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An Alternative to the Concept of 
"Pattern" in String Processing 

My life is made of Patterns 
That can scarcely be controlled 

Paul Simon 

1. Introduction 

SN0B0L4 is certainly best known for its pattern-matching 
facilities [1]. Among readily available high-level languages, it 
is virtually unique in providing powerful facilities for string 
analysis. Proposals have been made for extending the pattern-
matching facilities of SN0B0L4 to include synthesis as well as 
analysis [2], and procedural mechanisms for implementing patterns 
are a central issue in SL5 [3-6] and subsequent work [7]. A 
number of other languages have incorporated patterns in a style 
similar to SN0B0L4 or have proposed such facilities in language 
variants [8-9]. AI languages in particular have increasingly 
included patterns and pattern matching as central facilities 
[10-11]. 

Considering the importance attributed to patterns, it is 
worthwhile to make a critical evaluation of their characteris­
tics, their advantageous and disadvantageous attributes, and the 
degree to which they are essential as a mechanism for embodying 
search and backtrack facilities. This paper considers SNOBOL4 in 
particular and suggests an alternative to patterns that provides 
most of their advantages without the associated disadvantages. 

2. Patterns in SNOBOL4 

In SNOBOL4, patterns are data objects constructed during pro­
gram execution. There is a repertoire of pattern construction 
functions and operators that provide for a variety of patterns 
and relationships among them. During pattern matching, a focus 
of attention (cursor position) is maintained in the string being 
examined (the subject). As pattern components successfully 
match, the cursor is advanced and subsequent pattern components 
are applied. If a pattern component fails, alternative compo­
nents are applied. If no alternative succeeds, backtracking to 
an earlier state is attempted to seek alternatives to a formerly 
successful match. For descriptions of the matching process, see 
References 1, 12, 13, and 14. 

2.1 Advantages of the Pattern Approach 

The richness of the SNOBOL4 pattern facility is illustrated by 
the following list of pattern-constructing operations and the 
corresponding processes that occur during pattern matching. 

LEN(N) 
POS(N) 
RPOS(N) 
RTAB(N) 

match N characters 
match if cursor is at position N 
match if cursor is at position N from right end 
move cursor to position N from right end 



TAB(N) move cursor to position N 

ANY(S) match any character in S 
BREAK(S) match string up to any character in S 
NOTANY(S) match any character not in S 
SPAN(S) match string through characters in S 

P $ V assign substring matched by P to V 
P . V assign substring matched by p to V if entire 

match succeeds 
@V assign cursor value to V 

* X evaluate X during pattern matching 

PI I P2 apply Pi or apply P2 
Pi P2 apply Pi then apply P2 
ARBNO(P) apply pattern P an arbitrary number of times 

In addition, there are seven built-in patterns and a number of 
modes of matching under programmer control. In all, pattern 
matching in SN0B0L4 provides a powerful facility for string 
analysis. 

Patterns also provide an abstraction mechanism. For example 

PUNCT = ANY(",.;:!?") 

allows PUNCT to be used as an abstraction for the punctuation 
characters. 

A large part of the usefulness of pattern matching lies in the 
automatic bookkeeping that is provided. A focus of attention in 
the subject is maintained as matching progresses without the need 
for explicit specification by the user. While the value of this 
automatic bookkeeping may appear to be minor, it has the practi­
cal effect of freeing the programmer from one of the most error-
prone aspects of programming, complex nested indexing. An impor­
tant consequence of automatic bookkeeping lies in the suppression 
of notational detail. Since each pattern match applies only to a 
single subject and the cursor changes automatically, neither of 
these variables has to be specified in the pattern. Thus complex 
operations can be expressed with considerable conciseness. 

One of the special aspects of patterns lies in their ability 
to characterize properties of strings in a manner similar to the 
way that production grammars characterize context-free languages. 
Patterns viewed in this way provide an easy method for emulating 
static grammatical characterizations and, for example, construc­
ting recognizers without the need to know how the recognition 
process is carried out. This is possible because the process of 
pattern matching, i.e. the application of a pattern to a string, 
embodies a powerful search and backtrack algorithm that the pro­
grammer need not thoroughly understand, much less implement. The 
algorithm includes the maintenance of state information and the 
reversal of effects during backtracking. 



