
An Alternative to the Concept of
*^Pattern'' in String Processing

Ralph E. Griswold

TR 78-4

April 10, 1978

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

An Alternative to the Concept of
"Pattern" in String Processing

My life is made of Patterns
That can scarcely be controlled

Paul Simon

1. Introduction

SN0B0L4 is certainly best known for its pattern-matching
facilities [1]. Among readily available high-level languages, it
is virtually unique in providing powerful facilities for string
analysis. Proposals have been made for extending the pattern-
matching facilities of SN0B0L4 to include synthesis as well as
analysis [2], and procedural mechanisms for implementing patterns
are a central issue in SL5 [3-6] and subsequent work [7]. A
number of other languages have incorporated patterns in a style
similar to SN0B0L4 or have proposed such facilities in language
variants [8-9]. AI languages in particular have increasingly
included patterns and pattern matching as central facilities
[10-11].

Considering the importance attributed to patterns, it is
worthwhile to make a critical evaluation of their characteris­
tics, their advantageous and disadvantageous attributes, and the
degree to which they are essential as a mechanism for embodying
search and backtrack facilities. This paper considers SNOBOL4 in
particular and suggests an alternative to patterns that provides
most of their advantages without the associated disadvantages.

2. Patterns in SNOBOL4

In SNOBOL4, patterns are data objects constructed during pro­
gram execution. There is a repertoire of pattern construction
functions and operators that provide for a variety of patterns
and relationships among them. During pattern matching, a focus
of attention (cursor position) is maintained in the string being
examined (the subject). As pattern components successfully
match, the cursor is advanced and subsequent pattern components
are applied. If a pattern component fails, alternative compo­
nents are applied. If no alternative succeeds, backtracking to
an earlier state is attempted to seek alternatives to a formerly
successful match. For descriptions of the matching process, see
References 1, 12, 13, and 14.

2.1 Advantages of the Pattern Approach

The richness of the SNOBOL4 pattern facility is illustrated by
the following list of pattern-constructing operations and the
corresponding processes that occur during pattern matching.

LEN(N)
POS(N)
RPOS(N)
RTAB(N)

match N characters
match if cursor is at position N
match if cursor is at position N from right end
move cursor to position N from right end

TAB(N) move cursor to position N

ANY(S) match any character in S
BREAK(S) match string up to any character in S
NOTANY(S) match any character not in S
SPAN(S) match string through characters in S

P $ V assign substring matched by P to V
P . V assign substring matched by p to V if entire

match succeeds
@V assign cursor value to V

* X evaluate X during pattern matching

PI I P2 apply Pi or apply P2
Pi P2 apply Pi then apply P2
ARBNO(P) apply pattern P an arbitrary number of times

In addition, there are seven built-in patterns and a number of
modes of matching under programmer control. In all, pattern
matching in SN0B0L4 provides a powerful facility for string
analysis.

Patterns also provide an abstraction mechanism. For example

PUNCT = ANY(",.;:!?")

allows PUNCT to be used as an abstraction for the punctuation
characters.

A large part of the usefulness of pattern matching lies in the
automatic bookkeeping that is provided. A focus of attention in
the subject is maintained as matching progresses without the need
for explicit specification by the user. While the value of this
automatic bookkeeping may appear to be minor, it has the practi­
cal effect of freeing the programmer from one of the most error-
prone aspects of programming, complex nested indexing. An impor­
tant consequence of automatic bookkeeping lies in the suppression
of notational detail. Since each pattern match applies only to a
single subject and the cursor changes automatically, neither of
these variables has to be specified in the pattern. Thus complex
operations can be expressed with considerable conciseness.

One of the special aspects of patterns lies in their ability
to characterize properties of strings in a manner similar to the
way that production grammars characterize context-free languages.
Patterns viewed in this way provide an easy method for emulating
static grammatical characterizations and, for example, construc­
ting recognizers without the need to know how the recognition
process is carried out. This is possible because the process of
pattern matching, i.e. the application of a pattern to a string,
embodies a powerful search and backtrack algorithm that the pro­
grammer need not thoroughly understand, much less implement. The
algorithm includes the maintenance of state information and the
reversal of effects during backtracking.

