* 9 infix left
/ 9 infix lelt
% 9 inlx left
»* 9 infix left
: 0 infix right
Jaily I
! 12 prefix
- 12 prefix
& 12 prefix
| 12 prefix
. 12 prefix
+ 12 prefix
- 12 prefix
= 12 prefix
(..) 13
[...] 13

14 infix left

Reserved Words

Fhe following reserved words cannot be used as identifiers:

break else if record then

by end initial repeat to

case every local return transform
default fail next scan until

do fails of static using

dynamic global procedure suspend while

APPENDIX B

Built-In Operations

%9

The following sections list the built-in operations of Icon, with primary section references cited.

Functions

Junction

any(c,s,i,j)
bal{c1,c2,c3,s.i,j)
center(s1,i,s2)
close(x)
copy(x)

cset(x)
display(i,f)
exit{1)
find(s1.s2,i.j)
image(x)
insert(s,)
integer(x)
Ibound(x)
left{s1,i,s2)
ige(s1,s2)
lgt(s1,s2)
list{1,}}
lle(s1,s2)
Ht(s1,s2)
many(c,s,1.j)
map(s1,s2.s3)
match(s1,s2.i,))
move(i)
null(x)
numeric(x)
open(x,s)
pop(k)

pos{i)
push(k,x)
random(i)
readif)
reads(f.1)
real(x)
repl(s.i)
reverse(s)
right(s1,i,s2)
size(x) 42,
sort(x.1)
stack(i)
stop({f,s1,s2,...,sn}
string(x)
system(s)

section

4.7.2
4.7.2
453

5.1.3.5.2.3. 6.1

7.4
4.3
8.4
It.5
4.7.1
7.9
4x4
14.1
5.1.1
4.5.3
4.6
4.6
5.1.1
4.6
4.6
472
4.5.5
4.7.1
4.8.2
1.7
35

5.1.3, 5.2.3. 6.1

5.1.1.5.2.2,

5.3.2
4.58.1
5.3.2
7.5
6.3
6.3
342
452
4.5.5
453
532
5.6
5.3.1
1.5
44.1
7.10

90) Built-In Operations

Junction section
tab(i) 4.8.2
table(i) 5.2.1
top(k) 5.1.2
trim(s,c) 4.5.5
type(x) 7.8
ubound(x) 5.1.1
uptofc,s.i.j) 4.7.2
write{f,s1,s2,....sn) 6.2
writes(f,s1,s2,....sn) 6.2

Infix Operators

uperaior section
=z 2.2.1
<- 29
i= 2.2.1
<-> 2.9
= 7.2
.-:: 7.2
*.= 7.2
/= 7.2
%:- 7.2
ik 7.2
4+ 7.2
-z 7.2
*rs 7.2
[|:= 7.2
| 2.6
& 2.7
+ 3.1.2
- 3.1.2
* 3.1.2
/ 3.1.2
: 1.2
% 3.1.2
= 3.3
°= 313
> 3.1.3
>z 3.1.3
< 313
<= 3.1.3
++ 4.3
- 4.3
hid 4.3
Il 4.5.1
== 4.6
== 4.6
7.3

Built-In Operations

Prefix Operators

operator section
+ 312
- 1.2
| 3.2
- 4.3
! 7.1
= 48.3
& 2.2.2

2.3.1

Keywords

kevword section
&ascii 4.3
&clock 7.6
&cset 4.1
&date 7.6
&dateline 7.6
&errout 6.1
&host 7.11
&input 6.1
&Icase 4.3
&level 8.3.2
&null 222
&output 6.1
&pos 48.1
&random 7.5
&subject 4.8.1
&time 7.6
&trace 8.3.4
&ucase 4.3

