
Tools for the Measurement
of Icon Programs*

Cary A. Coutant and Ralph E. Griswold

TR 79-10

May 1979

Department of Computer Science

The University of Arizona

*This work was supported by the National Science Foundation under
Grant MCS75-21757.

Tools for the Measurement of Icon Programs

Cary A. Coutant and Ralph E. Griswold

1. Introduction

The DEC-10 implementation of Icon at the University of Arizona
has been instrumented to provide a number of facilities for mea­
suring the performance and behavior of Icon programs. The tech­
nical details of the instrumentation are described in Reference
1; this report is concerned with the use of the measurement
facilities and postprocessing programs for displaying measurement
data.

The measurement facilities fall into three essentially dis­
tinct categories:

(1) Activity of elementary language components (called
tokens).

(2) Charge back of program activity to components of the Icon
runtime system.

(3) Storage management information.

The first category is the one of primary interest to the Icon
programmer, since it measures the source-language program. There
are various kinds of measurement information and various ways of
displaying it.

Interpretation of charge back information requires a consider­
able knowledge of the Icon system. This form of measurement is
of interest primarily to the implementors of Icon and other per­
sons concerned with Icon internals.

Storage management information falls in a middle ground be­
tween the user and implementor. While the user of Icon should
ideally have no need to know about storage management (it is not
a language feature), the effect of storage allocation on perfor­
mance is sufficiently significant that an Icon programmer who is
concerned about performance must give some attention to storage
management.

2. Tokens

Each elementary language component is called a token. Tokens
include function calls, operators, structure references, identi­
fiers, and literals. For example, the following expression con­
sists of tokens beginning at the places marked

sum := sum + 1

For a built-in function, there is a token for the function
name. For a call of a procedure, there are tokens for the proce­
dure name as well as for the left parenthesis preceding the argu­
ment list. For structure references there are tokens for the
structure and for the left brace. Examples are

line := process(read(f))

count[n] := 0

There are three kinds of data that can be obtained for the
tokens in a program:

(1) Activity -- counting each time a token is evaluated.

(2) Allocation -- keeping track of the amount of storage allo­
cated by a token (not all tokens cause allocation).

(3) Sampling -- at periodic intervals noting the token that is
currently being evaluated.

Token counting gives a view of program activity without regard
for the time spent evaluating each token. As such, it is useful
for examining the behaviour of algorithms as reflected in program
code and especially under different data loads. An example of
token counting is given in Section 4.

The amount of storage that a token allocates is important,
since time spent in storage management is generally a significant
portion of total execution time. An example of token allocation
is given in Section 4. Allocation is measured in words. In the
case of strings, where allocation is actually performed in char­
acters, the total values are truncated to the nearest word at the
end of the run.

Token sampling gives an approximation to the total amount of
time spent evaluating each token during program execution. If
there are enough samples, this approximation may be reasonably
accurate, since sampling is periodic and hence essentially inde­
pendent of program execution. However, the sampling is done at
60hz, the DEC-10 clock frequency, and there must be a substantial
amount of program execution to get an accurate picture of where
time is spent. An example of token sampling is given in Section
4.

Storage management has a significant effect on sampling. Most
of the storage management time is usually associated with recla­
mation (garbage collection), not allocation. On the other hand,
reclamation may be caused by any allocation request, regardless
of the amount of storage required. This tends to distort time
distributions, since a token that triggers reclamation may be
charged for the time needed to reclaim the space allocated by
many other tokens. To compensate for this effect, samples that

occur during reclamation are not charged directly to any token,
but rather are distributed to all tokens that cause allocation in
proportion to the amount of storage they allocate. This tech­
nique gives only a first approximation to accurate charge back,
since storage management is a complex process [2], but it is
generally within the accuracy that is obtainable with low-
frequency sampling.

3. Requesting Measurement Data

In order to get measurement data, it is necessary to specify
options when running Icon. In addition to the information given
here, there is a summary of all options on ICN:ICON.HLP.

The options for measurement are

t measure token activity

p sample program counter

m print storage management summary

These options may be used singly or in combination.

