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ABSTRACT

Many typical programming problems are quite difficult, if not impossible, to solve from
a purely analytical point of view. The most feasible solution may not involve rigorous
analysis of the problem in order to find the precise solution in the most general case, but
instead may rely on heuristics to develop a solution through trial and error. Problems of an
essentially combinatorial nature, such as string scanning, are likely candidates for this
approach. Solutions to these problems are often termed goal-directed, since repeated
attempts at a solution are made until a goal is reached. This dissertation describes linguistic
facilities that form the basis of the goal-directed facilities for the lcon programming
language.

In lcon, goal-directed programming is based on generators, expressions that are
capable of producing more than one value. Generators form an integral part of the
language and can be used anywhere a value is required. If the value produced by a
generator does not yield a successful result, the generator is automatically activated for an
alternate value.

A novel string scanning facility using generators is described. Although similar in
many respects to the facilities provided by SNOBOL4, the |con faciiities are not based on
patterns. Instead, the scanning operations are applied directly to the global subject.

The utility of generators is not limited to goal-directed programming. Examples
illustrate how generators can be used in constructs not usually considered related to goal-
directed programming.

A method for implementing generators, which has been successfully used in lcon, is
described. An advantage of the implementation technique is that little overhead is incurred
by expressions that do not use the goal-directed facilities.
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1. INTRODUCTION

Many typical programming problems are quite difficult, if not impossible, to solve from
a purely analytical point of view. The most feasible solution may not involve rigorous
analysis of the problem in order to find the precise solution in the most general case, but
instead may rely on heuristics to develop a solution through trial and error (Wirth 1976).
String scanning problems, such as string analysis and text formatting, provide common
situations where such goal-directed programming is often the most practical approach.
Artificial intelligence applications also use goal-directed programming for pattern-directed
searches of data bases and theorem proving (Bobrow and Raphael 1974).

Goal-Directed Programming

In goal-directed programming, the solution to a problem is formulated as a series of
successive approximations to a final goal. The desired goal is instantiated and the program
provides sequences of attempts at solutions to that goal. In goal-directed programming
languages, the evaluation mechanism provides an environment in which goal-directed
programming may be easily phrased.

The key feature of goal-directed linguistic facilities is the provision of a mechanism for
making tentative decisions. Instead of requiring that an operation return a single value to be
used in subsequent computations, the language aliows the programmer to specify a tentative
value. Evaluation proceeds as in standard programming languages: operands are combined
by operators whose results are then used in subsequent computations. Results of
expressions are used to control program flow and determine which operations are to be
performed next.

Goal-directed programming languages use the tentative values produced to determine
whether the desired goal will be reached or not. Tentative values are generated in a specific
language construct, called a decision point (Smith and Enea 1973). This is also known as a
goal (Hewitt 1971), tag (Prenner, Spitzen, and Wegbreit 1972), or generator. A decision
point produces one of a set of values (perhaps a nondeterministic choice) and allows the
computation to continue.

in a programming environment with built-in goal-directed evaluation, the evaluation
mechanism automatically extracts alternate values from decision points and reevaluates, at
least partially, the expression in which those alternate values are used.

Backtracking

The term backtracking is often used as a synonym for goal-directed programming.
During goal-directed programming some reversal of the state of computation may be
performed when a decision point is activated to produce an alternate value. If nothing else,
control reverts to that point. In addition, the walues of some, or all, variables may be
restored to the values they had at the time the decision point was initially evaluated.
"Backtracking” is used in this dissertation to refer to any effects that are reversed during
goal-directed evaluation. Activation of a decision point, then, is the simplest form of
backtracking. In complete backtracking, all effects subsequent to a decision point are
reversed if that decision point is activated for alternatives. Because of the possibility of input



and output and other "non-reversible” operations, the implementation of truly complete
backtracking usually is not possible. However, common operations that cause changes to
the state of the computation, such as assignments to variables, can be reversed.

Backtracking is often used in combinatorial analysis; for example, in generating
permutations, or in tiling problems (Walker 1860; Lehmer 1960; Hall and Knuth 1965). A
mathematical formalization of backtracking appears in Golomb and Baumert (1965).
Techniques for estimating the execution time of backtrack programs are described in Knuth
(1975).

The implementation of a backtracking scheme with reversal of assignments may be
very inefficient. There are two common approaches used to restore effects of assignments.
One method is to save the values of all variables and structures that may be modified at the
time a decision point is encountered. Another method is to note incremental changes to
variables and structures subsequent to a decision point. That is, after a decision has been
made, changes that occur in variables and structures are recorded, so that those changes
may be reversed.

Opinions vary on whether or not reversal of effects is an integral part of goai-directed
programming. Smith and Enea (1973, p. 679) contend that "the main purpose of
backtracking is to enable a program to try iater alternatives in a goal tree as if earlier
unsuccessful ones had never been attempted.” Complete reversal of effects, however,
discards information; information that may be valuable in making subsequent decisions.
Sussman and McDermott (1972, pp. 1172-1173) argue that a program using backtracking
"will eventually stumble upon the right path, but its organization makes it hard for it to learn
something from an attempt that failed and erased all its side effects."”

Although complete reversal of effects does not seem necessary, some backtracking,
especially under programmer control, is often useful, A very limited form of backtracking is
available in the goal-directed facilities that are the subject of this dissertation. Backtracking
is provided with certain string scanning operations and when using a form of assignment
that is reversibie. Reversible assignment is distinguished from regular assignment and hence
must be used explicitly.

Related Research

Goal-directed linguistic facilities exist in a number of programming languages in a
variety of forms. Languages intended for research in artificial intelligence typically include
some form of goal-directed facilities (Bobrow and Raphael 1974). Backtracking is also used
for solving problems in string processing (Gimpel 1976, pp. 43-44).

Most artificial intelligence languages deal with lists and are usually based on the syntax
of LISP (McCarthy et al. 1965). PLANNER (Hewitt 1971) and PROLOG (Kowalski 1974) are
used for research in theorem proving. These languages provide pattern-directed procedure
invocation. In PROLOG, for example, the theorem to be proven is used to select the
procedures to invoke. Associated with each procedure is a template that defines the effect
of the procedure. The theorem is compared to each template, and those procedures that
match are selected. If only one exists, it is invoked. |f more than one procedure matches, a
choice is made and the selected procedure is invoked. [f that procedure fails to prove the
theorem, the system backtracks and a different procedure is invoked.

CONNIVER (McDermott and Sussman 1972) is based on PLANNER, but gives the
programmer greater control over the search strategy.



SAIL (Reiser 1976) is an Algol-based artificial intelligence language that supports
backtracking. The backtracking facilities include primitives to REMEMBER, FORGET, and
RESTORE variables in different contexts. Like CONNIVER, SAIL requires explicit
manipulation of variables by the programmer to effect a backtracking control regime.

Another approach to backtracking is "multiple-tracking” (lrons 1970). In this
technique, when a decision point is reached, rather than choose one value, all values are
chosen and execution of each branch proceeds (at least conceptually) in parallel. Multiple-
track programming is primarily useful when ali branches of a decision tree are to be
explored, not just until a successful result is found.

In this dissertation, the deoision point in goal-directed evaluation is called a generator.
A number of other languages also use the term generator to describe various language
features. In some cases, such as Algol 68 (van Wijngaarden et al. 1976) and Cobol, this use
is unrelated to the facilities described in this dissertation.

An early language that has generators is IPL-V (Rand Corporation 1961). In IPL-V a
generator is a subroutine that calls a processing routine to operate on each object in a data
structure.

More recently, Alphard (Wulf 1974; Wulf, London, and Shaw 1976) and CLU (Liskov et
al. 1977) have been developed to support data structure abstraction. In these languages
generators are used to iterate over the elements of programmer-defined data structures
(Atkinson 1975; Shaw, Wulf, and London 1977). Included with the definition of a data
abstraction (or “cluster” in CLU) is a procedure for generating the elements of the
abstraction. in CLU, this procedure, called a generator, produces its values using the yield
statement. When another element is required, execution of the generator continues where
the yield statement left off. In each of these languages, generators are only accessible in a
specific context; a particular type of for statement. This restricted access and lack of goal-
directed evaluation limit the utility of generators in Alphard and CLU.

Problems With Goal-Directed Programming

As stated in the introduction to this chapter, goal-directed programming facilities often
allow a problem to be solved in a simple, straightforward manner, without resorting to a
complex theoretical analysis. The saving in programmer time, however, is often reflected in
an increase in computer time required to solve the problem. For programs with short
lifetimes or programs that are not frequently used, this cost can often be ignored. In other
cases, a different technique may be required to solve the probiem.

Goal-directed programming techniques have been used extensively for problem solving
in artificial intelligence. In these applications, goal trees may be large and complex, and
backtracking is often a slow, laborious process (for the program, if not the programmer).
For this reason, research in the design of artificial intelligence languages has sought
alternate means for exploring goal trees. For example, CONNIVER does not use
backtracking. Instead, it computes the alternatives to be expiored at any one level, and then
iterates over those aiternatives (Sussman and McDermott 1972).

Backtrack programming techniques appear in top-down parsing (Gries 1971, pp. 85-92;
Aho and Uliman 1977, pp. 174-179). Tentative decisions are made concerning the nature of
the input string and actions taken based on those decisions. If a decision turns out to be
incorrect, backtracking occurs to the most recent decision point, an alternate decision is
made, and parsing continues. In a one-pass compiler, generation of object code is begun



before parsing is completed. If a parsing error is made and backtracking is required, it is
awkward, if not impossible, to "bacl: up” the code generator. Backtracking during top-down
parsing can often be avoided by rewriting the grammar to avoid redundancies and using
recursive-descent parsing (Gries 1971, pp. 83-100; Aho and Uliman 1977, pp. 180-182) or by
using "automatic methods", such as LR (Aho and Johnson 1974; Aho and Uliman 1977, pp.
198-245) or SLR (DeRemer 1971) parsers.

Motivation for This Research

Despite these problems, goal-directed programming (and backtracking) remain viable
programming techniques. SNOBOL4 (Griswold, Poage, and Polonsky 1971) and, more
recently, SL5 (Griswold 1976b, Hanson and Griswold 1978; Griswold, Hanson, and Korb
1977, Hanson 1876a, 1976b) are two languages that support goal-directed programming for
string processing. Such languages fill a need for goal-directed programming in areas other
than that of artificial intelligence applications or programming language parsers.

Still, SNOBOL4 and SL5 have deficiencies that inhibit their use for goal-directed
programming. Both languages suffer from a lack of uniformity in their handling of goal-
directed facilities. Their string scanning facilities form a distinct sub-language and are not
well integrated into the languages (Griswold 1978).

The desire for a language that would be an effective tool for research in goal-directed
programming methods motivated the development of a new programing language, icon. In
Ilcon generators may appear anywhere in a program. Their use is not restricted to pattern
matching, as in SNOBOLA4, nor are they as cumbersome to use as coroutines in SL5.

Organization of This Dissertation

The next two chapters describe the Icon language. Chapter 2 gives an overview of the
basic language features. Chapter 3 describes in detail the operation of generators. The use
of generators in string scanning is described in Chapter 4. Chapter 5 suggests some
speculative features for goal-directed programming. Chapter 6 describes the implementation
of lcon in general and of generators in particular. Conclusions and final remarks appear in
Chapter 7.



2. INTRODUCTION TO ICON

This chapter presents an overview of the Icon programming language. Generally, this
presentation is informal, summarizing the salient features and ideas in the language.
Specific details are avoided when they are not required for the exposition of generators in
the following chapters. The Appendix contains an informal, BNF-like description of the
language, along with a partial list of built-in functions and operators. An overview of Icon is
presented in Griswold, Hanson, and Korb (1979). Complete details are available in the lcon
reference manual (Griswold and Hanson 1979).

icon has its roots in SNOBOL4 and SL5, and is, in part, the result of experience with
these languages. It shares many of the philosophical bases of these languages: concise,
expressive features, runtime flexibility, support of untyped identifiers and heterogenous
structures, and automatic type conversions. The type of a variable is not bound at compile
time. A variable may contain a string at one point during execution and an integer at
another. Type checking is performed at runtime, with automatic coercion among types
provided when appropriate. lcon also contains some data structuring facilities, such as
records, stacks, and tables (in the style of SNOBOLA4).

Ilcon has a high-level syntax similar to that of Algol 68 (van Wijngaarden et al. 1976)
and Pascal (Wirth 1971). Typical control structures include if-then-else and while.

Syntax
An lcon program is a sequence of procedure and record declarations. A procedure is
an optional set of type and scope declarations followed by a list of expressions. For
example

procedure lookup(s. t)

end
declares lookup to be a procedure with two arguments, s and t.