&version 7.11

N

APPENDIX C

Summary of Defaults

Omitted Arguments in Functions

abbreviated form equivalent expression

any(c)
any(c.s)
bal(...s.i.))*

bal{c1.c2.c3)°

any(c,&subject,&pos,0)
any(s.c,1,0)
bal(&cset,cset(”(").cset(”)").s.1.j)
bal(c1.c2,c3.&subject.&pos.0)

center{s,i) center{s,i,”0")

display() display(1.&errout)
find(s) find(s.&subject,&pos.0)
find(s1.s2) find(s1,s2,1,0)

insert(s) insert(s,&pos)

left(s.i) left(s,i,”0")

many{c) many(c,&subject,&pos.0)
many(c,s) many(c,s,1,0)

map(s) map(s.&ucase,&lcase)
match(s1,s2) match(s1,s2,1,0)
match(s) match{s.&subject,&pos,0)
open(s) open{s,”r"}

read() read(&input)

right(s.i) right({s.i,”3")

sort(x) sort(x,1)

trim(s) trim({s,cset{"0"))

upto(c) uptolc,&subject.&pos,0)
upto(c.s) upto{c,s.1,0)

Omitted arguments otherwise default to @ and are converted to the expected types accordingly. For
example. find(s1,s2,2) defaults to find(s1,s2,2,0) and list() defaults 1o list(O).

*These defaults apply separately and may be used in combination (s. i. and j default to &subject.
&pos. and O only if all three of s. i. and j are omitted. however). For example. bal{) defaults to

bal(&cset,cset(”("),cset(”)”),&subject,&pos,0)

9s

APPENDIX D

Summary of Type Conversions

Explicit Conversions
There are five explicit type-conversion functions:

cset(x)
integer(x)
null{x})
reai(x)
string(x)

Each of these functions converts csets. integers. @, real numbers. and strings to the type indicated by
the function name. The functions fail for objects of any other type. The success of a conversion
operation usually depends on the specific value involved. For example. integer(”10”) succeeds. but
integer(”1a”) fails. Fuailure afso occurs in numeric conversions if the result would be out of the
allowable range for the numeric type. ’

Implicit Conversions

Where required by context. implicit conversions are performed automatically tor all 1y pes
corresponding to the type-conversion functions listed above. If such an implicit conversion cannot
be made (that is, if the corresponding explicit conversion would fail). an error of the form 10n
occurs.

APPENDIN E

Summary of Error Messages

Translator Error Messages

[he errors messages that may occur during translation follow. Overflow conditions prevent the
translator from continuing. In the case of all other errors. translation is continued. but the
translated program cannot be used.

end-of-file expected

global, record. or procedure declaration expected
inconsistent redeclaration

invalid argument list

invalid argument or field hst

invahid case clause

invalid character

invahd construction

invahd construction in assignment

invalid construction 1n augmented assignment
invalid construction 1n by clause

invahd construction in to clause

invalid context for break

invahid context for next

invahd control expression in case expression
invalhid control expression N every expression
invahid control expression in If expression
invalid control expression 1n scan expression
invalid control expression in transform expression
invahd control expression in until expression
invalid control expression in while expression
nvahid digit 1n integer hiteral

invalid expression list

mvahd field list

invalid field name

invahd global declaration

invahid mnitial expression

invahd integer hteral

invalid keyword

invahd keyword construction

invalid local declaration

invahd radix for integer literal

invahd real hiteral

invahd reference or subscript

invalid repeat expression

invahid subscript

missing argument list 1n procedure declaration

98 Summary ol Error Moessages

missing colon in case clause

missing comma or right bracket
missing expression in do clause
missing expression in else clause
missing expression in then clause
missing expression in using clause
missing field list in record declaration
missing left brace in case expression
missing of in case expression
missing procedure name

missing record name

missing right brace in case expression
missing right parenthesis

missing semicolon

missing semicolon or operator
missing semicolon or right brace
missing then in if expression

missing using in scan expression
missing using in transform expression
more than one default clause

out of global symbol table space

out of local symbol table space

out of string space

out of symbol constant table space
out of tree space

unclosed quote

unexpected end-of-file

There is one warning message issued by the translator:
redeclared identifier

Unlike the messages above. this warning does not prevent the use of the translated program.

Linker Error Messages
The linker issues one error message. which prevents use of the linked program:
invalid field name

There is also a way to request the linker to detect identifiers that have not been declared. The
message produced is

undeclared identifier
This message is only a warning: it does not prevent the use of the linked program.

Summan of Error Messages

Program Error Messages

99

Program errors fall into several major classifications. depending on the nature of the error. Error
numbers are composed from the number of the category times 100 plus i specific identifving number
within the category. In the lList that follows, omitted numbers are reserved for possible Tuture use.

