
Backtracking with Generators 

John T. Korb 

TR 78-5 

April 10/ 1978 

Department of Computer Science 

The University of Arizona 

*This work was supported by the National Science Foundation under 
Grant MCS75-01307. 



'T.-'U 



Backtracking with Generators 

1. Background 

This paper describes work in progress on new features for 
high-level programming languages to support string and structure 
processing. These facilities are being designed as part of Icon, 
a new programming language [1]. This language has its roots in 
SN0B0L4 [2] and SL5 [3,4] , and may be considered an extension of 
these languages. Design goals include the development of a prac-
tical tool for string and structure processing that includes many 
of the novel features existing in SN0B0L4 and SL5. 

2. Backtracking 

Backtrack programming is a problem solving technique that 
allows tentative decisions to be made and later reversed if it is 
found that a different decision would be better. A mathematical 
formalization of this technique can be found in [6]. Such a 
trial and error approach provides a useful tool for solving cer-
tain types of problems. For example, it can be used to exhaus-
tively enumerate solutions to certain combinatorial problems. A 
tree is used to represent the decisions to be made in solving the 
problem. A node in the tree represents a decision point, 
branches emanating from the node correspond to potential deci-
sions at that node. When solving this type of combinatorial 
problem, a decision is made at each node, descending deeper into 
the goal tree. Eventually, a leaf node is reached, which may be 
either a dead end or represent a correct solution. A dead end is 
a node of the goal tree at which there is either no available 
decision, or it is known that no decision will lead to a correct 
solution. If a dead end is encountered, backtrack to a preceding 
node, make a different decision, and continue descending the 
tree. This process is continued until a set of decisions are 
found that lead to a leaf node that is a solution. 

When performing long searches in a deep decision tree, early 
detection of a "blind alley" is important. This eliminates test-
ing a large number of incorrect solutions. For smaller goal 
trees, the ability to avoid blind alleys is not as important. 
Exhaustive enumeration with a final test after each iteration may 
be fast enough. 

A problem that is easily solved using a backtracking strategy 
is the eight queens problem [7]. The problem is to place eight 
queens on a chess board such that no two of them can capture the 
other (i.e. are not on the same row, column, or diagonal). To 
solve this problem, first observe that exactly one queen must 



appear in each column. Work left to right across the board, 
placing one queen in each column on a row that doesn't conflict 
with any of the previous queens. Begin by placing a queen on 
column one, row one. Next, place a queen on column two, noting 
that the lowest row that it can be placed on is row three. Con-
tinue placing queens on the board until there is no safe row on 
which to place a queen. Backtracking must now be done; a deci-
sion made earlier was incorrect. Retreat to the latest decision 
made - placement of the last queen - and move that queen to a 
different row. If no safe row remains for that queen, backtrack-
ing must be continued. Once a safe move has been found, contin-
ue placing queens on columns in the forward direction again. 
This back and forth placement and removal of queens will eventu-
ally lead to a solution (in fact, to all solutions). 

Solutions to the eight queens problem can be generated very 
quickly, despite the fact that there are a huge number of ways to 
place eight queens on an eight by eight board. The reason for 
this speed is that many incorrect solutions can be easily elimi-
nated without descending too deeply in the decision tree. A 
technique for estimating the running time of backtrack programs 
by random exploration of the goal tree has been developed [8]. 

One of the principal advantages of the backtracking approach 
to a solution is that it does not require a rigorous analysis of 
the problem. No elaborate study of the eight queens problem, or 
of chess for that matter, was necessary to find a solution to the 
problem. One observation is made immediately (and almost intu-
itively) that exactly one queen appears in each column. This 
provides a point of reference for the placement and removal of 
each queen. The rest is done through backtracking and following 
the problem statement. 

3. Backtracking Facilities 

Backtracking facilities are provided in several different 
languages, for example, SNOBOL4", SL5 [9], PLANNER [10], and 
MLISP2 [11]. This section describes some of the differences in 
the facilities provided by these languages. Other than syntactic 
issues, languages differ in three fundamental ways in their han-
dling of backtracking, (1) initiation of backtracking, (2) scope 
of backtracking, and (3) reversal of effects. 

An important consideration in the design of backtracking fa-
cilities is how to initiate backtracking. When it has been de-
termined that an incorrect decision was made, how does the pro-
grammer communicate to the system that it is time to backtrack? 
One technique is to provide a function, such as FAIL(), that may 
be called to initiate backtracking [12]. This causes control to 
be transferred to the last (most recent) decision Doint. 