An advantage of treating patterns as data objects is that
complex patterns can be composed from simpler ones using con­
struction operators that parallel the grammatical concepts of
subsequent and alternate. Thus recognizers for complex grammars
can be built in a bottom-up fashion, starting with simple compo­
nents and fashioning more complex ones. The almost direct map­
ping between productions of a grammar and corresponding SN0B0L4
patterns is particularly appealing. A simple example is given by
the grammar

<var>::=xIy|z
<addop>::=+I -
<mulop>::=*1/
<term>: : = <var> I (<exp>) I <term><mulopXvar>
<exp>: :=<term> I <exp><addopXterm>

for which the corresponding SN0B0L4 patterns are

VAR = "x" I "y" | "z"
ADDOP = "+" | "-"
MULOP = "*" | "/"
TERM = VAR | "(" *EXP ") " | *TERM MULOP VAR
EXP = TERM | *EXP ADDOP TERM

Note the use of deferred evaluation to handle the forward
("recursive") references to TERM and EXP. Since a pattern is a
data object, the effect of a loop is obtained by deferring refer­
ence to these components until after the pattern is constructed.
The self-references are constructed as a result of evaluating
TERM and EXP during pattern matching.

In fact, a direct translation between production grammars and
patterns can be made by deferring evaluation of all patterns
[15]. Using this device for the example above, the patterns are:

VAR = "x" | "y" | "z"
ADDOP = "+" | "-"
MULOP = "*" | "/"
TERM = *VAR I "(" *EXP ") " I *TERM *MULOP *VAR
EXP = *TERM | *EXP *ADDOP *TERM

It is interesting to note that deferred evaluation saves space by
avoiding the copying of patterns during construction at the ex­
pense of the time required to reference them during pattern
matching.

Patterns can also be constructed in a top-down fashion, al­
though this technique is less frequently used. For the example
above, this amounts to reversing the order of construction and
the use of deferred evaluation for "forward references":

EXP = *TERM | *EXP *ADDOP *TERM
TERM = *VAR | "(" EXP ") " I *TERM *MULOP *VAR
MULOP = "*" | "/"
ADDOP = "+" | "-"
VAR = "x" | "y" | "z"

SN0B0L4 allows greater expressive power than most production
grammar systems, of course. Thus

VAR = ANY("xyz")
ADDOP = ANY("+-")
MULOP = ANY("*/")

are both more concise and more efficient than the alternation of
individual characters.

2.2 Disadvantages of the Pattern Approach

The problems with patterns are closely related to their vir­
tues. While the pattern-matching facility of SNOBOL4 has a rich­
ness of expressive power, it also has a corresponding verbosity.
The large vocabulary of pattern-construction operations, built-in
patterns, and matching modes presents the programmer with a for­
midable repertoire to master.

Similarly, while the implicit pattern-matching a
helpful in formulating complex string analysis, its
cacies may baffle the programmer trying to find the
bug. In circumstances where knowledge of the detai
matching is necessary, the programmer must master a
cipline. Some aspects of pattern matching are so o
even the designers and impiementors of the language
resort to listings of the system for answers (for e
pattern contains a component of the form P . *V, wh
uated and what happens if its evaluation results in

lgorithm is
hidden intri-
source of a
Is of pattern
n arcane dis-
bscure that
are forced to
xample, if a
en is *V eval-
failure?).

Less obvious to the programmer is the unnecessary processing
that may result because of the exhaustive search-and-backtrack
algorithm. While the programmer benefits from the built-in algo­
rithm, the lack of control over this algorithm may result in
hidden but substantial inefficiencies in processing. This issue
has, of course, been of considerable concern in AI languages
[16].

One of the most difficult concepts for the beginning SN0B0L4
programmer to grasp is that pattern construction and pattern
matching are separate and distinct processes. Furthermore, since
patterns can be constructed at their site of use, the existence
of the two processes is not always evident. For example, in

LOOP LIST BREAK(",") . K LEN(l) :F(DONE)

the two processes are not apparent, although both occur. How­
ever, in

ITEM = BREAK(",") . K LEN(l)

LOOP LIST ITEM :F(DONE)

the first statement clearly constructs a pattern, while the last
statement just as clearly applies this pattern. The sophisticat­
ed SN0B0L4 programmer knows that the second approach is more
efficient in most implementations of SN0B0L4, since the pattern
is constructed only once, while the first approach requires that
the pattern be constructed for each execution of the statement
labeled LOOP. It should be noted that pattern construction uses
two resources — time and space. In the first approach above,
time and space are used for each construction of the pattern.
After the execution of this statement, this pattern is no longer
accessible. Most SNOBOL4 systems eventually "garbage collect"
such transient objects to reclaim the space, but since this takes
time as well, creation of transient objects eventually imposes an
additional time penalty. (It should be noted that some imple­
mentations of SNOBOL4 treat constant in-line patterns separately,
placing them out of the line of actual program execution.)