An advantage of treating patterns as data objects is that 
complex patterns can be composed from simpler ones using con­
struction operators that parallel the grammatical concepts of 
subsequent and alternate. Thus recognizers for complex grammars 
can be built in a bottom-up fashion, starting with simple compo­
nents and fashioning more complex ones. The almost direct map­
ping between productions of a grammar and corresponding SN0B0L4 
patterns is particularly appealing. A simple example is given by 
the grammar 

<var>::=xIy|z 
<addop>::=+I -
<mulop>::=*1/ 
<term>: : = <var> I (<exp>) I <term><mulopXvar> 
<exp>: :=<term> I <exp><addopXterm> 

for which the corresponding SN0B0L4 patterns are 

VAR = "x" I "y" | "z" 
ADDOP = "+" | "-" 
MULOP = "*" | "/" 
TERM = VAR | "(" *EXP " ) " | *TERM MULOP VAR 
EXP = TERM | *EXP ADDOP TERM 

Note the use of deferred evaluation to handle the forward 
("recursive") references to TERM and EXP. Since a pattern is a 
data object, the effect of a loop is obtained by deferring refer­
ence to these components until after the pattern is constructed. 
The self-references are constructed as a result of evaluating 
TERM and EXP during pattern matching. 

In fact, a direct translation between production grammars and 
patterns can be made by deferring evaluation of all patterns 
[15]. Using this device for the example above, the patterns are: 

VAR = "x" | "y" | "z" 
ADDOP = "+" | "-" 
MULOP = "*" | "/" 
TERM = *VAR I "(" *EXP " ) " I *TERM *MULOP *VAR 
EXP = *TERM | *EXP *ADDOP *TERM 

It is interesting to note that deferred evaluation saves space by 
avoiding the copying of patterns during construction at the ex­
pense of the time required to reference them during pattern 
matching. 

Patterns can also be constructed in a top-down fashion, al­
though this technique is less frequently used. For the example 
above, this amounts to reversing the order of construction and 
the use of deferred evaluation for "forward references": 

EXP = *TERM | *EXP *ADDOP *TERM 
TERM = *VAR | "(" EXP " ) " I *TERM *MULOP *VAR 
MULOP = "*" | "/" 
ADDOP = "+" | "-" 
VAR = "x" | "y" | "z" 



SN0B0L4 allows greater expressive power than most production 
grammar systems, of course. Thus 

VAR = ANY("xyz") 
ADDOP = ANY("+-") 
MULOP = ANY("*/") 

are both more concise and more efficient than the alternation of 
individual characters. 

2.2 Disadvantages of the Pattern Approach 

The problems with patterns are closely related to their vir­
tues. While the pattern-matching facility of SNOBOL4 has a rich­
ness of expressive power, it also has a corresponding verbosity. 
The large vocabulary of pattern-construction operations, built-in 
patterns, and matching modes presents the programmer with a for­
midable repertoire to master. 

Similarly, while the implicit pattern-matching a 
helpful in formulating complex string analysis, its 
cacies may baffle the programmer trying to find the 
bug. In circumstances where knowledge of the detai 
matching is necessary, the programmer must master a 
cipline. Some aspects of pattern matching are so o 
even the designers and impiementors of the language 
resort to listings of the system for answers (for e 
pattern contains a component of the form P . *V, wh 
uated and what happens if its evaluation results in 

lgorithm is 
hidden intri-
source of a 
Is of pattern 
n arcane dis-
bscure that 
are forced to 
xample, if a 
en is *V eval-
failure?). 

Less obvious to the programmer is the unnecessary processing 
that may result because of the exhaustive search-and-backtrack 
algorithm. While the programmer benefits from the built-in algo­
rithm, the lack of control over this algorithm may result in 
hidden but substantial inefficiencies in processing. This issue 
has, of course, been of considerable concern in AI languages 
[16]. 