In signal-driven languages, such as SNOBOL4 and SL5, a failure 
signal provides a convenient method to initiate backtracking. 
During expression evaluation, decisions are made until some sub-
expression fails. The system then returns to the most recent 



decision point and begins backtracking. In this way, any condi-
tional expression or programmer-defined procedure may initiate 
backtracking simply by failing. In addition to being a more 
flexible way to initiate backtracking, in some cases this pro-
vides a de-emphasis from backtracking itself that is more natural 
to use. Using a FAIL function requires a two-step approach to 
backtracking: first determine that backtracking is necessary, 
then initiate it. With failure signals, the decision and initia-
tion are combined into one step. 

The scope of backtracking determines how far failure propa-
gates. If a decision is made, what determines when that decision 
can no longer be reversed? In some languages, a decision may 
always be reversed. That is, after a decision is made, an arbi-
trary amount of execution may transpire before the decision is 
reversed. This has the unfortunate property that the flow of 
control from failure to decision point may be an unexpected jump. 
Languages supporting this unlimited scope of backtracking, for 
example, PLANNER, have been criticized for not providing the 
programmer the necessary facilities to prevent unwanted back-
tracking [13] . 

Another approach is to allow the decision to be reversed only 
if failure is detected in the same expression. That is, once the 
execution of an expression is completed, remaining alternatives 
within that expression are discarded. This restricted scope of 
backtracking is used in the language facilities described in this 
paper. 

During backtracking, the state of execution is, in some sense, 
reset to the last point at which a decision was made. It is then 
up to the program to make a different (hopefully better) deci-
sion. The degree to which the state of program execution has 
been restored varies among languages. Some systems restore all 
variables to the values they had at the time the decision was 
made. In some cases, a user-selected subset of those variables 
is restored, while still other systems provide no restoration of 
variables. 

For the types of problems intended for the programming lan-
guage being described here, full restoration of the state of 
execution is not necessary. This eliminates the overhead associ-
ated with both retaining old values and resetting them during 
backtracking. 

As the search progresses down a blind alley, valuable informa-
tion may be gained that can be used to modify subsequent deci-
sions. In programming languages that effect full restoration, 
these results are lost when the values of variables are reset. 



4. Language Facilities for Backtracking 

This section describes language facilities that are being 
incorporated into the Icon programming language. These facili-
ties are designed to support backtracking for string scanning and 
similar applications. 

4.1 Generators 

The principal method of providing alternatives, or choices, is 
through a generator. A generator is an expression that computes 
a value during forward computation, but when reentered during 
backtracking produces subsequent (or alternate) values. For 
example, one of the simplest generators is the "or" operator 
("I"); 

el I e2 

The expression e^ is evaluated first and if that evaluation suc-
ceeds, the result is the result of the expression e^ I e?. If e^ 
fails, e2 is evaluated and its result is the result of the entire 
expression. The utility of this expression as a generator occurs 
during backtracking. If the expression initially evaluated to 
e^, subsequent values are generated from remaining alternatives 
in e^. if no alternatives remain in e^, the expression e? is 
evaluated, and alternatives from it become the value of the en-
tire expression. The expression 

x I y 

evaluates to x during forward computation, but during backtrack-
ing evaluates to y. These generators may be nested, as in the 
following expression. 

("hello" I "hi") | "howdy" 

The string "hello" is the first value of the expression. During 
backtracking, the second alternative from elf "hi", is generated. 
Finally, a subsequent request for alternatives produces the 
string "howdy". 

Generators can appear anywhere a value is expected. During 
normal computation, generators are transparent to the remainder 
of the system. The values produced are used just like any other 
computed value, for example, as arguments to functions or opera-
tors. 

f(x|y) > 100 

greeting == "hello" I "hi" I "howdy" 

The latter expression compares the value of the identifier 
greeting to each of the given strings. 



4.2 Activating a Generator 

In order to use a generator, there must be some way of ex-
tracting values from it. This is termed activating a generator. 
A generator produces one value during forward computation. If 
another value is required during backtracking, the generator is 
activated, requesting a subsequent value. 

The built-in expression evaluation mechanism automatically 
activates any expression that fails, thus attempting to convert 
failure into success. If an expression fails during evaluation, 
it is examined for possible alternatives. If alternatives remain 
untried, evaluation is backtracked to the most recent decision 
point and restarted. This activating is continued until either 
the expression succeeds, or until it is exhausted, i.e., until no 
alternatives remain. 

For example, in the i_f statement 

if greeting == "hello" I "hi" I "howdy" 
then write("How are you?") 

the value of the identifier greeting is compare first to "hello". 
If that succeeds the message is written. If it fails, the built-
in mechanism intercepts the failure, and backtracks to the next 
iteration of the generator, producing the value "hi". If failure 
again occurs, greeting is compared to "howdy". If none succeed, 
the then part is not executed. 