Category 1:

Category 2:

Category 3:

Invalid Type or Form

101 integer expected
102 real expected

103 numeric expected
104 string expected

105 cset expected

106 file expected

107 procedure expected
108 record expected
109 stack expected

111 invalid type to size
112 invalid type to close
113 invalid type to open
114 structure expected
115 list expected

121 variable expected

Invalid Argument or Computation

201 division by zero

202 zero second operand to % operator

203 integer overflow

204 real overflow, underflow, or division by zero
205 value out of range

206 negative first argument to real exponentiation
210 invalid field name

215 second and third arguments to map of unequal length
216 erroneous list bounds

219 invalid first argument to sort

220 invalid second argument to sort

221 invalid second argument to open

222 invalid argument to system

223 invalid type for subscripting

231 by clause equal to zero

Invalid Structure Operation

301 table size exceeded
302 stack size exceeded

100 Summary of Error Messuges

Category 4: Input/Output Errors

401 cannot close file

402 attempt to read file not open for reading
403 attempt to write file not open for writing
411 input string too long

Category 5: Capacity Exceeded

501 insufficient storage in heap
502 insufficient storage in string space
503 insufficient storage for garbage collection

504 insufficient storage for system stack

101

Acknowledgement

The Icon programming language was designed by the authors in collaboration with Dave Hanson
and Tim Korb. Many other persons. too numerous to list here. have provided criticism and
suggestions that have been incorporated in the current version of the language. The authors are
indebted to Madge Griswold for careful readings of drafts.

References

I. Farber, David 1., Ralph E. Griswold. and Ivan P. Polonsky. “SNOBOL.. A String Manipulation
Language™, Journal of the ACM, Vol. 11, No. | (January 1964). pp. 21-30.

2. Farber, David J.. Ralph E. Griswold, and lvan P. Polonsky. SNOBOQI. 2. Technical report, Bell Labs,
Holmdel, New ersey. April 1964,

3. Farber, David J.. Ralph E. Griswold. and Ivan P. Polonsky. “The SNOBO!.3 Programming Language™,
The Bell System Technical Journal, Vol. XLY, No. 6 (July-August 1966). pp. 895-944.

4. Griswold, Ralph E.. James F. Poage, and Ivan P. Polonsky. The SNOBOL4 Programming Language.
second edition. Prentice-Hall. Inc.. Englewood Cliffs. New Jersey. 1971,

5. Griswold. Ralph E. Bibliography of Documents Related 10 the SNOBOL Languages. Technical Report
TR 78-18a. Department of Computer Science, The University of Arizona, Tucson, Arizona. September 1979.

6. Griswold. Ralph E. and David R. Hanson. “An Overview of SL5", S/IGPLAN Notices. Vol. 12, No. 4
(April 1977). pp. 40-50.

7. Hanson, David R. and Ralph E. Griswold. “The SLS Procedure Mechanism™, Communications of the
ACM, Vol. 21, No. 5 (May 1978). pp. 392-400.

% Griswold. Ralph E. “String Analysis and Synthesis in SLS™, Proceedings of the ACM Annual
Conference. October 1976, pp. 410-414,

9. Kernighan, Brian W. and Dennis M. Ritchie. The C Progranmming Langueage. Prentice-Hall, Inc.,
Englewood Chiffs, New Jersey. 197K,

10. Kermghan, Brian W, and M. D. Mcllrox. UNIN Programmer’s Manual. Sevenih Edinon. Bell
laboratories. Murray Hill, New Jersey. January 1979,

I1. American National Standards Institute. USA Standard Code for Information Interchange, X3.4-1977.
New York. New York. 1977.

12. Gimpel. James F. Algorithms in SNOBOL4. John Wiley & Sons, New York, New York. 1976. pp. 25-
26.

13. Gimpel, James F. and William Keister. Minimal Meandering Strings. Technical report, Bell Labs.
Holmdel. New Jersey. July 1970.