From the point of view of program structure, an in-line pat­
tern provides evidence of its function at the site of use, where­
as an out-of-line pattern, being physically separated from its
site of use, must be located to determine its actual function.
Well-chosen mnemonics help, but can hardly substitute for the
pattern itself. This tends to defeat the use of patterns as an
abstraction mechanism. Furthermore, patterns, unlike functions,
cannot be given arguments. This frequently results in the use of
a number of similar, but distinct patterns. Again, unlike func­
tions, patterns have no local identifiers and hence must operate
by side effects on global variables, as illustrated in the
example above. If a pattern is not constructed at its site of
use, the difficulty with side effects is aggravated.

One of the most serious linguistic problems with pattern
matching in SNOBOL4 is the fact that the pattern-matching facili­
ty constitutes an essentially distinct sublanguage imbedded in
SN0B0L4. The kinds of operations that occur during pattern
matching are significantly different from those that occur out­
side pattern matching. While there are patterns such as ANY(S)
that have no counterpart outside of pattern matching, there are
similar, but significantly different, parallels inside and out­
side of pattern matching. Thus, while SN0B0L4 has a standard
assignment operation, pattern matching has three forms of assign­
ment (P $ V, P . V, and @V). Similarly expressions are executed
sequentially outside of pattern matching, while inside pattern
matching the sequence Pi P2 results in sequential application of
Pi and P2, but with search for alternatives and backtracking.

In a very real sense, SN0B0L4 is composed of two languages, a
basic language, L, and a pattern-matching language, P. This
linguistic dichotomy produces a total vocabulary that is large,
forces the programmer to think differently in the two languages,
to use different approaches and phraseology, to decide which
language to use to accomplish a particular task, and to change
frames of reference frequently. The effect is a "linguistic
schism".

The dichotomy is particularly troublesome because there is

little facility for communication between L and P. In L, pat­
terns for P are constructed. When a pattern match occurs in L,
control is transferred to P, where the matching procedures for
the pattern are then executed. Thus L has the operations neces­
sary for describing programs in P (but not for carrying out their
actions). Pattern construction Ts essentially the compilation of
such programs for P. In typical SN0B0L4 programs, programs for P
are continually compiled and executed. Note that the vocabulary
of L is increased by having to describe programs in P and that
compilation of programs for P during the execution of L is an
inherently expensive process.

Pattern matching is not extensible in the same fashion that
the rest of the language is. While SN0B0L4 has a facility for
programmer-defined functions and datatypes in L, there is no
facility for programmer-defined matching procedures, i.e. proce­
dures in P. While complex patterns can be composed from simpler
ones, there is no mechanism for introducing new methods of match­
ing.

In P, operations of L are inaccessible except through the
interface of unevaluated expressions. This interface is awkward
at best. Consider, for example, the problem of determining
whether the first comma in a string is at least K characters from
the beginning. Numerical computation is part of L, but not P.
On the other hand, L has no facilities for locating characters in
strings. There are several possible approaches to this problem
(the existence of such alternatives is, in itself, indicative of
a difficulty). If this problem is given to a typical SNOBOL4
programmer, the most likely type of solution is:

S BREAK(",") . T :F(NO)
GE(SIZE(T),K) :S(YES)F(NO)

Here, the solution is divided into two parts. One part is per­
formed in P to get the substring up to the first comma. The
second part is performed in L to test the length of this sub­
string.

The more sophisticated (or involutionally minded) SN0B0L4
programmer might produce the following solution:

S BREAK("f") $ T *GE(SIZE(T),K) :F(NO)S(YES)

Here the solution is accomplished in one statement (a doubtful
virtue) by having P interface L through an unevaluated expression
to perform the necessary numerical computation. A better solu­
tion along these lines is

S BREAK(",") @N *GE(N,K) :F(NO)S(YES)

The advantage of this solution is that the formation of the sub­
string T is avoided. However, all of these solutions have evi­
dent problems. Each of them requires assignment to a global
variable as a side effect in P in order to have the information
necessary to do a simple computation in L.

The real problem here is that there are frequently times when
both L and P are inadequate, individually. In such cases, the
typical result is obscure, refractory, and poorly structured.