Execution begins by invoking the Icon procedure "main“. Every program must contain
such a procedure.

Expressions

Expressions are constructed in the usual way from prefix, infix, and suffix operators,
along with procedure invocations, structure references, and reserved-word control
" structures. All control structures return a value and may be used as expressions. Braces
may be used to group sequences of expressions separated by semicolons into a single
expression. The value of such a sequence is the value of the last expression.



Keywords

Keywords provide access to environmental and global state information. Keywords are
represented by an ampersand followed by a special identifier. Examples are &lcase and
&ucase, strings of the lower- and upper-case letters, respectively; &trace, a variable that
controls tracing of user-defined procedures; and &null, whose value is the object of type
null. The null object is used as the initial value of all variables and is the identity for many
operations (such as addition and concatenation).

Character Strings

Strings are an important component of lcon and many operations deal with strings. A
string is a variable-length sequence of characters; the maximum length is limited by available
memory.

Substrings and characters in a string are referenced by position specifications. The
positions in a string are numbered from the left starting with 1. Positions are between
characters; position 1 is before the first character and n+1 is after the nth character. For
example, positions in the string "ABCDE" are numbered as follows.

A B C D E

I I | I |
1 2 3 4 5 6

In addition, non-positive integers are used to reference character positions from the
right end of the string. Position 0 is the position just past the rightmost character. The
string "ABCDE" is equivalently numbered as follows.

A B C D E

I I I I l |
5 -4 -3 -2 -1 0

Numbering the positions between characters in a string makes extraction of substrings
clear and unambiguous. The built-in function section(s,i,j) returns the section of string s
between positions i and j. The function substr(s,i,l) returns the substring of s starting at
position i of length I. Thus, substr(s,i,1) returns the ith character of string s.

Character Sets

Character sets are unordered collections of characters and are used in many string
operations where the existence of a particular character is important. For example,
BREAK(S) in SNOBOL4 depends only on the characters in S, not on their order. The built-in
function cset(s) converts the string s into a character set.

Character sets serve two purposes: to allow efficient implementation of certain string
analysis functions and to provide a programming tool for a limited form of set manipulation.
There are built-in operations for character set union, intersection, and difference.



Conditional Evaluation

As in SNOBOL4 and SL5, lcon uses signals to indicate the success or failure of
operations. A language operation is either conditional or unconditional. An unconditional
operation, such as addition

X +Y

always succeeds. A conditional operation, such as comparison for equality between
numbers

i=]

may fail. In this case, if the value of i is not equal to the value of j, the operation fails.
Similarly, the numeric comparison :

x<y

fails if the value of x is not less than y. The value of a successful comparison is the value of
the right operand. Thus, if x is less than y, the expression above evaluates to y. By
returning the right operand, comparison operations can be combined, as in

a<{b<c
which succeeds if a is less than b and b is less than c.

Failure of an operation causes control to be transferred to the nearest "expression
boundary”. Intuitively, "expression boundary" corresponds to the end of the statement in
SNOBOL4. For example, in the assignment

max := (max < n)

if max is not less than n, the operation fails and no assignment is performed. If max is less
than n, the comparison succeeds and returns the value of n, which is assigned to max.
Thus, the expression above assigns a new value to max only if the new value is larger than
the current value. Expression boundaries are described in more detail in the next chapter.

Signal-Driven Control Structures

Like SL5, signals instead of boolean values are used to drive control structures. The if
expression

if €4 then €o else ej

evaluates the expression e4. If this evaluation succeeds, the expression e, is evaluated,
otherwise the expression ej is evaluated. The result of the if expression is the result of e,
or e3. whichever is evaluated. The else clause may be omitted: it defaults to else &nuil.

The expression
e fails

acts as a signal inverter. If the evaluation of e fails, the expression succeeds and returns
the value &null. If the evaluation of e succeeds, the expression fails. This is typically used
with the if expression



it e4 fails then e,
which subsumes the more traditional expression
unless e4 do e,
The while expression
while e4 do e,

evaluates expression e, after each successful evaluation of eq. Using the fails operation to
invert the signal, the loop

while e4 fails do e,
subsumes the traditional until loop
until ey do e,
The repeat expression
repeat e

is specifically designed for the signaling mechanism. The expression e is repeatedly
evaluated until it fails.

Regardiess of the evaluation of their operands, all looping control structures succeed
with the value &null.

The two expressions

break
next

are used to modify the iteration of loops. The break expression causes an exit from the
current (inner-most) loop. The next expression transfers control to the end of the current
loop, and continues evaluation with the next iteration.

Programming Examples

The following procedures illustrate some of the syntax and control structures described
in the preceding sections. The icon translator allows semicolons to be omitted in cases
where the meaning is unambiguous. For this reason, programming examples given here
only use semicolons when necessary. See the Appendix for a description of functions and
operators.

The first example is a procedure that copies text from file f1 to file f2.
procedure copy(f1, t2) local line
while line : = read(f1) do write(f2, line)
end

The following version of the copy procedure returns the number of lines copied.



procedure copycnt(f1, f2) local line, count
count:= 0
while line : = read(f1) do {
write(f2, line)
count := count + 1
}
return count
end

The procedure copycnt can be improved slightly by combining some operations.

procedure copycnt(f1,f2) local count
count:= 0
while write(f2, read(f1)) do count : = count + 1
return count

end

The next procedure takes a non-empty list as argument and returns the average of its
elements.

procedure average(x) local sum, i, n
sum:= 0
i:r=1
while n := x[i] do {
sum := sum + n
it= 1+ 1
}
return sum/(i-1)
end

Elements of the list are accessed sequentially by incrementing the variable i. When the
value of i becomes too large, the access fails, causing termination of the while loop. This
procedure can be simplified by using the repeat contro!l expression, the suffix + operator to
increment the variable i, and by relying on the fact that local variables are initialized to &null
when the procedure is entered.

procedure average(x) local sum, i
repeat sum := sum + x[i+]
return sum/(i-1)

end

The next example is a filter (Ritchie and Thompson 1974) that reads one file and
copies all lines that contain a specified substring to another file. The built-in function

find(s¢.s5) succeeds if string s4 is a substring of string So.

procedure filter(f1, f2, s) local line, count
while line : = read(f1) do
if find(s, line) then {
write(f2, line)
count +
}
return count
end



The value returned by filter is the nvumber of lines actually written to file f2.

A final example is a procedure that implements a simple insertion method to sort a list
in ascending order.

procedure sort(v) local i, j, key
ji= 1
while key : = v[j+] do {
it=j
while key < v[i-] do
vli+1]:= V[i]
v[i+1]:= key
}

end

The operation of this procedure can be described inductively. Assume the upper
portion of the list from v[1] to v[j] is properly sorted. The value of v[j + 1] is then inserted in
the proper place. The outer while loop takes successively larger portions of the list (larger
values of j). Each time j is increased, the inner while loop finds the correct location for the
new value and inserts it there.

10



3. GENERATORS

A generator is an operation that is capable of producing, or generating, a sequence of
values. As mentioned earlier, generators form the basis of the goal-directed linguistic
facilities in lcon. Typical built-in generators are provided to produce an arithmetic sequence
of integers, the positions of particular characters in a string, or the elements of a data
structure. These values are produced one at a time as demanded by the expression in
which the generator appears.

This chapter describes the semantics of generators; how they interact with each other,
with other language operations, and how they are used.

Goal-Directed Evaluation

An expression containing generators represents a goal and the success of such an
expression signifies that the goal has been reached. Failure of an expression, on the other
hand, implies that the goal has not been reached.

In the absence of failure, operations are evaluated in the standard order; left to right
and according to the precedence and associativity of the operators involved. Generators
that appear in an expression are evaluated, produce their first value, and become dormant.
A dormant generator is an operation whose evaluation has produced (at least) one value and
has the capacity to produce more, but which is not being presently evaluated.

Failure of some operation initiates goal-directed evaluation in which dormant
generators are activated to produce alternate values. The activation of a dormant generator
transfers control to the point in the expression where that generator became dormant. The
generator produces a new value and evaluation continues from there.

The success or failure signal is used to control goal-directed evaluation. As long as
operations succeed, evaluation proceeds normally. If an operation fails, however, the
activation of dormant generators is begun in order to seek alternatives that may lead to
successful evaluation.

Expression Boundaries

As mentioned earlier, failure of an operation generally terminates evaluation of the
expression in which it appears. More precisely, failure of an operation causes control to be
transferred to the next expression boundary. In SNOBOLA4, this corresponds to a transfer to
the end of the current statement. In Icon, however, because of the possibility of reactivation
of generators, "expression boundary” cannot be defined so simply.

Expression boundaries occur in two places: after expressions in control structures and
after expressions separated by semicolons. For example, in the expression below,
boundaries are marked by arrows.

ifa<b<{cthen{x:=a y:=c}
+ 1 +

11



Similarly, in the three expressions

{ejenes)
L B

boundaries appear after each expression. Failure of e,, for instance, causes control to be
transferred to the expression boundary following e, Evaluation then continues with
expression e3.

Examples of Generators
A simple generator is the alternation
ey leg

In this expression e, is evaluated first. If eq succeeds, its value is returned. If e fails, €y is
evaluated. If e; succeeds, its value is returned, otherwise, the expression fails. For example

x=5]|x=10
succeeds if x equals 5 or if x equals 10.

In addition to the usual meaning of alternation described above, the alternation
operator is also a generator, generating the values of each of its arguments. If e4 succeeds,
the alternation operator becomes dormant and can be activated to evaluate e, if the

expression in which it appears fails. This allows the expression above to be rewritten as
follows.

x = (5] 10)

After generating the first value, 5, the generator becomes dormant while the value 5 is
compared to x. If x equals 5, the expression succeeds. If not, the generator is activated
and produces the value 10, which is compared to x. If x equals 10 the expression succeeds,
otherwise it fails. In either event, evaluation continues with the next expression in sequence.

In order to picture the activity of generators, a notation is used to show active
subexpressions and dormant generators. This notation describes the actions of generators
by tracing their evaluation and activation. Each step in the evaluation of the expression is
shown in a "frame". A frame gives the expression, with the subexpression currently being
evaluated underscored. Any dormant generators in the expression are overscored. To the
right of the expression is the result of the underscored subexpression.

For example, assuming x is 4 and y is 3, consider the evaluation of the expression
x<((1]2) +y)

In this example, as in many others involving the alternation generator, the expression 1| 2 is
usually read "one then two", rather than the more conventional "one or two."

1. The generator 1| 2 is the first operation to be evaluated.

12



expression result

x<((112) + ) 1

2. The value 1 is produced and the generator becomes dormant. This result is added to the
value of y.

expression | result
x<((AT2) +v) 4

3. Next, the value of x is compared to this result.
expression result
x<((IT2) + v) failure

4. The comparison fails and the dormant generator 1 | 2 is activated.

expression result
x<((1l2) +y) 2

5. The generator produces its second value, 2, and has no more values to generate. The
generator does not become dormant; it simply returns its value. This value is added to the
value of y.

expression result
x<((112) +¥) 5

6. The result, 5, is then compared to the value of x.
expression ] result
x<((112) +y) success

7. Since 4 is less than 8, this time the expression succeeds and evaluation terminates.

While alternation provides a convenient way to generate a pair of values, a sequence
of values can be produced using the sequence generator

61 to 62

This expression generates the arithmetic sequence of integers from e4 through €y, inclusive.
For example, the expression

510 10

generates the sequence 5, 6, 7, 8, 9, 10. An optional by clause may be specified to give an
increment (or decrement) other than 1.

100 to 1 by -1

generates the decreasing sequence of integers from 100 down to 1.

13



Generators can be used to index through the elements of a data structure. The
element generator

le

generates the elements of object e. The value of e may be a structure, string, or file. For
example, if x and y are lists of numbers, the following expression succeeds if they have any
equal values.

For each element of x, all the elements of y are generated and compared to the generated x
element. The elements are generated and compared until either two equal values are found,
or until all elements have been generated.

If e is a string (or convertible to string), its characters are generated, one at a time.
Thus, the expression

i>5
succeeds if the integer i (after conversion to string) contains a digit greater than 5.

Finally, if e is a file, e generates the lines in that file. For example, the following
expression succeeds if string s appears in file f.

find(s, !f)

Generators for String Analysis

In addition to the alternation, sequence, and element generators, there are several
built-in generators for string analysis. In general, these are functions that perform a simple
lexical analysis of a string. As generators, they may produce alternate values. The built-in
function find(s1, o) returns the position of the first occurrence of S in sy, or fails if Sp does
not contain the substring sy. For example

find("ab", "abaabbaaabbbaaaabbbb")

returns the value 1 initially. If the generator is activated for alternatives, find(s1,52)
generates the next position of sy in s,. Repeated activation of the generator above
produces the sequence 1, 4, 9, 16.