14. Wetherell, Charles. Etudes for Programmers. Prentice-Hall, Inc.. Englewood Clills, New Jersey. 197K
pp. 30-31.

I5. Gimpel. James F. Algorithms in SNOBOL4. John Wiley & Sons, New York, New York. 1976. pp. 253-
273,

6. Griswold. Ralph E. “Programming Techniques Using Character Sets and Character Set Mappings in
Ilcon™. The Computer Journal. 10 appear.

t7. Hanson. David R. “A Procedure Mechanism for Backtrack Programming”, Proceedings of the ACM
Annual Conference. October 1976, pp. 401-405.

102

8. Korb.John T. The Design and Implementation of a Goal-Directed Programming Language. Technical
Report TR 79-11, Department of Computer Science. The University of Arizona, Tucson. Arizona. July 1979
pp. 23-27.

19. Griswold, Ralph E. and David R. Hanson. “An Alternative to the Use of Patterns in String Processing™.
ACM Transactions on Programming Languages and Svstems. Vol. 2. No. 2 (April 1980). 1o appear.

20. Griswold. Ralph E. Siring and List Processing in SNOBOL4; Techniques and Applications. Prentice-
Hall, Inc.. Englewood Cliffs. New Jersey. 1975. pp. 192-200. 5. 1BM Corporation. System /370 Reference
Summary. Form GX20-1850. White Plains, New York. 1976.

absolute value 16

accessing sty 42

accessing records 47
accessing stacks 45
accessing tables 44

addition 15

alternation 10

alternatives 11, 68

anyic) 17

any(c.s.i,j) 33

argument transmission 60
arguments 7

arithmetic 15-21

antthmenie operations 17
ASCIH 23, 66

assignment 6, 13, 30, 3x, 42, 54
assignment to structures 16, 47
associativity - 7. 15,17, &7
aupmented assignment 53-54, 67
backslushes 24

backtracking t1-13
bal(c1,c2,c3} 37
balic1.c2,c¢3.s.1,)) 34-35
balanced strings 34-35
blanks 23, 66

Boolcan values |, &

break 13

built-in character sets 25

c 22

case-of 9

cas¢ sclectors 9, 67

case control expression 9
center(s1,,,s2) 2§

character codes 23
character graphics 23
character positions 29
character set conversion 25
character sets 5, 20, 25-27. 33-35. 48, 54, 67
characters 23

close(f) 49

close(x) 42, 44

closed listy 42

closed tables 44

closing files 49

collaning sequence 23, 26, 31
command hlnes 71
comments 66

comparison operiton 16, 17, 18, 31, 54, 68
compound cxpressions 10
computed procedures 64
computed variables 6]
concatenation 27, 50, 69

103

INDEX

conjunction 12
constructing strings 27-3!1
continuation of string literals 66
control expressions 9
control structures 3
conversion to integer 19
conversion to real number 20-21
copy(x) SS§
copying objects 54, 6%
creation of lists 41
[x1.x2.....xn] 41
creation of records 47
creation of stacks 48
creation of table clements 44
creation of tables 43
cset{s) 25. 26
date 5SS
decimal notation 17
dechirations 46-47, 59-60, 65
defauit 9
default case clause 9
default values 47
defaults 7, 11, 28, 31, 32, 33, 34, 37, 38, 41, 43,
45, 47, 48, 49, 50, 51. 60. 62, 63, 72. 93
defined types 46-47. 48, 54
dereferencing 8, 61, 62, 69
display(i,f) 63
division 15
dynamic 59
dvnamic identificrs 59
efficicncy 67
clement generation 53

Ix 53
cmpty string 5. 25. 27, 29, 3)
end 436, 59

equivalence of objects 54

equivalent characters 66, 68

error conditions 6, 7, 11, 13, 16, 17, 20, 21, 25, 26,
27. 28, 30. 31, 38, 41, 43, 44, 45, 47, 48, 49, 50.
51. 54, 55. 57. 62, 63

error messages 71, 97-99

error termination 72

error termination 68

errors 71, 72

escape convention 24, 56

every-do |l. 13, 61, 68

exception errors 72

exchanging values 6. 13, 15

exit status 72

exit(i) 72

exponent notation 17, 26

exponentiation 15, 17, 19

104

Iodes

cxpressions 5-13

x «= i 53, 54

cxtra arguments 60 x == 54
fail 60. 61 x "= 0 54
fails 10 x /=1 54
lailure 8. 60 x %= 54
faitlure conditions 9. 19. 20, 21, 26. 29, 32. 33, x "= 54