2.3 Patterns in Perspective

To summarize the preceding sections, patterns have number of
valuable aspects:

1. Powerful facilities for string analysis.

2. An abstraction mechanism.

3. Automatic bookkeeping.

4. A built-in search and backtrack algorithm.

5. Natural characterization of languages.

On the other hand, patterns present many problems:

1. An excessively large vocabulary.

2. Complexity of the pattern-matching algorithm.

3. Unnecessary backtracking and lack of control over the
pattern-matching algorithm.

4. Confusion between pattern construction and pattern
matching.

5. Difficulties with program structuring.

6. Dichotomy of languages, with a further increase in
total vocabulary and a linguistic schism.

7. Inherent inefficiency of runtime construction of pat­
terns .

8. Lack of mechanism for defining matching procedures.

A number of attempts have been made to solve these problems by
extending P. Suggestions have been made for adding string syn­
thesis facTlities [2], for adding programmer-defined matching
procedures [17] , and for providing more control over the matching
algorithm [2]. These proposals provide much of the basis for SL5
[3-6]. Expanding the P component has hardly eliminated the need
for the L component. In fact, the L component of SL5 is larger.
It includes, among other things, functions for performing simple
string analysis in cases where complex search and backtracking
are not needed. The dichotomy in SL5 is increased, not reduced,
and the vocabulary is, of course, also increased. The linguistic
schism is just as deep in SL5 as it is in SN0B0L4.

The fundamental question is whether such a dichotomy is

necessary. It is the thesis of this paper that most of the vir­
tues of pattern matching in SN0B0L4 and related languages can be
retained in a language without such a dichotomy and, in fact,
without patterns.

3. A New Approach to String Processing

The new approach is to augment the more traditional L compo­
nent and eliminate P. The major additions to the L component
necessary to achieve the advantages of pattern matching without
actually having patterns are a facility for automatic bookkeeping
and search and backtrack mechanisms. The following sections
describe the major features of this approach.

3.1 A Brief Overview

The programming language that contains this new approach to
string processing is called Icon [18]. Icon resembles SL5 more
than SNOBOL4. It has a reserved word syntax with traditional
control structures as well as some novel ones. The evaluation of
an expression in Icon produces a result consisting of a value and
a signal as in SL5. The value portion of the result serves the
traditional computational role. Success and failure signals
drive control structures in a manner similar to SL5.

Icon lacks the P component of SL5, has a less general proce­
dure mechanism than SL5, but adds new control structures and
evaluation concepts that are described in subsequent sections.

An extensive description of Icon is beyond the scope of this
paper and is not necessary for understanding the basic thesis.
Examples taken from Icon should be clear by context, at least in
their general aspects, if not in all details.

3.2 Automatic Bookkeeping

In Icon automatic bookkeeping is accomplished in a manner that
appears to be similar to SN0B0L4 but simply bypasses the con­
struction of patterns. The expression

called "scanning", establishes a global subject, s, to which
string processing operations in e apply. The expression e, which
can include any operation, but typically includes string proces­
sing operations, is then evaluated. String processing operations
that apply to the subject are called "scanning operations". The
result returned by s ? e is the result returned by e.

A typical scanning operation is upto(c), which returns the
position in the subject of the first occurrence of a character in
c (note the similarity of this operation to the pattern BREAK(c)
in SN0B0L4). Thus

s ? (j := upto("aeiou"))

assigns to j the position of the first vowel in s (failing if
there is no vowel).

This simple example illustrates several important points. As
in SN0B0L4, the string operated on by upto(c) is implicit and
does not have to be specified as an argument. Unlike SN0B0L4,
upto(c) does not construct a pattern, but rather simply carries
out the analysis. In SN0B0L4, BREAK(c) constructs a pattern,
which, when applied, carries out the analysis. (Note that the
precise action is different; upto(c) returns a position, while
BREAK(c) returns the substring matched. This difference is ines­
sential.) Another important point is that the expression e in
s ? e can contain any Icon operation. In the example above, the
standard form of Icon assignment is used to assign the desired
position. In SN0B0L4 the equivalent statement would be

s BREAK("aeiou") @j

In Icon, the focus of attention in the subject is maintained
as an implicit cursor, similar to the method used in the P compo­
nent of SN0B0L4. When the subject is established, the cursor is
set to 1 (Icon strings are indexed beginning at 1, not 0 as in
SN0B0L4). Some Icon operations move the cursor. Examples are
tab(n), which sets the cursor to n, and move(n), which adds n to
the current value of the cursor. Again, there are analogies to
the SN0B0L4 operations TAB(n) and LEN(n), although tab(n) and
move(n) operate directly rather than constructing patterns. An
example of the use of such a scanning operation is

s ? write(" [" I I move(2) I I "]")

which is equivalent to the SN0B0L4 statements

s LEN(2) . TWO
OUTPUT = "[" TWO "] "

Note that the linguistic schism evidenced in the SNOBOL4 state­
ments does not exist in Icon. The advantage of the Icon approach
is particularly evident where more complicated control structures
are useful. An example is

while s := read() do
s ? repeat write("[" II move(2) II "]")

The subject and cursor are directly accessible in Icon as
keywords &subject and scursor. Assigning a value to Sesubject
establishes the subject for string scanning. &cursor is automat­
ically set to 1 when &subject is set. &cursor can be explicitly
set to any value in the range of &subject.