Another example is upto(c,s) which returns the position of any character in the
character set ¢ that appears in s. For example

upto(aeiou”, "kaleidoscope")

returns the value 2 initially, As a generator, upto(c,s) returns successive positions of
characters in ¢ in s. The above example yields the sequence 2, 4, 5, 7, 10, 12.
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Generator Interaction

In an expression containing several generators, each is invoked, produces a value, and
becomes dormant in the order determined by its position in the expression. Failure of an
operation initiates the activation of dormant generators. Dormant generators are activated in
a last-in, first-out order; the generator that most recently became dormant is the first one
actlvated to produce an alternate value. |If that generator has no alternatives, the next
dormant generator is activated. This process continues until some generator produces a
sucSessful alternate or until no dormant generators remain in the expression. If a successful
alternate is found, evaluation continues from that point. Otherwise evaluation of the
expression is terminated and control passes to the next expression boundary.

The interaction of generators is illustrated by the expression
=(112) +(yl2)

which contains two generators, 1 | 2 and y | z. Assuming the variables x, y, and z have the
values 6, 3, and 4, respectively, evaluation proceeds as follows.

1. The first generator produces the value 1 and becomes dormant.

expression result
=112+ (yl2 1
2. The second generator produces the value of y and also becomes dormant,.
expression result
X ? + (yl2) 3
3. The expression 1 + vy is evaluated and the value is compared to x.
expression result
= (1[2) « (\_/—I;). 4

4. The value of x is not equal to 4, and the comparison fails.

expression result

x = (112 + (yl2z) failure

8. Since the comparison fails, the rightmost dormant generator, y | z, is activated.

expression resuit
= (112) + (12) 4
6. The value of z is produced, and the expression 1 + z is evaluated and compared to x.
expression : result
=(112) + (yl2) 5
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x=(112) + (vlz) failure

7. Since x is 6, the comparison fails and, again, the rightmost dormant generator is
activated. The generator y | z has no more alternatives, but the generator 1 | 2 has an
alternative, 2, which is generated.

expression resuit
x = (112 + (yl2) 2

8. The next operation is the generator y | z, as before. Since it is being initially evaluated
again, it produces its first value, y, and becomes dormant. Note that both alternatives of
the first generator, 1 | 2, have been evaluated.

expression resuit
x =112 + (yl2 3

8. The value of y, 3, is added to the result of the first generator, 2, and the result, 5, is
compared to x.

expression result
x=(1|2)+(y—lz) 5
x= (112 + (y]z) failure

10. The rightmost dormant generator is again activated. The only dormant generator
remaining, y |z, is activated to produce its second value, z.

expression result
x = (112) + (yl2) 4

11. All generators in the expression have now been evaluated. The value of z, 4, is added
to 2, and the result compared with the value of x.

expression result
x = (112 + (y]2) 6
x=(112) + (yl2z) 6

12. Since the value produced, 6, equals the value of x, the comparison succeeds and the
entire expression succeeds.

Alternation operations can be combined to produce longer sequences of values. For
example

5/9(2]4

produces the sequence 5, 9, 2, 4. Groups of alternations can be used to produce complex
comparisons. For example, the expression
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(alblc) =(wlx|yl2)

compares the values of a, b, and ¢ with those of w, x, y, and z. If any of the values on the
left is equal to any of the values on the right, the expression succeeds, otherwise it fails.

Controlling Generators

Some languages that provide automatic backtracking facilities have been criticized
because the facilities tend to get in the programmer’s way, not allowing enough control over
the generation of alternatives (Sussman and McDermott 1972). Icon provides language
constructs to give the programmer control over the evaluation of generators. These
constructs can be used to suppress alternatives of a generator, to require that two or more
conditions be mutually satisfied, and to force a generator through all alternatives.

Suppressing Alternatives

An important aspect of controlling a generator is being able to discard remaining
alternatives if they are not needed. In Icon, dormant generators are discarded when the
boundary of the expression in which they appear is crossed. In this way, generators whose
values are no longer relevant are not activated in a futile attempt to make another, unrelated
expression succeed. In addition, the space required for information associated with dormant
generators is also released.

The foliowing expression sequence provides an example.
x := upto(“aeiou”,sq); y:= find("begin",sz)

The first expression returns the position of the first vowel in s4 (if one exists). The second
expression finds an occurrence of the string "begin" in string sp. The two expressions are
independent; if the second expression fails, remaining alternatives in the first are not tried.

In fact, once evaluation has passed through the boundary between the two expressions, the
dormant upto generator is discarded; its alternatives are no longer accessible.

Because control structures form boundaries after their arguments, they can aiso be
used to control the activation of generators. For example, the expression

if x 1= upto("aeiou”, s1) then y : = find("begin”, s,)
is similar to the example above, except that the second expression is only evaluated if the

first expression succeeds. As in the previous example, the two expressions are isolated from
one another and cannot interact.
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Mutual Success

Often it is useful to test if two or more conditions are true. This is expressed using the
conjunction operation

e & ey
For example, the expression
(x>5)&(y<2)
succeeds if x is greater than 5 and y is less than 2.
In the expression
ey &ep

el is evaluated first. If eq succeeds, e is evaluated. |If e, fails and ey contains any
dormant generators, e4 is activated. If there are none or if e4 fails, the expression fails.
Control flows between e, and ep, activating generators until both expressions succeed or
until e fails.

The following expression is one way to determine whether n is divisible by any of
several small primes.

(p := 2/3|5|7]11) & (mod(n,p) = 0)

If any of the primes divides n, the expression succeeds and p is assigned the divisor,
otherwise, the expression fails.

Assuming n has the value 35, evaluation proceeds as follows. To simplify the
exposition, the generator 2|3|5|7|11 is treated as a single expression that produces five
alternate values, rather than as four binary alternation operations.

1. The generator 2|3|5|7|11 produces its first value, 2, and becomes dormant.

expression result
(p := 2|3I517]11) & (mod(n,p) = 0) 2
2. The value 2 is assigned to p and control transfers to the divisibility test.
expression result
(o= 2[3[5[7[11) & (mod(n,p) = 0) 2
(p:= 2[3[6[7[11) & (mod(n.p) = 0) 2

3. The remainder of 35 divided by 2 is computed.

expression result
(p := 2J3[5[7]11) & (mod(n.p) = 0) 1

4. The result, 1, is compared to O.
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expression result
(p := 2[3[E7[11) & (mod(n.p) = 0) failure

5. The comparison fails, and the generator in the first half of the conjunction is activated. It
generates the value 3.

expression result
(p:= 2]3I5]7111) & (mod(n,p) = 0) 3

6. The value is assigned to p, the remainder of 35 divided by 3 is computed, and the result
compared to 0.

expression result
(o= 23B[7[11) & (mod(n,p) = 0) 3
= 2 11) & (mod(n,p) = 0 3
(p : = 2[3[5[7[11) & (mod(n.p) = 0) 2
(p : = 2J3[5[7]11) & (mod(n.p) = 0) failure

7. Again, the comparison fails and the generator is activated. This time the value produced
is 5. The assignment and remainder are recomputed.

expression result
(p := 2/3]5]7]11) & (mod(n,p) = 0) 5
(p_ = 2[3[5[7[11) & (mod(n,p) = 0) 5
(p := 2[3[5[7[11) & (mod(n.p) = 0) 5
(p := 2[3[5[7[11) & (mod(n.p) = 0) 0
8. Finally, the comparison to O succeeds
expression result
(p := 2[3[B[7[17) & (mod(n.p) = Q) 0

and the expression succeeds. The value of p is 5, the first prime divisor of 35.

This example can also be done without using the conjunction operator by including the
assignment to p within the invocation of mod.

mod(n, p : = 2|3|5[7|11) = 0
if the value of p is not needed, the expression can be further simplified to
mod(n, 2|3|5|7[11) = 0
Another example is the expression

(i:=1105)& (j:= 1105) & p(i,j)
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which evaluates procedure p at differing values of i and j as long as p(i,j) fails. The value of
j varies most frequently, yielding the sequence of calis

p(1,1)
p(1,2)

9(1 5)
p(2,1)

p(5,4)
p(5,5)

The expression terminates successfully when p(i,j) succeeds for some i and j. If p(i,j) does
not succeed, the expression fails after p has been called with all combinations of i and j.

Forcing Alternatives

The every expression is used to force a generator to produce all its alternatives. The
expression

every eq do €s

evaluates e4 and repeatedly reactivates it until it is exhausted. After each activation of ey,
the expression €o is evaluated. For example, if sum is initialized to zero, the expression

every i:= Ixdosum:= sum + i
finds the sum of the elements of array x.

The every expression, in conjunction with generators, provides a facility for
composing conventional as well as unconventional control structures from more basic units.
Using the to generator the equivalent of the Algol for statement can be obtained. For
example, the expression

every i:= 1to 100 do y[i] : = x[i]
copies list x into list y.
As another example, if x is a list of 100 elements, the expression
everyi:= (1to 10) | (91 to 100) do write(x[i])
writes the first and last ten elements of x.
The every expression is more concise than the standard Algol for loop in certain
applications. The for-loop control variable is often just an artifact that can be omitted. For

example, the expression

every 1 to 50 do ()
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invokes the procedure f fifty times.

The do clause is optional and can often be omitted, allowing even more concise
expressions. For instance, auxiliary variables that are needed in other languages to hold
transitory values (such as list indexes) are not always needed in Ilcon. The example above to
write the first and last ten elements of array x can be rewritten as

every write(x[(1 to 10) | (91 to 100)])

Since the element generator generates the elements of a list as variables, every can
be used to zero the elements of a list. For example

every Ix:=0

zeros the elements of the list x.

Programmer-Defined Generators

Procedures may be used as programmer-defined generators. In a standard procedure,
return is used to return a value to the calling procedure. The succeed and fail
expressions are used instead of the return expression to explicitly return a success or
failure signal. The return, succeed, and fail expressions all cause termination of the
procedure in which they appear; the procedure cannot then be used as a generator.

A procedure becomes a dormant generator using the suspend expression. The
expression

suspend e

suspends the execution of the current procedure and returns the value of e. The procedure
remains dormant until activated for an alternative. If the procedure is activated, the
expression e is activated for alternatives. I|f an alternative of e exists, the procedure
suspends again, with that alternate value. If e has no alternatives, control passes to the
expression following the suspend expression.

For example, the procedure below generates the (infinite) sequence of Fibonacci
numbers.

procedure fib

local ul, u2, f, i
suspend 1|1
ul 1= u2:= 1
repeat {

f:= ul + u2

suspend f

ul ;= u2

u2 :=f

}

end

The first two values of the sequence, 1 and 1, are treated as special cases in the first
suspend expression. Subsequent values of the sequence are computed and the procedure
is suspended in the middle of the repeat loop after each computation. The following
expression repeatedly assigns values of the Fibonacci sequence to f until a value divisible by
n is found.
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mod(f : = fib(), n) = 0
Thus, f is assigned the first Fibonacci number divisible by n.

Another example is the procedure getword(f) that generates the words that appear in
file f. A word is defined here to be any sequence of upper- and lower-case letters. The
version of this procedure that appears below uses the string analysis functions.

This procedure uses a static variable initialized by an initial expression. Analogous
to own variables in Algol, static variables in Icon are local to the procedure in which they
are declared, but retain their values across procedure calls. Variables that are not declared
static are assumed to be dynamic and are initialized to &null each time the procedure is
invoked. The initial expression

initial e

may be used to assign values to static variables. The first time the procedure in which the
initial appears is invoked, the expression e is evaluated. On subsequent calls e is no longer
accessible. The initial expression below initializes wordchar to a character set consisting of
the upper- and lower-case letters (the ++ operator performs character set union).

procedure getword(f)
local i, line
static wordchar
initial wordchar : = &lcase ++ &ucase
while line : = read(f) do {
=1
while i : = upto(wordchar, line, i) do
suspend section(line, i, many(wordchar, line, i))
}
fail
end

One use of such a procedure is iliustrated by counting the words in a file. If ftab is a
table, the expression

every ftab[getword(f)] +
builds a table containing the count of each word appearing in f.

Generators can also be used to generate elements of a user-defined data structure.
Below are two procedures that generate the nodes of a binary tree. Nodes of the tree are
represented using records with three fields.

record node
data, Itree, rtree
end

The data field contains a string that is the value of the node. The fields Itree and rtree are
used as pointers to the left and right subtrees, respectively. A leaf node has ltree and rtree
values of &null, The expression

null x
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is used to test for leaf nodes: null x succeeds if x has the value &null.