One of the most difficult concepts for the beginning SN0B0L4 
programmer to grasp is that pattern construction and pattern 
matching are separate and distinct processes. Furthermore, since 
patterns can be constructed at their site of use, the existence 
of the two processes is not always evident. For example, in 

LOOP LIST BREAK(",") . K LEN(l) :F(DONE) 

the two processes are not apparent, although both occur. How­
ever, in 

ITEM = BREAK(",") . K LEN(l) 

LOOP LIST ITEM :F(DONE) 



the first statement clearly constructs a pattern, while the last 
statement just as clearly applies this pattern. The sophisticat­
ed SN0B0L4 programmer knows that the second approach is more 
efficient in most implementations of SN0B0L4, since the pattern 
is constructed only once, while the first approach requires that 
the pattern be constructed for each execution of the statement 
labeled LOOP. It should be noted that pattern construction uses 
two resources — time and space. In the first approach above, 
time and space are used for each construction of the pattern. 
After the execution of this statement, this pattern is no longer 
accessible. Most SNOBOL4 systems eventually "garbage collect" 
such transient objects to reclaim the space, but since this takes 
time as well, creation of transient objects eventually imposes an 
additional time penalty. (It should be noted that some imple­
mentations of SNOBOL4 treat constant in-line patterns separately, 
placing them out of the line of actual program execution.) 

From the point of view of program structure, an in-line pat­
tern provides evidence of its function at the site of use, where­
as an out-of-line pattern, being physically separated from its 
site of use, must be located to determine its actual function. 
Well-chosen mnemonics help, but can hardly substitute for the 
pattern itself. This tends to defeat the use of patterns as an 
abstraction mechanism. Furthermore, patterns, unlike functions, 
cannot be given arguments. This frequently results in the use of 
a number of similar, but distinct patterns. Again, unlike func­
tions, patterns have no local identifiers and hence must operate 
by side effects on global variables, as illustrated in the 
example above. If a pattern is not constructed at its site of 
use, the difficulty with side effects is aggravated. 

One of the most serious linguistic problems with pattern 
matching in SNOBOL4 is the fact that the pattern-matching facili­
ty constitutes an essentially distinct sublanguage imbedded in 
SN0B0L4. The kinds of operations that occur during pattern 
matching are significantly different from those that occur out­
side pattern matching. While there are patterns such as ANY(S) 
that have no counterpart outside of pattern matching, there are 
similar, but significantly different, parallels inside and out­
side of pattern matching. Thus, while SN0B0L4 has a standard 
assignment operation, pattern matching has three forms of assign­
ment (P $ V, P . V, and @V). Similarly expressions are executed 
sequentially outside of pattern matching, while inside pattern 
matching the sequence Pi P2 results in sequential application of 
Pi and P2, but with search for alternatives and backtracking. 

In a very real sense, SN0B0L4 is composed of two languages, a 
basic language, L, and a pattern-matching language, P. This 
linguistic dichotomy produces a total vocabulary that is large, 
forces the programmer to think differently in the two languages, 
to use different approaches and phraseology, to decide which 
language to use to accomplish a particular task, and to change 
frames of reference frequently. The effect is a "linguistic 
schism". 

The dichotomy is particularly troublesome because there is 



little facility for communication between L and P. In L, pat­
terns for P are constructed. When a pattern match occurs in L, 
control is transferred to P, where the matching procedures for 
the pattern are then executed. Thus L has the operations neces­
sary for describing programs in P (but not for carrying out their 
actions). Pattern construction Ts essentially the compilation of 
such programs for P. In typical SN0B0L4 programs, programs for P 
are continually compiled and executed. Note that the vocabulary 
of L is increased by having to describe programs in P and that 
compilation of programs for P during the execution of L is an 
inherently expensive process. 

Pattern matching is not extensible in the same fashion that 
the rest of the language is. While SN0B0L4 has a facility for 
programmer-defined functions and datatypes in L, there is no 
facility for programmer-defined matching procedures, i.e. proce­
dures in P. While complex patterns can be composed from simpler 
ones, there is no mechanism for introducing new methods of match­
ing. 

In P, operations of L are inaccessible except through the 
interface of unevaluated expressions. This interface is awkward 
at best. Consider, for example, the problem of determining 
whether the first comma in a string is at least K characters from 
the beginning. Numerical computation is part of L, but not P. 
On the other hand, L has no facilities for locating characters in 
strings. There are several possible approaches to this problem 
(the existence of such alternatives is, in itself, indicative of 
a difficulty). If this problem is given to a typical SNOBOL4 
programmer, the most likely type of solution is: 

S BREAK(",") . T :F(NO) 
GE(SIZE(T),K) :S(YES)F(NO) 

Here, the solution is divided into two parts. One part is per­
formed in P to get the substring up to the first comma. The 
second part is performed in L to test the length of this sub­
string. 

