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1. Introduction

Icon [1] is a programming language designed for nonnumeric ap-
plications with an emphasis on string and structure processing.

Icon derives much of its philosophical basis from SNOBOL4 [2] and:

SL5 [3]. For example, Icon supports numerous built-in daLatypes
and implicit conversions at execution time.

Icon is intended to be practical for production work. This in- .

tention has motivated the inclusion of optional declarations. De-
clarations are used to improve efficiency by permitting certain
aspects of programs, such as types of variables, to be bound at
compile time as in more traditional languages. The defaults pro-
vided in the absence of declarations provide a degree of flexibil-
ity comparable to that in SNOBOL4. The defaults provide a reason-
able middle ground between flexibility and ease of programming and
"execution~time efficiency.

Icon is also intended to be portable and suitable for computers
with 16-bit words. Unlike SNOBOL4 and SL5, where abstract machine
modelling [4) was used to achieve portability, Icon is implemented
in Ratfor [5], a preprocessor for Fortran. For the most part, the
portablllty of Icon is based on the ubiquity of Fortran; its effi-
ciency relies on the existence of good Fortran compilers; and the
understandability of the code itself depends on the readability of
Ratfor.

The portability and efficiency requirements have a significant
impact on the design of the system in general and on the storage
management system in particular. This paper describes the storage:
management system, which was designed to accomodate these reguire- -
ments and their implied limitations. The performance of the
storage management system has a substantial impact on the language
[6,7)]. The Icon storage management system is designed to reduce
this impact to an acceptable level. This is accomplished by
"modularizing” the management of storage in terms of different
types of data, such as integers and strings. This permits the
storage for each type of data to be managed by a scheme that is
most appropriate for that type. 1In addition, each type of data is
managed independently in order to minimize the impact of one :
‘'storage management technigue on the performance of another. Thus,
the storage management system in Icon is essentially a set of
small, semi-independent, type-specific storage management subsys-
tems. o

Although the implementation language, Ratfor (and hence For-
tran), aids in developing a portable system, it provides little
assistance in data structuring. Fortran has such poor data typing
facilities that it is essentially "typeless". As a result, the
storage management system must deal with data structures that are;
represented by appropriate combinations of integers. 1In addition,
- there is no (machine-independent) mechanism for referring to
fields within a word, which might contain type codes or flag bits,
for example. Even if such a mechanism existed, it would be of
little use in light of the requirement to run on computers with a
small word size.



Section 2 describes the layout of storage and the representa-
tion of various data types in Icon. The allocation of storage for
each type is discussed in Section 3. Reclamation of inaccessible

storage for reuse is covered in Section 4.

2. Storage Layout and Data Representation

Storage is represented by a large Fortran array of one dimen-
sion. This array is divided into five regions roughly correspond-
ing to the division of data types into classes. These regions,.
depicted in Figure 1, are the string region, the string qualifier
region, the .integer region, the heap, and the stack.

All source language values have a uniform representation: a
pointer into one of the storage regions. A pointer is simply an.

"integer index into the memory array. While this representation is.

. compact, therc itc no room for type codes. The locations of the

storage regions provide a means of determining the type from the

value of the pointer. For example, if a pointer points within the ”

bounds specified by intbas and hepbas (see Figure 1), it points-to
an integer. ) ‘ ;

The structure of each region is determined by the kinds of data
stored in that region.: This technigue is used to save space.

Since the structure of each region is tailored for a specific kind. . -

of data, extra space for extraneous storage management informa-
tion, such as block headers, can be eliminated. For example, .
there is no space required to store integers beyond that required
for the integers themselves.

2.1 The Integer Region

Since positive integers are indistinguishable from pointers,
integers are represented by pointers into the integer region.
Each word in the region contains one integer. For example, the
representation of the integer -5 is shown in Figure 2.  This
representation is less efficient than simply representing integers
by their values, but is necessary in order to accomodate computers
with 16-bit words. It is possible to use a flag bit to indicate a
pointer, but on a 16-bit computer this reduces the magnitude of
integers to 16383 and limits the values of pointers to 15-bits.