The procedure walk(t), which follows, generates the data fields of all the nodes in tree
t. The nodes are generated in postorder, that is, the left and right subtrees of a node are
generated, followed by the node itself. The infix dot is used, as in Pascal (Wirth 1971), to
access the fields of a record.

procedure walk(t)
if null t.ltree fails then
suspend walk(t.ltree | t.rtree)
return t.data
end

The suspend expression suspends with each of the values generated by walking the left
subtree, and then with each of the values generated by walking the right subtree. The
return expression produces the value of the root node.

The procedure leaves(t) below generates only the leaves of the binary tree t. The
leaves are generated as though the tree had been walked in postorder.

procedure leaves(t)
it null titree then
return t.data
else {
suspend leaves(t.itree | t.rtree)
fail
}

end

The suspend expression repeatedly suspends first with the leaves of the left subtree and
then with the leaves of the right subtree. After all leaves are generated the procedure fails,
indicating that there are no more values. A use of this procedure appears in Chapter 5.

Backtracking with Generators

The goal-directed evaluation of generators, which extracts alternate values when an
expression fails, can also be used to reverse the effects of an operation. A generator to be
used for backtracking typically modifies some data structure and becomes dormant. If
activated for alternatives, it then reverses the modification and fails. This failure indicates
that the generator did not produce an aiternate value, and causes the activation of other
dormant generators.

An example of a backtracking operation is the reversible assignment
e1 - e2

The value of e, is assigned to the variable e and the assignment operator becomes
dormant. If activated for alternatives, the previous value of e, is restored and the expression
fails.

For example, suppose a program is to read a parameter from the input file and assign

the value to a global variable. If the line is of zero length, a default value, which was
assigned earlier, is to be retained. The expression )
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(param <- read()) & (size(param) ~ = Q)

assigns the next input line to the variable param. If the line is of zero length, the assignment
is reversed and the original (default) value is retained. The use of reversible assignment
obviates the need for a temporary variable.

Although Icon provides only limited backtracking, more elaborate backtracking facilities
can be constructed using programmer-defined generators. Such a backtracking generator is
composed of three parts.

procedure ...
(sav.e data structure>
(mo'dify data structure>
sﬁspend
<res.tore data structure>

fail
end

The first section performs the data structure modifications required by the problem and
suspends execution of the procedure. If the calling expression fails, control returns to the
generator for an alternative. If the generator has more alternatives, they are produced.
Otherwise, the generator restores the data structure to its original condition and fails. The
failure signal of the generator is passed to the calling expression and causes continuation of
the search for alternatives through the activation of other generators. Thus, uniike in many
other languages, reversal of effects is explicitly controlied by the icon programmer.

An example in which generators can be used for backtracking is the eight queens
problem (Dahl, Dijkstra, and Hoare 1972). The object is to place eight queens on a chess
board such that no queen can attack any other.

The standard method of solving this problem uses a recursive procedure to place

queens on successive rows, retreating to a previous position if a row becomes blocked. For
example, the following procedure is based on the solution given by Wirth (1976).
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procedure queen(c)
localr
everyr:= 1to 8do
it test(r, c) then {
occupy(r, c)
if c = 8 then
printsolution()
else
queen(c + 1)
release(r, ¢)
}

end

The procedures test, occupy, and release contain the details of the board representation,
Procedure test(r,c) succeeds if a queen can be placed on the given row and column.
Procedures occupy(r.c) and release(r,c) modify the data structures associated with the board
to indicate the presence or absence of a queen on the selected square. The procedure to
print the solution is called when the eighth queen is successfully placed on the board.

Following Wirth (1976), three lists are used to keep track of the free rows, the upward
facing diagonals, and the downward facing diagonals. If the square at row r and column ¢
is free, then each of the list elements

rows(r]
up[r-c]
down([r +¢]

is null; otherwise, at least one is non-null. The procedure test(r,c)

procedure test(r, ¢)
if null(rows[r]) & null(up[r-c]) & null{down[r + c]) then
succeed
else
fail
end

succeeds if these conditions are met.

The procedure occupy(r,c) assigns a non-null value (the integer 1) to the three
selected lists elements, and release(r,c) assigns a null value to those three elements.

procedure occupy(r, c)
rows(r] := up[r-c]:= down[r+c]:
end

I
iy

procedure release(r, ¢)
rows[r] 1= up[r-c] := down[r+c]:
end

&null

The expression
queen(1)

computes and writes (using the procedure printsolution) the first solution, the list of row
numbers on which to place the queens.
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The procedure queen is obscured by the fact that it must not only place a queen, but
must also invoke subsequent queens and handie the backtracking. The queens are not
independent pieces; they are part ot a hierarchy that forces them to be interdependent.

A better solution, using coroutines, is described in Hanson (1976b). The coroutine
solution eliminates the awkward hierarchical relationship among the queens and allows the
main program to control the backtracking. Each coroutine is still responsible for reversing
the effects that it causes, but the main program determines when this is to be done.

The procedure below is similar to the SL5 solution, but is further simplified by the use
of generators.

procedure g(c)
local r
every place(r:= 1 to 8, ¢) do
suspend r
fail
end

The value returned by g(c) is the row on which queen ¢ was placed. The expression
write(a(1), a(2), a(3). q(4), a(5), a(6), a(7), a(8))

generates and writes the first solution
15863724

(multiple arguments to write are concatenated onto the output file).

The procedure place(r,c) controls the test, occupy, and release procedures of the
preceeding solution, modifying the board and suspending if a queen can be placed on the
specified row and column. If the procedure is subsequently activated, it backtracks,
removing the queen from the board, and then fails. Whenever place(r,c) fails, the to
generator produces a new row value, and place is called again.

procedure place(r, c)
if test(r, c) then {
occupy(r, ¢)
suspend
release(r, ¢)

fail
end

The place procedure modifies the board (using occupy), becomes dormant, and, if
reactivated, reverses its modification (using release).

Using the reversible assignment operator, the two procedures occupy and release can
be merged directly into the place procedure.

procedure place(r,c)
if test(r.c) then
every rows[r] <- up[r-c] <- down[r+c] <- 1 do
suspend
fail
end
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The every expression initially assigns a non-null value (the integer 1) to each of the three
list elements and suspends. If the place procedure is activated, the every expression
activates the dormant reversible assignment operations, which restore the three list elements
to &null. After restoring the variable, the reversible assignment operation fails, so the do
clause is not evaluated, and the procedure fails.
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4. GENERATORS IN STRING SCANNING

String scanning in Icon is related to the pattern matching facilities of SNOBOL4 and
the string scanning facilities of SL5, but with significant differences. Pattern matching in
SNOBOL4 uses a runtime data representation of string patterns (Griswold 1972; Gimpel
1973). These patterns are interpreted during execution and perform an analysis of the
subject string. SLS uses the coroutine model of string scanning developed by Druseikis and
Doyle (1974) and described further in Doyle (1975). In this approach, greater flexibility is
achieved by replacing the pattern data objects by coroutine environments (Griswold 1976a,
1976c; Garnaat et al. 1978).

Like SNOBOL4 and SL5, string scanning in Icon is performed on a global subject
string. This subject and a global position are referenced implicitly by string scanning
operations and serve to obviate the bookkeeping that otherwise would be necessary.

In a radical departure from its predecessors, lcon does not use the concept of
"pattern”. Instead of constructing a data object (either static as in SNOBOL4 or procedural
as in SL5), lcon string scanning operations are applied directly to the giobal subject
(Griswold 1978).

Generators and goal-directed evaluation in Icon replace the search and backtracking
of pattern matching in SNOBOL4. This approach has several advantages:

1. String scanning operations may be freely mixed with other language operations, aliowing
many operators to be eliminated. For example, SNOBOL4 pattern matching has three forms
of assignment: P .V, P $ V, and @N. In Icon, the need for many of these operations is
removed by integrating the scanning operations with the remainder of the language.

2. The programmer has greater control over the search and backtrack algorithm. Although
more detail typically must be given, Icon provides more direct specification of when
backtracking is to occur.

3. Since there are no patterns, lcon avoids the inherent inefficiency of constructing patterns
at runtime.

4. Programmer-defined procedures may be conveniently used to augment the built-in string
scanning repertoire. Procedures allow parameters and local variables in string scanning,
neither of which are available in pattern matching.

A more detailed discussion of the pros and cons of patterns as data objects is
provided in Griswold (1978).

The Scanning Control Structure
Scanning is invoked by the expression
scan eq using es

This construction establishes the string e as the subject of subsequent string scanning
operations, sets the position to 1 (the beginning of the subject), and evaluates the
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expression €,. The value of the scan expression is the value of eo; if either eq or = fails,
the scan expression fails. Typically, e, contains string scanning operations, but it may be an
arbitrary expression containing any language operation.

The subject and position are available globally through the keywords &subject and
&pos, respectively. Assignment to &subject automatically sets &pos to 1. Assignments to
. &pos fail if the assigned position does not lie within the subject.

String scanning operations that appear in the expression e, may change the position
or search for character sets or substrings in the subject.

String Scanning Operations

One simple string scanning operation is the function match(s), which succeeds if the
string s appears in the subject starting at the current position. Thus

scan s using match("The")

succeeds if s begins with the string "The". If match succeeds, it returns the position in
&subject following s.

Many of the buiit-in string analysis operations can be used as string scanning
operations. The string analysis operations typically have arguments that give a string to be
analyzed, beginning at a specified position. If these arguments are omitted, the string
&subject is used, beginning at &pos.

For example, the function find(sq,s0,i) returns the position of the first occurrence of
string s4 in string s, after position i. If s, and i are omitted, the default is the section of
&subject starting at &pos. That is, find(s1) is equivalent to find(s1.&subject,&pos). Thus,
scanning operations can be expressed concisely by implicit reference to the subject.

Another example is the function upto(c,s,i). If s and i are omitted, upto(c) returns the
position of a character in ¢ that appears in &subject following &pos.

Cursor Positioning Operations

The string scanning operations described above do not change the value of &pos; they
simply return the value of a specific position. One simple way to change the position is
through explicit assignment to &pos. For example

&pos .= &pos + 2

moves the position to the right two places. [f the new position does not lie within &subject,
the assignment fails and &pos is not changed. In addition to explicit assignment to &pos,
there are two functions that change the position in the subject string: tab(i) and move(i).

The function tab(i) sets &pos to i. (If i does not lie within the subject, tab fails and
does not change the value of &pos.) Since non-positive integers specify character positions
from the right end of the string, tab(0) sets the position to the right end of the subject string.
In the expression
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tab(upto(c))
upto(c) returns the position of the next character of the subject that appears in ¢, and tab
sets &pos to that value. This is analogous to the pattern BREAKX(c) in SPITBOL (Dewar
1967).

The function move(i) adds i to the value of &pos. If i is negative, the position is moved
to the left. (If the new position does not lie within the subject. move fails and does not
change the value of &pos.) For example, the expression

move(5) & match(s)
succeeds if string s appears 5 positions after the current cursor position.
Both tab and move return as value the section of the subject string between the initial
and final values of &pos. These functions can be used to synthesize a string from the
subject string.

For example, the expression

scan s using
repeat write("(", move(1), ")")

writes each character of s with surrounding parenthesis on separate lines.

As another example, consider the problem of reversing a list of items separated by
commas. For example, reversing the string

"elide,clone,banyan,soot”
yields the string
“soot,banyan,clone,elide”

The procedure revlist(s) builds its result by repeatedly concatenating the next item in
the list to the beginning of the synthesized string.

procedure reviist(s)
local v
scan s using {
while v:= "," || tab(upto(",")) || v do move(1)
v:= tab(0) || v
}

return v
end

The while loop is broken when all items up to the last comma have been processed. The
final item is then concatenated onto the beginning of the result using tab(0).

String scanning provides a convenient way to implement the procedure getword(f)
described in the last chapter. The getword procedure given below uses string scanning to
break words out of the input file f.



procedure getword(f)
static wordchar
initial wordchar : = &lcase ++ &ucase
repeat scan read(f) using
while tab(upto(wordchar)) do {
word : = tab{many(wordchar))
suspend word
}
fail
end

After all lines in the file have been read, read(f) fails, breaking the repeat loop and causing
getword to fail, indicating that the last word has been generated. The use of a global
subject and position removes the need for extra arguments to the upto and many functions.
The preceding version requires an auxiliary variable, i, to keep track of the position of the
word in the string being scanned. The function section was also used to avoid operating on
portions of the string that have already been analyzed.