34, 35, 36, 38, 42, 44, 45, 47, 49, 50, 51. 55, x|l:=s 54

60. 68 x ===y ,54
field names 46 X === Y 54
file numes 56 initial 59 |
filc option specifications 49 initial cluuses 59
files 5, 48, 49-51, 54, 56 initial substrings 29, 31, 32, 4
find(s) 37 initiating execution 71
find(s1,s2,i.j) 32 input 49, 50
floating-point representation 17, I8 input line length 50
functions 7. 64, 68, 89-90 insert(s,i) 38
generators 10-11, 33, 34, 35, 61, 68 insertion of strings 38
global 60 integer arithmetic 15-16
global declarations 60, 65 integer comparison 16-17
global identifiers 61, 62, 64, 68 integer division 16
goal-directed evaluation 11, 61, 68 integer literuls 15
hexadecimal codes 23, 24 integer(x) 19-20, 20
wdentiner declarations 59-60 integers S, 15-17, 48, 54, 67
identificrs 5, 6. 59, 60 Kkeywords 6, 7, 25, 35, 49, 55, 62, 91
if-then-else Y &ascun 25,29
image(x) 50. 56 &clock 55
infin operators 7, 15, 16, 90 &cset 25

cl ++ ¢c2 2§ &date 6, 55

¢l --c2 25 &dateline S5

cl ** ¢c2 25§ &errout 49

el & e2 12 &host 57

el | e2 10 &input 49, 50

t=) 16,54 &licase 25

i "=y 16 &level 62, 63

1<) 16 &null 6

t<=j 16 &output 49, 50

1> 16 &pos 35-19, 68

P>z 16 &random 55

i+ 15 &subject 35-39, 68

1- 4 18 &time 55

1ty 18 &trace 6. 62

T &ucase 2§

1% 3 1S 16 &version §7

T lbound(x) 4!

sl == s2 7,32 54 left(s1,1,2) 2%

sl s2 7.27 - letters 28

s1 "== g2 32 lexical analysis 33

X =y 6 lexical order 31, 48

x =y 6 Ige{s1,s2) 32

x<-y 13 Igt(s1,s2) 32

x <->y 13 line terminators 50. S|

x oz y 47 linking 71

X ++= ¢ 54 list bounds 42, 53

X ——z ¢ 54 list clements 3

x "= ¢ 54 list(1,j) S. 41, 4%, 54

Index

fists S, 4143, 4%, 53, 54
bteral stnings 23224, 25
kterals 5.9, 15,17
lle(s1.s2) 32

i(s1.,s2) i

foading - 71

local $9

local declirations 59, 60
local idenutiers 61, 62
joop control 13
lower-case fetters 25, 6%
main procedure 13, 65, 71
many({c) 37

many(c.s,..)) 34
map(s1,s2,s3) 7. 3l
mapping characters 31
match(s) 37
match(s1.s2,1,)) 32
mired-mode anthmetc 18
modilication of &subject 3%, 39
move(1} 36

muluplication 1§

acsted scanning 39
newline characters 24, 67
next I3}

null character 29

null vatue (@) 5. 55, 60
null{x} S5, 56

numene tests 21
numenci{x} 2I

object comparison 54
octid codes 23, 24
omitled arguments 7, 60
open Dists 42,43

open oplions 49
open(s1.s2) 49

open{x} 42, 44

opeming files 49

order o! cvaluation 60
operands 7

operators 7

out-of-ringe reterences 42
outcome of evitluation &, 9, 10, 61
oulpui 49

overtiow conditions 71
parentheses 7

PDP-11 2

pipes 49

potvmorphous operations 6%
popik) <3

pos{i) 1§

Postbayiad anaivsiy 36
positioning of strings ¥
pusilions i strings 29
preceacnce 7, 17, K7