Various combinations of conditional expressions and generators 
allow novel comparisons: 

ij! f(x|y) > 100 then g() 

i_f (w|x) = (ylz) then f(w,x) else f(y,z) 

i_f x < (ylz) < w then f(x,w) 

Another example of a generator is the _to expression. 

el to e2 

This generator produces a sequence of values from e^ to e2- For 
example, the expression 

1 to 100 

generates the integers from 1 through 100. The similarity be-
tween the Ĵo generator and the corresponding portion of the Algol 
for statement is not coincidental and will be described in the 
next section. 

The to expression takes an optional b_y_ clause: 

el ^0. e2 Ŷ. e3 

This allows an increment (or decrement) other than 1 to be used. 



4.3 Exhaustion 

A generator is exhausted when it has generated all of its 
values. One way to force the exhaustion of generators is with 
the every statement: 

every e 

This statement evaluates e, producing its first value. As long 
as there remain untried alternatives, i.e., generators that have 
not been exhausted, the every statement activates them to produce 
subsequent values. For example, if a is an array of 100 ele-
ments, the two statements below write the specified elements of 
the array. 

every write(a[l to 100]) 

every write(a[l to 10 I 91 to 100]) 

The statement 

every enter("begin" I "end" | "every") 

calls the enter function three times, once with each string as 
argument. 

The every statement has an optional do clause. 

every e± do e2 

After each generation in e^, the expression e? is evaluated. 
Using the to generator gives the for statement of Algol: 

every i := 1 to 100 do a[i] := b[i] 

The flexibility of the every statement is much greater than the 
Algol for statement. It does not simply iterate a control vari-
able over an arithmetic sequence. There is not the restrictive 
and clumsy from, to, by, while, and until parts. Instead, a 
larger variety of testing and generation may be done. 

The every statement is more concise in certain applications. 
The control variable in many cases is just an artifact and can be 
omitted. The statement 

every 1 _to 50 do f () 

invokes the procedure f fifty times. In other cases, only a few 
values need to be iterated over, and they need not be integers. 

every cond := "mildew" I "fungus" | "clean" do init(cond) 



4.4 Mutual Success 

The and operator 

e1 & e2 

is used to force two conditions (or expressions) to be mutually 
satisfied. It evaluates its left operand, if that succeeds it 
evaluates its right operand. If the right operand fails, and has 
no alternatives, the left operand is examined for alternatives, 
and if it has any, they are evaluated. 

As an example, the expression 

every i := 1 to 100 & p(i) do f(i) 

performs the function f on each of the integers from 1 to 100 
that satisfy the condition p(i). Of course, the & may be used in 
traditional testing situations where a simple boolean conjunction 
is required. 

if x = y & y < 5 then ... 

4.5 Scope of Generators 

The scope of a generator is defined to be the expression in 
which it appears. This provides a uniform and simple mechanism 
that eliminates the uncontrolled backtracking and concomitant 
processing that exist in some other languages. The programmer 
has more precise control over the backtracking. 

For example, in the i_f statement 

if e^ then e2 

if &i succeeds, e2 is evaluated. If e2 fails, any remaining 
alternatives in e± will not be tried. Compare this with the 
following "and" expression. 

el & *2 
If e^ succeeds, e2 is evaluated. Unlike the îf statement, how-
ever, failure of e2 results in examination of e^ for alterna-
tives. There may be considerable interaction between the two 
expressions, with control flow alternating between them. 

On the contrary, in the expression sequence 

el? e2 
failure in any portion of expression e2 does not result in back-
tracking to e^. 

There is a similar correspondence between the expression 

el I e2 



and the statement 

if e^ fails then e2-

In the former case, if e^ initially succeeds, e2 may be evaluated 
during backtracking. On the other hand, the i_f statement insures 
that if e^ succeeds, e2 will not be evaluated. 

4.6 Programmer-Defined Generators 

Programmer-defined generators are allowed, using the procedure 
mechanism and the suspend statement. The suspend statement 

suspend e 

suspends the execution of the current procedure and returns the 
value computed by e. The state of execution is preserved so that 
during backtracking, the procedure may pick up where it left off. 
Control returns to just after the suspend statement. 

For example, the following procedure generates a sequence of 
Fibonacci numbers less than n 

procedure fib(n) 
private ul, u2, fib 
suspend 1 
suspend 1 
ul := 1 
u2 := 1 
repeat { 

fib := ul + u2 
suspend fib 
ul := u2 
u2 := fib 
} while fib < n 

fail 
end 

The sequence is generated by the statement 

every write(fib(n)) 

4.7 Generators in String Scanning 

Built-in generators are provided for string scanning. Typi-
cally, a string scanning generator performs a simple lexical 
analysis of a string (or substring). During backtracking, the 
generator extends its domain, performing an expanded version of 
its initial analysis. 