The more sophisticated (or involutionally minded) SN0B0L4 
programmer might produce the following solution: 

S BREAK("f") $ T *GE(SIZE(T),K) :F(NO)S(YES) 

Here the solution is accomplished in one statement (a doubtful 
virtue) by having P interface L through an unevaluated expression 
to perform the necessary numerical computation. A better solu­
tion along these lines is 

S BREAK(",") @N *GE(N,K) :F(NO)S(YES) 

The advantage of this solution is that the formation of the sub­
string T is avoided. However, all of these solutions have evi­
dent problems. Each of them requires assignment to a global 
variable as a side effect in P in order to have the information 
necessary to do a simple computation in L. 



The real problem here is that there are frequently times when 
both L and P are inadequate, individually. In such cases, the 
typical result is obscure, refractory, and poorly structured. 

2.3 Patterns in Perspective 

To summarize the preceding sections, patterns have number of 
valuable aspects: 

1. Powerful facilities for string analysis. 

2. An abstraction mechanism. 

3. Automatic bookkeeping. 

4. A built-in search and backtrack algorithm. 

5. Natural characterization of languages. 

On the other hand, patterns present many problems: 

1. An excessively large vocabulary. 

2. Complexity of the pattern-matching algorithm. 

3. Unnecessary backtracking and lack of control over the 
pattern-matching algorithm. 

4. Confusion between pattern construction and pattern 
matching. 

5. Difficulties with program structuring. 

6. Dichotomy of languages, with a further increase in 
total vocabulary and a linguistic schism. 

7. Inherent inefficiency of runtime construction of pat­
terns . 

8. Lack of mechanism for defining matching procedures. 

A number of attempts have been made to solve these problems by 
extending P. Suggestions have been made for adding string syn­
thesis facTlities [2], for adding programmer-defined matching 
procedures [17] , and for providing more control over the matching 
algorithm [2]. These proposals provide much of the basis for SL5 
[3-6]. Expanding the P component has hardly eliminated the need 
for the L component. In fact, the L component of SL5 is larger. 
It includes, among other things, functions for performing simple 
string analysis in cases where complex search and backtracking 
are not needed. The dichotomy in SL5 is increased, not reduced, 
and the vocabulary is, of course, also increased. The linguistic 
schism is just as deep in SL5 as it is in SN0B0L4. 

The fundamental question is whether such a dichotomy is 



necessary. It is the thesis of this paper that most of the vir­
tues of pattern matching in SN0B0L4 and related languages can be 
retained in a language without such a dichotomy and, in fact, 
without patterns. 

3. A New Approach to String Processing 

The new approach is to augment the more traditional L compo­
nent and eliminate P. The major additions to the L component 
necessary to achieve the advantages of pattern matching without 
actually having patterns are a facility for automatic bookkeeping 
and search and backtrack mechanisms. The following sections 
describe the major features of this approach. 

3.1 A Brief Overview 

The programming language that contains this new approach to 
string processing is called Icon [18]. Icon resembles SL5 more 
than SNOBOL4. It has a reserved word syntax with traditional 
control structures as well as some novel ones. The evaluation of 
an expression in Icon produces a result consisting of a value and 
a signal as in SL5. The value portion of the result serves the 
traditional computational role. Success and failure signals 
drive control structures in a manner similar to SL5. 

Icon lacks the P component of SL5, has a less general proce­
dure mechanism than SL5, but adds new control structures and 
evaluation concepts that are described in subsequent sections. 

An extensive description of Icon is beyond the scope of this 
paper and is not necessary for understanding the basic thesis. 
Examples taken from Icon should be clear by context, at least in 
their general aspects, if not in all details. 

3.2 Automatic Bookkeeping 

In Icon automatic bookkeeping is accomplished in a manner that 
appears to be similar to SN0B0L4 but simply bypasses the con­
struction of patterns. The expression 

called "scanning", establishes a global subject, s, to which 
string processing operations in e apply. The expression e, which 
can include any operation, but typically includes string proces­
sing operations, is then evaluated. String processing operations 
that apply to the subject are called "scanning operations". The 
result returned by s ? e is the result returned by e. 