precision of real numbers 17
prefix operators 7. 16, 91

“c 2§

i 16

-1 16

jo 16

&k O

=g 37, 3%
x 8

procedure 59

procedure activation 60,63
procedure bodies 11, 59
procedure calls 60, 61, 64
procedure declarations 59, 64, 65
procedure invocation 60. 63
procedure level 62
procedure names 59
procedure values 64
procedures S, I3, 48. 54, 59-63
program character set 66
program errors 72

program exccution 72
program lines 65

program listings 71
program structure 68
program termnation 16, 71
program text 68

program translion 71
programs 13, 65-66
push(k,x) 45

quotation marks 5, 23, 56
radix represcntation |S
random number generation S5
range specifications 29
random number sced 5$
random(i} 55

read(f) S0

reading data 50

reads(f,i} 5i

real arithmeuic 17

real comparison 1¥

real literals 17

rcal numbers 5, 17

real(x) 20-21

record 46, 47

record fields 4647

record declarations 46-47, 65
record types 4647, 48, 54
records 41, 4647, 53, 54, 60
referencing expressions 42, 45, 47

K[x] 45

t{x] 44
x[i] 42, 45, 6%
z.r 47

remaindering 15-16

105

106

repeat 0. 1}

replis.;} 27

rephvation of stnngs 27
reseivetd wonds 203 6, 46, XK
tesuling R

return 6l 62

seturn rom procedures 6062
reverse(s) 30

reversible assignment 13
teversthle clicets 12-13, 36, 3
reversible exchange 13
reversimg steengs - 30
rght(s1,,s2) 2X

scan-using 315-39, 6X
scanned substrings 36, 3K 39
scanning kevwords 35-39
scanning operiations 17

scape ol dentifiers 59-60
senucolons 10, 65

shells 39,87

size ol stnigs 28, 3

size ol structures 56

swe specibications 43, 48
size(s) 25

size(x) 7.41, 34,45
SES 12

SNOBOLV danguages 1,
sort{i,) 94X

sort{x) 3%

sorbing M- 4K

1o

(]

sphitting oi exprossions 65
stack{l) S. 45, ax 54

stack aclerences 48

stachs S0 31, 4546, 4K, 53 S84
standard error output tile 49
stundard input file 49
standard output file 49
static v

static adeniiers 59, 60
stop{f.s1.s2. ..sn) M2

Sotage allocation 2, 67
startape s 25, 41,450 8
sHng anaivay 32238

stang comparson 3

sting amages 36

strng bilctals - 66, 68

string teplication 27

string scamung 15-19
string(x} 1. 26-27, 4a

stones S 2330, d8, SR 54, S6, 67
STETTCRTIFCN

s PN Cypeessions 280 29

\llh\\'.ll\l\ 42

substrings 29-3), 31233, 67
s{i] 3
s[v)) 53
s[i+ k] S}
s{1-'k}] S3
subtiaction IS
suceess K
suspend 61, 62, 6K
suspended procedures 61, 62
switactic types 1, KS-K6
syitactice equivalenees 6K
syntache errors 24, 71,97
syntax notation 2-3
system(s} S7
tth charicters 66
tab(y) 36, 37
table(1) 5. 4%, 54
table references 44, 4K, 54, 67
tablen 5. 41, 4345, 4%, 53, 54
terminal substrings 29

time S5
to-by I!
top(k) 45

trice mossages 62

tracing procedure activity - 62, 63
tranling arguments 7
transform-using 8. OX
ttamdation 71

taanstation ciosis - 7197
tansposig of chatacters 31
trim{s,c) 1l

intng strings 31
truncation 16, 19

tvpe cheching 2

type coercion 2,7

type conversion 7, 19-21, 26-27. 44. 50, 95

type determination 56
type(x) 56

tvpes 2.5, 46, 4%
ubound(x} 41
undeclared dentiticrs 60, 65
undcerscores 66

UNIX 2,49, 71
until-do 9. 1}
upper-case letters 25, 6X
upto(c) 37

upto(c,s.i.j) 3

values 5

variables 5-6. 6. 41, 42, 44, 45, 46, 6]

warnings 29, 3N, 490 60 65, 68-69
while-do 9. I3}

writelf,s1,..,sn) 7. 50
writes{f,s1,...sn) 50

writing data 50, 67