Since string processing expressions may be complicated and
extensive in scope, it is frequently useful to set Ssubject ex­
plicitly, rather than using scanning expressions. The preceding
example is written more concisely as

while Ssubject := read() do
repeat write("[" || move(2) I I "]")

The advantage of a scanning expression is that the current sub­
ject and cursor are saved before e is evaluated and restored
after e is evaluated. in fact, s ? e is essentially equivalent
to

push(&cursor)
push(&subject)
Ssubject := s
e
pop(ssubject)
pop(scursor)

where push(x) and pop(x) represent internal stack operations for
saving and restoring values. Thus nested string scanning is
easily obtained. For example

s ? el ? e2

applies e2 to the result returned by s ? el.

3.3 String Scanning Operations

There are eight string scanning operations in Icon. Two,
move(n) and tab(n), are positional. The remainder are "lexical"
in the sense that they analyze the character structure of the
subject.

In move(n), the value of n may be negative, specifying move­
ment of the cursor toward the left end of the subject. In all
cases, the value of move(n) is the substring between the previous
and new cursor positions (regardless of the direction of cursor
movement). The operation fails if the resulting cursor position
would not be in the range of the subject.

In tab(n), a nonpositive argument specifies a position rela­
tive to the right end of the subject. Thus, tab(O) positions the
cursor past the last character of the subject. As with move(n),
the value of the operation is the substring between the previous
and new cursor positions (regardless of the direction of move­
ment) . The operation fails if the resulting cursor position
would not be in the range of the subject.

The value of &cursor is always positive. A nonpositive value
can be assigned to &cursor to specify a position relative to the
right end of the string without having to compute the length of
the string. This device suppresses detail and avoids bothersome
computation. Thus, if the subject is "portability",

&cursor := 0

actually sets &cursor to 12, and subsequently

j := &cursor

10

sets j to 12, not 0.

The lexical scanning operations in Icon are more extensive
than those in the P component of SNOBOL4:

upto(c)
thru(c)
any(c)
bal(01,02/03)
find(s)
match(s)

The scanning operation upto(c) returns the position of the
first occurrence of a character of c in the subject, starting at
the current cursor position. Thus, if the subject is "portabili­
ty" and the cursor is 3, the value of upto("aeiou") is 5. The
operation fails if no such character exists. Note that upto(c)
does not change the cursor; the effect of BREAK(c) in SN0B0L4 is
obtained by tab(upto(c)).

The scanning operation thru(c) returns the position after a
continuous sequence of characters in c in the subject, starting
at the current cursor position. Thus, if the subject is "moon­
shine" and the cursor is 2, the value of thru("aeiou") is 4. The
operation fails if the character of the subject at the current
cursor position is not contained in c.

The scanning operation any(c) succeeds if the character at the
current cursor position in the subject is contained in c and
fails otherwise. The value returned is one greater than the
current cursor position. Character sets in Icon may be comple­
mented with respect to the alphabet of all characters. Thus
any(~c) succeeds if the character at the current cursor position
is not included in c.

The scanning operation bal(cl,c2,c3) is a generalization of
the matching procedure for the SN0B0L4 pattern BAL. In SN0B0L4,
BAL only matches strings balanced with respect to parentheses.
In Icon, cl and c2 are sets of characters that specify the left
and right balancing characters. Furthermore, c3 specifies a set
of characters that may follow the balanced string. For example,
if the subject is "(a)*[b]-7" and the cursor is 1, the value of
bal("[(",")]","+-") is 8. The operation fails if there is not
such a balanced string starting at the current cursor position.
For convenience, defaults are used if the arguments are null:

cl "("
c2 ") "
c3 any character

If c3 is null, the balanced string may extend through the end of
the subject. Thus bal() is equivalent to the matching procedure
for BAL.

The scanning operation find(s) returns the position of the

11

first occurrence of the string s in the subject, starting at the
current cursor position. Thus, if the subject is "mississippi"
and the cursor is 1, the value of find("is") is 2. The operation
fails if no such string exists.

