Instrumenting Icon for
Performance Measurement*

Cary A. Coutant
Ralph E. Griswold

TR 79-9

May 1979

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation
under Grant MCS75-21757.

Instrumenting Icon for
Performance Measurement

1. 1Introduction

Several features have been added to the DEC-10 imple-
mentation of the Icon programming language [1] to allow per-
formance measurement of various aspects of program execu-
tion. During execution of an Icon program, several forms of
data may be gathered and written to files. Performance is
monitored only when it has been requested. Usually, the
request is made as an option when the program is translated.
Some forms of measurement, however, can be requested at exe-
cution time. For details on collecting and interpreting the
data, see Reference 2.

Performance measurement data may be collected in two
ways: 1in response to events that occur in the program
itself, or as a result of some periodic, external sampling.
Events that may cause accumulation of data are evaluation of
a portion of a source-language expression, allocation,
expansion, or regeneration of any of the four storage
regions [3]. Sampling is performed by a special subroutine
that receives control from the operating system periodi-
cally. The sampling routine detects where the program is
currently executing in terms of both source program position
and runtime system.

2. Tokens

Execution in terms of the source program is monitored
in terms of tokens. A token is the basic syntactic unit of
an Icon program: identifiers, operators, and literals are
examples of tokens. The Icon translator generates a list of
"executable" tokens, tokens that have semantic significance.
For example, the assignment operator (":=") causes a value
to be stored in a variable; a left bracket ("[") might cause
subscripting to occur. These tokens are considered "execut-
ing" when the assignment or subscripting operation is being
evaluated. An identifier is considered executing while its
value is being obtained. A right bracket ("]1"), however,
has only syntactic significance; no code is executed as a
result of this token.

In the example expressions below, carets appear under-
neath the beginning of executable tokens.

count := count +

>

Qu

while line := rea

~

(f) do

process(line)

Note that the left parenthesis is executed for calls on
source language procedures, but not for built-in procedures.

Every executable token is assigned a number, beginning
with 1. The token list generated by the translator indi-
cates the line number and column where each numbered token
begins in the source program text. This list is written to
a file, which is used by several programs that postprocess
the measurement data.

3. Event Monitoring

The Icon translator and runtime system have facilities
for monitoring two types of events: token execution, and
calls on the storage management system.

When token monitoring is requested, the translator pro-
duces code that maintains an internal array of counters.
Each element of this array corresponds to one of the num-
bered tokens in the source program. When a token is exe-
cuted, the counter corresponding to that token is incre-
mented by one. When the program finishes, this array is
written to a file for postprocessing.

Storage management events are tallied on request into
another internal array. Three different events are moni-
tored: allocations, expansions, and regenerations of each
of the four data regions used by the Icon system (string
space, string qualifiers, integers, and the heap). In addi-
tion to tallying these events, the system also totals, for
each region, the number of elements allocated, the number of
elements recovered by regeneration, and the time spent dur-
ing expansion and regeneration. This data is printed in
tabular form after the program has finished.

Allocation requests made of the storage management sys-
tem are also monitored on a per-token basis. An internal
array, one element per token, counts the amount of storage
allocated on behalf of each token. This array is also writ-
ten to a file at program termination.,

4. Sampling

When token monitoring is requested, the translator gen-
erates code that posts the number of the currently executing

token in a known global location. This token number is tal-
lied at each sampling period in an internal array of token
samples.

At each invocation of the sampling routine, the current
program counter (pc) is also available. The pc contains an
address that is either within the generated code or within
one of the runtime system modules. Typically, at least 95%
of the samples taken are within the runtime system. When pc
samples are correlated with a symbol table of the runtime
system, each sample indicates which module in the runtime
system was active when the sample was taken.

Since periodic sampling is largely random with respect
to program execution, a large number of samples produces a
reasonable time profile of program execution, both at the
source program level (by token samples) and at the implemen-
tation level (by pc samples). When the two sampling methods
are combined, samples of source-level operations are
"charged back" to the runtime system modules that implement
the operation. If both token sampling and pc sampling have
been requested, the sampling routine writes both the token
number and the program counter to the pc sampling file at
each sampling period, so that a postprocessor can analyze
the charge back.