This representation does permit integers that occur freqguently

" to be permanently allocated. Whenever a computation results in

one of these integers, the appropriate pointer is returned. 1In
the current version of Icon, the integers -1, 0, and 1 are handled
in this fashion. L

2.2 The String and String Qualifier Regions

Strings are represented by a pointer to a two-word gualifier in
the string qualifier region. A gqualifier contains the length of
the string in characters and the character offset to the first
character in the string. The offset is the character offset from
the base of the array containing the five storage regions. This.
representation facilitates efficient implementation of many common
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string operations such as substring formation, concatenation, and
trimming; see [8] and [9] for more information. Figure 3 illus-

trates the representation of the strings "hippopotamus" and "pot". -.

While this representation is machine independent, it does re-
guire .that the string region be located at the low end of the
memory array in order to avoid very large offsets that might not
fit in a single word.

As for frequently occurring integers, gualifiers for frequently
occurring strings can be permanently allocated. 1In the current
version, only the null string is permanently allocated; it has a
zero length and offset.

2.3 The Heap ' .

The heap provides a region in which objects of different sizes
can be allocated.. Storage in the heap is allocated in blocks.
All blocks have a header word, which contains a block code that
uniquely identifies the type of data stored in the block. All
pointers pointing into the heap point to block headers. The block
code serves as a type code. The layout of the remainder of a
‘block depends on the kind of data stored in the block.

There are four basic block layouts. The most general form,
shown in Figure 4, is a varying size block that may contain
pointers to other blocks. This kind of block is used to house
lists, tables, and records, for example. The size of the block,
including the header, is contained in the size field. The back
reference field is used by the garbage collector in marking nested
blocks (see Section 4.4).

Some objects are represented by blocks with a simpler layout.
For example, if the object cannot contain pointers, the back
reference field is unnecessary. If the block size is the same for
all objects of that type, the size can be deduced from the block
code,

For example, character sets are represented by fixed-size
blocks as depicted in Figure 5. The block size is determined by
table. lookup using the block code as an index. The layout shown
in Figure 5 applies only to blocks that do not contain pointers to
" other blocks. Note that pointers to integers or strings are per-
.mitted in this layout, however. (This capability is not used in
the current version of Icon). Figure 6 shows the layout for
fixed-size blocks that may contain pointers to other blocks. The
« appearance of a back reference field is determined by the block
code. ‘

Objects whose size may vary, but that do not contain pointers,
are housed in blocks whose layout is depicted in Figure 7. The
value of the block code indicates that the size is contained-
within the block itself. '

Note that the header field occurs in all blocks and is in a
fixed position (the first word). Although back reference figlds



may be absent, depending on the block code, they are also in a
fixed .position (the second word). Size fields also may be absent,

but may appear in the second or third word. This arrangement per-v"

mits the garbage collector to find the back reference field in the -
same place regardless of the block code, which facilitates the
processing of those blocks that contain pointers to other blocks.
Figure 8 depicts that representation of some data objects that
are stored in the heap.- .

2.4 The Stack

Thz stack is composed of single word values and grows from R

'stkbas backwards towards hepfrp (see Figure 1). The top of the
stack is indicated by the pointer sp. .

-The stack may contain pointers and is examined by the garbage

~ collector during reclamation. There are situations, however, when
it is necessary to push arbitrary values onto the stack. For ex-
ample, it may be necessary to push a Fortran integer onto the
stack. Since positive integers are indistinguishable from
‘'pointers, the following convention is used to warn the garbage
"collector of non-pointer data on the stack. The appearance of a
-1 on the stack indicates the presence of such data. The next

-~ word (towards sp) contains a count of the number of subseguent

words containing non-pointer data. ‘As an example, Figure 9 shows
the stack configuration after pushing the Fortran integers 52 and
-104. This convention is not necessary for integers less than -2
since they cannot be pointers. :

3. Allocation

There is a separate allocation strategy for each storage re-
gion. The scheme used for each region is designed for efficient
allocation and to accomodate efficient reclamation for that re-
gion.