The t option causes four files to be generated during program
execution. Each file has the name of the Icon program, with the
following extensions:

TOK token location data
CNT token counting data
SMP token sampling data
ALC token allocation data

These files contain an entry for each token in the program and
therefore are proportional in size to the size of the Icon pro­
gram.

The p option causes the program counter to be sampled period­
ically. A file is generated with the name of the Icon program
and the extension MON. There is an entry for each sample; conse­
quently the size of this file is proportional to the execution
time of the Icon program.

The m option causes a summary of storage management activity
to be written to the standard error output file (normally the
user's terminal) at the completion of program execution.

An Icon run consists of three steps: compilation, linking,
and execution. These steps may be performed separately to allow
for the creation of an executable core image, among other things.
See the Icon HELP file for details. If an Icon run is broken
down into steps, care must be taken in the use of the measurement
options. Since the t option affects both the code generated by
the Icon translator and runtime measurement, it must be specified
during the compilation and linking phases in order to obtain

token activity information during the execution phase. The p and
m options *~~ ' x:i "̂ ' ~ uU~ 1A~]'*! ~~ -^--- ~,,~~ ̂ * ^"" *̂-~
not specif
execution.

. _. _ _ _ / J. u y l I l J . U H l i a u J . U l l u u J. J. n y i _ u c G A C V ^ U U . L V - ' I I p i - i a o c . m c fc/ w**"-1

m options may be specified in the linking phase, even if they are
not specified in the compilation phase, since they only affect

4. Postprocessing Programs

There are several programs for postprocessing Icon measurement
data to obtain displays that allow program performance to be
viewed in different ways. All of the postprocessing programs are
available on the structures CSC: and ICN: and may be accessed
using the extended run command facility for users with appropri­
ate ppn attributes.

All the postprocessing programs prompt for information from
the user. The name of the Icon program for which measurement
data is to be processed is requested first. This name, which

ams
ume

scribed in Section 3. Furthermore, all postprocessing programs
write output to files with the same name as the source program,
but with specific extensions, depending on processing options.
The output file names are given in the following sections and are
summarized in the Appendix.

4.1 Token Displays

There are several postprocessing programs for displaying vari­
ous aspects of token activity in different ways.

TOKEN

The TOKEN program provides a simple display of token activity
by printing the activity beneath the token in a listing of the
program. TOKEN allows selection of the desired kind of activity
by prompting for

data (c, s, a) :

where c stands for token counts, s stands for token samples, and
a stands for token allocation. The desired display is obtained
by typing the appropriate character followed by a carriage re­
turn.

The extension of the output file depends on the kind of activ­
ity selected: CPR, SPR, or APR, respectively.

Figures 1 through 3 show portions of typical output for the
three kinds of activity. Note that the leftmost digit of each
value is aligned under the leftmost character of the token.
Values are written on successive lines where there is inadequate
space between tokens to place the values on the same line.

http://lIlJ.UHliauJ.Ull

while t := pop(stk) do # pop values and process
2207 2107 2207 2107

2207 2107

if terminal(t) then sentence := t || sentence else setup(t)
2107 2107 1212 895 895 895

2107 1212 1212 100
1212 1212

895

Figure 1 — An Example of Token Counting

while t := pop(stk) do # pop values and process
38 14 11 37 21

32

if terminal(t) then sentence := t || sentence else setup(t)
13 30 58 16 4 3 16 15 3 16 17

13 864 6

Figure 2 — An Example of Token Sampling

repeat {
=">" # get past > if necessary
88

slist[j+] :=
61 57

if ="<" then nterm tab(find(">")) I break
241 45 18 9 60

else tab(find("<"))
104 52 5

Figure 3 — An Example of Token Allocation

AVERAGE

While the TOKEN program displays the total values of token
counts, samples, and allocation, it is sometimes useful to know
the average activity per token activation. The AVERAGE program
does this for samples and allocation. It prompts in a manner
similar to TOKEN:

data(s, a):

The extension of the output file is SVR or AVR according to the
option selected.