Samples freguently occur during a regeneration of one
of the data regions. Regenerations generally result from
the combined effect of many allocation requests by many dif-
rerent tokens, but the time spent in regeneration would nor-
mally be charged to the few tokens whose requests trigger
the regeneration. Ideally, the regeneration time should be
distributed among all tokens which request allocations,
according to the total amount of space reauesed by each
token. As mentioned in Section 3, the total amount of space
requested per token is monitored. The storage management
system sets a global flag, GCFLAG, during a regeneration, so
that samples made during regeneration are charged not to the
currently executing token, but to a special token which
absorbs all regeneration time. The regeneration time can
then be distributed among the proper tokens at termination
of the program.

5. Implementation

Icon is implemented as two independent systems, a
translator and a runtime library. An Icon source program is
translated into a Fortran subroutine consisting largely of
calls to runtime library routines. The Fortran subroutine
is then compiled and linked with a main program and the run-
time library, producing an executable program. The main
program performs a system-dependent initialization segquence,
calls the generated subroutine, then performs a system-

dependent termination sequence. The main program and the
header of the generated Fortran subroutine are shown in
Appendix A.

Storage management events are accumulated in two ways.
Totals for the number of allocation requests, the number of
elements allocated, the number of regenerations, the number
of expansions, the number of elements recovered by regenera-
tion, the time (in milliseconds) spent during regeneration,
and the time spent during expansion are kept on a per-region
basis in individual internal arrays. The size of an element
is peculiar to both the region and the implementation. An
element refers to the basic unit of allocation for each
region: a character (four per word on the DEC-10) in the
string region, a gualifier (two words each on the DEC-10) in
the string qualifier region, or a Fortran integer (one word
each on the DEC-10) in the integer and heap regions.

Allocation requests per token are collected in terms of
machine bits in an integer array ALC. For convenience, ALC
is treated as if subscripting were zero-based. A total of
all allocation requests is kept in ALC(0). At program ter-
mination, each element is divided by the number of bits per
word (36 on the DEC-10), and the array is written to a file.

Program counter sampling is performed by the module
CLOCK in the runtime library. If pc sampling is requested,
the initialization sequence calls a routine in the CLOCK
module to start sampling. This routine creates a file for
the sampling data, and enables the DEC-10 software interrupt
system. Once enabled, the operating system interrupts the
running program at fixed intervals (1/60th of a second), and
calls the sampling routine in the CLOCK module. The value
that was in the program counter just before the interrupt
occurred is stored by the software in an interrupt block.
The sampling routine writes this value to the sampling data
file in the right half of one 36-bit word, then returns from
the interrupt. The termination sequence calls a routine in
the CLOCK module to stop sampling, the interrupt system is
disabled, and the sampling data file is closed. A listing
of the CLOCK module is given in Appendix B.

If any form of token monitoring is desired, the trans-
lator must generate extra Fortran code to support it. For
token counting, an integer array T is created local to the
generated subroutine, with one element per source program
token. For each token, there is a seguence of Fortran
statements that executes that token. 1In front of each such
sequence, the translator places the statement

T(i) = T(i) + 1

where i is the number of the token about to be executed.
Thus, each time a token is executed, a counter in the array

T is incremented by one. Prior to returning to the main

program, the runtime system routine ZDUMP is called to write
the array T to a file.

For token sampling, an integer array TSAMP is allocated
in the common block CTOKEN, with one element for absorbing
regeneration samples, and one element for each source pro-
gram token. For convenience, this array is considered to
have zero-based subscripting. 1In the same common block is
an integer TN, which always contains the number of the
currently executing token. In front of each sequence of
code that executes a token, and at each point where that
sequence of code might be re-entered, the translator places
the statement

™ =1

where i is the token number. TN must always contain the
proper token number, since the time of invocation of the
sampling routine is unpredictable and is independent of the
flow of execution. The sampling routine used for pc sam-
pling is also used for token sampling: at each interrupt,
the equivalent of the Fortran statement