Allocation in the qualifier and integer regions is in fixed-
size units. For each region, a linked list of available units is
maintained. Allocation consists of simply returning the first
unit on the free list and advancing the free list pointer.

Allocation of any of the permanently allocated integers results
in the return of appropriate pointer. Similar remarks do not ap-
ply to the allocation of a string gqualifier with a zero length

field, however, since it is often necéssary to allocate a quallf-; ¢;:

der w1th zero length and compute- the appropriate. length durlng
subsequent processing. :

Allocation in the string and heap regions is accomplished by
incrementing the appropriate free space pointer by the amount of
the request. Space in the string region is allocated in charac-
ters; space in the heap is allocated in words. 'An allocation re-
guest in the heap is always accompanied by a block code, and the
allocation routine constructs the appropriate block header. Thus,
knowledge concerning the specific header format layout, which may



include the size and back reference fields, is confined to the
- storage management routines.

Stack words are allocated by decrementing sp. Note that the
amount of available stack space varies since the heap and stack
grow towards each other.

4. Reclamation

Reclamation of storage in each region consists of identifying
the accessible data in that region, and restructuring the region
so that the space occupied by inaccessible data is made available
for reuse. Allocation in one region does not affect the other re-
gions. This is not the case for reclamation. As described below,
reclamation in one region may trigger reclamation in another re-
gion.

Determining the accessible data in any region starts by examin-
ing the contents of a set of locations that may contain pointers.
These locations are called tended locations [10]. 1In Icon, the
set of tended locations consists of the stack and about two dozen
specific locations in a Fortran labeled common block. For recla-
mation in the integer and gqualifier regions, the.entire heap is’
also considered tended.

4.1 The Integer Region

Accessible integers are determined by examining the tended
~areas including the heap. This examination, which consists of a
single pass, is called a sweep. Prior to sweeping for pointers
into the integer region, enough zero words are pushed onto the
stack to form a bit map of the integer region. (The bit opera-
tions required are the same as those used for character sets and
are implemented by three simple assembly language functions.)
Since the bit map contains non-pointer data, it is preceded by -1
and a count as described in Section 2.4 and illustrated in Figure
9.

For each pointer into the integer region encountered during.the .
sweep, the corresponding bit in the map is set to 1. The bits
corresponding to the permanently allocated integers (-1, 0, and 1)
are also set to 1. After sweeping, the bit map. is used to con-
struct a new free list and the map is then discarded.

Note that the sweep may mark integers pointed to from inacces-
sible heap blocks as accessible. This can be avoided by reclaim-
ing space in the heap before sweeping for integer pointers. Heap -
reclamation involves a full compactifying garbage collection, '
which is time consuming. Even the marking phase of that process
is usually significantly more expensive than scanning all heap
blocks. 1In order to keep reclamation in any region as inexpensive
as possible, heap reclamation is never performed when reclaiming
space in the other regions.

Each reclamation routine has an argument that indicates the
amount of free space desired. 1If reclamation fails to produce the



desired amount, the region is expanded if possible. For the in-
teger region, the allocation routine requests at least 25 free in-
tegers when it calls the reclamation routine. The compile-time
parameter 25 is called a "breathing room" parameter and is used to
reduce the number of reclamations and expansions. '

Expansion of the integer region requires adjustment of all
pointers that point into the heap (see Figure 1). This adjustment
is accomplished by another variation of sweeping. (Sweeps are
performed by a single routine that is parameterized to handle the
specific reason for sweeping).

4.2 The String Qualifier Region

Raclamation in the qualifier region is similar to that in the-
integer region, but temporary stack space is not required. . The
bit map is required for the integer region because there is no way
to "mark" an integer as accessible without corruptlng its value. -
For qualifiers, however, the location field is modified temporari-
ly to indicate accessibility without loss of information.

Pointers into the qualifier reg1on are located by a sweep. For
each pointer, the location field is set to '

¢

-(location + 1)
A 1ﬁnear pass is then made over the gualifier region setting the
location fields of accessible gqualifiers back to their original
values and adding inaccessible qualifiers to the free list.