For sampling, the average values are adjusted to correspond to
milliseconds of residency. These averages may be very inaccurate
because of the coarseness of sampling. For allocation, the aver­
age number of words per token is shown. Figures 4 and 5 illus­
trate typical output from AVERAGE.

wh
6.

ile
33

if
0.

t
0

• —

,10
0.

pop(stk)
0.08
25 0.27

do

o.:

terminal(t) then
10
0 .23

0.45
0.10

0. .22

L6

sentence
0. 05

;:

0

pop

= t
.04
0

1 1
11
.22

values and process

sentence else
,8
0.20

0. .05
setup(t)
0.29 0.31

0.11

Figure 4 -- An Example of Average Time from Sampling

repeat {
_ IT v II

0.78
get past > if necessary

slist[j+] :=
0.54

0.93

if ="<" then nterm tab(find(">")) I break
2.15 5.00 2.00 1.00

0.15

else tab(find("<"))
2.00 0.09

1.00

Figure 5 -- An Example of Average Allocation

TOKENG

It is typical for the values of token activity to vary by many
orders of magnitude in a single program. As a result, it is
frequently difficult to compare values, determine high points, or
locate unaccessed code, especially in large programs.

To overcome these problems, TOKENG provides an alternative
form of display to TOKEN. In TOKENG, values are represented by
"logarithmic" bar graphs.

In these graphs, an integer value is represented as a repeti­
tion of characters whose length is proportional to the value, as
in conventional bar graphs, but in which there is a separate
segment for each power of ten. To distinguish segments for dif­
ferent powers of ten, the digit for the power is used as the
repeated character in the segment. Dashes are used to align
corresponding segments for different values. For example, the
integer 376 is represented by

000000 1111111 222

while the integer 62895 is represented oy

00000 111111111-2 2222222—33 4 44444

Note that this representation is precise, while allowing for
values varying by many orders of magnitude to be in limited
space. The largest value in a sequence of such bars is the long­
est one and approximations to actual values can be obtained by
examining only the rightmost segments. Note that the integer
value 1 is represented by the segment 0 and the integer value 0
is represented by the null segment.

TOKENG provides the same options as TOKEN. An example for
token counting is shown in Figure 6. Note that the tokens are
listed vertically to allow easier comparison of the values.
TOKENG also provides a summary of token activity by procedure and
for the entire program. Figure 7 shows typical summary informa­
tion for token allocation.

while t := pop(stk) do # pop values and process

while 2
t 0 000000 22 33
:= 0000000 2 33
pop 0000000 22 33
(
stk 0000000 22 33
do 0000000 2 33

if terminal(t) then sentence := t || sentence else setup(t)

if 0000000 2 33
terminal 0000000 2 33
(0000000 2 33
t 0 000000 2 33
then 0 0 1 22 3
sentence 00 1 22 3
.= 00 1 22 3
t 00 1 22 3
| | 00 1 22 3
sentence 00 1 22 3
else 0 0000 111111111-22222222
setup 0 0000 111111111-22222222
(00000 111111111-22222222
t 00000 111111111-22222222

Figure 6 -- An Example of Graphical Display of Token Counting

define 0 00000000-111 2 33
generate 0000 222222222 4
main 0 1111111 222222
setup 0 00 11111111—2 22 3
terminal

total 0000000 111111111 33333 4

Figure 7 — An Example of Token Allocation Summary Information

5. Program Counter Displays

Program counter information relates program acitvity to spe­
cific modules in the runtime system. Interpretation of this
information requires considerable knowledge of Icon internals and
generally is not useful to the Icon programmer.

PROFILE

The PROFILE program provides a display of the periodic sam­
pling of the program counter arrayed against the runtime system
modules and their entry points. The output is written to a file
with the extension PRF. Successive columns show the octal core
location, the module name, the entry point, the number of sam­
ples, and a percentage based on the total number of samples for
the run. Figure 8 shows a section of typical output from
PROFILE. The values in main correspond to samples in the subrou­
tine corresponding to the Icon program itself.