The scanning operation match(s) returns the cursor position
after the occurrence of s as a substring of the subject starting
at the current cursor position. Thus, if the subject is "missis­
sippi" and the cursor is 2, the value of match("is") is 4. The
operation fails if s is not a substring of the subject at the
current cursor position. Thus, for the subject above, if the
cursor were 1, match("is") would fail.

For convenience, =s is equivalent to tab(match(s)). Note that
=s corresponds to the pattern component s in SNOBOL4.

3.4 Searching and Backtracking

One of the essential components of high-level string proces­
sing is the ability to express alternatives concisely and to have
the search for such alternatives carried out automatically.

In Icon, the operation el I e2 is equivalent to the the opera­
tion performed in SN0B0L4 when the pattern Pi | P2 is evaluated
in P.

This operation is actually fairly complex and deserves discus­
sion. The most obvious aspect of alternation is that el is eval­
uated first and if that evaluation succeeds, the result is the
result of the entire expression. However, if evaluation of el
fails, e2 is evaluated and its result is the result of the entire
expression. The subtlety arises if the value produced by suc­
cessful evaluation of the alternation is not acceptable in the
context in which it occurs. Consider, for example,

tab(10 I 5)

(Note that this construction, while clear in its intent, has no
direct counterpart in SN0B0L4). The expression 10 I 5 has two
literal subexpressions, and of course the first, 10, succeeds.
However if the subject is, say, six characters long, tab(10)
fails. This results in a "re-evaluation" of the expression
10 I 5 and the alternative value, 5, is returned the second time.
Thus, tab(10 I 5) is equivalent to tab(10) I tab(5) as would be
expected.

In Icon, operations that have the capacity for producing al­
ternative values as required by the context in which they appear
are called generators. This capacity for generating alternate
values is meaningful for many operations in Icon.

The scanning operation upto(c) is, in fact, a generator. For
upto(c), the behaviour is like that for the matching procedure
for BREAKX(c) in the SPITBOL dialect of SNOBOL4 [19]. If the
value returned by upto(c) does not satisfy the context in which

12

it is used, the next position further on is returned, and so on.
Note that upto(c) is a generator with an indefinite number of
alternatives that depend on c and the current subject.

The possible need for the second alternative in tab(10 | 5) i;
clear, but the need for alternatives in upto(c) is not so obviou;
(Note that tab(upto(c)) necessarily succeeds for any value of
upto(c) and move(upto(c)) is somewhat fanciful). There are,
however, other control structures that may require alternatives.
One of these is el & e2, which succeeds only if both el and e2
succeed. In requiring this "mutual" success, there is automatic
backtracking for alternatives of el if e2 fails. This corre-

tab(upto("i")) & ="issip"

upto("i") first returns the value 2 and tab(upto("i")) moves the
cursor to this position. However, ="issip" fails, and the first
expression is re-evalauted for an alternative. This time the
value of upto("i") is 5, tab(upto("i")) move the cursor corre­
spondingly, and ="issip" succeeds.

Note that tab(upto(c)) is equivalent to matching for the SPIT-
BOL pattern BREAKX(c), so the expression above is equivalent to
matching for the SPITBOL pattern

BREAKX("i") "issip"

The Icon expression is slightly more verbose than the SPITBOL
pattern, but in turn, Icon expressions offer more flexibility
(there is no easy SPITBOL equivalent to j := upto(c)). This
trade-off is typical and works to the advantage of Icon in com­
plex string processing, while the conciseness of SN0B0L4 is an
advantage in simple situations.

The other string scanning operations that are generators are
thru(c), bal(cl,c2,c3), and find(s). For bal(cl,c2,c3), the
alternatives are as in SN0B0L4 BAL — successively longer bal­
anced strings. For find, the alternatives are positions of s
successively further on in the subject. For thru(c), the con­
verse is the case -- for each alternative, a value one less than
the previous is returned, until the shortest possible continuous
(nonnull) sequence of characters in c is located. For example,
if the subject is "moonshine" and the cursor is 2, the expression

s := tab(thru("aeiou")) & ="on"

succeeds and assigns "o" to s, although "oo" is assigned for the
initial evaluation of the expression.

The full range of search and backtracking in SNOBOL4 pattern
matching is available in the Icon expressions el I e2 and el &
e2. It is important to note that el & e2 does not have to be
used unless it is needed (while in SNOBOL4 backtracking in a
sequence of pattern components cannot be avoided). For example,

13

x := tab(upto(cl)) & y := tab(upto(c2))

succeeds only if the subject contains a character of c2 in a
position at or beyond a character of cl, while in the sequence of
expressions

x := tab(upto(cl)); y := tab(upto(c2))

this constraint does not apply. A value may be assigned to y
even if the subject does not contain a character in cl.