A typical scanning operation is upto(c), which returns the 
position in the subject of the first occurrence of a character in 
c (note the similarity of this operation to the pattern BREAK(c) 
in SN0B0L4). Thus 



s ? (j := upto("aeiou")) 

assigns to j the position of the first vowel in s (failing if 
there is no vowel). 

This simple example illustrates several important points. As 
in SN0B0L4, the string operated on by upto(c) is implicit and 
does not have to be specified as an argument. Unlike SN0B0L4, 
upto(c) does not construct a pattern, but rather simply carries 
out the analysis. In SN0B0L4, BREAK(c) constructs a pattern, 
which, when applied, carries out the analysis. (Note that the 
precise action is different; upto(c) returns a position, while 
BREAK(c) returns the substring matched. This difference is ines­
sential.) Another important point is that the expression e in 
s ? e can contain any Icon operation. In the example above, the 
standard form of Icon assignment is used to assign the desired 
position. In SN0B0L4 the equivalent statement would be 

s BREAK("aeiou") @j 

In Icon, the focus of attention in the subject is maintained 
as an implicit cursor, similar to the method used in the P compo­
nent of SN0B0L4. When the subject is established, the cursor is 
set to 1 (Icon strings are indexed beginning at 1, not 0 as in 
SN0B0L4). Some Icon operations move the cursor. Examples are 
tab(n), which sets the cursor to n, and move(n), which adds n to 
the current value of the cursor. Again, there are analogies to 
the SN0B0L4 operations TAB(n) and LEN(n), although tab(n) and 
move(n) operate directly rather than constructing patterns. An 
example of the use of such a scanning operation is 

s ? write(" [" I I move(2) I I "]") 

which is equivalent to the SN0B0L4 statements 

s LEN(2) . TWO 
OUTPUT = "[" TWO " ] " 

Note that the linguistic schism evidenced in the SNOBOL4 state­
ments does not exist in Icon. The advantage of the Icon approach 
is particularly evident where more complicated control structures 
are useful. An example is 

while s := read() do 
s ? repeat write("[" II move(2) II "]") 

The subject and cursor are directly accessible in Icon as 
keywords &subject and scursor. Assigning a value to Sesubject 
establishes the subject for string scanning. &cursor is automat­
ically set to 1 when &subject is set. &cursor can be explicitly 
set to any value in the range of &subject. 

Since string processing expressions may be complicated and 
extensive in scope, it is frequently useful to set Ssubject ex­
plicitly, rather than using scanning expressions. The preceding 
example is written more concisely as 



while Ssubject := read() do 
repeat write("[" || move(2) I I "]") 

The advantage of a scanning expression is that the current sub­
ject and cursor are saved before e is evaluated and restored 
after e is evaluated. in fact, s ? e is essentially equivalent 
to 

push(&cursor) 
push(&subject) 
Ssubject := s 
e 
pop(ssubject) 
pop(scursor) 

where push(x) and pop(x) represent internal stack operations for 
saving and restoring values. Thus nested string scanning is 
easily obtained. For example 

s ? el ? e2 

applies e2 to the result returned by s ? el. 

3.3 String Scanning Operations 

There are eight string scanning operations in Icon. Two, 
move(n) and tab(n), are positional. The remainder are "lexical" 
in the sense that they analyze the character structure of the 
subject. 

In move(n), the value of n may be negative, specifying move­
ment of the cursor toward the left end of the subject. In all 
cases, the value of move(n) is the substring between the previous 
and new cursor positions (regardless of the direction of cursor 
movement). The operation fails if the resulting cursor position 
would not be in the range of the subject. 

In tab(n), a nonpositive argument specifies a position rela­
tive to the right end of the subject. Thus, tab(O) positions the 
cursor past the last character of the subject. As with move(n), 
the value of the operation is the substring between the previous 
and new cursor positions (regardless of the direction of move­
ment) . The operation fails if the resulting cursor position 
would not be in the range of the subject. 

The value of &cursor is always positive. A nonpositive value 
can be assigned to &cursor to specify a position relative to the 
right end of the string without having to compute the length of 
the string. This device suppresses detail and avoids bothersome 
computation. Thus, if the subject is "portability", 

&cursor := 0 

actually sets &cursor to 12, and subsequently 

j := &cursor 

10 



sets j to 12, not 0. 