TSAMP (TN) = TSAMP(TN) + 1

is executed. The value of TN is also written to the pc sam-
pling file in the left half of the output word, to allow
token charge back. If GCFLAG is set, however, the
equivalent of the Fortran statement

TSAMP(0) = TSAMP(0) + 1

is executed instead, and zero is written to the pc sampling
file in the left half of the output word. Prior to return-
ing to the main program, the runtime system routine ZDUMP is
called to distribute the regeneration samples and to write
the array TSAMP to a file. The regeneration samples are
charged to each token which caused allocation, propor-
tionately to the amount of allocation, by the formula

TSAMP (i) = TSAMP(i) + ALC(i) * TSAMP(0) / ALC(O0)

where i1 is the token number, TSAMP(0) contains the total
number of regeneration samples, and ALC(0) contains the
total amount of allocation.

A section of Fortran code from an example program is
given in Appendix C.

The token counting, token sampling, and allocation
request files are ASCII files consisting of one line per
token. Each line contains an integer (string of digits)
corresponding to the number of counts, samples, or words

allocated for the token represented by that line.

6. Artifact

Measuring the performance of a program imposes an addi-
tional cost on the user over that of running the program
with no measurement. This cost is manifested in four ways:
additional execution time, larger object program, file space
for the measurement data, and cost of postprocessing the
data.

Sampling is the major cause for an increase in execu-
tion time. A typical program might take up to a 50% longer
to execute due to token and program counter sampling. Token
counting without sampling causes an increase of about 20%.

Token monitoring code lengthens the resulting Fortran
program by about 50% in terms of number of lines, and the
corresponding relocatable object file by about 40%.

There are five files that are directly related to per-
formance measurement. The token list, token counting file,
token sampling file, and allocation request file each
require one line per source program token, and their sizes
are independent of the running time of the program. The pc
sampling file requires one word for each sample, about 60
words per CPU second that the program runs.

Most of the postprocessors have little to do but format
the data. This usually involves using the token list to
correlate data files with the original source text. These
operations are relatively inexpensive, since the data files
are fixed in length. Charge back of source-program tokens
to implementation routines, however, is a fairly expensive
process. The pc sampling file is generally rather large,
since long runs are needed to accurately profile the pro-
gram.

7. Acknowledgements

Tim Korb first implemented token counting, and walt
Hansen adapted it to the present system. Dave Hanson
developed the storage management system, and most of the
related monitoring features.

References

l.

Griswold, R. E., and D. R. Hanson. Reference Manual
for the Icon Programming Language, Technical Report TR

79-)1, Department of Computer Science, The University of
Arizona, Tucson, January 1979.

Griswold, R. E., and C. A. Coutant. Tools for the
Measurement of Icon Programs, Technical Report TR 79-

10, Department of Computer Science, The University of
Arizona, Tucson, April 1979.

Hanson, D. R. A Portable Storage Management System for
the Icon Programming Language, Technical Report TR 78-
l6a, Department of Computer Science, The University of
Arizona, Tucson, February 1979.

Appendix A -- Main Program and ICON Header

Subroutine IMAIN, written in Ratfor, appears below.
IMAIN is effectively the Icon main program, since the actual
main program is implementation-dependent, and does nothing
except call IMAIN. The version of IMAIN shown below is also
implementation-dependent; it has been modified locally to
provide for the measurement options.

include idef
include adef
define(PCOPT, 1)
define(TOPT, 2)
define (MOPT, 4)

define (GTPRG, 3) # gettab table number for job name
define(THISJOB,-1) # index for current job in gettab
1l0imain -- Icon main program.