4.3 The String Region

Detérmining the accessible data in the string region is simpler
than for the other regions because all pointers into the string
region are in the location fields of gualifiers. A gqualifier on
_the free list has its length field set to -1 (the linked list is
formed using the location fields).

A linear pass is made over the gualifier region, pushing a
.pointer to each active gqualifier anto the stack. The pointers on
the stack are then sorted in ascending order of the values in the
location fields. The sorted list is scanned and accessible
strings are compacted into the lower part of the string region.
The location fields of the qualifiers are adjusted during this
processing to reflect the result of compaction. This technigue
handles "overlapping" strings such as those depicted in Figure 3.
Details of the algorithm are given in [9] and [11].

The string allocation routine always calls the gualifier recla- "
mation routine prior to requesting reclamation in the string re-
gion. 1Icon has an extensive repertoire of string manipulation
operations, and it is qguite common for many intermediate strings
to be created during program execution. Thus, many qualifiers and
the strings they point to may be inaccessible. Reclaiming this
space reduces the chances that the string region will have to be
expanded.



4.4 The Heap

Heap reclamation is the most complex of the reclamation
schemes. It is a general garbage collection scheme involving
marking and compaction. The algorithm is given in detail in [10].

Briefly, heap reclamation consists of three phases. The first
phase consists of marking all blocks accessible from the tended
areas. This phase requires a marking algorithm capable of han-
dling circular references. Pointers to heap blocks are adjusted
to their final value during the second phase. In the third and
final phase, accessible blocks are compacted into the lower part
of the heap. If necessary, the heap is expanded by moving the
stack.

Heap reclamation was the only reclamation algorithm whose im-
plementation was significantly affected by the use of Fortran as
the implementation language. The marking algorithm used in the
first phase constructs a linked list of the pointers to a block.
This list begins at the type code field of each block and is con-=
structed using the pointers themselves. The problem is. that
pointers are represented by indices into the memory array and the
‘tended variables in the Fortran common cannot be easily represent-
ed by such indices.

In order to address the tended variables, their values are
copied into reserved locations at the base of the stack, which is
"in the memory array. The marking phase uses these copies of the
tended variables when constructing the linked lists of pointers.
Upon completion, the updated values are copied back into the com-
mon area.

An alternative approach would be to equivalence the tended
variables with a portion of the memory array, such as the first
two dozen locations. The memory array is kept in unlabeled common
to accomodate those systems that permit expansion of unlabeled
common. Thus, unlabeled common is used only for the memory array.
In addition, the tqnded data is in a labeled common devoted to
that purpose for modularity reasons.,

4.5  The Stack

¢

The stack region never regquires reclamation, but may reguire
expansion. 1If space in the stack region is exhausted, heap recla-
.mation. is performed in an attempt to lower hepfrp enough to the
satisfy the expansion request. 1If this is unsuccessful, the stack
is moved up if possible. Note that movement of the stack only re-
quires the adjustment of sp and stkbas; no sweep is necessary.

4.6 Worst-Case Processing

In some cases, reclamation in one region reguires movement of
the regions that follow it. Reclamation in the integer and qual-
ifier regions requires allocation on the stack. The effect of _
movement and stack allocation is to make reclamation in the worst
case substantially more costly than in the average case.



For example, in the best (and hopefully average) case, reclama-
tion in the integer region requires a single sweep. In the worst
case, however, it may reqguire

(1) heap reclamation;

(2) sweep for expansion to obtain more stack space;

(3) movement of the stack:

(4) sweep-for integer pointers;

(5) sweep for expansion of the integer region; and

(6) movement of the heap and stack.

Reclamation in the qgualifier region usually consists of a sweep
. for pointers into the region followed by a linear pass over all
qualifiers. 1In the worst case, qualifier reclamation requires

(i) sweep for gqualifier pointers;

(2)4a linear pass over the gualifier region;

t3) sweep for expansion of the qualifier regioé; and

(4) movement of‘the integer regién, heap, and stack.