The lexical scanning operations in Icon are more extensive 
than those in the P component of SNOBOL4: 

upto(c) 
thru(c) 
any(c) 
bal(01,02/03) 
find(s) 
match(s) 

The scanning operation upto(c) returns the position of the 
first occurrence of a character of c in the subject, starting at 
the current cursor position. Thus, if the subject is "portabili­
ty" and the cursor is 3, the value of upto("aeiou") is 5. The 
operation fails if no such character exists. Note that upto(c) 
does not change the cursor; the effect of BREAK(c) in SN0B0L4 is 
obtained by tab(upto(c)). 

The scanning operation thru(c) returns the position after a 
continuous sequence of characters in c in the subject, starting 
at the current cursor position. Thus, if the subject is "moon­
shine" and the cursor is 2, the value of thru("aeiou") is 4. The 
operation fails if the character of the subject at the current 
cursor position is not contained in c. 

The scanning operation any(c) succeeds if the character at the 
current cursor position in the subject is contained in c and 
fails otherwise. The value returned is one greater than the 
current cursor position. Character sets in Icon may be comple­
mented with respect to the alphabet of all characters. Thus 
any(~c) succeeds if the character at the current cursor position 
is not included in c. 

The scanning operation bal(cl,c2,c3) is a generalization of 
the matching procedure for the SN0B0L4 pattern BAL. In SN0B0L4, 
BAL only matches strings balanced with respect to parentheses. 
In Icon, cl and c2 are sets of characters that specify the left 
and right balancing characters. Furthermore, c3 specifies a set 
of characters that may follow the balanced string. For example, 
if the subject is "(a)*[b]-7" and the cursor is 1, the value of 
bal("[(",")]","+-") is 8. The operation fails if there is not 
such a balanced string starting at the current cursor position. 
For convenience, defaults are used if the arguments are null: 

cl "(" 
c2 " ) " 
c3 any character 

If c3 is null, the balanced string may extend through the end of 
the subject. Thus bal() is equivalent to the matching procedure 
for BAL. 

The scanning operation find(s) returns the position of the 

11 



first occurrence of the string s in the subject, starting at the 
current cursor position. Thus, if the subject is "mississippi" 
and the cursor is 1, the value of find("is") is 2. The operation 
fails if no such string exists. 

The scanning operation match(s) returns the cursor position 
after the occurrence of s as a substring of the subject starting 
at the current cursor position. Thus, if the subject is "missis­
sippi" and the cursor is 2, the value of match("is") is 4. The 
operation fails if s is not a substring of the subject at the 
current cursor position. Thus, for the subject above, if the 
cursor were 1, match("is") would fail. 

For convenience, =s is equivalent to tab(match(s)). Note that 
=s corresponds to the pattern component s in SNOBOL4. 

3.4 Searching and Backtracking 

One of the essential components of high-level string proces­
sing is the ability to express alternatives concisely and to have 
the search for such alternatives carried out automatically. 

In Icon, the operation el I e2 is equivalent to the the opera­
tion performed in SN0B0L4 when the pattern Pi | P2 is evaluated 
in P. 

This operation is actually fairly complex and deserves discus­
sion. The most obvious aspect of alternation is that el is eval­
uated first and if that evaluation succeeds, the result is the 
result of the entire expression. However, if evaluation of el 
fails, e2 is evaluated and its result is the result of the entire 
expression. The subtlety arises if the value produced by suc­
cessful evaluation of the alternation is not acceptable in the 
context in which it occurs. Consider, for example, 

tab(10 I 5) 

(Note that this construction, while clear in its intent, has no 
direct counterpart in SN0B0L4). The expression 10 I 5 has two 
literal subexpressions, and of course the first, 10, succeeds. 
However if the subject is, say, six characters long, tab(10) 
fails. This results in a "re-evaluation" of the expression 
10 I 5 and the alternative value, 5, is returned the second time. 
Thus, tab(10 I 5) is equivalent to tab(10) I tab(5) as would be 
expected. 

In Icon, operations that have the capacity for producing al­
ternative values as required by the context in which they appear 
are called generators. This capacity for generating alternate 
values is meaningful for many operations in Icon. 