#

subroutine imain
character arg(60)
integer i, j, n, junk
common /ctoken/ tn, tsamp(l)
integer tn, tsamp
common /calc/ alc(l)
integer alc
integer tock, getarg, ctoi, loc, gettab, sixtoc
include csizes
include cparm

alcoff(l) = loc(alc(l)) - loc(alcoff(l)) + 1

tnoff(l) = loc(tn) - loc(tnoff(l)) + 1
jbver (1) = 0137 - loc(jbver(l)) + 1
gcflag = 0
if (getarg(l, arg, 60) ~= EOF & arg(l) == MINUS & arg(2) == LPAREN) {
call delarg (1)
for (i = 3; arg(i) = EOS & arg(i) ~= RPAREN; i = j) {
j=1+1
n = ctoi(arg, 3J)
if (arg(i) == LETM)
jbver (jbver (1)) = jbver(jbver(1l)) | MOPT
else if (arg(i) == LETT)
jbver (jbver (1)) = jbver(jbver(l)) | TOPT
else if (arg(i) == LETP)

jbver (jbver (1
else if (arg(i)

I~ 1

) = jbver(jbver(1l)) | PCOPT
= LETS & n > 0)

strsiz = n

else if (arg(i) == LETQ & n > 0)
sglsiz = n

else if (arg(i) == LETI & n > 0)
intsiz = n

else if (arg(i) == LETH & n > 0)
hepsiz = n

else if (arg(i) LETK & n > 0)

stksiz = n

else if (arg(i) == LETL)
intlb = n

else if (arg(i) == LETU)

intub = n
}

}
call apr
th = 1
tsamp(l) = 0
junk = sixtoc(gettab(GTPRG, THISJOB), prgnam, NAMSIZ)
call tick(tn)
call icon
call tock
if (jbver(jbver(l)) >= 4)

call zpstat
return

end

Subroutine ICON is the generated code from the Icon
translator. The parts of the subroutine which contain code
generated for all Icon programs are shown below. Code
corresponding to each source-program procedure follows the
RETURN statement. The statement labelled 2 acts as a dis-
tribution point for all source-level transfers of control.

SUBROUT INE ICON
COMMON/CMAIN/SIGNAL,LABEL, FLABEL
INTEGER SIGNAL,LABEL, FLABEL
INTEGER XCMP,XCOMP,XLCMP, XNCMP
COMMON/CTOKEN/TN, TSAMP (11)

INTEGER TN, TSAMP
COMMON/CALC/ALC(11)

INTEGER ALC

INTEGER TCOUNT (11),T(10)
EQUIVALENCE (TCOUNT (2) ,T(1))
INTEGER S(22),P(12),G(2),I(1),L(1)
REAL R(1)

DATA S/21,109,97,105,110,10002,108,105,110,101,10002,114,101,97,10
*0,10002,119,114,105,116,101,10002/
DATA G/1,1/

DATA P/11,1,0,4,357,13,0,0,1,6,0,0/
DATA 1I/0/

DATA L/0/

DATA R/0.0/

DATA TCOUNT, TSAMP,ALC,TN/33*0,1/
CALL SINIT(S,G,P,I,R,L)

CALL XGLOBL(1)

CALL XDEREF

CALL XCPROC

TSAMP (2) =0

ALC(2)=0

CALL XINVOK(3,0)

GOTO 2

CALL ZDUMP(TCOUNT,TSAMP,ALC,11)
RETURN

generated code for each Icon procedure appears here
LABEL=FLABEL
GOTO (1,2,3,4,5) ,LABEL

CALL SYSERR(29HICON: ILLEGAL INTERNAL LABEL.)
END

- 10 -

Appendix B -- ZCLOCK

The module ZCLOCK contains the subroutines TICK and
TOCK, which enable and disable the clock interrupt, respec-
tively. The actual sampling routine begins at the label
TKR, which receives control at each clock interrupt when
enabled. MAKNAM, CREATE, CLOSE, and WRITEF are subroutines
in the Ratfor I/0 system.

title clock interrupt routines

search uuosym
search ioparm

sall

purge close, open
twoseg

reloc 400000

wordmode==10*"d36
pcopt==

tkopt==
E0S=="d10002

prgnam==cparm##
gcflag==cparm##+-d1l0

define .stop(msg) <
jrst [outstr [asciz/msg
/1

exit]
>

tick(ctoken) - test right half of .jbver (edit number, set by 1link-10).
Bit 34 is one if token sampling is selected, bit 35 is one if
pc sampling is selected. Creates name.mon for pc sampling, turns
on clock for either. The argument is the address of the token
counting array.