String Scanning with Generators

Many of the string analysis functions are generators, and this property carries over
when they are used as string scanning operations. For example, find(s{.sp) generates the
positions of string s in string s, and find(s) generates the positions of string s in the subject
string. Thus, the expression

scan s using mod(find("x"), 2)
succeeds if some occurrence of "x" appears in the subject at an even position.
The alternation of patterns in SNOBOL4, as in the expression
LEN(10) | LEN(5)
is analogous to the icon expression
move(10) | move(5)

Both expressions attempt to advance the position by first 10 characters, or, if that fails, by 5
characters. The SNOBOL4 expression, however, constructs a pattern that is subsequently
applied during pattern matching. In Icon, no pattern is generated; the paosition change is
attempted at the time the expression is evaluated.

The ability to use generators anywhere in an expression provides a linguistic feature
not directly available in SNOBOL4 or SL5. In Icon, the above exampie can be "compressed"
into the more concise form

move(10 | 5)

The generator 10 | 5 initially produces the value 10.

expression result
move(10 | 5) 10
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If the subject has fewer than 10 characters, or &pos is less than 10 characters from the end.
move(10) fails.

expression result
move(10 [ 5) failure

Failure causes activation of the dormant generator 10 | 5, which produces its second
alternative, 5.

expression result

move(10 | 5) 5

Next, move(5) is evaluated.
expression

move(10 | 5)

If move(5) succeeds, the expression succeeds. [f move(5) fails, then, because there are no
dormant generators in the expression, the expression fails.

A generalization of the example above is the expression
move(25 to 5 by -5)

This expression initially attempts to advance the position by 25. |If that fails, move(20) is
attempted. Repeated failure causes move(15), move(10), and, finally, move(5) to be
attempted. If any of these attempts succeeds, the expression succeeds, otherwise the
expression fails.

Backtracking During String Scanning

Both tab and move perform reversible assignments to &pos. If the expression in which
they appear fails, the value of &pos is restored to the value it had before the assignment was
made. For example. the expression

tab(upto(c)) & match(s)

succeeds if a character in ¢ that appears in the subject is followed by the string s. If there
is a character of ¢ in the subject, then upto(c) succeeds and tab changes the value of &pos.
if string s does not appear as a substring of the subject at that paint, then match fails and
backtracking occurs. The value of &pos is restored by tab, and upto is activated to find the
next occurrence of c.

Restoration of the value of &pos is a property of the tab and move functions. This is
not performed automatically as a general feature of goal-directed evaluation. The functions
move and tab are similar to the reversible assignment operator. For example

tab(n)

has the same effect on the position as
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&pos <- n

No reversal is performed for assignments to &pos that use the standard assignment
operator. For example, the expression

(&pos : = 5) & find(s)

first assigns 5 to &pos. If this fails, because &subject is fewer than 5 characters, the
expression fails; otherwise, find(s) is called. If the string s does not appear after position 5
in &subject, the expression fails, yet the value of &pos remains 5. Compare this with the
expression

(&pos <- 5) & find(s)

which restores the value of &pos to its previous value if the assignment succeeds but find(s)
fails.

String Scanning Examples

One example of string scanning is a procedure that provides an extension to the
SNOBOL4 pattern ARB. The string scanning procedure, arb(n), is like ARB, except that it
initially increments &pos by n (ARB initially does not change the cursor). When activated for
alternatives, arb increments &pos by one, and suspends. Each time arb suspends, it returns
the section of the subject that has been "consumed"”. If the new value of &pos does not lie
within the subject, arb resets &pos to its initial value and fails.

procedure arb(n)
suspend tab(&pos + n to size(&subject) + 1)
fail

end

The expression

scan s using
x:= arb(1) &
tab(match(x)) &
(repeat tab(match(x))) &
&pos = size(&subject) + 1

succeeds if the string s consists of two or more repetitions of a nonnull substring, and
assigns to x the value of the repeated substring. For example, if the value of s is
"123123123", the expression succeeds, and assigns to x the string "123",

The next procedure is a modification of the procedure getword given earlier, and
generates the words in the subject string.



procedure word
local w
static wordchars
initial wordchars : = &lcase ++ &ucase
while tab(upto(wordchars)) do {
w : = tab(many(wordchars))
suspend w
}
fail
end

A final example uses the word generator to produce a count of each of the words in a
file.

procedure wordcount(file)
local ftab, wdata
ftab : = table
repeat scan read(file) using
every ftab[word()] +
every wdata : = !sort(ftab) do
write(wdata[2], " ", wdata[1])
end

The repeat loop reads the file, uses the word procedure to generate the words in each line,
and increments the corresponding tabie entry. The next expression outputs each entry of
the sorted table. The built-in function sort(t) returns a list of the elements of table t, sorted
on the reference field. Each element is itself a list with two elements. The first element is
the reference (in this case, the word), and the second element is the value (the count).



5. POSSIBLE LANGUAGE EXTENSIONS

The unconventional control structures of Icon suggest a number of possibilities for
extensions to the goal-directed facilities. In addition, the evaluation of some expressions
involving generators may be counterintuitive. This chapter surveys some of these problems
and describes some unimplemented language extensions. The next chapter discusses
possible techniques for the implementation of some of these extensions.

Generators in lteration

The use of generators for goal-directed evaluation is extended considerably by the
every expression, which forces all alternatives of an expression to be generated. The
repeated activation of dormant generators may, however, lead to unintuitive results in certain
instances.

The order of evaluation of operations in an every expression determines which
operations are reevaluated when the expression is activated. Not all operations that are
evaluated before a generator is initially activated are reevaluated when the generator is
reactivated. Only operations that were evaluated after the initial evaluation of a generator
are reevaluated after the generator is reactivated.

For example, the expression
every write(read(f) || !s)

prints the value of read(f) with each of the characters of string s appended to the end.
Since the evaluation of read(f) precedes the evaluation of !s, read(f) is not reevaluated
during each iteration of the loop. In this example, only one line is read from file f.

Evaluation of the expressions

x .= &null
every x := x || "-" || |"abc"

follows the same rules, but the results may not be as obvious. Taken as a standard loop in
more conventional languages, the expression above appears to assign to x the string "-a-
b-¢c". In fact, x is assigned the string "-c".

The reason for this result is that the evaluation of the subexpression
x " u_u

precedes the evaluation of the generator !"abc". The entire every expression is evaluated
as follows.

1. First, the value of x (initially null) is concatenated with a dash.

expression result

evel,y X'= X II n_n " !nabcn n_w



2. Second, the generator !"abc"” is evaluated and becomes dormant.

expression

every x:= x| "-" [ I“abc”

result

a

3. The results of steps 1 and 2 are then concatenated and assigned to x.

expression
every x := x tl-ll !" ”
every x:= x || "=-" || "abc"

result

-a

" "

a

4. Next, the every contro! structure activates the dormant generator !"abc".

expression

every x := x " II-II ” !"ab;"

result

nbn

5. The string "b" is then concatenated to the result from step 1 above. Note that step 1 is

not reevaluated.

expression
every x := x|l "-" |[I"abc"
every x:= x| "-" || |”"abc"

result
IC-bll
tH -bll

6. The string "-b" is assigned to x and the every expression again activates the dormant
generator 1"abc”. This time the string "c¢" is generated and concatenated to the result from

step 1. Again, step 1 is not reevaluated.

expression
every x := x || "-" || |"abc"
every x:= x| "=" |l I"abgc"

7. The final result, "-c", is assigned to x.
expression

every x := x || "-" || I"abc"

In most cases, the desired resuit can be obtained by reorganizing the expression.

result

cn

" ”"

C

result

-C

In

the example above, "factoring” the generator to the front of the expression and using the

do clause provide a simple solution.

everyt:= !"abc" dox:= x| "-" |t



Coupled Generators

The original motivation for generators was the design of goal-directed linguistic
facilities. The activation of dormant generators in a last-in, first-out order, insuring that all
possible combinations of generators would be tried, was specifically motivated by this
application.

The inclusion of facilities in lcon to force all alternatives of an expression adds a new
feature that can no longer be accurately labeled goal-directed evaluation. Activation of
dormant generators is performed regardiess of the success or failure of the expression in
which they appear. This is illustrated by the following example to write all combinations of
two characters from strings s1 and s2.

every write(!s1, !s2)
Fdr example, the expression
every write(!"abc", I"xyz")
writes

ax
ay
az
bx
by
bz
cx

cy
cz

It might be expected, on the other hand, that the two generators would be activated in
“parallel”, generating corresponding characters from s; and s, with each activation,
producing

ax
by
(o4

Such a "coupled activation"” of generators would be useful in some circumstances,
and another control structure could be provided to perform the coupling. An expression
such as

91 with 62

could couple generators e4 and e,. If this expression were activated for alternatives, both
generators e and e, would be activated to produce values. Generator eq would be
activated first. If eq succeeded, it would become dormant and generator e, would be
activated. If €s succeeded, the result of the expression would be the resuit of eo. If either

generator failed, the expression would fail. Thus, the expression would terminate when
either of the generators produced its last value.
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As an example, consider the procedure collate(s1, s2)

procedure collate(s1, s2)
local ¢1,¢c2, s
every (ct1 := Is1) with (c2 := !s2) do
s:=s]|lct] c2
return s
end

which would interleave the characters in s1 with the characters in s2. For example
collate(&ucase, &lcase)

would produce the string
"AaBbCcDdEeFtGgHhliJjKkLIMMNNOoPpQqRrSsTtUuVVWwXxYyZz"

Another example is the "same fringe" problem, due to Hewitt (Hewitt and Patterson
1970). The probiem is to determine if two binary trees have the same leaves. One simple
solution is to generate all the leaves of the two trees into two lists, and then compare the
elements of the lists. This solution is impractical it the two trees are very large, and is
especially inefficient if the trees differ in the first few leaves.

The procedure same(t1,t2) given below uses coupled generators to walk the two trees,
t1 and t2, in lock step. The procedure leaves(t), defined in Chapter 3, is a generator that
would produce each of the leaves of the tree t.

procedure same(tl, t2)
every (x : = leaves(t1)) with (y : = leaves(t2)) do
it x ~== y then fail
succeed
end

Capturing Generators

The restriction of the scope of a generator to the expression in which it appears is
appropriate to the solution of many goal-directed problems. For example, this restriction
allows an efficient implementation of backtracking. In some circumstances, however, it
would be useful to activate the same generator in several places, or to be able to activate a
generator independently of goal-directed evaluation. A general technique that allows the
programmer to explicitly control the activation of dormant generators is described in this
section.

The expression
capture e

would return a data object that allows e to be evaluated at a later time. [n addition, if e is a
generator, alternate values would be produced in the same way, without regard to the
evaluation or activation of other generators. Local identifiers in e would be bound in the
context in which the capture expression appears. The problems associated with the
implementation of this binding technique are discussed in the next chapter.



Evaluation and activation of a captured expression would be done using the activate
expression

activate e

where e is a value returned by a capture expression. Note that neither e nor the expression
activate e are generators. After the captured expression has generated all of its values the
activate expression would fail.

Using capture and activate, the collate function can be written in a different way.

procedure collate(s1, s2)
local ¢1, c2, s
¢1:= capture Is1
c2:= capture !s2
repeat s : = s || activate c1 || activate c2
return s
end

in this example, the generators !s1 and !s2 are contained by the capture expression and are
not discarded between iterations of the repeat expression. The generators would not
interact, but instead would be activated in parallel.

The capture and activate expressions could be used to implement SLS&-style
coroutines (Conway 1963; Hanson and Griswold 1978). Coroutines are much like
programmer-defined generators; they can suspend their execution and be resumed where
they left off. Unlike generators, coroutines need not be resumed in a hierarchical fashion.
An environment for a coroutine is the data associated with one instance of a coroutine
procedure. The environment could then be manipulated like other data objects and resumed
to continue invocation of the procdure. In lcon, the expression

e := capture f()

would correspond to the creation of an environment for the procedure f, which is then
assigned to e. The expression

activate e

would correspond to resuming that environment. The expression e could be activated
independently of goal-directed evaluation.

In the next example, the values from the same generator are needed in two places.
The activate expression, as a coroutine resume, is used in both places to extract values
from the captured generator. The procedure getword(f), which is defined in the previous
chapter, would be used to generate words from file f. The generator would be captured and
used to format the words two per line.

g : = capture getword(file)
repeat write(activate g, " ", activate g)

A possible method for the implementation of capture and activate is given in the next
chapter.