The scanning operation upto(c) is, in fact, a generator. For 
upto(c), the behaviour is like that for the matching procedure 
for BREAKX(c) in the SPITBOL dialect of SNOBOL4 [19]. If the 
value returned by upto(c) does not satisfy the context in which 

12 



it is used, the next position further on is returned, and so on. 
Note that upto(c) is a generator with an indefinite number of 
alternatives that depend on c and the current subject. 

The possible need for the second alternative in tab(10 | 5) i; 
clear, but the need for alternatives in upto(c) is not so obviou; 
(Note that tab(upto(c)) necessarily succeeds for any value of 
upto(c) and move(upto(c)) is somewhat fanciful). There are, 
however, other control structures that may require alternatives. 
One of these is el & e2, which succeeds only if both el and e2 
succeed. In requiring this "mutual" success, there is automatic 
backtracking for alternatives of el if e2 fails. This corre-

tab(upto("i")) & ="issip" 

upto("i") first returns the value 2 and tab(upto("i")) moves the 
cursor to this position. However, ="issip" fails, and the first 
expression is re-evalauted for an alternative. This time the 
value of upto("i") is 5, tab(upto("i")) move the cursor corre­
spondingly, and ="issip" succeeds. 

Note that tab(upto(c)) is equivalent to matching for the SPIT-
BOL pattern BREAKX(c), so the expression above is equivalent to 
matching for the SPITBOL pattern 

BREAKX("i") "issip" 

The Icon expression is slightly more verbose than the SPITBOL 
pattern, but in turn, Icon expressions offer more flexibility 
(there is no easy SPITBOL equivalent to j := upto(c)). This 
trade-off is typical and works to the advantage of Icon in com­
plex string processing, while the conciseness of SN0B0L4 is an 
advantage in simple situations. 

The other string scanning operations that are generators are 
thru(c), bal(cl,c2,c3), and find(s). For bal(cl,c2,c3), the 
alternatives are as in SN0B0L4 BAL — successively longer bal­
anced strings. For find, the alternatives are positions of s 
successively further on in the subject. For thru(c), the con­
verse is the case -- for each alternative, a value one less than 
the previous is returned, until the shortest possible continuous 
(nonnull) sequence of characters in c is located. For example, 
if the subject is "moonshine" and the cursor is 2, the expression 

s := tab(thru("aeiou")) & ="on" 

succeeds and assigns "o" to s, although "oo" is assigned for the 
initial evaluation of the expression. 

The full range of search and backtracking in SNOBOL4 pattern 
matching is available in the Icon expressions el I e2 and el & 
e2. It is important to note that el & e2 does not have to be 
used unless it is needed (while in SNOBOL4 backtracking in a 
sequence of pattern components cannot be avoided). For example, 
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x := tab(upto(cl)) & y := tab(upto(c2)) 

succeeds only if the subject contains a character of c2 in a 
position at or beyond a character of cl, while in the sequence of 
expressions 

x := tab(upto(cl)); y := tab(upto(c2)) 

this constraint does not apply. A value may be assigned to y 
even if the subject does not contain a character in cl. 

When an instance of move(n), tab(n), or =s is backtracked over 
(that is when it fails for lack of alternatives), the effects of 
implicit cursor movement are reversed and the cursor is restored 
to its position prior to the evaluation of the operation. For 
example, if the subject is "portability" and the cursor is 1, 
evaluation of 

tab(10) & ="a" 

first sets the cursor to 10 but then restores it to 1 when ="a" 
fails. 

Other effects are not reversed. In the example above, if the 
expression were 

Scursor := 10 & ="a" 

the value of the cursor would not be restored, since it was set 
by assignment, not by a scanning operation. 

3.5 Procedures 

One of the most severe limitations of pattern matching in 
SNOBOL4 is the inability to add new matching procedures. Since 
SNOBOL4 has no such facility, programmers do not miss it per se 
(it is essentially "inconceivable", since, as a language, SNOBOL4 
has no construct for expressing such a possibility). 

In Icon, procedures allow the construction of programmer-
defined generators and hence programmer-defined scanning proce­
dures. 

Icon procedures resemble those of SL5 [ 6 ]/ although the SL5 
decomposition of procedure activation (and hence coroutine usage) 
is not available in Icon. 