e WO we wp e

tick:: movei tl,Q(a)

movem tl,ctoken
hrrzs tl, .jbver
trnn tl,pcopt

jrst tickl
movem tl,pcflag
movei a,lexp <-4,,0>,prefix,prgnam,suffix,fname] +1
pushj p,maknam##
movei a,lexp <-2,,0>,fname, [write+wordmode]]+1
pushj p,createi

cain r,err
.stop <Kcan't create monitor file>
movem r monfile
hrrz tl, .jbver
tickl: trne tl,tkopt

movem tl,tkflag

- 11 -

trnn tl,pcopt+tkopt
popj P,
movel tl,intvec
piini. t1,
.stop <can't init priority interrupt>
movsi tl,(ps.fon)
pisys. t1,
.stop <can't turn on priority interrupt>
move tl,[ps.fac+intarqg]
pisys. t1,
.stop <can't start the clock>
popj P
: tock() - turns off clock if it was on, and closes icon.mon if
; pc sampling was being done.
tock:: hrrz r,.jbver
trnn r ,pcoptt+tkopt
popj P,
move tl,[ps.frc+intarg]
pisys. tl1,
jfcl
skipn pcflag
popj P,
movei a,[exp <-1,,0>,monfile] +1
pushj p,closet##
popj P,
tkr - processes clock interrupts. For pc sampling, writes out

- we

tkrl:

tkrend:

current pc;

movem
move
blt
skipn
jrst
hrrz
cail
jrst
skipe
hrl
movem
movei
pushij
skipn
jrst
move
skipn
add
aos
movsi
blt
debrk.
.stop

for token sampling, increments token count array.

zZ,Save
z,[1, ,save+l]
z,save+l?7
pcflag
tkrl
tl,0ldpc
tl,tick
tkrend
gcflag
tl,@ctoken
tl,pcout
a,lexp <-3,,0>,pcout,[1] ,monfilel+1
p,writef##
tkflag
tkrend
tl,ctoken
gcflag
tl,(tl)
1(t1)
17,save
17,17

<debreak failed 1>

- 12 -

.stop <debreak failed 2>
reloc

intvec: tkr
oldpc: block 3

intarg: .pcapc
block 2

prefix: exp |ld" ’ llsll ’ n kll y n :“ ’ EOS
SUffiX: exp " .n , " , non , "nll , EOS
fname: block 30

monfile:block 1

ctoken: block 1

pcout: block 1

pcflag: 0

tkflag: 0O

save: block 20

end

- 13 -

Appendix C -- Sample Fortran Code

The Icon program below is shown with each executable
token marked. Below that is the Fortran code generated for
the program, excluding the parts shown in Appendix A. Note
that no token monitoring code is generated for tokens 5 or 9
(the left parentheses following read and write), since these
correspond to built-in system functions.

procedure main
while line := read(&input) do

write(line)

end

4 CONTINUE
CALL XLINE(2)
T(1)=T(1)+1
TN=1
CALL XLPBEG
23002 CALL XMARK(5)
CALL XLINE(2)
T(2)=T(2)+1
TN=2
CALL XLOCAL(1)
T(6)=T(6)+1
TN=6
CALL XKEYWD(605)
T(4)=T(4)+1
TN=4
CALL XREAD
IF (SIGNAL.EQ.0)GOTO 1
T(3)=T(3)+1
TN=3
CALL XASG
IF (SIGNAL.EQ.0)GOTO 1
5 CALL XDRIVE
IF (LABEL.NE.0)GOTO 2
TN=1
CALL XPOP
IF (SIGNAL.EQ.0)GOTO 23001
CALL XLINE (3)
T(10)=T(10)+1
TN=10
CALL XLOCAL(1)
CALL XDEREF
T(8)=T(8)+1
TN=8
CALL XWRITE (1)
T(7)=T(7)+1
TN=7

- 14 -

23001

CALL XPOP
GOTO 23002
TN=1

CALL XLPEND
CALL XPOP
CALL XPNULL
SIGNAL=1
CALL XLINE (4)
CALL XRETRN
GOTO 2

- 15 -