6. IMPLEMENTATION

As is the typical case, the design of the language features described in the preceding
chapters was influenced by the model used for their implementation. Initially, an
implementation method was sought that would support the fundamental linguistic goals:
generators that could be used as arbitrary expressions, and a goal-directed mode of
evaluation that would seek successful results. The development of a consistent, general
implementation model helped to define the properties of the language features. In addition,
the model has prompted the development of several new facilities not previously conceived.

This chapter describes the implementation of generators in Icon. Enough of the
implementation is presented to give a reasonably complete description, but unnecessary
details are omitted. The presentation is generally "top-down", with general descriptions
followed by specific details. Two readings may be required to absorb all the details of the
implementation.

As the Icon system evolved, the terminology used to describe language operations
evolved, too. The implementation, however, did not change correspondingly, and still uses
much of the old terminology. Identifiers and procedure names used in the implementation
reflect this old terminology. In the description that follows, the implementation terminology
and the terminology of the preceding chapters are both used. Implementation names,
although sometimes confusing as to their origin, provide links between the discussion below
and the program listings.

The Components of the Icon System

The Icon system consists of two major parts, a translator and a runtime system. The
transiator converts an lcon source-language program into a Fortran program. The runtime
system contains routines referenced by this program. Running an lcon program consists of
translating the Icon source, compiling the resulting program, and loading it with the runtime
system. The resulting module is the executable icon program.

The translator and runtime system are implemented in Ratfor (Kernighan and Plauger
1976), a Fortran preprocessor. Ratfor allows programs to be written in a free format, using
typical high-level constructs that are found in most modern programming languages. The
preprocessor translates Ratfor programs into equivalent Fortran programs. Thus, Ratfor
provides a convenient programming environment, while retaining the portability and quality
of generated code that is characteristic of Fortran. Since the preprocessor introduces no
machine dependencies, the resulting program is as machine independent as the original
Ratfor code.

The Fortran program produced by the translator consists primarily of subroutine calls
to the Icon runtime system. These subroutines, along with a large number of utilities,
implement the built.in operations in the language. A system stack is central to the runtime
system. Operands are fetched from memory and pushed onto the system stack, and
operations obtain their operands from the stack and leave their results there.

The basic model for the implementation of generators is based on the two-stack
approach commonly used to implement backtracking (Prenner, Spitzen, and Wegbreit 1972).
In addition to the standard system stack for maintaining active procedure frames, a second
control stack is used to hold the information associated with dormant generators.
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Format of the Generated Fortran Code

The Fortran code produced by the lcon translator shares common features with code
produced by any mechanical translation system: the code is standard, highly stylized, and
often very unsophisticated. The code is easy to generate, but hard to read; it is formatted
strictly for the Fortran compiler with no comments or extraneous spacing.

An Icon program is translated into a single Fortran subroutine. The subroutine begins
with the standard preamble and common declarations. The labeled common block CMAIN
contains all variables referenced by the generated code. The general structure of this
subroutine is shown below.

SUBROUTINE ICON
COMMON /CMAIN/SIGNAL,LABEL,FLABEL
INTEGER SIGNAL ,LABEL,FLABEL

{declarations of source-program literals>

<initialization of literals above (using DATA statements)>

CALL |INIT(200,400,100,4000,200)
CALL SINIT(S,G/P,I,R,L)

<{code to invoke Icon procedure main>

<{generated code for expressions in the source program>

—

LABEL = FLABEL
2 GOTO (1,2,34,56,..., m), LABEL
END

Following the preamble is the declaration and initialization (through DATA statements) of
literal data that appear in the lcon source program. This data includes all strings, integers,
and reals that appear in the program, along with data objects representing user-defined
procedures and identifiers.

These declarations are followed by two subroutine calls for initialization. The call to
[INIT initializes the runtime storage area. This area is a Fortran array, housing separate
regions for integers and strings, as well as a general purpose "heap". The first call defines
the boundaries of these regions and initializes them for allocation. The call to SINIT copies
the data from the Icon source program, which is declared and initialized above, into the
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runtime storage region prepared by IINIT. A detailed description of the Icon storage
management system appears in Hanson (1979).

The next section of code invokes the icon procedure "main"”, transferring control to
the Faortran code corresponding to the user-defined main procedure.

The bulk of the generated Fortran code is the result of translating icon expressions
into the corresponding sequences of Fortran subroutine calls and jumps. The code
sequences for several expressions are given in a subsequent section.

Finally, two statements are generated to provide for computed transfer of control to
any point in the generated code. The integer m is the maximum label number allocated by
the translator. The manner in which these statements are used is described below.

Operation of the Runtime System

The following explanation of the runtime system is mainly concerned with the
implementation of generators. Toward that end, however, it is necessary to describe a
number of other aspects of the system.

Transfer of Control

Because lcon implements a number of linguistic features that cannot be expressed
directly in terms of Fortran language constructs (for example, recursive procedures) various
techniques must be used to handle common problems. One problem is the implementation
of arbitrary, computed transfer of control to any Fortran statement appearing in the body of
the generated code. This transfer is accomplished using the computed goto given in the
outline above. Any Fortran statement that is a destination of the computed goto (for
example, a procedure entry point) is preceded by a statement of the form

n CONTINUE

where n is an integer. These labels are sequential integers that are allocated as needed by
the translator.

A special computed goto is generated at the end of the Fortran code. This statement
contains each of the labels that may be transferred to at runtime.

2 GOTO (1,2,3,4,5,6,..., m), LABEL

To transfer to an arbitrary label, the integer value of that label is assigned to the variable
LABEL, and a goto to label 2 is executed. Control is then transferred to the desired label.
The labels 1 and 2 appear in this statement only to simplify the code generation process: the
goto does not transfer to these labels.
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Handling of Failure

implementation of the immediate termination of expression evaluation on failure of an
operation is a problem not present in many programming languages. In Icon, this problem is
handled through the use of a global failure label. The Icon signal is maintained in the
Fortran global variable SIGNAL. After each operation that may fail (and only those
operations), the translator generates the Fortran statement

IF (SIGNAL .EQ. 0) GOTO 1

The current failure label is kept in the Fortran giobal FLABEL. The statement labeled 1 is
the assignment

1 LABEL = FLABEL

followed immediately by the computed goto described above. Thus, a jump to label 1
assigns the current failure point to the variable LABEL and causes control to be transferred
to the corresponding statement.

Failure could be handled by explicit transfer to the nearest failure point, but the more
general technique above is used because of the additional flexibility it provides. For
example, the ability to manipulate and store the failure label would be used in the
implementation of the possible language extensions capture and activate.

Because lcon uses a stack for storage of intermediate results and because failure
causes arbitrary termination of evaluation of the current expression, it is necessary to be
able to discard partially computed results that are no longer relevant. On entry to any
expression that may fail, the current stack height is saved. When evaluation of the current
expression is completed, the stack height is reset, insuring that it is correct and does not get
out of phase with other operations.

Sample Code Sequences

Operations in the runtime library get their arguments from the main system stack, and
leave their results there. Objects on the stack can be either variables or values; the exact
representation is given in Hanson (1979).

The subroutines referenced from the generated code are classified into three types:
operand, operation, and control.

Operand Subroutines

There are several kinds of operands that are referenced by the code: strings, integers,
reals, and global and local identifiers. A particular subroutine call pushes each kind of
operand on the stack. For example

CALL XGLOBL(n)

is used to push a global identifier. (All subroutines that are referenced from the generated
code begin with the letter X)) The value n is a unique integer that identifies the global
identifier being referenced. The statement



CALL XPSTRG(n)

pushes the literal string n onto the stack. The other operand subroutines are

CALL XPINTG(n) # push integer n
CALL XPREAL(n) # push real n
CALL XLOCAL(n) # push local identifier n

Operation Subroutines

There is a Fortran subroutine for each Icon operator. For example, the subroutine
XCAT performs string concatenation; it takes the two string arguments from the stack,
concatenates them, and leaves the resulting string there. The code corresponding to the
Icon expression

nsufu ” llfixll
is (assuming suitable numbers for string literals)

CALL XPSTRG(1)
CALL XPSTRG(2)
CALL XCAT

Other typical operations and their corresponding Fortran subroutines include

XADD addition (+)
XsuB subtraction (=)
XPLUS convert to numeric (unary +)

XMINUS  negate (unary -)
XASG assignment (: =)
XNLT numeric less than ()

All of the operations above, except XASG and XPLUS, require values of specific types as
operands. These operations assume that the operands on the stack are both of the correct
type and are dereferenced (values have been extracted from variables). The transiator
generates, when required, conversion and dereferencing operations. These operations take
the top operand on the stack, convert or dereference it as appropriate, and leave the
resulting value in its place. The dereferencing subroutine is XDEREF.

Conversion routines have names of the form XCxxxx, where xxxx is the type of value
being converted to. These routines give an error message if the value on the stack cannot
be converted to the requested type. Typical conversion subroutines are

CALL XCINTG # convert to integer
CALL XCSTRG # convert to string
CALL XCNUMR # convert to numeric

The last routine, XCNUMR, is used for polymorphous arithmetic operations and converts its
operand to either reai or integer as appropriate.

An example of the use of these routines is illustrated by the expression

x := "the answeris " || (a+5)



Assuming suitable numbers for literals, the generated code for the expression above is

CALL XGLOBL(1) # push x (assumed to be global)

CALL XPSTRG(1) # push string "the answer is "

CALL XLOCAL(1) # push a (assumed to be local)

CALL XDEREF # fetch the value of a

CALL XCNUMR # convert the value of a to numeric
CALL XPINTG(1) # push §

CALL XADD # add a+5

CALL XCSTRG # convert a+ 5 to string

CALL XCAT # concatenate "the answeris "toa+5
CALL XASG # assign the string to x

Control Subroutines

The third kind of subroutine referenced by the generated code is the control
subroutine. Control subroutines are used to implement the various control structures and
perform related stack maintenance operations. An example of a simple control subroutine is
XPOP, which removes an unneeded value from the top of the stack.

Two subroutines, XMARK and XDRIVE, are used to handle transfer of control on
failure, either by transferring to the next expression boundary or by activating dormant
generators. The translator generates calls to these two subroutines around any expression
that may fail.

CALL XMARK(n)
{code for expression that may fail>

n éALL XDRIVE

For expressions that cannot fail, the XMARK and XDRIVE pair is not generated. Thus,
none of the overhead required for handling failure .of conditional expressions is imposed on
unconditional expressions,

XMARK saves the heights of the system and control stacks and the current value of
the failure label, FLABEL. The argument to XMARK, n, is assigned to FLABEL, which makes
the corresponding call to XDRIVE the current failure point. If an operation fails, the Fortran
statement

IF (SIGNAL .EQ. 0) GOTO 1

which is generated after each operation that may fail, causes control to transfer to the
XDRIVE call corresponding to the current expression boundary. XDRIVE resets the previous
failure label and, since partially computed results may be left on the stack, resets the height
to the level when XMARK was called. For example, the code generated for the expression

x:= (y<z)
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5

CALL XMARK(5)
CALL XGLOBL(1)
CALL XGLOBL(2)
CALL XDEREF
CALL XCNUMR
CALL XGLOBL(3)
CALL XDEREF
CALL XCNUMR
CALL XNLT

IF (SIGNAL .EQ. 0) GOTO 1
CALL XASG
CALL XDRIVE

establish 5 as failure label
push x

push y

dereference y
convert y to numeric
push z

dereference z
convert z to numeric
compare y< z

jump if failed

assign x:= z

adjust stack height

R R

A more complex example is provided by the if statement

ifx<0Othenx:= -xelsex:= +Xx

which translates into

23000

2300t

CALL XMARK(6)
CALL XGLOBL(1)
CALL XDEREF
CALL XCNUMR
CALL XPINTG(1)
CALL XNLT

IF (SIGNAL .EQ. 0) GOTO 1
CALL XDRIVE
CALL XPOP

IF (SIGNAL .EQ. 0) GOTO 23000
CALL XGLOBL(1)
CALL XGLOBL(1)
CALL XDEREF
CALL XCNUMR
CALL XMINUS
CALL XASG
GOTO 23001
SIGNAL = 1
CALL XGLOBL(1)
CALL XGLOBL(1)
CALL XDEREF
CALL XPLUS
CALL XASG
CONTINUE

set FLABEL

push x

dereference x

convert x to numeric
push 0

compare x <0

# jump if failed

# reset FLABEL and stack
# discard result of x <0
jump if failed

push x

push x

dereference x

convert x to numeric
negate x

assign x 1= =X

skip around else clause
reset signal to success
push x

push x

dereference x

convert x to numeric
assign x := +X

if clauses join here

HREHHBR

HERRP R

To avoid conflict with the computed goto labels, large numbers are used for labels that are
referenced only directly by the generated code.