For example, the upto generator is used to locate the first 
occurrence of a character in a string (analogous to BREAK in 
SN0B0L4). During backtracking, subsequent occurrences are 
located. 



upto(c,s,i, j) 

locates occurrences of characters in c in the subject string s 
between character positions i and j. Character positions in Icon 
are numbered starting with 1. In addition, non-positive values 
specify character positions from the right end of the string. 
Thus, a zero (or omitted) value refers to the right end of the 
string, -1 refers to the last character, etc. Thus, 

upto("aeiou","phlegmatic",1) 

looks for vowels in the entire string "phlegmatic". The first 
value generated is 4. If the generator is reactivated, the val-
ues 7 and 9 are generated. 

Other examples of generators for string scanning include 
find(t,s,i,j) and thru(c,s,i,j). find locates the first occur-
rence of a string t in the subject string s between character 
positions i and j. If alternate values are required, subsequent 
occurrences of t are located. thru finds the position of the 
first character in s (starting at position i) that is not in c. 
During backtracking, this value is decremented, reducing the 
substring spanned. For example, 

x := thru("aeiou",s,l) & find("eek",s,x) 

succeeds if s contains a string of vowels followed by an occur-
rence of the string "eek". 

5. Conclusions 

Backtracking is a useful technique for the solution of certain 
types of combinatorial problems. The particular method of back-
tracking provided by the language considerably affects the util-
ity of backtracking, and the problems for which it is suitable. 

Different types of generators are used to produce different 
sequences, /or types of sequences, of values during backtracking. 
In addition, generators may also be used in situations that do 
not conform to what is usually considered to be backtracking. 

The facilities described here have been designed for use in 
string scanning. In this application, the scope of backtracking 
is limited, and the nesting of generators is not very deep. This 
simplified approach appears to be the right mix of useful power 
and structured control. 



6. Acknowledgments 

I am indebted to Ralph E. Griswold and David R. Hanson for 
many of the ideas that appear in this paper. Their critical 
reading of drafts of this paper and helpful comments is also 
appreciated. 

References 

1. Griswold, Ralph E., David R. Hanson, and John T. Korb. The 
Icon Programming Language; a Preliminary Report. Technical Re-
port TR 78-3, Department of Computer Science, The University of 
Arizona, Tucson, Arizona. April 10, 1978. 

2. Griswold, Ralph E., James F. Poage, and Ivan P. Polonsky. 
The SNOBOL4 Programming Language, 2nd ed. Prentice-Hall, Engle-
wood Cliffs, New Jersey. 1971. 

3. Griswold, Ralph E., David R. Hanson, and John T. Korb. An 
Overview of the SL5 Programming Language. SL5 Project Document 
S5LDld, The University of Arizona, Tucson, Arizona. October 18, 
1977. 

4. Griswold, Ralph E. and David R. Hanson. "An Overview of 
SL5", SIGPLAN Notices, Vol. 12, No. 4 (April 1977), 40-50. 

5. Griswold, Ralph E. An Alternative to the Concept of 
"Pattern" in String Processing. Technical Report TR 78-4, De-
partment oF~"Computer Science, The University of Arizona, Tucson, 
Arizona. April 10, 1978. Submitted for publication in 
Communications of the ACM. 

6. Golomb, Solomon W. and Leonard D. Baumert. "Backtrack Pro-
gramming", Journal of the ACM, Vol. 12, No. 4. (October, 1965). 
pp. 516-524. 

7. Wirth, N. "Programming Development by Stepwise Refinement", 
Communications of the ACM, Vol. 4, No. 4 (1971). pp. 221-227. 

8. Knuth, Donald E. "Estimating the Efficiency of Backtrack 
Programs", Mathematics of Computation, Vdl. 24, No. 129 (January, 
1975). pp. 121-136. 

9. Griswold, Ralph E. and David R. Hanson, "Language Facilities 
for Programmable Backtracking", Proceedings of the Symposium on 
Artificial Intelligence and Programming Languages, SIGPLAN 
Notices,"Vol. 12, No. 8 TAugust, 1977). ppT 94-99. 

10 



10. Hewitt, C. "PLANNER: A Language for Manipulating Models 
and Proving Theorems in a Robot", Proceedings of the 
International Joint Conference on Artificial Intelligence, Vol. 2 
(1971). pp. 167-182. 

11. Smith, David C , and Horace J. Enea. "Backtracking in 
MLISP2", Proceedings of the Third International Joint Conference 
on Artificial Intelligence (August, 1973). pp. 677-681T 

12. Prenner, C. J., J. M. Spitzen, and B. Wegbreit. 
mentation of Backtracking for Programming Languages", 
Notices, Vol. 7, No. 11 (November, 1972). pp. 36-44. 

"An Imple-
SIGPLAN 

13. Sussman, G. J. and D. V. McDermott. "From PLANNER to 
CONNIVER — a Genetic Approach", Proceedings of AFIPS 1972 Fall 
Joint Computer Conference, Vol. 41, pp. 1171-TT7l5~ 

11 