400010

400746
400747

401037
401040

401125

main

xf er

alcint

alcsql

alcstr

alcint

alcsql

85

22

21
21

9
9

110

5.56%

1.42%

1.36%
1.36%

0.58%
0.58%

7.12%

module

module

module

module

total

total

total

total

413111
413137
413145
413156

lOmac
syserr
tstb
setb

apr

29
1
1
27

8
8

1.87% module total
0.06%
0.06%
1.74%

0.51% module total
0.51%

413276
413276

lOapr

CHARGE

Figure 8 -- An Example of a Program Counter Profile

A more detailed chargeback of program activity to the runtime
system is provided by CHARGE, which breaks down samples for each
token according to the runtime module in which the sample oc­
curred. Figure 9 shows an example of typical output from CHARGE,
Samples allocated to storage regeneration are tallied to regen
(which includes all regeneration routines), as discussed in
Section 2.

while t := pop(stk) do # pop values and process

while
: =
Pop
stk
do

2
5
1
4
5

main
xasg
main
type
main

100%
60%
100%
100%
60%

main 40%

xmark 40%

if terminal(t) then sentence := t I I sentence else setup(t)

termina
(
t
then
sentenc
: =
t
1 1

else
setup
(
t

3
8
2
1
1
1
3

158

1
6
3
2

xderef
xinvok
xderef
xdrive
main
xasg
xderef
regen
stc
zabump
main
type
xinvok
main

66%
75%
100%
100%
100%
100%
100%
72%
6%
0%
100%
83%
100%
50%

xcproc
xmark

ldc
xcat

xglobl

xderef

33%
12%

8%
1%

16%

50%

main

mvc
alcstr

12

8%
0%

Figure 9 — Example of Token Chargeback to the Runtime System

6. Storage Management Summaries

The m option causes a summary of storage management activity
to be written to the standard error output file upon normal pro­
gram termination. A typical summary is shown in Figure 10.

10

CPU time: 15300 ms

Allocations
Elements alloc.
Regenerations
Elements recov.
Regen. time
Expansions
Expan. time

String
1234
35102
107
32596
3367
1
62

Qual.
1500
1500
108
1372
2471
0
0

Int
3521
2048
21
1951
423
0
0

Heap
220
3150
0
0
0
0
0

Figure 10 -- A Storage Management Summary

The four columns correspond to the four regions from which stor­
age is allocated. In each case, the values given are in "ele­
ments", not words. For strings, an element is a character (there
are four characters per word), for qualifiers, it is the number
of qualifiers (there are two words per qualifier), for integers,
it is the number of integers (there is one word per integer) , an
for the heap, it is the number of words.

and

Regenerations (garbage collections) occur on a per-region
basis, as is indicated, although a regeneration in one region may
trigger regenerations in others if insufficient space is re­
claimed .

A region is expanded if there is not enough space in the re­
gion to meet an allocation request after regeneration.

Storage management in Icon is a complex process. See Refer­
ence 2 for a complete description.

References

1. Cary A. Coutant and Ralph E. Griswold. Instrumenting Icon
for Performance Measurement. Technical Report TR 79-9, Depart-
ment of Computer Science, The University of Arizona, Tucson,
Arizona. May, 1979.

2. David R. Hanson. A_ Portable Storage Management System for
the Icon Programming Language. Technical Report TR 78-16a,
Department or computer Science, The University of Arizona, Tuc­
son, Arizona. February, 1979.

11

Appendix — Summary of Postprocessing Programs and Options

The time required for postprocessing measurement data depends
on the kind of processing, the number of tokens in the program
(t), and the time spent in program execution, which determines
the number of samples (s). The programs below that are super­
scripted by t require time approximately proportional to t and
are generally inexpensive to run. The programs superscripted by
s are dominated by the length of program execution and are gener­
ally expensive to run. The CHARGE program is particularly expen­
sive .

program

TOKENt

options

c
s
a

input files

ICN, TOK
CNT
SMP
ALC

output files

CPR
SPR
APR

AVERAGt

s
a

ICN, TOK, CNT
SMP
ALC

SVR
AVR

TOKENGt
c
s
a

ICN, TOK
CNT
SMP
ALC

CBR
SBP
ABR

PROFILES

CHARGES

MON PRF

ICN, TOK, MON, TPR
ALC

12