String region reclamation requires stack allocation. In addi-
tion, a qualifier reclamation is always performed. Worst case
processing for string space reclamation involves

(1) heap reclamation;

(2) sweep for expansion,of the stack;

(3) movement of the stack:

(4) sweep for qualifier pointers;

(5) linear pass over the qualifier region;

(6) linear pass over the gualifier region for accessible gual-
ifiers;
(7) sorting the pointers to accessible gualifiers; and

(8) compaction of accessible strings and adjustment of quallf—
ier locatlon fields.

When quallfler reclamation is performed during string region.
reclamation, the qualifier region is not expanded since the
desired free space argument is 0 in this case.



-5, Conclusions

( ‘ :
The Icon storage management system has been designed to balance
the frequently conflicting goals of portability and efficiency.
Modularity is the basic technigue used to achieve this balance.

The modularity of the system has several beneficial conse-
quences. Tailoring the layout of each region to the kind of data
stored in that region helps save space. Second, allocation and
reclamation is simplified since it is performed on a per-region
basis. This saves. time because each region is smaller than the
total available memory and the algorithms used are designed for
specific regions. Finally, the code itself is modularized along
the same lines. This results in a number of small, semi-
independent routines instead of several large, monolithic
. routines. .

» The modularity of the system does have its drawbacks, however.

As with any system having many components, the number and complex-
ity of the interactions among the components can cause problems.
The components in the Icon storage management system are designed
to minimize the amount of interaction. For the most part, there.
is no interaction among the allocation routines except that they
may call a reclamation routine. As described in Section 4. 6, how-
ever, interaction among the reclamation routines can result in
poor performance. The present design does not permit such in-
teractions to be eliminated, but an attempt has been made to tune
the system in order to reduce the freauency with whlch these in-
teractions occur.
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________________ +
| K== strbas
string |
region |
I
[
| {==——= strfrp
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________________ +
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I
I
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|
l .
[{==——= sp
stack |
region |
|
I
[ {===—= stkbas
________________ +
I
I
[ <==—=- theend
________________ + :

Figure 1. Storage Regions.
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in the integer region

Figure 2. Representation of the Integer -5.

t———————— - -+
' h i p p o |
1 P o t a m |
| u s I
I I

in the string region
pomm e + o +
| ———tmm— > | 12 |
D e + Fom e +
"hippopotamus" I 0 |
o +
Fom e ——— + Fmm e +
| T B > 31
o e + e T ST +
"pot" | 3 |
e +

in the gqualifier region

Figure 3. Representation of "hippopotamus" and "pot".
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| block code |
Fmm e +
| back reference |
T T +
| size |
o~ +
| |
| data |
| |
O +

Figure 4. Layout of Varying Size Blocks Containing Pointers.

T T +
| block code |
o +
| I
| data |
| |
e +

Figure 5. Layout of Fixed-Size Blocks.

e +
| block code |
Fm e +
| back reference |
o e +
I I
| data |
I |
o +

Figure 6. Layout of Fixed-Size Blocks Containing Pointers.

13



Figure 7.

| block code |
e — +
| size |
e —— +
| |
| data |
[ |
e +

Layout of Varying Size

14
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| 4 | block code

| 000000 000000 | character set bits (in octal)
| 000000 000000 | :
| 000000 003740 |

l |

000000 000000

e +
| 3 ] block code
e +
| -47,348e5 | real number
o +

The Real Number -47.348e5.

________________ +
7 | ‘block code
________________ +
0 | back reference
________________ +
8 | size
________________ + . .
0 | datatype of elements (any)
---------------- + .
———t————- > to 5 in the integer region
________________ +
———t————— > to a gualifier for "hi there"
________________ + ’
———t————— > to character set block (see above)
________________ +
0 | &null is 0
________________ +

The List <5, "hi there", cset("abcdef"), &null>

Figure 8. Examples of Objects Stored in_thé Heap.
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B +

| -104 |<—---- sp
e +

| 52 | -
o e +

| 2 |

fmm e +

I -1 |
e +

I |

| | <==——— stkbas
e +

Figure 9. Stack Configuration After Pushing 52 and -104.
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