When an instance of move(n), tab(n), or =s is backtracked over
(that is when it fails for lack of alternatives), the effects of
implicit cursor movement are reversed and the cursor is restored
to its position prior to the evaluation of the operation. For
example, if the subject is "portability" and the cursor is 1,
evaluation of

tab(10) & ="a"

first sets the cursor to 10 but then restores it to 1 when ="a"
fails.

Other effects are not reversed. In the example above, if the
expression were

Scursor := 10 & ="a"

the value of the cursor would not be restored, since it was set
by assignment, not by a scanning operation.

3.5 Procedures

One of the most severe limitations of pattern matching in
SNOBOL4 is the inability to add new matching procedures. Since
SNOBOL4 has no such facility, programmers do not miss it per se
(it is essentially "inconceivable", since, as a language, SNOBOL4
has no construct for expressing such a possibility).

In Icon, procedures allow the construction of programmer-
defined generators and hence programmer-defined scanning proce­
dures.

Icon procedures resemble those of SL5 [6]/ although the SL5
decomposition of procedure activation (and hence coroutine usage)
is not available in Icon.

A typical Icon procedure is

procedure max(n,m)
if m > n then return m else return n

end

Since scanning operations are on a par with all other Icon

14

operations, procedures may be used for scanning in the same way
that they are used as abstractions for other purposes. An
example is a procedure that behaves like match (sj, but is "unan-
chored" like find(s):

procedure fmatch(s) private j
if j := find(s) then return j + length(s) else fail

end

Defined generators are obtained by using suspend, which re­
turns a value like return, but leaves the procedure in a state
that it can be resumed for the generation of additional values.

For example, the procedure fmatch(s) defined above is not a
generator like find(s). This defect can be remedied by using
suspend;

procedure fmatch(s) private j
every j := find(s) do suspend j + length(s)
fall

end

A more esoteric application is in the use of defined genera­
tors to characterize languages in a fashion similar to SN0B0L4
patterns. Consider the simple grammar

<s>::=a<s>aIb

An Icon procedure to "match" sentences from the language gener­
ated by this grammar is

procedure s
every ="a" & s() & ="a" I ="b" do suspend
fail

end

This procedure is suspended for every alternative of the
expression describing the language. Thus

"aabaa" ? s()

calls s. The first alternative matches "a" and calls s again
(recursively), resulting in the match of the second "a" and an­
other call to s. This time, the first alternative fails and the
"b" is matched. Upon successive returns, a trailing "a" is
matched each time and the entire expression succeeds. On the
other hand, for a subject that is not a sentence in the language,
alternatives are eventually exhausted, and the scanning operation
fails.

The method used above generalizes for more complex grammars,
with a procedure for each nonterminal symbol. The correspondence
between production grammars and defined scanning procedures is
just as direct as the correspondence between production grammars
and SN0B0L4 patterns, if a bit more involved.

15

A. Conclusion

Not surprisingly, scanning in Icon presents some problems.
One problem is the choice of primitive scanning operations. For
example, it might be desirable to have a scanning operation that
sets the cursor like tab(n) but does not return the substring
between the previous and new cursor positions. The advantage of
such an operation would be efficiency, since the computation of
the substring would be avoided. A similar situation exists for
move(n). If these new operations are added, however, the vocabu­
lary of the language is increased, with all the attendant prob­
lems. An alternative is to replace tab(n) and move(n) by these
new operations and add an additional operation to obtain sub­
strings. At the other extreme, tab(upto(s)) is used so frequent­
ly that a single operation that combines these two would be use­
ful.

The bases for such decisions are the usual ones in language
design. The problem is aggravated by the relative unfamiliarity
of scanning. The historical influence of SN0B0L4 tends to inhib­
it new views. More experience with scanning should provide in­
sight.

The scope of ssubject presents a rather serious problem. In
Icon, scanning operations on the same subject tend to be more
extensive than in SN0B0L4. This is the reason that setting
Ssubject directly is frequently more useful than the implicit
setting of the subject in s ? e. However, it then becomes more
likely that the subject or cursor may be changed inadvertently.
For example, if a defined procedure is called, it may expect to
operate on the subject (as the procedure fmatch(s) given above)
or it may establish its own subject. If it does the latter with­
out saving and restoring the prior subject and cursor, the re­
sults may be catastrophic.

The generally recognized hazards of global variables are mag­
nified here because of the frequency with which the two globals,
&subject and scursor, are used. This appears to be a dilemma,
since much of the virtue of string scanning is derived from the
globality of these variables.