A typical Icon procedure is 

procedure max(n,m) 
if m > n then return m else return n 

end 

Since scanning operations are on a par with all other Icon 
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operations, procedures may be used for scanning in the same way 
that they are used as abstractions for other purposes. An 
example is a procedure that behaves like match (sj, but is "unan-
chored" like find(s): 

procedure fmatch(s) private j 
if j := find(s) then return j + length(s) else fail 

end 

Defined generators are obtained by using suspend, which re­
turns a value like return, but leaves the procedure in a state 
that it can be resumed for the generation of additional values. 

For example, the procedure fmatch(s) defined above is not a 
generator like find(s). This defect can be remedied by using 
suspend; 

procedure fmatch(s) private j 
every j := find(s) do suspend j + length(s) 
fall 

end 

A more esoteric application is in the use of defined genera­
tors to characterize languages in a fashion similar to SN0B0L4 
patterns. Consider the simple grammar 

<s>::=a<s>aIb 

An Icon procedure to "match" sentences from the language gener­
ated by this grammar is 

procedure s 
every ="a" & s() & ="a" I ="b" do suspend 
fail 

end 

This procedure is suspended for every alternative of the 
expression describing the language. Thus 

"aabaa" ? s() 

calls s. The first alternative matches "a" and calls s again 
(recursively), resulting in the match of the second "a" and an­
other call to s. This time, the first alternative fails and the 
"b" is matched. Upon successive returns, a trailing "a" is 
matched each time and the entire expression succeeds. On the 
other hand, for a subject that is not a sentence in the language, 
alternatives are eventually exhausted, and the scanning operation 
fails. 

The method used above generalizes for more complex grammars, 
with a procedure for each nonterminal symbol. The correspondence 
between production grammars and defined scanning procedures is 
just as direct as the correspondence between production grammars 
and SN0B0L4 patterns, if a bit more involved. 
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A. Conclusion 

Not surprisingly, scanning in Icon presents some problems. 
One problem is the choice of primitive scanning operations. For 
example, it might be desirable to have a scanning operation that 
sets the cursor like tab(n) but does not return the substring 
between the previous and new cursor positions. The advantage of 
such an operation would be efficiency, since the computation of 
the substring would be avoided. A similar situation exists for 
move(n). If these new operations are added, however, the vocabu­
lary of the language is increased, with all the attendant prob­
lems. An alternative is to replace tab(n) and move(n) by these 
new operations and add an additional operation to obtain sub­
strings. At the other extreme, tab(upto(s)) is used so frequent­
ly that a single operation that combines these two would be use­
ful. 

The bases for such decisions are the usual ones in language 
design. The problem is aggravated by the relative unfamiliarity 
of scanning. The historical influence of SN0B0L4 tends to inhib­
it new views. More experience with scanning should provide in­
sight. 

The scope of ssubject presents a rather serious problem. In 
Icon, scanning operations on the same subject tend to be more 
extensive than in SN0B0L4. This is the reason that setting 
Ssubject directly is frequently more useful than the implicit 
setting of the subject in s ? e. However, it then becomes more 
likely that the subject or cursor may be changed inadvertently. 
For example, if a defined procedure is called, it may expect to 
operate on the subject (as the procedure fmatch(s) given above) 
or it may establish its own subject. If it does the latter with­
out saving and restoring the prior subject and cursor, the re­
sults may be catastrophic. 

The generally recognized hazards of global variables are mag­
nified here because of the frequency with which the two globals, 
&subject and scursor, are used. This appears to be a dilemma, 
since much of the virtue of string scanning is derived from the 
globality of these variables. 

The usefulness of string scanning in Icon leads to a number of 
possibilities and open questions. Once scanning on a single 
subject is available, situations immediately arise where the 
simultaneous scanning of two or more subjects would be useful. 
Again, this is a dilemma, since it is the single focus of atten­
tion that leads to the simplifications that make string scanning 
attractive. Any departure from this single focus of attention 
introduces complexity and detail that string scanning presently 
avoids. 

Looking in another direction, there is no inherent reason why 
scanning should be limited to strings. Scanning of data struc­
tures, given appropriate primitives, follows by analogy. Such 
possibilities are particularly seductive. 
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