The Implementation of Generators

As mentioned earlier in this chapter, a second stack, the control stack, is used to
maintain the data associated with dormant generators. The system stack couid be used, but
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elaborate threading, as in Bobrow and Wegbreit (1873), would be required because the two
stacks do not operate in parallel.

Saving the Execution State

When a generator is initially invoked, it produces its first value and then prepares for
the possibility of subsequent activation. In general, this preparation involves the saving of
two kinds of information: (1) data related specifically to the generation of alternatives (for
example, arguments and local variables) and (2) partially computed results that otherwise
might be consumed before the generator is activated.

+

The first type of information, local data, is clearly necessary, since these values are
required to compute subsequent aiternatives. For example, the generator

e1 to e2

must initially save the values of e; and e,. Then, when the generator is producing the
sequence of integers from e4 to e,, it must maintain the current generated value.

Saving the second type of information, partially computed results, is more complex,
and requires special consideration. An example is the expression

x+2< (1 to5)

At the time the to generator is initially evaluated, the stack contains the values x+ 2, 1, and
5. The values 1 and 5 are popped off by the generator and the result, 1, is left in their
place. The comparison operation pops the two values, x+2 and 1, off the stack. |If the
comparison succeeds, the value 1 is pushed back on the stack, the expression succeeds,
and contro! passes to the next expression boundary. If the operation fails, the dormant to
generator is activated. The local variables that are required by the generator and the state
of the stack when the generator was initially invoked are restored. Restoring the stack to its
previous state requires partially computed results to be saved when a generator becomes
dormant. In the example above, the only value on the stack that is not local to the generator
is the value of x+2. This value was "consumed" by a subsequent operation, namely the
less-than comparison. The call to XMARK preceding the evaluation of an expression
containing generators determines the maximum amount of stack that the enclosed
expression can consume.

Activation of Generators

The control stack not only contains the local variables and partially computed resulits
described above, but also a label used to return control to the dormant generator. As
generators in an expression are evaluated and become dormant, the data and label
associated with them are pushed onto the top of the control stack. When activation occurs,
the generator on top of the control stack is restored and activated. This generator is the
one that became dormant most recently. Using a stack to store generator data determines
the last-in, first-out activation of dormant generators.

Generators are activated by a call to XDRIVE. |If the signal is failure when this
subroutine is called, it invokes the most recently suspended dormant generator. The
algorithm for XDRIVE is outiined in the following Ratfor subroutine.
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subroutine XDRIVE
if (signal == FAILURE & dormant generators exist) {
label = label of dormant generator
restore stack from top of control stack
}
else { # expression succeeded or has no generators
label = 0
pop return value off top of system stack
reset stack heights
push return value on top of system stack
}
return
end

If the expression succeeds, or if it fails and no dormant generators exist, XDRIVE resets the
stack height and moves the return value to the top. The variable label is used to control
flow after XDRIVE returns. If label is zero, control passes through the if statement and
continues with the next expression in sequence. |If iabel is non-zero, control branches to the
specified point in the generated code, activating the dormant generator.

An important feature of this implementation is that very littie additional overhead is
imposed on an expression that does not contain generators, since calls to XMARK or
XDRIVE are not generated if the expression cannot fail. If the expression can fail, but does
not contain generators, the only overhead is the code required to check and restoré the
height of the control stack.

Generation of Values

When a generator is invoked, it computes its first value. Any focal variables that may
be needed if the generator is subsequently activated are pushed onto the system stack. The
generator then performs a "save" operation that pushes onto the control stack that portion
of the system stack from the top to the point last marked by a call to XMARK. The portion
of the stack that can change is saved, as well as the variables local to the generator that
may be needed if it is activated later. The temporary values pushed onto the system stack
are then popped off and the first computed value of the generator is pushed on. Evaluation
then continues from that point.

If a subsequent operation fails, control is transferred to the call to XDRIVE
corresponding to the most recent call to XMARK. XDRIVE detects that a generator has
become dormant since the last call to XMARK (by noting that the size of the control stack
has increased) and activates that generator. This activation is accomplished by copying the
data at the top of the control stack to the top of the system stack, restoring the system stack
to the point when the generator was last activated, and then jumping to the location in the
code where the generator was called.

As an example, the generated code corresponding to the expression
x+2<(1to5)

is given below.



CALL XMARK(7) # set 7 as failure label

CALL XGLOBL(1) # push x
CALL XDEREF # dereference x
CALL XCNUMR # convert x to numeric
CALL XPINTG(1) # push 2
CALL XADD # add x+2
CALL XPINTG(2) # push 1
CALL XPINTG(3) # push §
6 CALL XTO(6) # generate 1 to 5
IF (SIGNAL .EQ. 0) GOTO 1 # jump if to exhausted
CALL XNLT # compare x+2< (1 to 5)
IF (SIGNAL .EQ. 0) GOTO 1 # jump if compare failed
7 CALL XDRIVE # activate generator

IF (LABEL .NE. 0) GOTO 2 # jump to activate generator
Calis to generators in the translated code have the following general form.
L CALL Xxxxx(L)

where xxxx is the name of the operation and L is a computable label. The algorithm a
generator uses is given by the program below, written in informal Ratfor.

The global variable signal corresponds to the Icon signal and is used by the generator
to determine its current execution phase. If the signal is success, the generator is being
activated for the first time. On initial activation, the generator initializes itself and computes
its first value. If the signal is failure, the generator restores local variables from the stack
and produces an alternate value.

subroutine Xxxxx(L)

if (signal == SUCCESS) { # initial call
initialize local variables
}
else { # activation call
signal = SUCCESS # reset signal to success
fetch saved local variables and restore
}

generate next value

if (generation succeeded) {
push local variables onto stack
cali save(L) # save stack and label
pop local variables off stack
push return value onto stack
}

else # generation failed
signal = FAILURE

return

end

if the generation of a value succeeds, and alternate values may later be produced, the
generator prepares for subsequent activation. Values of local variables are pushed on the
system stack and the portion of the stack to the last marked location is saved on the control
stack. The local values saved are then popped off and the return value pushed on. If,
instead, the generator fails to produce an alternate value, it sets the signal to failure and
returns.
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Alternation Generator

The alternation e | e, requires a different implementation than other generators.

Consider, for example, the consequence of treating alternation like a procedure with two
arguments, alt(e1,e2).

<evaluate e1>
<evaluate e2>

L CALL XALT(L)
IF (LABEL .NE. 0) GOTO 2

If e4 fails, control is passed to the nearest expression boundary, skipping the call to XALT.
The expression e, would not be evaluated.

Alternation must be given control before its first argument, e, is evaluated. The actual
code sequence for the expression above is

L1 CALL XALT(L1,.L2)
IF (LABEL .NE. 0) GOTO 2
{evaluate e>
GOTO 23000 # eq succeeded, skip e,

L2 CONTINUE
<evaluate e2>

23000 CONTINUE
The procedure XALT(L1,L2) is quite simple.
subroutine XALT(L1,L2)

if (signal == SUCCESS) { # initial call
call save(L.1) # save our location
label = 0 # fall into ey

else { # activation call
signal = SUCCESS # prevent further activation
label = L2 # label of e,
}

return

end

The signal is used to determine whether XALT is being evaluated initially, or is being
activated for alternatives. A success signal indicates initial evaluation. The location of the
call is saved and control "falls through" to expression e as a result of setting label to 0. If

the evaluation of e4 invokes a generator, the control information for that generator is pushed

on the control stack after the information for XALT. If failure occurs, dormant generators in
e, are activated before XALT.

If XALT is invoked when the signal is failure, the signal is reset to success and the
variable label is set to the label of €eo. Since label is non-zero when XALT returns, control

transfers to eo.
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Repeated Activation of Generators

Generators are only activated by XDRIVE if the expression in which they appear fails.
In every e, the expression e is repeatedly activated even if it succeeds. The every
expression is implemented by noting that it is equivalent to an expression of the form

e&(1 =0

Since the comparison always fails, e is continually activated for alternatives until it is
exhausted.

The every expression is implemented by forcing the signal to be failure after e is
evaluated. The generated code produced for the every expression above can be outlined
as follows.

CALL XMARK(L) # set L as the failure label

<evaluate e>

SIGNAL = 0 # force activation of generators
L CALL XDRIVE

IF (LABEL .NE. 0) GOTO 2 # activate e

The actual code produced for the every expression is more complex, since loops may be
iterated and exited arbitrarily (using the next and break expressions).

A Suggested Implementation of Captured Expressions

Chapter 5 describes possible extensions to the goal-directed evaluation facilities of
lcon, the capture and activate expressions. This section discusses a possible
implementation strategy for these expressions.

After an expression has produced a value, the XDRIVE subroutine discards dormant
generators on the control stack by resetting the height to the height when the XMARK
subroutine was called. The capture expression can be implemented by saving this
information rather than allowing XDRIVE to discard it. Since the lifetime of a captured
expression is unlimited, and the system stack and contro! stack must be reset after the
captured expression is left, a natural place to store the control stack fragment is in the heap.

The expression
activate €4

requires eq to be a data object of a special type produced by a capture expression. This
data object wouid contain a portion of the control stack at the time the captured expression
last produced a value. When the activate expression is evaluated, it would place the saved
data at the top of the control stack and activate the dormant generators. At this point, the
activate expression would behave like an ordinary expression containing generators. When
evaluation of the activated expression is complete, the stack heights would be properly
adjusted and the resulting value would be left on the top of the system stack.
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The generated code for the activate expression would be

<evaluate e1>

CALL XMARK(L1) # establish expression boundary
CALL XACT # activate the expression

L1 CALL XDRIVE # reset the stack heights
IF (LABEL .NE. 0) GOTO 2 # jump to activate expression

As described earlier, the subroutines XMARK and XDRIVE serve as boundaries tor the
evaluation of the expression they surround. In this case, the expression would not be

physically enclosed, but instead would be logically enclosed by the calls to XMARK and
XDRIVE.

The subroutine XACT would push the contents of the block pointed to by e4 onto the

control stack and set the signal to failure. Expression failure would cause XDRIVE to
activate dormant generators; the dormant generators just pushed onto the stack by XACT.
The variable LABEL would be set to the activation point and control would pass to the
captured expression.

If the captured expression contained no dormant generators, the control stack would
not be changed. Since the control stack is empty, XDRIVE would set LABEL to 0, and no
activation would occur.

The expression

capture e,

would be transiated into the following code.

CALL XPCAP(L1) # return initial capture data
GOTO F1 # skip over the expression
L1 <code for ey # code for the captured expression
CALL XCAP # update the capture data
GOTO 2 # return to activation point
F1 CONTINUE # continue execution after capture

The subroutine XPCAP{L1) would create a block in the heap representing a portion of the
control stack. The label L1 is used as the activation point of an otherwise null generator.
When XACT is evaluated it would push this label on the control stack, causing the first
activation by XDRIVE to start at the beginning of expression e,.

The XCAP subroutine would update the block initially created by XPCAP. The block
would be copied into a larger or smaller block as necessary to hold the dormant generators
currently on the control stack.

A problem with the implementation outlined above is related to the FUNARG problem
in LISP (Moses 1970): local identifiers that appear in the captured expression would be
unbound if the procedure returns. For example, the procedure func(s)

procedure func(s)
return capture !s
end
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would return a captured generator that would produce the characters of string s.
Unfortunately, if the expression wcre activated, the variable s would no longer exist; the
binding of s would have been destroyed when func returned.

Since lcon does not support dynamic binding of identifiers, the only variables that
could be in the captured expression would be global variables or local variables, either
dynamic or static, of the procedure in which the capture appears. The solution to this
problem would require capture to save the current activation record for the procedure, or at
least the variables referenced in the captured expression. If a captured expression were
activated, dynamic local identifiers would be bound to this saved data, and evaluation would
proceed using these bindings. Since the bindings of global identifiers are not affected by
procedure activations and returns, global identifiers in a captured expression would be
accessed without problem. Static local identifiers are implemented in a manner similar to
global identifiers; hence, access to static identifiers is also unchanged.



7. CONCLUSIONS

Generators provide a linguistic facility that allows concise expression of solutions to
problems suitable for goal-directed programming. These problems are typically found in
string processing, artificial intelligence, and other areas in which combinatorial searching is
performed. Experience with Icon has demonstrated its utility in string processing and
problems involving simple combinatorial searches. Problems related to artificial intelligence
research have not yet been studied.