The usefulness of string scanning in Icon leads to a number of
possibilities and open questions. Once scanning on a single
subject is available, situations immediately arise where the
simultaneous scanning of two or more subjects would be useful.
Again, this is a dilemma, since it is the single focus of atten­
tion that leads to the simplifications that make string scanning
attractive. Any departure from this single focus of attention
introduces complexity and detail that string scanning presently
avoids.

Looking in another direction, there is no inherent reason why
scanning should be limited to strings. Scanning of data struc­
tures, given appropriate primitives, follows by analogy. Such
possibilities are particularly seductive.

16

Acknowledgement

I am indebted to Dave Hanson and Tim Korb for a number of
suggestions and ideas that are incorporated in this work. I also
owe them, as well as my wife Madge, thanks for critical readings
of drafts of this report.

References

1. Griswold, Ralph E., James F. Poage, and Ivan P. Polonsky.
The SN0B0L4 Programming Language, 2nd ed. Prentice-Hall, Engle-
wood Cliffs, New Jersey. 1971.

2. Doyle, John N. A Generalized Facility for the Analysis and
Synthesis of Strings and a Procedure-Based' Model of an
Implementation. Masters Thesis, Department of Computer Science,
The University of Arizona, Tucson, Arizona. 1975.

3. Griswold, Ralph E. and David R. Hanson. "An Overview of
SL5", SIGPLAN Notices, Vol. 12, No. 4 (April 1977), 40-50.

4. Griswold, Ralph E. String Scanning in SL5. SL5 Project
Document S5LD5a, The University of Arizona, Tucson, Arizona.
June 17, 1976.

5. Griswold, Ralph E. "String Analysis and Synthesis in SL5",
Proceedings of the ACM Annual Conference, October, 1976, pp.
410-414.

6. Hanson, David R. and Ralph E. Griswold, "The SL5 Procedure
Mechanism", Communications of the ACM, to appear, May 1978.

7. Garnaat, M. J., et al. The Design and Implementation of New
String Transformation Facilities for SL5. Technical Report TR
78-1, Department of Computer Science, The University of Arizona,
Tucson, Arizona. January 13, 1978.

8. A. L. Furtado and A. S. Pfeffer. "Pattern Matching for
Structured Programming", Proceedings of the Seventh Asilomar
Conference on Circuits, Systems, and Computers. Pacific Grove,
California. 1973.

9. L. G. Tesler, H. J. Enea, and D. C. Smith. "The LISP70 Pat­
tern Matching System", Proceedings of the Third International
Joint Conference on Artificial Intelligence, pp. 671-676. Stan-
ford, California. 19 73.

17

10. L. F. Melli. The 2.Pak Language Primitives for AI
Applications. Masters Thesis, Department of Computer Science,
University of Toronto. December, 1974.

11. "Proceedings of the Workshop on Pattern-Directed Inference
Systems", SIGART Newsletter, No. 63 (June, .1977), pp. 1-84.

12. Griswold, Ralph E. The Macro Implementation of SNOBOL4, A
Case Study in Machine-Independent Software Development. W. H.
Freeman, San Francisco. T9 7 2" "~

13. Gimpel, James F. "A Theory of Discrete Patterns and Their
Implementation in SNOBOL4", Communications of the ACM, Vol. 16,
No. 2 (February, 1973), pp. 91-100.

14. Gimpel, James F. "Nonlinear Pattern Theory", Acta
Informatica, Vol. 4 (1975), pp. 91-100.

15. Griswold, Ralph E. String and List Processing in SNOBOL4,
Techniques and Applications. Prentice-Hall, Inc. Englewood
Cliffs, N.J. 1975. ppTTS", 233-234.

16. Sussman, G. J. and D. V. McDermott. "From PLANNER to
CONNIVER — a Genetic Approach", Proceedings of AFIPS 1972 Fall
Joint Computer Conference, Vol. 41, pp. 1171-1179.

17. Griswold, Ralph E. "Extensible Pattern Matching in SNO-
BOL4", Proceedings of the ACM Annual Conference, October, 1975,
pp. 248-252.

18. Griswold, Ralph E., David R. Hanson, and John T. Korb. The
Icon Programming Language; a Preliminary Report. Technical
Report TR 78-3, Department of Computer Science, The University of
Arizona, Tucson, Arizona. April, 1978.

19. Dewar, Robert B. K. SPITBOL Version 2.0. SNOBOL4 Project
Document S4D23. Illinois Institute of Technology, Chicago, Illi­
nois. February 12, 1967.

18