The most significant contribution of this work is the development of unified linguistic
facilities in which goal-directed evaluation is an integral part. In other languages supporting
goal-directed programming, for example MLISP2 (Smith and Enea 1973) and ECL (Prenner,
Spitzen, and Wegbreit 1972), the facilities are not well integrated into the language. For
example, these languages contain special statements for marking decision points and
initiating backtracking.

in icon, generators are expressions and can be used anywhere a value is required.
The manipulation and activation of generators are integrated using the control structures
and signaling mechanism of the language.

The utility of generators in Icon and their use in string processing is exemplified by the
development of a new string scanning technique not based on patterns. One reason
languages use patterns for goal-directed programming is because patterns allow the use of a
second, sub-language in which combinatorial searching and backtracking can be more
easily described. The disadvantage of this approach is that the overall language structure is
made considerably more complex by forcing the programmer to actually write in two
separate languages (Griswold 1978).

Icon provides an environment in which string scanning facilities based on active
evaluation of scanning operations were created. This facility allows the scanning operations
to be integrated with the remainder of the language, giving the programmer as much control
over scanning operations as has traditionally been provided over algebraic operations.

In addition to built-in generators for string scanning, Icon provides generators for
arithmetic sequences and finite sequences of arbitrary values. These additional generators
provide facilities for the solution of more general combinatorial problems.

Another contribution of generators stems from their use in constructs not usually
considered related to goal-directed programming. For example, the every expression forces
all alternatives of generators to be evaiuated, not just the ones needed to reach a goal. In
addition, generators can be used to build more complex control structures from simpler ones
(as in the construction of the Algol for statement using the to generator and the every
expression).

The extension of procedures to programmer-defined generators aflows the programmer
to augment the repertoire of built-in generators. Programmer-defined generators can be
used, for example, to add new string scanning functions that include generation of
alternatives or reversal of effects.

Some of the inherent inefficiencies of goal-directed facilities in-other languages are
eliminated by avoiding automatic backtracking and by limiting the scope of generators.



Variables are not automatically restored when a dormant generator is activated. Experience
has shown that backtracking often is not necessary, that it can be the source of hidden
inefficiencies, and that it often hinders the solution of a problem by destroying information.

The scope of generators is limited to the expression in which they appear. Since
expressions may be of arbitrary complexity, this places no restrictions on the programmer,
yet it allows unwanted alternatives of dormant generators to be explicitly discarded. Limiting
the scope of generators not only prevents unwanted activation, but it also permits the space
associated with them to be released. Once an expression boundary is crossed, the space
on the control stack occupied by dormant generators for that expression is no longer
needed.

Another important aspect of the implementation of icon is the minor impact of
generators on the efficiency of other language operations. Very little overhead associated
with generators is imposed on expressions that do not contain generators.

Suggestions for Further Research

There are three evident areas for further research: (1) improvement of the imple-
mentation, (2) application of the existing facilities to other problem areas, and (3)
improvement of the existing linguistic facilities.

The implementation described in this dissertation is essentially the first complete Icon
implementation. (An earlier partial version was implemented as a modification of SL5.) This
initial implementation was designed for the experimental development of a new programming
language. As such, generality and flexibility of the implementation were of considerable
importance. A number of operations that could be performed at compile time are performed
at runtime instead to avoid preclusion of unanticipated developments in the language.

For example, the current language does not require failure labels to be pushed on the
stack by XMARK when an expression is entered. Instead, explicit jumps to the correct
failure label could be generated inline, without using the computed goto. However, if failure
labels were implemented in this way, the implementation of capture and activate as
described in Chapter 6 would not be possible.

Another example of how the implementation could be improved is the generated code
for procedure calls. Although not all procedures are generators, the code produced at the
call site always assumes that the procedure may suspend. Since the presence or absence
of a suspend expression in a procedure may be determined statically at translation time,
this fact could be used to produce shorter code sequences for procedures that are not
generators.

As mentioned in Chapter 6, the two-stack approach for the implementation of
generators could be combined into a single stack (Bobrow and Wegbreit 1973). Combining
these stacks, although making the implementation more complex, would allow better
management of the space associated with these structures. In the current implementation,
the system stack is expanded, if necessary, to the limits of allocated memory (Hanson 1979).
The control stack, however, is allocated in the heap. Expanding the control stack wouid
require a second, larger block to be allocated and the control stack to be copied into this
new block. Hence, two copies of the control stack would have to exist (momentarily) at the
same time, which might require more storage than would be available.



One of the major areas in which goal-directed programming has been used is in
artificial intelligence research. As pointed out above, however, little application has been
made of the lcon facilities to these problems. Although the availability of a search and
backtrack strategy can certainly help the formulation of problem solutions in this area, it is
not clear that Icon has the runtime flexibility that is often utilized in LISP- or SNOBOL4-
based systems. For example, Icon does not allow runtime creation of procedures. In
addition, patterns and pattern matching are used extensively in artificial intelligence.
Problems solved in icon will need to be recast in more procedural terms, rather than relying
on the nonprocedural nature of patterns. In some cases, this recasting may be done
automatically. For example, it is fairly simple to write a program to convert SNOBOL4-style
patterns into lcon procedure definitions.

Icon provides a limited form of backtracking when using the reversible assignment
operator, and the move and tab operations of string scanning. The inclusion of these
features is a consequence of similar features in SNOBOL4. More experience with icon is
required to determine the actual need for such backtracking operations.

Although a number of built-in string scanning operations are generators, others also
might be useful as generators. For example, the function many(c), which spans a stream of
characters of ¢ that appear in the subject, might span fewer and fewer characters each time
it is activated for alternatives. On the other hand, making generators of too many operations
can be inconvenient for the programmer and a source of subtie bugs. In some cases the
alternatives provided by a generator are useful, while in other cases generation results in
unnecessary combinatorial processing. The function many(c) is not currently a generator
because in most situations if the expression involving many does not initially succeed, the
expression wiil continue to fail even when fewer characters are spanned.

For the programmer skilled in writing SNOBOL4 patterns, Icon presents a new set of
challenges. The novice Icon programmer tends to use typical SNOBOL4-style coding
practices. String analysis functions are combined like patterns, often using only the control
facilities of alternation and conjunction. More experience in string scanning is needed to
develop new programming techniques that take advantage of the full power of the language.



APPENDIX: ICON LANGUAGE SUMMARY

This appendix contains a summary of the major portion of the icon syntax and a list of
some of the built-in operators and functions. Complete details are available in the Icon
reference manual (Griswold and Hanson 1979).

Syntax

The abbreviated syntax of Icon given below is in an informal BNF notation. Brackets
denote optional constructs and ellipses following a group denote repetition. In repeated
groups, the last occurrence of the delimiter is omitted. Vertical bars separate alternatives.
Metasyntactic characters used literally are underscored. The definitions of the syntactic
types <prefix-operator>, {suffix-operatord, <infix-operator>, <identifier>, <integer-literal>, <real-
literal>, <string-literal>, and <word> appear in the icon reference manual.

{program> :: = [ <declaration> ; ]...
{declaration> :: = <record> | <procedure>
<record> ::= record <record-name> [ <field-name> , ]... end

<record-name> :: = <identifier>

{field-name> :: = <identifier>

{procedure> ::

procedure <header> <body> end
<header> :: = <identifier> <arg-list> <scope-decl> <initial>
Carg-list> :: = [ ( [ <identifier> , ]... ) ]

(séope-decl) b

[ <global-decD> | <local-decl> }]...
{global-decl> ::

global [ <identifier> , ]...
<local-decl> :: = local [ <retention> ] [ <identifier> , ]...
{retention> :: = static | dynamic

dinitial> :: = initial <expr>

<body> ::= [<expr>;]...

<expr> :: = literal> | <identifier> | <keyword> | <operation) | <call> | <reference | <list-expr>
| <structured> | <control-struct> | <compound-exprd | ( <expr> )

<literal> :: = <integer-literal> | <real-literal> | <string-literal>
<keyword> :: = & <{word>

<operation> :: = <prefix-operator> <expr> | <expr> <{suffix-operator>
| <expr> <infix-operator> <expr>
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<calld> :;= <expr> ([ <expr>, ]...)

<referenced = <exprd> [ <expr> ]| <expr> . (field-name>
<list-expr> 1= <[ <expr>, ]... >

{structured :: = <list> | <table> | <record-object>

Clist> 1= list [ [ <lower-bound> : ] <upper-bound> ]
Clower-bound> 1= <expr>

upper-bound> 1= <{expr>

(table> :: = table [ <size> ]

<size> ;i = <expr

<record-object> :: = <record-name> [ <expr>, ]...

{control-struct> :: = <if> | <while> | <every> | <repeat> | <fails> | <null> | <to-by> | <next>
| <break> | <returnd | <scan>

<> 1= if <expr> then <expr> [ else <expr> ]

<while> :: = while <expr> do <{expr>

{every> ::= every {expr> [ do <expr> ]

{repeat> ::= repeat <expr>

{fails> ::= <{exprd fails

<nuil = null <expr>

<to-by> 1 = <expr> to <expr> [ by <expr> ]

<nextd = next

<break> ::= break

{return> ::= return [ <expr> ] | succeed [ <expr> ] | tail | suspend [ <expr> ]
{scan> ::= scan <{expr> using <expr>

{compound-expr> = { [ <expr>;].. }

Built-in Operators
eq '= ep assigns the value e, to the variable e and returns the value of e,.

eq <- e, assigns the value e, to the variable €4, returning the value of €5, but reverses the
assignment if the expression in which it appears fails.

eq :=: e, swaps the values of variables e, and €, and returns the value of eo.
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| 5 generates the alternatives e4 and ep.

& e, evaluates e, if eq succeeds and returns the value of es.
+ €, returns the arithmetic sum of e4 and e,.

- e, returns the arithmetic difference of 4 and e,.

* e, returns the arithmetic product of e4 and e,.

/ e5 returns the arithmetic quotient of e4 and e,.

= e, succeeds if the arithmetic value of e4 is equal to that of e, and returns the value of
82.

~= ep succeeds if the arithmetic value of eq is not equal to that of e; and returns the
arithmetic value of e,.

> e, succeeds if the arithmetic value ot eq is greater than that of e, and returns the
arithmetic value of e,.

>= e, succeeds if the arithmetic value of e4 is greater than or equal to that of e, and
returns the arithmetic value of e,.

< ep succeeds if the arithmetic value of e is less than that of e, and returns the
arithmetic value of e,. '

{= e, succeeds if the arithmetic value of e is less than or equal to that of e, and
returns the arithmetic value of e,.

|l e, returns the result of concatenating the string e, onto the end of string e4.

== e, succeeds if e is lexically equal to e, and returns the value of e,

-~=z @, succeeds if e is not lexically equal to e, and returns the value of e,.

++ €5 returns the union of character sets eq and e,.
** e, returns the intersection of character sets ey and e,.

-- &5 returns the difference of character sets e4 and eo.

+ e returns the arithmetic value of e.

-e returns the arithmetic negative of e.

~e returns the character set compiement of e.

le generates the elements of e if it is a structure, or the characters of e if it is a string.

e+ increments the value of the variable e by one and returns that value.

e- decrements the value of the variable e by one and returns that value.
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Built-in Functions
cset(x) returns the resuit of converting x to a character set.

find(sy.s5.i,)) generates the positions of string sq in the section of string s, between
positions i and j.

many(c,s.i,j) returns the position in string s between positions i and j that is after an initial
substring of characters in c.

match(sq,S5,i,j) succeeds if string s is an initial substring of Sp between positions i and j
and returns the position after the initial substring.

mod(i.j) returns the remainder of dividing i by j.

move(i) adds the value of i to &pos and returns the section of &subject between the initial
?ar:fjs 'final values of &pos. If the new value of &pos does not lie within &subject, move(i)

pos(i,s) returns the positive equivalent of position i in string s. Fails if i does not lie within s.

read(f) returns the next line from file f. Fails if f is at end of file.

reverse(s) returns the string consisting of the characters in s in reverse order.

section(s,i,j) returns the section of string s between positions i and j.

size(x) returns the size of object x. If x is a structure, size(x) is the number of elements in
the structure. If x is a string, or convertible to string, size(x) is the length of the string.

sort(x,i) returns a list of the elements of structure x in sorted order. If x is a table, each
element of the sorted list is a two-element list giving the subscript and value of the table
element. If i is one, the table is sorted by subscript; otherwise, the table is sorted by
value.

substr(s,i,j) returns the substring of string s starting at position i and of length j.

tab(i) assigns the value of i to &pos and returns the section of &subject between the initial
and final values of &pos. If the value of i does not lie with &subject, tab(i) fails.

upto(c,s,i,j) generates the positions in string s between positions i and j that contain a
character in c.

write(f,s4,85,...,.s) writes the strings sq, s, ..., s, on a single line to file f.
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